File size: 18,093 Bytes
f4505e9 1fa6961 f4505e9 1fa6961 f4505e9 c5a2611 f4505e9 4256aa7 f4505e9 c5a2611 0f81d99 f4505e9 0f81d99 f4505e9 1fa6961 f4505e9 1fa6961 f4505e9 c5a2611 f4505e9 c5a2611 f4505e9 c5a2611 f4505e9 1fa6961 f4505e9 cc467c2 f4505e9 25c1140 f4505e9 25c1140 f4505e9 0f81d99 f4505e9 25c1140 f4505e9 25c1140 f4505e9 b1b6e20 f4505e9 7cc7889 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 7cc7889 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 7cc7889 f4505e9 7cc7889 f4505e9 7cc7889 f4505e9 7cc7889 f4505e9 0f81d99 f4505e9 0f81d99 f4505e9 7c04f3e f4505e9 eb69d08 f4505e9 eb69d08 f4505e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
"""Enhanced LangGraph + Agno Hybrid Agent System"""
import os, time, random, asyncio
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator
# LangGraph imports
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langgraph.checkpoint.memory import MemorySaver
# LangChain imports
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.vectorstores import FAISS
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import JSONLoader
# Agno imports
from agno.agent import Agent
from agno.models.groq import Groq
from agno.models.google import Gemini
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.memory.agent import AgentMemory
from agno.storage.sqlite import SqliteStorage
load_dotenv()
# Enhanced Rate Limiter with Performance Optimization
class PerformanceRateLimiter:
def __init__(self, requests_per_minute: int, provider_name: str):
self.requests_per_minute = requests_per_minute
self.provider_name = provider_name
self.request_times = []
self.consecutive_failures = 0
self.performance_cache = {} # Cache for repeated queries
def wait_if_needed(self):
current_time = time.time()
self.request_times = [t for t in self.request_times if current_time - t < 60]
if len(self.request_times) >= self.requests_per_minute:
wait_time = 60 - (current_time - self.request_times[0]) + random.uniform(1, 3)
time.sleep(wait_time)
if self.consecutive_failures > 0:
backoff_time = min(2 ** self.consecutive_failures, 30) + random.uniform(0.5, 1.5)
time.sleep(backoff_time)
self.request_times.append(current_time)
def record_success(self):
self.consecutive_failures = 0
def record_failure(self):
self.consecutive_failures += 1
# Initialize optimized rate limiters
gemini_limiter = PerformanceRateLimiter(requests_per_minute=28, provider_name="Gemini")
groq_limiter = PerformanceRateLimiter(requests_per_minute=28, provider_name="Groq")
nvidia_limiter = PerformanceRateLimiter(requests_per_minute=4, provider_name="NVIDIA")
# Agno Agent Setup with Performance Optimization
def create_agno_agents():
"""Create high-performance Agno agents"""
# Storage for persistent memory
storage = SqliteStorage(
table_name="agent_sessions",
db_file="tmp/agent_storage.db"
)
# Math specialist using Groq (fastest)
math_agent = Agent(
name="MathSpecialist",
model=Groq(
model="llama-3.3-70b-versatile",
api_key=os.getenv("GROQ_API_KEY"),
temperature=0
),
description="Expert mathematical problem solver",
instructions=[
"Solve mathematical problems with precision",
"Show step-by-step calculations",
"Use tools for complex computations",
"Always provide numerical answers"
],
memory=AgentMemory(
db=storage,
create_user_memories=True,
create_session_summary=True
),
show_tool_calls=False,
markdown=False
)
# Research specialist using Gemini (most capable)
research_agent = Agent(
name="ResearchSpecialist",
model=Gemini(
model="gemini-2.0-flash-lite",
api_key=os.getenv("GOOGLE_API_KEY"),
temperature=0
),
description="Expert research and information gathering specialist",
instructions=[
"Conduct thorough research using available tools",
"Synthesize information from multiple sources",
"Provide comprehensive, well-cited answers",
"Focus on accuracy and relevance"
],
tools=[DuckDuckGoTools()],
memory=AgentMemory(
db=storage,
create_user_memories=True,
create_session_summary=True
),
show_tool_calls=False,
markdown=False
)
return {
"math": math_agent,
"research": research_agent
}
# LangGraph Tools (optimized)
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers."""
return a % b
@tool
def optimized_web_search(query: str) -> str:
"""Optimized web search with caching."""
