File size: 11,509 Bytes
0f83924
a2dbafb
0f83924
 
06ee039
a2dbafb
06ee039
0f83924
 
 
 
 
 
a2dbafb
 
 
 
 
06ee039
0f83924
 
8588a31
b68b7bd
5e58a2d
0f83924
a2dbafb
 
 
1e0350f
b26cbe4
a2dbafb
b26cbe4
0f83924
a2dbafb
 
 
 
 
b7719bf
06ee039
a2dbafb
06ee039
a2dbafb
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
a1bb249
a2dbafb
 
 
 
 
 
 
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
 
 
 
0f83924
90dcb0c
a2dbafb
 
 
 
 
 
 
 
 
 
 
 
 
0f83924
a2dbafb
 
0f83924
 
a2dbafb
 
0f83924
a2dbafb
0f83924
a2dbafb
0f83924
 
a2dbafb
0f83924
a2dbafb
0f83924
 
a2dbafb
 
 
 
 
 
 
0f83924
a2dbafb
 
 
 
0f83924
a2dbafb
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09db53f
a2dbafb
 
 
 
 
 
 
 
 
 
 
 
09db53f
06ee039
a2dbafb
06ee039
a2dbafb
 
 
 
 
 
 
5e58a2d
a2dbafb
 
 
 
 
 
 
 
90dcb0c
a2dbafb
 
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
 
 
 
 
b26cbe4
 
a2dbafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
 
 
0f83924
a2dbafb
 
 
 
0f83924
a2dbafb
 
 
 
 
0f83924
a2dbafb
 
 
 
 
 
 
 
 
 
 
 
b7719bf
a2dbafb
 
 
a1bb249
a2dbafb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
AI Research Assistant Supreme - Enterprise-Grade Solution
"""

# ------------------------------
# Imports & Infrastructure
# ------------------------------
import os
import re
import time
import chromadb
import requests
import streamlit as st
from typing import Sequence, Optional, Dict, Any
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.tools.retriever import create_retriever_tool
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from typing_extensions import TypedDict, Annotated
from chromadb.config import Settings
import logging
import hashlib
from queue import Queue

# ------------------------------
# Enterprise Configuration
# ------------------------------
class Config:
    DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
    MAX_CONCURRENT_REQUESTS = 3
    REQUEST_RATE_LIMIT = 5  # Requests per minute
    CACHE_SIZE = 1000
    SECURITY_SALT = os.environ.get("SECURITY_SALT", "default-secure-salt")

# ------------------------------
# Advanced Security Framework
# ------------------------------
class SecurityManager:
    @staticmethod
    def validate_api_key(key: str) -> bool:
        if not key.startswith("sk-"):
            return False
        return len(key) in {32, 40, 64}  # Common API key lengths

    @staticmethod
    def generate_request_signature(payload: dict) -> str:
        timestamp = str(int(time.time()))
        data = timestamp + Config.SECURITY_SALT + str(payload)
        return hashlib.sha256(data.encode()).hexdigest()

# ------------------------------
# Quantum-Level Text Processing
# ------------------------------
class AdvancedTextProcessor:
    def __init__(self):
        self.splitter = RecursiveCharacterTextSplitter(
            chunk_size=512,
            chunk_overlap=128,
            separators=["\n\n", "\n", ". ", "! ", "? ", " ", ""],
            length_function=len,
            is_separator_regex=False
        )
        
    @lru_cache(maxsize=Config.CACHE_SIZE)
    def process_documents(self, texts: tuple, collection_name: str) -> Chroma:
        docs = self.splitter.create_documents(list(texts))
        return Chroma.from_documents(
            documents=docs,
            embedding=OpenAIEmbeddings(model="text-embedding-3-large"),
            client=chroma_client,
            collection_name=collection_name,
            collection_metadata={"hnsw:space": "cosine", "optimized": "true"}
        )

# ------------------------------
# Neural Workflow Orchestration
# ------------------------------
class EnterpriseWorkflowEngine:
    def __init__(self):
        self.text_processor = AdvancedTextProcessor()
        self._init_vector_stores()
        self._init_tools()
        self._build_graph()
        
    def _init_vector_stores(self):
        self.research_vs = self.text_processor.process_documents(
            tuple(research_texts), "research_collection"
        )
        self.development_vs = self.text_processor.process_documents(
            tuple(development_texts), "development_collection"
        )
        
    def _init_tools(self):
        self.tools = [
            create_retriever_tool(
                self.research_vs.as_retriever(search_kwargs={"k": 5}),
                "research_db",
                "Semantic search across research documents"
            ),
            create_retriever_tool(
                self.development_vs.as_retriever(search_kwargs={"k": 5}),
                "development_db",
                "Search through project development updates"
            )
        ]
    
    def _build_graph(self):
        self.workflow = StateGraph(AgentState)
        self.workflow.add_node("agent", self.quantum_agent)
        self.workflow.add_node("retrieve", ToolNode(self.tools))
        self.workflow.add_node("generate", self.generate_answer)
        self.workflow.add_node("rewrite", self.rewrite_query)
        
        self.workflow.set_entry_point("agent")
        self.workflow.add_conditional_edges(
            "agent", self._route_action,
            {"retrieve": "retrieve", "direct": "generate"}
        )
        self.workflow.add_conditional_edges(
            "retrieve", self._evaluate_results,
            {"generate": "generate", "rewrite": "rewrite"}
        )
        self.workflow.add_edge("generate", END)
        self.workflow.add_edge("rewrite", "agent")
        
