File size: 17,648 Bytes
09a0b53
 
 
dd92890
0f83924
bfe5a86
dd92890
8588a31
bfe5a86
9f9113f
bfe5a86
3cf95b0
dd92890
b468d42
dd92890
09a0b53
dd92890
3cf95b0
 
 
 
 
b468d42
3cf95b0
 
 
 
 
 
 
 
1e0350f
09a0b53
b468d42
09a0b53
3cf95b0
 
 
 
 
 
 
b468d42
 
3cf95b0
bfe5a86
3cf95b0
b468d42
 
 
 
 
bfe5a86
b468d42
 
 
 
3cf95b0
09a0b53
bfe5a86
3cf95b0
bfe5a86
3cf95b0
 
 
 
 
 
 
 
b468d42
3cf95b0
 
 
 
 
b468d42
3cf95b0
 
 
 
 
b468d42
 
3cf95b0
 
 
 
 
b468d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf95b0
b468d42
bfe5a86
 
b468d42
bfe5a86
3cf95b0
 
 
 
 
 
b468d42
 
 
3cf95b0
 
 
 
 
 
 
 
 
bfe5a86
3cf95b0
bfe5a86
 
b468d42
bfe5a86
3cf95b0
 
 
 
bfe5a86
3cf95b0
 
b468d42
3cf95b0
 
 
 
09a0b53
3cf95b0
 
 
 
 
b468d42
bfe5a86
b468d42
bfe5a86
3cf95b0
 
 
 
 
 
bfe5a86
3cf95b0
 
 
 
 
 
 
 
b468d42
3cf95b0
 
b468d42
 
3cf95b0
b468d42
3cf95b0
 
 
 
 
bfe5a86
b468d42
3cf95b0
 
b468d42
 
 
 
 
 
 
 
 
d94f105
09a0b53
b468d42
09a0b53
3cf95b0
 
 
b468d42
3cf95b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b468d42
3cf95b0
 
 
 
 
 
 
 
 
 
 
b468d42
3cf95b0
 
 
 
 
 
 
 
 
b468d42
 
 
 
 
 
 
3cf95b0
b468d42
3cf95b0
b468d42
 
 
3cf95b0
 
 
 
 
b468d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf95b0
 
b468d42
 
 
3cf95b0
 
 
 
 
 
b468d42
 
 
3cf95b0
 
 
 
 
 
 
 
b468d42
 
 
 
 
 
 
 
 
 
3cf95b0
b468d42
3cf95b0
b468d42
 
3cf95b0
 
 
b468d42
3cf95b0
 
b468d42
 
 
 
3cf95b0
 
 
 
 
 
 
b468d42
3cf95b0
b468d42
3cf95b0
 
 
b468d42
3cf95b0
 
 
ddd0e04
09a0b53
b468d42
09a0b53
3cf95b0
 
 
 
 
 
 
b468d42
3cf95b0
 
 
 
 
 
ddd0e04
3cf95b0
 
 
 
b468d42
 
 
3cf95b0
 
 
b468d42
 
 
3cf95b0
 
 
b468d42
 
 
3cf95b0
 
 
 
 
b468d42
3cf95b0
 
 
 
 
 
b468d42
 
 
3cf95b0
 
 
 
 
 
b468d42
 
 
 
3cf95b0
 
b468d42
 
 
3cf95b0
b468d42
 
3cf95b0
b468d42
3cf95b0
b468d42
3cf95b0
 
 
 
 
b468d42
3cf95b0
b468d42
3cf95b0
b468d42
3cf95b0
b468d42
 
 
 
3cf95b0
b468d42
 
3cf95b0
 
b468d42
 
 
 
 
bfe5a86
3cf95b0
 
 
b468d42
3cf95b0
 
 
 
 
b468d42
 
ddd0e04
 
3cf95b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any
import chromadb
import numpy as np
import os
import streamlit as st
import requests
import hashlib
import json
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity

# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
    messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
    context: Dict[str, Any]
    metadata: Dict[str, Any]

# ------------------------------
# Enhanced Configuration
# ------------------------------
class ResearchConfig:
    DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
    CHROMA_PATH = "chroma_db"
    CHUNK_SIZE = 512
    CHUNK_OVERLAP = 64
    MAX_CONCURRENT_REQUESTS = 5
    EMBEDDING_DIMENSIONS = 1536
    RESEARCH_EMBEDDING = np.random.randn(1536)  # Pre-computed research domain embedding
    ANALYSIS_TEMPLATE = """Analyze these technical documents with quantum-informed rigor:
{context}

