File size: 16,568 Bytes
09a0b53
 
 
dd92890
0f83924
bfe5a86
dd92890
8588a31
bfe5a86
9f9113f
bfe5a86
3cf95b0
dd92890
bfe5a86
dd92890
09a0b53
dd92890
3cf95b0
 
 
bfe5a86
3cf95b0
 
 
 
 
 
 
 
 
 
1e0350f
09a0b53
bfe5a86
09a0b53
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe5a86
3cf95b0
 
 
 
 
 
bfe5a86
3cf95b0
 
09a0b53
3cf95b0
 
 
 
 
 
 
09a0b53
bfe5a86
3cf95b0
bfe5a86
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe5a86
 
 
3cf95b0
bfe5a86
3cf95b0
bfe5a86
 
 
3cf95b0
bfe5a86
 
3cf95b0
bfe5a86
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe5a86
3cf95b0
bfe5a86
 
3cf95b0
bfe5a86
3cf95b0
 
 
 
bfe5a86
3cf95b0
 
 
 
 
 
 
09a0b53
3cf95b0
 
 
 
 
 
bfe5a86
3cf95b0
bfe5a86
3cf95b0
 
 
 
 
 
bfe5a86
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe5a86
3cf95b0
 
 
 
 
d94f105
09a0b53
3cf95b0
09a0b53
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd0e04
09a0b53
3cf95b0
09a0b53
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd0e04
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be6f117
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a0b53
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe5a86
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd0e04
 
3cf95b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any
import chromadb
import re
import os
import streamlit as st
import requests
import hashlib
import json
import time
from langchain.tools.retriever import create_retriever_tool
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime

# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
    messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
    context: Dict[str, Any]
    metadata: Dict[str, Any]

# ------------------------------
# Configuration
# ------------------------------
class ResearchConfig:
    DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
    CHROMA_PATH = "chroma_db"
    CHUNK_SIZE = 512
    CHUNK_OVERLAP = 64
    MAX_CONCURRENT_REQUESTS = 5
    EMBEDDING_DIMENSIONS = 1536
    DOCUMENT_MAP = {
        "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%": 
            "CV-Transformer Hybrid Architecture",
        "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing": 
            "Transformer Architecture Analysis",
        "Latest Trends in Machine Learning Methods Using Quantum Computing": 
            "Quantum ML Frontiers"
    }
    ANALYSIS_TEMPLATE = """Analyze these technical documents with scientific rigor:
{context}

Respond with:
1. Key Technical Contributions (bullet points)
2. Novel Methodologies
3. Empirical Results (with metrics)
4. Potential Applications
5. Limitations & Future Directions

Format: Markdown with LaTeX mathematical notation where applicable
"""

# Validation
if not ResearchConfig.DEEPSEEK_API_KEY:
    st.error("""**Research Portal Configuration Required**  
    1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)  
    2. Configure secret: `DEEPSEEK_API_KEY` in Space settings  
    3. Rebuild deployment""")
    st.stop()

# ------------------------------
# Quantum Document Processing
# ------------------------------
class QuantumDocumentManager:
    def __init__(self):
        self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
        self.embeddings = OpenAIEmbeddings(
            model="text-embedding-3-large",
            dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
        )
        
    def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=ResearchConfig.CHUNK_SIZE,
            chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
            separators=["\n\n", "\n", "|||"]
        )
        docs = splitter.create_documents(documents)
        return Chroma.from_documents(
            documents=docs,
            embedding=self.embeddings,
            client=self.client,
            collection_name=collection_name,
            ids=[self._document_id(doc.page_content) for doc in docs]
        )
    
    def _document_id(self, content: str) -> str:
        return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"

# Initialize document collections
qdm = QuantumDocumentManager()
research_docs = qdm.create_collection([
    "Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
    "Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
    "Latest Trends in Machine Learning Methods Using Quantum Computing"
], "research")

development_docs = qdm.create_collection([
    "Project A: UI Design Completed, API Integration in Progress",
    "Project B: Testing New Feature X, Bug Fixes Needed",
    "Product Y: In the Performance Optimization Stage Before Release"
], "development")

# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
    def __init__(self):
        self.retrievers = {
            "research": research_docs.as_retriever(
                search_type="mmr",
                search_kwargs={
                    'k': 4,
                    'fetch_k': 20,
                    'lambda_mult': 0.85
                }
            ),
            "development": development_docs.as_retriever(
                search_type="similarity",
                search_kwargs={'k': 3}
            )
        }
    
    def retrieve(self, query: str, domain: str) -> List[Any]:
        try:
            return self.retrievers[domain].invoke(query)
        except KeyError:
            return []

retriever = ResearchRetriever()

# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
    def __init__(self):
        self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
        self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
    
    def process_query(self, prompt: str) -> Dict:
        futures = []
        for _ in range(3):  # Triple redundancy
            futures.append(self.executor.submit(
                self._execute_api_request,
                prompt
            ))
        
        results = []
        for future in as_completed(futures):
            try:
                results.append(future.result())
            except Exception as e:
                st.error(f"Processing Error: {str(e)}")
        
        return self._consensus_check(results)
    
    def _execute_api_request(self, prompt: str) -> Dict:
        headers = {
            "Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
            "Content-Type": "application/json",
            "X-Research-Session": self.session_id
        }
        
        try:
            response = requests.post(
                "https://api.deepseek.com/v1/chat/completions",
                headers=headers,
                json={
                    "model": "deepseek-chat",
                    "messages": [{
                        "role": "user",
                        "content": f"Respond as Senior AI Researcher:\n{prompt}"
                    }],
                    "temperature": 0.7,
                    "max_tokens": 1500,
                    "top_p": 0.9
                },
                timeout=45
            )
            response.raise_for_status()
            return response.json()
        except requests.exceptions.RequestException as e:
            return {"error": str(e)}
    
    def _consensus_check(self, results: List[Dict]) -> Dict:
        valid = [r for r in results if "error" not in r]
        if not valid:
            return {"error": "All API requests failed"}
        return max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))

# ------------------------------
# Research Workflow Engine
# ------------------------------
class ResearchWorkflow:
    def __init__(self):
        self.processor = CognitiveProcessor()
        self.workflow = StateGraph(AgentState)
        self._build_workflow()

    def _build_workflow(self):
        self.workflow.add_node("ingest", self.ingest_query)
        self.workflow.add_node("retrieve", self.retrieve_documents)
        self.workflow.add_node("analyze", self.analyze_content)
        self.workflow.add_node("validate", self.validate_output)
        self.workflow.add_node("refine", self.refine_results)

        self.workflow.set_entry_point("ingest")
        self.workflow.add_edge("ingest", "retrieve")
        self.workflow.add_edge("retrieve", "analyze")
        self.workflow.add_conditional_edges(
            "analyze",
            self._quality_check,
            {"valid": "validate", "invalid": "refine"}
        )
        self.workflow.add_edge("validate", END)
        self.workflow.add_edge("refine", "retrieve")

        self.app = self.workflow.compile()

    def ingest_query(self, state: AgentState) -> Dict:
        try:
            query = state["messages"][-1].content
            return {
                "messages": [AIMessage(content="Query ingested successfully")],
                "context": {"raw_query": query},
                "metadata": {"timestamp": datetime.now().isoformat()}
            }
        except Exception as e:
            return self._error_state(f"Ingestion Error: {str(e)}")

    def retrieve_documents(self, state: AgentState) -> Dict:
        try:
            query = state["context"]["raw_query"]
            docs = retriever.retrieve(query, "research")
            return {
                "messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
                "context": {
                    "documents": docs,
                    "retrieval_time": time.time()
                }
            }
        except Exception as e:
            return self._error_state(f"Retrieval Error: {str(e)}")

    def analyze_content(self, state: AgentState) -> Dict:
        try:
            docs = "\n\n".join([d.page_content for d in state["context"]["documents"]])
            prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
            response = self.processor.process_query(prompt)
            
            if "error" in response:
                return self._error_state(response["error"])
            
            return {
                "messages": [AIMessage(content=response['choices'][0]['message']['content'])],
                "context": {"analysis": response}
            }
        except Exception as e:
            return self._error_state(f"Analysis Error: {str(e)}")

    def validate_output(self, state: AgentState) -> Dict:
        analysis = state["messages"][-1].content
        validation_prompt = f"""Validate research analysis:
        {analysis}
        
        Check for:
        1. Technical accuracy
        2. Citation support
        3. Logical consistency
        4. Methodological soundness
        
        Respond with 'VALID' or 'INVALID'"""
        
        response = self.processor.process_query(validation_prompt)
        return {
            "messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
        }

    def refine_results(self, state: AgentState) -> Dict:
        refinement_prompt = f"""Refine this analysis:
        {state["messages"][-1].content}
        
