File size: 6,581 Bytes
8876cd2
 
3c78fe7
 
 
 
8af6ce4
4727e02
8876cd2
b18aa7e
8876cd2
a506979
62e17b3
15350d5
e725540
00423c4
 
 
e725540
b832f73
b18aa7e
 
 
1bb20ca
b18aa7e
8876cd2
3c78fe7
5cdc823
99bfd14
 
 
 
5cdc823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85775ba
 
4f71456
5cdc823
3c78fe7
 
 
99bfd14
 
85775ba
4f71456
85775ba
3c78fe7
d93a02f
4f71456
b18aa7e
8af6ce4
3c78fe7
79b1800
 
 
 
 
 
 
 
 
 
 
 
 
8af6ce4
221bc87
 
 
 
c71a3a0
221bc87
c71a3a0
221bc87
79b1800
8af6ce4
79b1800
 
8af6ce4
79b1800
 
8af6ce4
3c78fe7
b832f73
 
 
 
 
 
 
 
 
 
3c78fe7
8876cd2
 
 
 
 
197ffb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b18aa7e
8876cd2
 
197ffb2
 
 
 
8876cd2
 
197ffb2
8876cd2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import joblib
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
from sklearn.impute import KNNImputer
from sklearn.decomposition import PCA
import pickle



# # Define the prediction function
def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
    features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]
    columns = {
    "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation], 
    "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss], 
    "hours-per-week":[hours_per_week], "native-country":[native_country]}
    df = pd.DataFrame(data=columns)
    fixed_features = cleaning_features(df)
     with open('ann_model.pkl', 'rb') as ann_model_file:
        ann_model = pickle.load(ann_model_file)
    prediction = ann_model.predict(fixed_features)
    # prediction = 1
    return "Income >50K" if prediction == 1 else "Income <=50K"

def cleaning_features(data):
    
    with open('label_encoder_work.pkl', 'rb') as le_file:
        le_work = pickle.load(le_file)
    with open('label_encoder_occ.pkl', 'rb') as le_file:
        le_occ = pickle.load(le_file)

    with open('scaler.pkl', 'rb') as scaler_file:
        scaler = pickle.load(scaler_file)
        
    education_num_mapping = {
        "Preschool": 1,
        "1st-4th": 2,
        "5th-6th": 3,
        "7th-8th": 4,
        "9th": 5,
        "10th": 6,
        "11th": 7,
        "12th": 8,
        "HS-grad": 9,
        "Some-college": 10,
        "Assoc-voc": 11,
        "Assoc-acdm": 12,
        "Bachelors": 13,
        "Masters": 14,
        "Doctorate": 15,
        "Prof-school": 16
    }

    gender_mapping = {"Male":1,"Female":0}
    country_mapping = {"United-States":1,"Other":0}
    
    numeric_cols = ['age', 'educational-num', 'hours-per-week']
    columns_to_encode = ['race','marital-status','relationship']
    
    data['workclass'] = le_work.transform(data['workclass'])
    data['occupation'] = le_occ.transform(data['occupation'])
    data['gender'] = data['gender'].map(gender_mapping)
    data['native-country'] = data['native-country'].map(country_mapping)
    data['educational-num'] = data['educational-num'].map(education_num_mapping)
    
    data[numeric_cols] = scaler.transform(data[numeric_cols])

    data = pca(data)
    return data

# def pca(data):
#     encoder = OneHotEncoder(sparse_output=False)
#     one_hot_encoded = encoder.fit_transform(data[['workclass', 'occupation']])
#     encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out())
#     pca_net = PCA(n_components=10)
#     pca_result_net = pca_net.fit_transform(encoded_columns_df)
#     pca_columns = [f'pca_component_{i+1}' for i in range(10)]
#     pca_df = pd.DataFrame(pca_result_net, columns=pca_columns)
#     data = data.drop(columns=['workclass', 'occupation'], axis=1) #remove the original columns
#     data = pd.concat([data, pca_df], axis=1)
#     return data


def pca(data):
    encoder_pkl = 'onehot_encoder.pkl'
    pca_model_pkl = 'pca.pkl'
    
    with open(pca_model_pkl, 'rb') as file:  
        pca_model = pickle.load(file)
    with open(encoder_pkl, 'rb') as file:  
        encoder = pickle.load(file)
    
    one_hot_encoded = encoder.transform(data[['workclass', 'occupation']])
    encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out())
    pca_result_net = pca_model.transform(encoded_columns_df)
    pca_columns = [f'pca_component_{i+1}' for i in range(pca_model.n_components_)]
    pca_df = pd.DataFrame(pca_result_net, columns=pca_columns)
    data = data.drop(columns=['workclass', 'occupation'], axis=1)
    data = pd.concat([data, pca_df], axis=1) 
    return data

def hbdscan_tranform(df_transformed):
    df_transformed['capital-gain'] = np.log1p(df_transformed['capital-gain'])
    df_transformed['capital-loss'] = np.log1p(df_transformed['capital-loss'])
    
    # Apply RobustScaler to all numerical features
    numerical_features = ['age', 'capital-gain', 'capital-loss', 'hours-per-week']
    scaler = RobustScaler()
    df_transformed[numerical_features] = scaler.fit_transform(df_transformed[numerical_features])
    return df_transformed


# Create the Gradio interface
interface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Slider(18, 90, step=1, label="Age"),
        gr.Dropdown(
            ["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", 
             "Local-gov", "State-gov", "Without-pay", "Never-worked"], 
            label="Workclass"
        ),
        gr.Dropdown(
            ["Bachelors", "Some-college", "11th", "HS-grad", "Prof-school", 
             "Assoc-acdm", "Assoc-voc", "9th", "7th-8th", "12th", "Masters", 
             "1st-4th", "10th", "Doctorate", "5th-6th", "Preschool"], 
            label="Education"
        ),
        gr.Dropdown(
            ["Married-civ-spouse", "Divorced", "Never-married", "Separated", 
             "Widowed", "Married-spouse-absent", "Married-AF-spouse"], 
            label="Marital Status"
        ),
        gr.Dropdown(
            ["Tech-support", "Craft-repair", "Other-service", "Sales", 
             "Exec-managerial", "Prof-specialty", "Handlers-cleaners", 
             "Machine-op-inspct", "Adm-clerical", "Farming-fishing", 
             "Transport-moving", "Priv-house-serv", "Protective-serv", 
             "Armed-Forces"], 
            label="Occupation"
        ),
        gr.Dropdown(
            ["Wife", "Husband", "Own-child", "Unmarried", "Other-relative", "Not-in-family"], 
            label="Relationship"
        ),
        gr.Dropdown(
            ["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"], 
            label="Race"
        ),
        gr.Dropdown(
            ["Male", "Female"], 
            label="Gender"
        ),
        gr.Slider(1, 60, step=1, label="Hours Per Week"),
        gr.Slider(0, 100000, step=100, label="Capital Gain"),
        gr.Slider(0, 5000, step=50, label="Capital Loss"),
        gr.Dropdown(
            ["United-States", "Other"], 
            label="Native Country"
        )
    ],
    outputs="text",
    title="Adult Income Predictor"
)

# Launch the app
interface.launch()