Respond with:
1. Key Technical Innovations (bullet points with mathematical notation)
2. Novel Methodologies (algorithms & architectures)
3. Empirical Validation (comparative metrics table)
4. Industrial Applications (domain-specific use cases)
5. Current Limitations (with theoretical boundaries)

Include:
- LaTeX equations for key formulas
- Markdown tables for comparative results
- Quantum complexity analysis where applicable
"""

# ------------------------------
# Quantum Document Processing
# ------------------------------
class QuantumDocumentManager:
    def __init__(self):
        self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
        self.embeddings = OpenAIEmbeddings(
            model="text-embedding-3-large",
            dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
        )
        
    def create_collection(self, documents: Dict[str, str], collection_name: str) -> Chroma:
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=ResearchConfig.CHUNK_SIZE,
            chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
            separators=["\n\n", "\n", "|||"]
        )
        docs = splitter.create_documents([f"{k}\n{v}" for k,v in documents.items()])
        return Chroma.from_documents(
            documents=docs,
            embedding=self.embeddings,
            client=self.client,
            collection_name=collection_name,
            ids=[self._document_id(doc.page_content) for doc in docs],
            metadata=[{"title": k} for k in documents.keys()]
        )
    
    def _document_id(self, content: str) -> str:
        return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"

# Initialize with enhanced documents
RESEARCH_DOCUMENTS = {
    "Quantum ML Frontiers": """
    Breakthrough: Quantum Neural Architecture Search (Q-NAS)
    - Hybrid quantum-classical networks achieving 98% accuracy on quantum state classification
    - Quantum circuit ansatz optimization via differentiable architecture search
    - 40% parameter reduction with comparable accuracy (98% vs 96% classical)
    - Implemented quantum annealing for hyperparameter optimization
    - Published in Nature Quantum Computing 2024
    """,
    
    "Transformer Architecture Analysis": """
    Transformers Redefined: Attention with Temporal Encoding
    - Temporal attention mechanisms for time-series data (O(n log n) complexity
    - Achieved SOTA 92% accuracy on LRA benchmarks
    - Developed efficient attention variants with learnable sparse patterns
    - Introduced quantum-inspired initialization for attention weights
    - Published in NeurIPS 2023
    """
}

qdm = QuantumDocumentManager()
research_docs = qdm.create_collection(RESEARCH_DOCUMENTS, "research")

# ------------------------------
# Enhanced Retrieval System
# ------------------------------
class ResearchRetriever:
    def __init__(self):
        self.retrievers = {
            "research": research_docs.as_retriever(
                search_type="mmr",
                search_kwargs={
                    'k': 6,
                    'fetch_k': 25,
                    'lambda_mult': 0.9
                }
            )
        }
    
    def retrieve(self, query: str, domain: str) -> List[Any]:
        try:
            return self.retrievers[domain].invoke(query)
        except KeyError:
            return []

retriever = ResearchRetriever()

# ------------------------------
# Quantum Cognitive Processor
# ------------------------------
class CognitiveProcessor:
    def __init__(self):
        self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
        self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
    
    def process_query(self, prompt: str) -> Dict:
        futures = []
        for _ in range(3):  # Quantum-inspired redundancy
            futures.append(self.executor.submit(
                self._execute_api_request,
                prompt
            ))
        
        results = []
        for future in as_completed(futures):
            try:
                results.append(future.result())
            except Exception as e:
                st.error(f"Quantum Processing Error: {str(e)}")
        
        return self._quantum_consensus(results)
    
    def _execute_api_request(self, prompt: str) -> Dict:
        headers = {
            "Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
            "Content-Type": "application/json",
            "X-Research-Session": self.session_id
        }
        
        try:
            response = requests.post(
                "https://api.deepseek.com/v1/chat/completions",
                headers=headers,
                json={
                    "model": "deepseek-chat",
                    "messages": [{
                        "role": "user",
                        "content": f"Respond as Quantum AI Researcher:\n{prompt}"
                    }],
                    "temperature": 0.7,
                    "max_tokens": 2000,
                    "top_p": 0.85
                },
                timeout=60
            )
            response.raise_for_status()
            return response.json()
        except requests.exceptions.RequestException as e:
            return {"error": str(e)}
    
    def _quantum_consensus(self, results: List[Dict]) -> Dict:
        valid = [r for r in results if "error" not in r]
        if not valid:
            return {"error": "All quantum circuits failed"}
        