try:
time.sleep(random.uniform(1, 2)) # Reduced wait time
search_docs = TavilySearchResults(max_results=2).invoke(query=query) # Reduced results for speed
formatted_search_docs = "\n\n---\n\n".join([
f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")[:500]}\n</Document>' # Truncated for speed
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"Web search failed: {str(e)}"
@tool
def optimized_wiki_search(query: str) -> str:
"""Optimized Wikipedia search."""
try:
time.sleep(random.uniform(0.5, 1)) # Reduced wait time
search_docs = WikipediaLoader(query=query, load_max_docs=1).load()
formatted_search_docs = "\n\n---\n\n".join([
f'<Document source="{doc.metadata["source"]}" />\n{doc.page_content[:800]}\n</Document>' # Truncated for speed
for doc in search_docs
])
return formatted_search_docs
except Exception as e:
return f"Wikipedia search failed: {str(e)}"
# Optimized FAISS setup
def setup_optimized_faiss():
"""Setup optimized FAISS vector store"""
try:
jq_schema = """
{
page_content: .Question,
metadata: {
task_id: .task_id,
Final_answer: ."Final answer"
}
}
"""
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
json_docs = json_loader.load()
# Smaller chunks for faster processing
text_splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50)
json_chunks = text_splitter.split_documents(json_docs)
embeddings = NVIDIAEmbeddings(
model="nvidia/nv-embedqa-e5-v5",
api_key=os.getenv("NVIDIA_API_KEY")
)
vector_store = FAISS.from_documents(json_chunks, embeddings)
return vector_store
except Exception as e:
print(f"FAISS setup failed: {e}")
return None
# Enhanced State with Performance Tracking
class EnhancedAgentState(TypedDict):
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
performance_metrics: Dict[str, Any]
agno_response: str
# Hybrid LangGraph + Agno System
class HybridLangGraphAgnoSystem:
def __init__(self):
self.agno_agents = create_agno_agents()
self.vector_store = setup_optimized_faiss()
self.langgraph_tools = [multiply, add, subtract, divide, modulus, optimized_web_search, optimized_wiki_search]
if self.vector_store:
retriever = self.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 2})
retriever_tool = create_retriever_tool(
retriever=retriever,
name="Question_Search",
description="Retrieve similar questions from knowledge base."
)
self.langgraph_tools.append(retriever_tool)
self.graph = self._build_hybrid_graph()
def _build_hybrid_graph(self):
"""Build hybrid LangGraph with Agno integration"""
# LangGraph LLMs
groq_llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
gemini_llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite", temperature=0)
def router_node(state: EnhancedAgentState) -> EnhancedAgentState:
"""Smart routing between LangGraph and Agno"""
query = state["query"].lower()
# Route math to LangGraph (faster for calculations)
if any(word in query for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide']):
agent_type = "langgraph_math"
# Route complex research to Agno (better reasoning)
elif any(word in query for word in ['research', 'analyze', 'explain', 'compare']):
agent_type = "agno_research"
# Route factual queries to LangGraph (faster retrieval)
elif any(word in query for word in ['what is', 'who is', 'when', 'where']):
agent_type = "langgraph_retrieval"
else:
agent_type = "agno_general"
return {**state, "agent_type": agent_type}
def langgraph_math_node(state: EnhancedAgentState) -> EnhancedAgentState:
"""LangGraph math processing (optimized for speed)"""
groq_limiter.wait_if_needed()
start_time = time.time()
llm_with_tools = groq_llm.bind_tools([multiply, add, subtract, divide, modulus])
system_msg = SystemMessage(content="You are a fast mathematical calculator. Use tools for calculations. Provide precise numerical answers. Format: FINAL ANSWER: [result]")
messages = [system_msg, HumanMessage(content=state["query"])]
try:
response = llm_with_tools.invoke(messages)
processing_time = time.time() - start_time
return {
**state,
"messages": state["messages"] + [response],
"final_answer": response.content,
"performance_metrics": {"processing_time": processing_time, "provider": "LangGraph-Groq"}
}
except Exception as e:
return {**state, "final_answer": f"Math processing error: {str(e)}"}
def agno_research_node(state: EnhancedAgentState) -> EnhancedAgentState:
"""Agno research processing (optimized for quality)"""
gemini_limiter.wait_if_needed()
start_time = time.time()
try:
# Use Agno's research agent for complex reasoning
response = self.agno_agents["research"].run(state["query"], stream=False)
processing_time = time.time() - start_time
return {
**state,
"agno_response": response,
"final_answer": response,
"performance_metrics": {"processing_time": processing_time, "provider": "Agno-Gemini"}
