Spaces:
Sleeping
Sleeping
File size: 15,980 Bytes
09a0b53 dd92890 0f83924 09a0b53 dd92890 8588a31 dd92890 be6f117 dd92890 09a0b53 dd92890 be6f117 09a0b53 be6f117 09a0b53 1e0350f 09a0b53 be6f117 d596733 09a0b53 be6f117 ddd0e04 be6f117 09a0b53 be6f117 d596733 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 ddd0e04 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 b97aaed be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 d94f105 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 53e86a9 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 ddd0e04 09a0b53 be6f117 09a0b53 be6f117 09a0b53 ddd0e04 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 6952be5 09a0b53 be6f117 09a0b53 be6f117 09a0b53 be6f117 09a0b53 937cc33 09a0b53 937cc33 09a0b53 be6f117 09a0b53 ddd0e04 09a0b53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, BaseMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any
import chromadb
import os
import streamlit as st
import requests
import hashlib
import json
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pydantic import BaseModel, ValidationError
import traceback
# ------------------------------
# Configuration & Constants
# ------------------------------
class ResearchConfig:
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
ANALYSIS_TEMPLATE = """**Technical Analysis Request**
{context}
Respond with:
1. Key Technical Innovations (markdown table)
2. Methodological Breakdown (bullet points)
3. Quantitative Results (LaTeX equations)
4. Critical Evaluation
5. Research Impact Assessment
Include proper academic citations where applicable."""
# ------------------------------
# Document Schema & Content
# ------------------------------
DOCUMENT_CONTENT = {
"CV-Transformer Hybrid": {
"content": """## Hybrid Architecture for Computer Vision
**Authors**: DeepVision Research Team
**Abstract**: Novel combination of convolutional layers with transformer attention mechanisms.
### Key Innovations:
- Cross-attention feature fusion
- Adaptive spatial pooling
- Multi-scale gradient propagation
$$\\mathcal{L}_{total} = \\alpha\\mathcal{L}_{CE} + \\beta\\mathcal{L}_{SSIM}$$""",
"metadata": {
"year": 2024,
"domain": "computer_vision",
"citations": 142
}
},
"Quantum ML Advances": {
"content": """## Quantum Machine Learning Breakthroughs
**Authors**: Quantum AI Lab
### Achievements:
- Quantum-enhanced SGD (40% faster convergence)
- 5-qubit QNN achieving 98% accuracy
- Hybrid quantum-classical GANs
$$\\mathcal{H} = -\\sum_{i<j} J_{ij}\\sigma_i^z\\sigma_j^z - \\Gamma\\sum_i\\sigma_i^x$$""",
"metadata": {
"year": 2023,
"domain": "quantum_ml",
"citations": 89
}
}
}
class DocumentSchema(BaseModel):
content: str
metadata: dict
doc_id: str
# ------------------------------
# State Management
# ------------------------------
class ResearchState(TypedDict):
messages: Annotated[List[BaseMessage], add_messages]
context: Annotated[Dict[str, Any], "research_context"]
metadata: Annotated[Dict[str, str], "system_metadata"]
# ------------------------------
# Document Processing
# ------------------------------
class DocumentManager:
def __init__(self):
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def initialize_collections(self):
try:
self.research_col = self._create_collection("research")
self.dev_col = self._create_collection("development")
except Exception as e:
st.error(f"Collection initialization failed: {str(e)}")
traceback.print_exc()
def _create_collection(self, name: str) -> Chroma:
documents, metadatas, ids = [], [], []
for title, data in DOCUMENT_CONTENT.items():
try:
doc = DocumentSchema(
content=data["content"],
metadata=data["metadata"],
doc_id=hashlib.sha256(title.encode()).hexdigest()[:16]
)
documents.append(doc.content)
metadatas.append(doc.metadata)
ids.append(doc.doc_id)
except ValidationError as e:
st.error(f"Invalid document format: {title} - {str(e)}")
continue
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n## ", "\n### ", "\n\n", "\nβ’ "]
)
try:
docs = splitter.create_documents(documents, metadatas=metadatas)
return Chroma.from_documents(
docs,
self.embeddings,
client=self.client,
collection_name=name,
ids=ids
)
except Exception as e:
raise RuntimeError(f"Failed creating {name} collection: {str(e)}")
# ------------------------------
# Retrieval System
# ------------------------------
class ResearchRetriever:
def __init__(self):
self.dm = DocumentManager()
self.dm.initialize_collections()
def retrieve(self, query: str, domain: str) -> List[DocumentSchema]:
try:
collection = self.dm.research_col if domain == "research" else self.dm.dev_col
if not collection:
return []
results = collection.as_retriever(
search_type="mmr",
search_kwargs={'k': 4, 'fetch_k': 20}
).invoke(query)
return [DocumentSchema(
content=doc.page_content,
metadata=doc.metadata,
doc_id=doc.metadata.get("doc_id", "")
) for doc in results if doc.page_content]
except Exception as e:
st.error(f"Retrieval failure: {str(e)}")
traceback.print_exc()
return []
# ------------------------------
# Analysis Processor
# ------------------------------
class AnalysisEngine:
def __init__(self):
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_hash = hashlib.sha256(str(time.time()).encode()).hexdigest()[:12]
def analyze(self, prompt: str) -> Dict:
futures = [self.executor.submit(self._api_request, prompt) for _ in range(3)]
return self._validate_results([f.result() for f in as_completed(futures)])
def _api_request(self, prompt: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"X-Session-ID": self.session_hash,
"Content-Type": "application/json"
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json={
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 2000
},
timeout=30
)
response.raise_for_status()
return response.json()
except Exception as e:
return {"error": str(e), "status_code": 500}
def _validate_results(self, results: List[Dict]) -> Dict:
valid = [r for r in results if "error" not in r]
if not valid:
return {"error": "All analysis attempts failed", "results": results}
# Corrected line with proper parenthesis closure
best = max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
return best
# ------------------------------
# Workflow Implementation
# ------------------------------
class ResearchWorkflow:
def __init__(self):
self.retriever = ResearchRetriever()
self.engine = AnalysisEngine()
self.workflow = StateGraph(ResearchState)
self._build_graph()
def _build_graph(self):
self.workflow.add_node("ingest", self._ingest)
self.workflow.add_node("retrieve", self._retrieve)
self.workflow.add_node("analyze", self._analyze)
self.workflow.add_node("validate", self._validate)
self.workflow.add_node("refine", self._refine)
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_gate,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
def _ingest(self, state: ResearchState) -> ResearchState:
try:
query = next(msg.content for msg in reversed(state["messages"])
if isinstance(msg, HumanMessage))
return {
"messages": [AIMessage(content="Query ingested")],
"context": {
"query": query,
"documents": [],
"errors": []
},
"metadata": {
"session_id": hashlib.sha256(str(time.time()).encode()).hexdigest()[:8],
"timestamp": datetime.now().isoformat()
}
}
except Exception as e:
return self._handle_error(f"Ingest failed: {str(e)}", state)
def _retrieve(self, state: ResearchState) -> ResearchState:
try:
docs = self.retriever.retrieve(state["context"]["query"], "research")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {
**state["context"],
"documents": docs,
"retrieval_time": time.time()
},
"metadata": state["metadata"]
}
except Exception as e:
return self._handle_error(f"Retrieval error: {str(e)}", state)
def _analyze(self, state: ResearchState) -> ResearchState:
docs = state["context"].get("documents", [])
if not docs:
return self._handle_error("No documents for analysis", state)
try:
context = "\n\n".join([d.content for d in docs])
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=context)
result = self.engine.analyze(prompt)
if "error" in result:
raise RuntimeError(result["error"])
content = result['choices'][0]['message']['content']
if len(content) < 200 or not any(c.isalpha() for c in content):
raise ValueError("Insufficient analysis content")
return {
"messages": [AIMessage(content=content)],
"context": state["context"],
"metadata": state["metadata"]
}
except Exception as e:
return self._handle_error(f"Analysis failed: {str(e)}", state)
def _validate(self, state: ResearchState) -> ResearchState:
return state
def _refine(self, state: ResearchState) -> ResearchState:
return state
def _quality_gate(self, state: ResearchState) -> str:
content = state["messages"][-1].content if state["messages"] else ""
required = ["Innovations", "Results", "Evaluation"]
return "valid" if all(kw in content for kw in required) else "invalid"
def _handle_error(self, message: str, state: ResearchState) -> ResearchState:
return {
"messages": [AIMessage(content=f"π¨ Error: {message}")],
"context": {
**state["context"],
"errors": state["context"]["errors"] + [message]
},
"metadata": state["metadata"]
}
# ------------------------------
# User Interface
# ------------------------------
class ResearchInterface:
def __init__(self):
self.workflow = ResearchWorkflow().workflow.compile()
self._setup_interface()
def _setup_interface(self):
st.set_page_config(
page_title="Research Assistant",
layout="wide",
initial_sidebar_state="expanded"
)
self._apply_styles()
self._build_sidebar()
self._build_main()
def _apply_styles(self):
st.markdown("""
<style>
.stApp {
background: #0a192f;
color: #64ffda;
}
.stTextArea textarea {
background: #172a45 !important;
color: #a8b2d1 !important;
}
.stButton>button {
background: #233554;
border: 1px solid #64ffda;
}
.error-box {
border: 1px solid #ff4444;
border-radius: 5px;
padding: 1rem;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
def _build_sidebar(self):
with st.sidebar:
st.title("π Document Database")
for title, data in DOCUMENT_CONTENT.items():
with st.expander(title[:25]+"..."):
st.markdown(f"```\n{data['content'][:300]}...\n```")
def _build_main(self):
st.title("π§ Research Analysis System")
query = st.text_area("Enter your research query:", height=150)
if st.button("Start Analysis", type="primary"):
self._run_analysis(query)
def _run_analysis(self, query: str):
try:
with st.spinner("π Analyzing documents..."):
state = {
"messages": [HumanMessage(content=query)],
"context": {
"query": "",
"documents": [],
"errors": []
},
"metadata": {}
}
for event in self.workflow.stream(state):
self._display_progress(event)
final_state = self.workflow.invoke(state)
self._show_results(final_state)
except Exception as e:
st.error(f"""**Analysis Failed**
{str(e)}
Common solutions:
- Simplify your query
- Check document database status
- Verify API connectivity""")
def _display_progress(self, event):
current_state = next(iter(event.values()))
with st.container():
st.markdown("---")
cols = st.columns([1,2,1])
with cols[0]:
st.subheader("Processing Stage")
stage = list(event.keys())[0].title()
st.code(stage)
with cols[1]:
st.subheader("Documents")
docs = current_state["context"].get("documents", [])
st.metric("Retrieved", len(docs))
with cols[2]:
st.subheader("Status")
if current_state["context"].get("errors"):
st.error("Errors detected")
else:
st.success("Normal operation")
def _show_results(self, state: ResearchState):
if state["context"].get("errors"):
st.error("Analysis completed with errors")
with st.expander("Error Details"):
for error in state["context"]["errors"]:
st.markdown(f"- {error}")
else:
st.success("Analysis completed successfully β
")
with st.expander("Full Report"):
st.markdown(state["messages"][-1].content)
if __name__ == "__main__":
ResearchInterface() |