        Improve:
        1. Technical precision
        2. Empirical grounding
        3. Theoretical coherence"""
        
        response = self.processor.process_query(refinement_prompt)
        return {
            "messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
            "context": state["context"]
        }

    def _quality_check(self, state: AgentState) -> str:
        content = state["messages"][-1].content
        return "valid" if "VALID" in content else "invalid"

    def _error_state(self, message: str) -> Dict:
        return {
            "messages": [AIMessage(content=f"❌ {message}")],
            "context": {"error": True},
            "metadata": {"status": "error"}
        }

# ------------------------------
# Research Interface
# ------------------------------
class ResearchInterface:
    def __init__(self):
        self.workflow = ResearchWorkflow()
        self._initialize_interface()

    def _initialize_interface(self):
        st.set_page_config(
            page_title="NeuroResearch AI",
            layout="wide",
            initial_sidebar_state="expanded"
        )
        self._inject_styles()
        self._build_sidebar()
        self._build_main_interface()

    def _inject_styles(self):
        st.markdown("""
        <style>
        :root {
            --primary: #2ecc71;
            --secondary: #3498db;
            --background: #0a0a0a;
            --text: #ecf0f1;
        }
        
        .stApp {
            background: var(--background);
            color: var(--text);
            font-family: 'Roboto', sans-serif;
        }
        
        .stTextArea textarea {
            background: #1a1a1a !important;
            color: var(--text) !important;
            border: 2px solid var(--secondary);
            border-radius: 8px;
            padding: 1rem;
        }
        
        .stButton>button {
            background: linear-gradient(135deg, var(--primary), var(--secondary));
            border: none;
            border-radius: 8px;
            padding: 1rem 2rem;
            transition: all 0.3s;
        }
        
        .stButton>button:hover {
            transform: translateY(-2px);
            box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
        }
        
        .stExpander {
            background: #1a1a1a;
            border: 1px solid #2a2a2a;
            border-radius: 8px;
            margin: 1rem 0;
        }
        </style>
        """, unsafe_allow_html=True)

    def _build_sidebar(self):
        with st.sidebar:
            st.title("πŸ” Research Database")
            st.subheader("Technical Papers")
            for title, short in ResearchConfig.DOCUMENT_MAP.items():
                with st.expander(short):
                    st.markdown(f"```\n{title}\n```")
            
            st.subheader("Analysis Metrics")
            st.metric("Vector Collections", 2)
            st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)

    def _build_main_interface(self):
        st.title("🧠 NeuroResearch AI")
        query = st.text_area("Research Query:", height=200,
                           placeholder="Enter technical research question...")
        
        if st.button("Execute Analysis", type="primary"):
            self._execute_analysis(query)

    def _execute_analysis(self, query: str):
        try:
            with st.spinner("Initializing Quantum Analysis..."):
                results = self.workflow.app.stream(
                    {"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
                )
                
                for event in results:
                    self._render_event(event)
                
                st.success("βœ… Analysis Completed Successfully")
        except Exception as e:
            st.error(f"""**Analysis Failed**
            {str(e)}
            Potential issues:
            - Complex query structure
            - Document correlation failure
            - Temporal processing constraints""")

    def _render_event(self, event: Dict):
        if 'ingest' in event:
            with st.container():
                st.success("βœ… Query Ingested")
                
        elif 'retrieve' in event:
            with st.container():
                docs = event['retrieve']['context']['documents']
                st.info(f"πŸ“š Retrieved {len(docs)} documents")
                with st.expander("View Retrieved Documents", expanded=False):
                    for i, doc in enumerate(docs, 1):
                        st.markdown(f"**Document {i}**")
                        st.code(doc.page_content, language='text')
                        
        elif 'analyze' in event:
            with st.container():
                content = event['analyze']['messages'][0].content
                with st.expander("Technical Analysis Report", expanded=True):
                    st.markdown(content)
                    
        elif 'validate' in event:
            with st.container():
                content = event['validate']['messages'][0].content
                if "VALID" in content:
                    st.success("βœ… Validation Passed")
                    with st.expander("View Validated Analysis", expanded=True):
                        st.markdown(content.split("Validation:")[0])
                else:
                    st.warning("⚠️ Validation Issues Detected")
                    with st.expander("View Validation Details", expanded=True):
                        st.markdown(content)

if __name__ == "__main__":
    ResearchInterface()