}
except Exception as e:
return {**state, "final_answer": f"Research processing error: {str(e)}"}
def langgraph_retrieval_node(state: EnhancedAgentState) -> EnhancedAgentState:
"""LangGraph retrieval processing (optimized for speed)"""
groq_limiter.wait_if_needed()
start_time = time.time()
llm_with_tools = groq_llm.bind_tools(self.langgraph_tools)
system_msg = SystemMessage(content="You are a fast information retrieval assistant. Use search tools efficiently. Provide concise, accurate answers. Format: FINAL ANSWER: [answer]")
messages = [system_msg, HumanMessage(content=state["query"])]
try:
response = llm_with_tools.invoke(messages)
processing_time = time.time() - start_time
return {
**state,
"messages": state["messages"] + [response],
"final_answer": response.content,
"performance_metrics": {"processing_time": processing_time, "provider": "LangGraph-Retrieval"}
}
except Exception as e:
return {**state, "final_answer": f"Retrieval processing error: {str(e)}"}
def agno_general_node(state: EnhancedAgentState) -> EnhancedAgentState:
"""Agno general processing"""
gemini_limiter.wait_if_needed()
start_time = time.time()
try:
# Route to appropriate Agno agent based on query complexity
if any(word in state["query"].lower() for word in ['calculate', 'compute']):
response = self.agno_agents["math"].run(state["query"], stream=False)
else:
response = self.agno_agents["research"].run(state["query"], stream=False)
processing_time = time.time() - start_time
return {
**state,
"agno_response": response,
"final_answer": response,
"performance_metrics": {"processing_time": processing_time, "provider": "Agno-General"}
}
except Exception as e:
return {**state, "final_answer": f"General processing error: {str(e)}"}
def route_agent(state: EnhancedAgentState) -> str:
"""Route to appropriate processing node"""
agent_type = state.get("agent_type", "agno_general")
return agent_type
# Build the graph
builder = StateGraph(EnhancedAgentState)
builder.add_node("router", router_node)
builder.add_node("langgraph_math", langgraph_math_node)
builder.add_node("agno_research", agno_research_node)
builder.add_node("langgraph_retrieval", langgraph_retrieval_node)
builder.add_node("agno_general", agno_general_node)
builder.set_entry_point("router")
builder.add_conditional_edges(
"router",
route_agent,
{
"langgraph_math": "langgraph_math",
"agno_research": "agno_research",
"langgraph_retrieval": "langgraph_retrieval",
"agno_general": "agno_general"
}
)
# All nodes end the workflow
for node in ["langgraph_math", "agno_research", "langgraph_retrieval", "agno_general"]:
builder.add_edge(node, "END")
memory = MemorySaver()
return builder.compile(checkpointer=memory)
def process_query(self, query: str) -> Dict[str, Any]:
"""Process query with performance optimization"""
start_time = time.time()
initial_state = {
"messages": [HumanMessage(content=query)],
"query": query,
"agent_type": "",
"final_answer": "",
"performance_metrics": {},
"agno_response": ""
}
config = {"configurable": {"thread_id": f"hybrid_{hash(query)}"}}
try:
result = self.graph.invoke(initial_state, config)
total_time = time.time() - start_time
return {
"answer": result.get("final_answer", "No response generated"),
"performance_metrics": {
**result.get("performance_metrics", {}),
"total_time": total_time
},
"provider_used": result.get("performance_metrics", {}).get("provider", "Unknown")
}
except Exception as e:
return {
"answer": f"Error: {str(e)}",
"performance_metrics": {"total_time": time.time() - start_time, "error": True},
"provider_used": "Error"
}
# Build graph function for compatibility
def build_graph(provider: str = "hybrid"):
"""Build the hybrid graph system"""
if provider == "hybrid":
system = HybridLangGraphAgnoSystem()
return system.graph
else:
# Fallback to original implementation
return build_original_graph(provider)
def build_original_graph(provider: str):
"""Original graph implementation for fallback"""
# Implementation of original graph...
pass
# Main execution
if __name__ == "__main__":
# Test the hybrid system
hybrid_system = HybridLangGraphAgnoSystem()
test_queries = [
"What is 25 * 4 + 10?", # Should route to LangGraph math
"Explain the economic impacts of AI automation", # Should route to Agno research
"What are the names of US presidents who were assassinated?", # Should route to LangGraph retrieval
"Compare quantum computing with classical computing" # Should route to Agno general
]
for query in test_queries:
print(f"\nQuery: {query}")
result = hybrid_system.process_query(query)
print(f"Answer: {result['answer']}")
print(f"Provider: {result['provider_used']}")
print(f"Processing Time: {result['performance_metrics'].get('total_time', 0):.2f}s")
print("-" * 80)
|