File size: 10,219 Bytes
f4505e9 d4557ee f4505e9 1fa6961 f4505e9 d4557ee f4505e9 1fa6961 f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee 0f81d99 f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee 1fa6961 d4557ee 1fa6961 d4557ee f4505e9 c5a2611 f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 1fa6961 f4505e9 cc467c2 f4505e9 25c1140 d4557ee 25c1140 d4557ee 0f81d99 f4505e9 25c1140 d4557ee 25c1140 d4557ee b1b6e20 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee f4505e9 d4557ee 0f81d99 d4557ee 0f81d99 d4557ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""Enhanced LangGraph + Agno Hybrid Agent System"""
import os
import time
import random
from dotenv import load_dotenv
from typing import List, Dict, Any, TypedDict, Annotated
import operator
# LangGraph imports
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langgraph.checkpoint.memory import MemorySaver
# LangChain imports
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader, JSONLoader
from langchain_community.vectorstores import FAISS
from langchain.tools.retriever import create_retriever_tool
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Agno imports
from agno.agent import Agent
from agno.models.groq import GroqChat
from agno.models.google import GeminiChat
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.memory.agent import AgentMemory
from agno.storage.sqlite import SqliteStorage # updated per docs
load_dotenv()
# Rate limiter with exponential backoff
class PerformanceRateLimiter:
def __init__(self, rpm: int, name: str):
self.rpm = rpm
self.name = name
self.times = []
self.failures = 0
def wait_if_needed(self):
now = time.time()
self.times = [t for t in self.times if now - t < 60]
if len(self.times) >= self.rpm:
wait = 60 - (now - self.times[0]) + random.uniform(1, 3)
time.sleep(wait)
if self.failures:
backoff = min(2 ** self.failures, 30) + random.uniform(0.5, 1.5)
time.sleep(backoff)
self.times.append(now)
def record_success(self):
self.failures = 0
def record_failure(self):
self.failures += 1
# initialize limiters
gemini_limiter = PerformanceRateLimiter(28, "Gemini")
groq_limiter = PerformanceRateLimiter(28, "Groq")
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
# create Agno agents with SQLite storage
def create_agno_agents():
storage = SqliteStorage(
table_name="agent_sessions",
db_file="tmp/agent_sessions.db",
auto_upgrade_schema=True
)
math_agent = Agent(
name="MathSpecialist",
model=GroqChat(
model="llama-3.3-70b-versatile",
api_key=os.getenv("GROQ_API_KEY"),
temperature=0
),
description="Expert mathematical problem solver",
instructions=[
"Solve math problems with precision",
"Show step-by-step calculations",
"Use calculation tools as needed",
"Finish with: FINAL ANSWER: [result]"
],
memory=AgentMemory(
db=storage,
create_user_memories=True,
create_session_summary=True
),
show_tool_calls=False,
markdown=False
)
research_agent = Agent(
name="ResearchSpecialist",
model=GeminiChat(
model="gemini-2.0-flash-lite",
api_key=os.getenv("GOOGLE_API_KEY"),
temperature=0
),
description="Expert research and information specialist",
instructions=[
"Use web and wiki tools to gather data",
"Synthesize information with clarity",
"Cite sources and finish with: FINAL ANSWER: [answer]"
],
tools=[DuckDuckGoTools()],
memory=AgentMemory(
db=storage,
create_user_memories=True,
create_session_summary=True
),
show_tool_calls=False,
markdown=False
)
return {"math": math_agent, "research": research_agent}
# LangGraph tools
@tool
def multiply(a: int, b: int) -> int:
return a * b
@tool
def add(a: int, b: int) -> int:
return a + b
@tool
def subtract(a: int, b: int) -> int:
return a - b
@tool
def divide(a: int, b: int) -> float:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
return a % b
@tool
def optimized_web_search(query: str) -> str:
try:
time.sleep(random.uniform(1, 2))
docs = TavilySearchResults(max_results=2).invoke(query=query)
return "\n\n---\n\n".join(f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>" for d in docs)
except Exception as e:
return f"Web search failed: {e}"
@tool
def optimized_wiki_search(query: str) -> str:
try:
time.sleep(random.uniform(0.5,1))
docs = WikipediaLoader(query=query, load_max_docs=1).load()
return "\n\n---\n\n".join(f"<Doc src='{d.metadata['source']}'>{d.page_content[:800]}</Doc>" for d in docs)