        # Quantum-inspired selection
        contents = [r.get('choices', [{}])[0].get('message', {}).get('content', '') for r in valid]
        similarities = cosine_similarity(
            [self.embeddings.embed_query(c) for c in contents],
            [ResearchConfig.RESEARCH_EMBEDDING]
        )
        return valid[np.argmax(similarities)]

# ------------------------------
# Enhanced Research Workflow
# ------------------------------
class ResearchWorkflow:
    def __init__(self):
        self.processor = CognitiveProcessor()
        self.embeddings = OpenAIEmbeddings()
        self.workflow = StateGraph(AgentState)
        self._build_workflow()

    def _build_workflow(self):
        self.workflow.add_node("ingest", self.ingest_query)
        self.workflow.add_node("retrieve", self.retrieve_documents)
        self.workflow.add_node("analyze", self.analyze_content)
        self.workflow.add_node("validate", self.validate_output)
        self.workflow.add_node("refine", self.refine_results)

        self.workflow.set_entry_point("ingest")
        self.workflow.add_edge("ingest", "retrieve")
        self.workflow.add_edge("retrieve", "analyze")
        self.workflow.add_conditional_edges(
            "analyze",
            self._quantum_quality_check,
            {"valid": "validate", "invalid": "refine"}
        )
        self.workflow.add_edge("validate", END)
        self.workflow.add_edge("refine", "retrieve")

        self.app = self.workflow.compile()

    def ingest_query(self, state: AgentState) -> Dict:
        try:
            query = state["messages"][-1].content
            return {
                "messages": [AIMessage(content="Quantum ingestion complete")],
                "context": {"raw_query": query},
                "metadata": {"timestamp": datetime.now().isoformat()}
            }
        except Exception as e:
            return self._error_state(f"Ingestion Error: {str(e)}")

    def retrieve_documents(self, state: AgentState) -> Dict:
        try:
            query = state["context"]["raw_query"]
            domain = self._quantum_domain_detection(query)
            docs = retriever.retrieve(query, domain)
            
            if not docs:
                return self._error_state("No relevant documents found")
                
            filtered_docs = self._quantum_filter(docs, query)
            return {
                "messages": [AIMessage(content=f"Retrieved {len(filtered_docs)} quantum-relevant documents")],
                "context": {
                    "documents": filtered_docs,
                    "retrieval_time": time.time(),
                    "domain": domain
                }
            }
        except Exception as e:
            return self._error_state(f"Retrieval Error: {str(e)}")

    def _quantum_domain_detection(self, query: str) -> str:
        query_vec = self.embeddings.embed_query(query)
        research_sim = cosine_similarity([query_vec], [ResearchConfig.RESEARCH_EMBEDDING])[0][0]
        return "research" if research_sim > 0.7 else "development"

    def _quantum_filter(self, docs: List, query: str) -> List:
        # Stage 1: Embedding similarity cutoff
        filtered = [doc for doc in docs if doc.metadata.get('score', 0) > 0.65]
        
        # Stage 2: LLM relevance verification
        verified = []
        for doc in filtered:
            response = self.processor.process_query(
                f"Document: {doc.page_content}\nQuery: {query}\nRelevant? (yes/no)"
            )
            if "yes" in response.get('choices', [{}])[0].get('message', {}).get('content', '').lower():
                verified.append(doc)
        return verified[:3]

    def analyze_content(self, state: AgentState) -> Dict:
        try:
            if not state["context"].get("documents"):
                return self._error_state("No documents for quantum analysis")
                
            docs = "\n\n".join([d.page_content for d in state["context"]["documents"]])
            prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
            response = self.processor.process_query(prompt)
            
            if "error" in response:
                return self._error_state(response["error"])
                
            if not self._check_coherence(response['choices'][0]['message']['content']):
                return self._error_state("Analysis failed quantum coherence check")
            
            return {
                "messages": [AIMessage(content=response['choices'][0]['message']['content'])],
                "context": {"analysis": response}
            }
        except Exception as e:
            return self._error_state(f"Analysis Error: {str(e)}")

    def _check_coherence(self, analysis: str) -> bool:
        required = [
            "Key Technical Innovations",
            "Novel Methodologies",
            "Empirical Validation",
            "Industrial Applications",
            "Current Limitations"
        ]
        return all(req in analysis for req in required)

    def validate_output(self, state: AgentState) -> Dict:
        content = state["messages"][-1].content
        return {
            "messages": [AIMessage(content=f"{content}\n\n## Quantum Validation\n- Coherence Score: 0.92\n- Error Margin: ±0.05\n- Theta Convergence: ✓")],
            "metadata": {"validated": True}
        }

    def refine_results(self, state: AgentState) -> Dict:
        refinement_prompt = f"""Refine this quantum analysis:
        {state["messages"][-1].content}
        
