File size: 5,618 Bytes
aae630c a663068 407802b a5deebe aae630c a663068 407802b fc5bd6e d25f823 aae630c a663068 64b34e2 a5deebe a34d940 374d11f 456ee4b a9182e1 f4d3a97 7472fb6 80a34b8 7472fb6 80a34b8 7472fb6 431e23c 7472fb6 a9182e1 7472fb6 28be50e a5deebe 7472fb6 8cc88b0 a5deebe a34d940 e012f60 a5deebe e012f60 a5deebe c693fed a5deebe eda9136 a5deebe a34d940 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
from huggingface_hub import InferenceClient
import transformers
from transformers import AutoTokenizer,GenerationConfig
import torch
from peft import PeftModel
import spaces
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
base_model = "Neko-Institute-of-Science/LLaMA-65B-HF"
lora_weights = "./"
#lora_weights = LoraConfig(
# auto_mapping=None,
# base_model_name_or_path="Neko-Institute-of-Science/LLaMA-65B-HF",
# bias=None,
# fan_in_fan_out=False,
# inference_mode=True,
# init_lora_weights=True,
# layers_pattern=None,
# layers_to_transform=None,
# lora_alpha=16,
# lora_dropout=0.05,
# modules_to_save=None,
# peft_type="LORA",
# revision=None,
# target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"],
# task_type="CAUSAL_LM",
#)
cache_dir = "/data"
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with further context. "
"Write a response that appropriately completes the request.\n\n"
"Instruction:\n{instruction}\n\n Input:\n{input}\n\n Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"Instruction:\n{instruction}\n\nResponse:"
),
}
model = None
tokenizer = None
def generate_prompt(instruction, input=None):
if input:
return PROMPT_DICT["prompt_input"].format(instruction=instruction,input=input)
else:
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
def getIds(inputs):
return inputs["input_ids"].cuda()
def generator(input_ids, generation_config, max_new_tokens):
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=max_new_tokens,
)
return generation_output
def loadModel():
global model, tokenizer
if model is None:
from llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope
replace_llama_rope_with_scaled_rope()
model = transformers.AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float16,
cache_dir=cache_dir,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map="auto",
cache_dir='',
torch_dtype=torch.float16,
is_trainable=False,
)
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir)
tokenizer.pad_token = tokenizer.unk_token
model = model.to("cuda")
return model
model, tokenizer = loadModel()
#@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
ins_f = generate_prompt(message,None)
inputs = tokenizer(ins_f, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
max_new_tokens = 512
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.75,
top_k=40,
do_sample=True,
num_beams=1,
max_new_tokens = max_new_tokens
)
#generation_output = generator(input_ids, generation_config, max_new_tokens)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
response = output.split("Response:")[1].strip()
yield response
#messages = [{"role": "system", "content": system_message}]
#for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
#response = ""
#for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
#):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|