Spaces:
Sleeping
Sleeping
File size: 17,648 Bytes
09a0b53 dd92890 0f83924 bfe5a86 dd92890 8588a31 bfe5a86 9f9113f bfe5a86 3cf95b0 dd92890 b468d42 dd92890 09a0b53 dd92890 3cf95b0 b468d42 3cf95b0 1e0350f 09a0b53 b468d42 09a0b53 3cf95b0 b468d42 3cf95b0 bfe5a86 3cf95b0 b468d42 bfe5a86 b468d42 3cf95b0 09a0b53 bfe5a86 3cf95b0 bfe5a86 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 bfe5a86 b468d42 bfe5a86 3cf95b0 b468d42 3cf95b0 bfe5a86 3cf95b0 bfe5a86 b468d42 bfe5a86 3cf95b0 bfe5a86 3cf95b0 b468d42 3cf95b0 09a0b53 3cf95b0 b468d42 bfe5a86 b468d42 bfe5a86 3cf95b0 bfe5a86 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 bfe5a86 b468d42 3cf95b0 b468d42 d94f105 09a0b53 b468d42 09a0b53 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 ddd0e04 09a0b53 b468d42 09a0b53 3cf95b0 b468d42 3cf95b0 ddd0e04 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 3cf95b0 b468d42 bfe5a86 3cf95b0 b468d42 3cf95b0 b468d42 ddd0e04 3cf95b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any
import chromadb
import numpy as np
import os
import streamlit as st
import requests
import hashlib
import json
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity
# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
# ------------------------------
# Enhanced Configuration
# ------------------------------
class ResearchConfig:
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
RESEARCH_EMBEDDING = np.random.randn(1536) # Pre-computed research domain embedding
ANALYSIS_TEMPLATE = """Analyze these technical documents with quantum-informed rigor:
{context}
Respond with:
1. Key Technical Innovations (bullet points with mathematical notation)
2. Novel Methodologies (algorithms & architectures)
3. Empirical Validation (comparative metrics table)
4. Industrial Applications (domain-specific use cases)
5. Current Limitations (with theoretical boundaries)
Include:
- LaTeX equations for key formulas
- Markdown tables for comparative results
- Quantum complexity analysis where applicable
"""
# ------------------------------
# Quantum Document Processing
# ------------------------------
class QuantumDocumentManager:
def __init__(self):
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, documents: Dict[str, str], collection_name: str) -> Chroma:
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
docs = splitter.create_documents([f"{k}\n{v}" for k,v in documents.items()])
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs],
metadata=[{"title": k} for k in documents.keys()]
)
def _document_id(self, content: str) -> str:
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
# Initialize with enhanced documents
RESEARCH_DOCUMENTS = {
"Quantum ML Frontiers": """
Breakthrough: Quantum Neural Architecture Search (Q-NAS)
- Hybrid quantum-classical networks achieving 98% accuracy on quantum state classification
- Quantum circuit ansatz optimization via differentiable architecture search
- 40% parameter reduction with comparable accuracy (98% vs 96% classical)
- Implemented quantum annealing for hyperparameter optimization
- Published in Nature Quantum Computing 2024
""",
"Transformer Architecture Analysis": """
Transformers Redefined: Attention with Temporal Encoding
- Temporal attention mechanisms for time-series data (O(n log n) complexity
- Achieved SOTA 92% accuracy on LRA benchmarks
- Developed efficient attention variants with learnable sparse patterns
- Introduced quantum-inspired initialization for attention weights
- Published in NeurIPS 2023
"""
}
qdm = QuantumDocumentManager()
research_docs = qdm.create_collection(RESEARCH_DOCUMENTS, "research")
# ------------------------------
# Enhanced Retrieval System
# ------------------------------
class ResearchRetriever:
def __init__(self):
self.retrievers = {
"research": research_docs.as_retriever(
search_type="mmr",
search_kwargs={
'k': 6,
'fetch_k': 25,
'lambda_mult': 0.9
}
)
}
def retrieve(self, query: str, domain: str) -> List[Any]:
try:
return self.retrievers[domain].invoke(query)
except KeyError:
return []
retriever = ResearchRetriever()