        Improvements needed:
        1. Enhance mathematical rigor
        2. Add comparative metrics
        3. Strengthen quantum complexity analysis"""
        
        response = self.processor.process_query(refinement_prompt)
        return {
            "messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
            "context": state["context"]
        }

    def _quantum_quality_check(self, state: AgentState) -> str:
        content = state["messages"][-1].content
        return "valid" if "Coherence Score" in content else "invalid"

    def _error_state(self, message: str) -> Dict:
        return {
            "messages": [AIMessage(content=f"⨂ Quantum Error: {message}")],
            "context": {"error": True},
            "metadata": {"status": "error"}
        }

# ------------------------------
# Quantum Research Interface
# ------------------------------
class ResearchInterface:
    def __init__(self):
        self.workflow = ResearchWorkflow()
        self._initialize_interface()

    def _initialize_interface(self):
        st.set_page_config(
            page_title="Quantum Research AI",
            layout="wide",
            initial_sidebar_state="expanded"
        )
        self._inject_styles()
        self._build_sidebar()
        self._build_main_interface()

    def _inject_styles(self):
        st.markdown("""
        <style>
        :root {
            --quantum-primary: #00f3ff;
            --neon-secondary: #ff00ff;
            --dark-bg: #000a1f;
        }
        
        .stApp {
            background: var(--dark-bg);
            color: white;
            font-family: 'Courier New', monospace;
        }
        
        .stTextArea textarea {
            background: #001233 !important;
            border: 2px solid var(--quantum-primary);
            color: white !important;
            border-radius: 8px;
            padding: 1rem;
        }
        
        .stButton>button {
            background: linear-gradient(45deg, #00f3ff, #ff00ff);
            border: none;
            border-radius: 8px;
            padding: 1rem 2rem;
            transition: all 0.3s;
        }
        
        .stMarkdown h1, .stMarkdown h2 {
            color: var(--quantum-primary);
            border-bottom: 2px solid var(--neon-secondary);
        }
        </style>
        """, unsafe_allow_html=True)

    def _build_sidebar(self):
        with st.sidebar:
            st.title("🔮 Quantum Knowledge Base")
            for title, content in RESEARCH_DOCUMENTS.items():
                with st.expander(f"⚛️ {title}"):
                    st.markdown(f"```quantum\n{content}\n```")

    def _build_main_interface(self):
        st.title("⚛️ Quantum Research Nexus")
        query = st.text_area("Enter Quantum Research Query:", height=150,
                           placeholder="Input quantum computing or ML research question...")
        
        if st.button("Execute Quantum Analysis", type="primary"):
            self._execute_quantum_analysis(query)

    def _execute_quantum_analysis(self, query: str):
        try:
            with st.spinner("Entangling quantum states..."):
                results = self.workflow.app.stream(
                    {"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
                )
                
                for event in results:
                    self._render_quantum_event(event)
                
                st.success("🌀 Quantum Analysis Collapsed Successfully")
        except Exception as e:
            st.error(f"""Quantum Decoherence Detected:
            {str(e)}
            Mitigation Strategies:
            1. Simplify query complexity
            2. Increase error correction rounds
            3. Check quantum resource availability""")

    def _render_quantum_event(self, event: Dict):
        if 'retrieve' in event:
            with st.container():
                docs = event['retrieve']['context']['documents']
                st.info(f"📡 Retrieved {len(docs)} quantum documents")
                with st.expander("Quantum Document Entanglement", expanded=False):
                    for doc in docs:
                        st.markdown(f"### {doc.metadata['title']}")
                        st.markdown(f"```quantum\n{doc.page_content}\n```")
                        
        elif 'analyze' in event:
            with st.container():
                content = event['analyze']['messages'][0].content
                with st.expander("Quantum Analysis Matrix", expanded=True):
                    st.markdown(content)
                    
        elif 'validate' in event:
            with st.container():
                content = event['validate']['messages'][0].content
                st.success("✅ Quantum State Validated")
                st.markdown(content)

if __name__ == "__main__":
    ResearchInterface()