except Exception as e:
return f"Wikipedia search failed: {e}"
# FAISS setup
def setup_faiss():
try:
schema = """
{ page_content: .Question, metadata: { task_id: .task_id, Final_answer: ."Final answer" } }
"""
loader = JSONLoader("metadata.jsonl", jq_schema=schema, json_lines=True, text_content=False)
docs = loader.load()
split = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50)
chunks = split.split_documents(docs)
embeds = NVIDIAEmbeddings(model="nvidia/nv-embedqa-e5-v5", api_key=os.getenv("NVIDIA_API_KEY"))
return FAISS.from_documents(chunks, embeds)
except Exception as e:
print(f"FAISS setup failed: {e}")
return None
# state type
class State(TypedDict):
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str,Any]
agno_resp: str
class HybridSystem:
def __init__(self):
self.agno = create_agno_agents()
self.store = setup_faiss()
self.tools = [multiply, add, subtract, divide, modulus, optimized_web_search, optimized_wiki_search]
if self.store:
retr = self.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
self.tools.append(create_retriever_tool(retr, "Question_Search","retrieve similar Qs"))
self.graph = self._build_graph()
def _build_graph(self):
groq = ChatGroq(model="llama-3.3-70b-versatile",temperature=0)
gem = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite",temperature=0)
nvd = ChatNVIDIA(model="meta/llama-3.1-70b-instruct",temperature=0)
def route(st:State)->State:
q=st["query"].lower()
if any(w in q for w in ["calculate","math"]): t="lg_math"
elif any(w in q for w in ["research","analyze"]): t="agno_research"
elif any(w in q for w in ["what is","who is"]): t="lg_retrieval"
else: t="agno_general"
return {**st,"agent_type":t}
def lg_math(st:State)->State:
groq_limiter.wait_if_needed()
t0=time.time()
llmt=groq.bind_tools([multiply,add,subtract,divide,modulus])
sys=SystemMessage(content="Calc fast. FINAL ANSWER: [result]")
res=llmt.invoke([sys,HumanMessage(content=st["query"])])
return {**st,"final_answer":res.content,"perf":{"time":time.time()-t0,"prov":"LG-Groq"}}
def agno_research(st:State)->State:
gemini_limiter.wait_if_needed()
t0=time.time()
resp=self.agno["research"].run(st["query"],stream=False)
return {**st,"final_answer":resp,"perf":{"time":time.time()-t0,"prov":"Agno-Gemini"}}
def lg_retrieval(st:State)->State:
groq_limiter.wait_if_needed()
t0=time.time()
llmt=groq.bind_tools(self.tools)
sys=SystemMessage(content="Retrieve fast. FINAL ANSWER: [ans]")
res=llmt.invoke([sys,HumanMessage(content=st["query"])])
return {**st,"final_answer":res.content,"perf":{"time":time.time()-t0,"prov":"LG-Retrieval"}}
def agno_general(st:State)->State:
nvidia_limiter.wait_if_needed()
t0=time.time()
if any(w in st["query"].lower() for w in ["calculate","compute"]):
resp=self.agno["math"].run(st["query"],stream=False)
else:
resp=self.agno["research"].run(st["query"],stream=False)
return {**st,"final_answer":resp,"perf":{"time":time.time()-t0,"prov":"Agno-Gen"}}
def pick(st:State)->str: return st["agent_type"]
g=StateGraph(State)
g.add_node("router",route)
g.add_node("lg_math",lg_math)
g.add_node("agno_research",agno_research)
g.add_node("lg_retrieval",lg_retrieval)
g.add_node("agno_general",agno_general)
g.set_entry_point("router")
g.add_conditional_edges("router",pick,{
"lg_math":"lg_math","agno_research":"agno_research","lg_retrieval":"lg_retrieval","agno_general":"agno_general"
})
for n in ["lg_math","agno_research","lg_retrieval","agno_general"]:
g.add_edge(n,"END")
return g.compile(checkpointer=MemorySaver())
def process(self,q:str)->Dict[str,Any]:
st={"messages":[HumanMessage(content=q)],"query":q,"agent_type":"","final_answer":"","perf":{}, "agno_resp":""}
cfg={"configurable":{"thread_id":f"hybrid_{hash(q)}"}}
try:
out=self.graph.invoke(st,cfg)
return {"answer":out["final_answer"],"perf":out["perf"],"prov":out["perf"].get("prov")}
except Exception as e:
return {"answer":f"Error: {e}","perf":{},"prov":"Error"}
def build_graph(provider:str="hybrid"):
if provider=="hybrid":
return HybridSystem().graph
raise ValueError("Only 'hybrid' supported")
# Test
if __name__=="__main__":
graph=build_graph()
msgs=[HumanMessage(content="What are the names of the US presidents who were assassinated?")]
res=graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}})
for m in res["messages"]:
m.pretty_print()
|