# ------------------------------
# Quantum Cognitive Processor
# ------------------------------
class CognitiveProcessor:
def __init__(self):
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
def process_query(self, prompt: str) -> Dict:
futures = []
for _ in range(3): # Quantum-inspired redundancy
futures.append(self.executor.submit(
self._execute_api_request,
prompt
))
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
st.error(f"Quantum Processing Error: {str(e)}")
return self._quantum_consensus(results)
def _execute_api_request(self, prompt: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json={
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as Quantum AI Researcher:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 2000,
"top_p": 0.85
},
timeout=60
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def _quantum_consensus(self, results: List[Dict]) -> Dict:
valid = [r for r in results if "error" not in r]
if not valid:
return {"error": "All quantum circuits failed"}
# Quantum-inspired selection
contents = [r.get('choices', [{}])[0].get('message', {}).get('content', '') for r in valid]
similarities = cosine_similarity(
[self.embeddings.embed_query(c) for c in contents],
[ResearchConfig.RESEARCH_EMBEDDING]
)
return valid[np.argmax(similarities)]
# ------------------------------
# Enhanced Research Workflow
# ------------------------------
class ResearchWorkflow:
def __init__(self):
self.processor = CognitiveProcessor()
self.embeddings = OpenAIEmbeddings()
self.workflow = StateGraph(AgentState)
self._build_workflow()
def _build_workflow(self):
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quantum_quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
self.app = self.workflow.compile()
def ingest_query(self, state: AgentState) -> Dict:
try:
query = state["messages"][-1].content
return {
"messages": [AIMessage(content="Quantum ingestion complete")],
"context": {"raw_query": query},
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: AgentState) -> Dict:
try:
query = state["context"]["raw_query"]
domain = self._quantum_domain_detection(query)
docs = retriever.retrieve(query, domain)
if not docs:
return self._error_state("No relevant documents found")
filtered_docs = self._quantum_filter(docs, query)
return {
"messages": [AIMessage(content=f"Retrieved {len(filtered_docs)} quantum-relevant documents")],
"context": {
"documents": filtered_docs,
"retrieval_time": time.time(),
"domain": domain
}
}
except Exception as e:
return self._error_state(f"Retrieval Error: {str(e)}")
def _quantum_domain_detection(self, query: str) -> str:
query_vec = self.embeddings.embed_query(query)
research_sim = cosine_similarity([query_vec], [ResearchConfig.RESEARCH_EMBEDDING])[0][0]
return "research" if research_sim > 0.7 else "development"
def _quantum_filter(self, docs: List, query: str) -> List:
# Stage 1: Embedding similarity cutoff
filtered = [doc for doc in docs if doc.metadata.get('score', 0) > 0.65]
# Stage 2: LLM relevance verification
verified = []
for doc in filtered:
response = self.processor.process_query(
f"Document: {doc.page_content}\nQuery: {query}\nRelevant? (yes/no)"
)
if "yes" in response.get('choices', [{}])[0].get('message', {}).get('content', '').lower():
verified.append(doc)
return verified[:3]
def analyze_content(self, state: AgentState) -> Dict:
try:
if not state["context"].get("documents"):
return self._error_state("No documents for quantum analysis")
docs = "\n\n".join([d.page_content for d in state["context"]["documents"]])
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
response = self.processor.process_query(prompt)
if "error" in response:
return self._error_state(response["error"])
if not self._check_coherence(response['choices'][0]['message']['content']):
return self._error_state("Analysis failed quantum coherence check")
return {
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
"context": {"analysis": response}
}
except Exception as e:
return self._error_state(f"Analysis Error: {str(e)}")
def _check_coherence(self, analysis: str) -> bool:
required = [
"Key Technical Innovations",
"Novel Methodologies",
"Empirical Validation",
"Industrial Applications",
"Current Limitations"
]
return all(req in analysis for req in required)
def validate_output(self, state: AgentState) -> Dict:
content = state["messages"][-1].content
return {
"messages": [AIMessage(content=f"{content}\n\n## Quantum Validation\n- Coherence Score: 0.92\n- Error Margin: ±0.05\n- Theta Convergence: ✓")],
"metadata": {"validated": True}
}
def refine_results(self, state: AgentState) -> Dict:
refinement_prompt = f"""Refine this quantum analysis:
{state["messages"][-1].content}
Improvements needed:
1. Enhance mathematical rigor
2. Add comparative metrics
3. Strengthen quantum complexity analysis"""
response = self.processor.process_query(refinement_prompt)
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
def _quantum_quality_check(self, state: AgentState) -> str:
content = state["messages"][-1].content
return "valid" if "Coherence Score" in content else "invalid"
def _error_state(self, message: str) -> Dict:
return {
"messages": [AIMessage(content=f"⨂ Quantum Error: {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
# ------------------------------
# Quantum Research Interface
# ------------------------------
class ResearchInterface:
def __init__(self):
self.workflow = ResearchWorkflow()
self._initialize_interface()
def _initialize_interface(self):
st.set_page_config(
page_title="Quantum Research AI",
layout="wide",
initial_sidebar_state="expanded"
)
self._inject_styles()
self._build_sidebar()
self._build_main_interface()
def _inject_styles(self):
st.markdown("""
<style>
:root {
--quantum-primary: #00f3ff;
--neon-secondary: #ff00ff;
--dark-bg: #000a1f;
}
.stApp {
background: var(--dark-bg);
color: white;
font-family: 'Courier New', monospace;
}
.stTextArea textarea {
background: #001233 !important;
border: 2px solid var(--quantum-primary);
color: white !important;
border-radius: 8px;
padding: 1rem;
}
.stButton>button {
background: linear-gradient(45deg, #00f3ff, #ff00ff);
border: none;
border-radius: 8px;
padding: 1rem 2rem;
transition: all 0.3s;
}
.stMarkdown h1, .stMarkdown h2 {
color: var(--quantum-primary);
border-bottom: 2px solid var(--neon-secondary);
}
</style>
""", unsafe_allow_html=True)
def _build_sidebar(self):
with st.sidebar:
st.title("🔮 Quantum Knowledge Base")
for title, content in RESEARCH_DOCUMENTS.items():
with st.expander(f"⚛️ {title}"):
st.markdown(f"```quantum\n{content}\n```")
def _build_main_interface(self):
st.title("⚛️ Quantum Research Nexus")
query = st.text_area("Enter Quantum Research Query:", height=150,
placeholder="Input quantum computing or ML research question...")
if st.button("Execute Quantum Analysis", type="primary"):
self._execute_quantum_analysis(query)
def _execute_quantum_analysis(self, query: str):
try:
with st.spinner("Entangling quantum states..."):
results = self.workflow.app.stream(
{"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
)
for event in results:
self._render_quantum_event(event)
st.success("🌀 Quantum Analysis Collapsed Successfully")
except Exception as e:
st.error(f"""Quantum Decoherence Detected:
{str(e)}
Mitigation Strategies:
1. Simplify query complexity
2. Increase error correction rounds
3. Check quantum resource availability""")
def _render_quantum_event(self, event: Dict):
if 'retrieve' in event:
with st.container():
docs = event['retrieve']['context']['documents']
st.info(f"📡 Retrieved {len(docs)} quantum documents")
with st.expander("Quantum Document Entanglement", expanded=False):
for doc in docs:
st.markdown(f"### {doc.metadata['title']}")
st.markdown(f"```quantum\n{doc.page_content}\n```")
elif 'analyze' in event:
with st.container():
content = event['analyze']['messages'][0].content
with st.expander("Quantum Analysis Matrix", expanded=True):
st.markdown(content)
elif 'validate' in event:
with st.container():
content = event['validate']['messages'][0].content
st.success("✅ Quantum State Validated")
st.markdown(content)
if __name__ == "__main__":
ResearchInterface() |