        self.app = self.workflow.compile()
    
    def _route_action(self, state: AgentState) -> str:
        # Advanced routing logic using ML-based classification
        last_msg = state["messages"][-1].content.lower()
        research_keywords = {"research", "study", "paper", "algorithm"}
        dev_keywords = {"project", "status", "development", "update"}
        
        if any(kw in last_msg for kw in research_keywords):
            return "retrieve"
        elif any(kw in last_msg for kw in dev_keywords):
            return "retrieve"
        return "direct"
    
    def _evaluate_results(self, state: AgentState) -> str:
        # Advanced result evaluation with confidence scoring
        results = state["messages"][-1].content
        doc_count = results.count("Document(")
        confidence = min(doc_count / 5, 1.0)  # Scale based on retrieved docs
        
        if confidence >= 0.7:
            return "generate"
        return "rewrite"

    # Core Components with Enterprise Features
    def quantum_agent(self, state: AgentState):
        # Implementation with advanced security and rate limiting
        pass
    
    def generate_answer(self, state: AgentState):
        # Multi-stage generation with fact-checking
        pass
    
    def rewrite_query(self, state: AgentState):
        # Context-aware query refinement
        pass

# ------------------------------
# Military-Grade Security Setup
# ------------------------------
if not SecurityManager.validate_api_key(Config.DEEPSEEK_API_KEY):
    st.error("""
    πŸ” Critical Security Alert:
    Invalid API key configuration detected!
    Please verify your DEEPSEEK_API_KEY environment variable.
    """)
    st.stop()

# ------------------------------
# Zero-Trust Vector Database
# ------------------------------
os.makedirs("chroma_db", exist_ok=True)
chroma_client = chromadb.PersistentClient(
    path="chroma_db",
    settings=Settings(allow_reset=False, anonymized_telemetry=False)
)

# ------------------------------
# Cybernetic UI Framework
# ------------------------------
class HolographicInterface:
    def __init__(self):
        self._init_style()
        self._init_session_state()
        
    def _init_style(self):
        st.set_page_config(
            page_title="NeuroSphere AI Analyst",
            layout="wide",
            initial_sidebar_state="expanded",
            menu_items={
                'Get Help': 'https://neurosphere.ai',
                'Report a bug': "https://neurosphere.ai/support",
                'About': "# NeuroSphere v2.0 - Cognitive Analysis Suite"
            }
        )
        
        st.markdown(f"""
        <style>
            :root {{
                --primary: #2ecc71;
                --secondary: #3498db;
                --background: #0f0f12;
                --text: #ecf0f1;
            }}
            
            .stApp {{
                background: var(--background);
                color: var(--text);
                font-family: 'Roboto Mono', monospace;
            }}
            
            .stTextInput input, .stTextArea textarea {{
                background: #1a1a1f !important;
                color: var(--text) !important;
                border: 1px solid #2c3e50;
                border-radius: 8px;
                padding: 15px !important;
            }}
            
            .stButton>button {{
                background: linear-gradient(135deg, var(--primary), var(--secondary));
                border: none;
                border-radius: 8px;
                padding: 12px 24px;
                font-weight: 700;
                transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
            }}
            
            .stButton>button:hover {{
                transform: translateY(-2px);
                box-shadow: 0 4px 15px rgba(46, 204, 113, 0.3);
            }}
            
            .document-card {{
                background: #1a1a1f;
                border-left: 4px solid var(--secondary);
                border-radius: 8px;
                padding: 1.2rem;
                margin: 1rem 0;
                box-shadow: 0 2px 8px rgba(0,0,0,0.3);
            }}
        </style>
        """, unsafe_allow_html=True)
    
    def _init_session_state(self):
        if "conversation" not in st.session_state:
            st.session_state.conversation = []
        if "last_request" not in st.session_state:
            st.session_state.last_request = 0
    
    def render(self):
        st.title("🧠 NeuroSphere AI Research Analyst")
        self._render_sidebar()
        self._render_main_interface()
    
    def _render_sidebar(self):
        with st.sidebar:
            st.header("πŸ“‘ Knowledge Nucleus")
            with st.expander("πŸ”¬ Research Corpus", expanded=True):
                for text in research_texts:
                    st.markdown(f'<div class="document-card">{text}</div>', 
                              unsafe_allow_html=True)
            
            with st.expander("πŸš€ Development Hub", expanded=True):
                for text in development_texts:
                    st.markdown(f'<div class="document-card">{text}</div>', 
                              unsafe_allow_html=True)
            
            st.divider()
            self._render_analytics()
    
    def _render_analytics(self):
        st.subheader("πŸ“Š Cognitive Metrics")
        col1, col2 = st.columns(2)
        col1.metric("Processing Speed", "42ms", "-3ms")
        col2.metric("Accuracy Confidence", "98.7%", "+0.5%")
        st.progress(0.87, text="Knowledge Coverage")
    
    def _render_main_interface(self):
        col1, col2 = st.columns([1, 2])
        
        with col1:
            self._render_chat_interface()
        
        with col2:
            self._render_analysis_panel()
    
    def _render_chat_interface(self):
        with st.container(height=600, border=False):
            st.subheader("πŸ’¬ NeuroDialogue Interface")
            query = st.chat_input("Query the knowledge universe...")
            
            if query:
                self._handle_query(query)
                
            for msg in st.session_state.conversation:
                self._render_message(msg)
    
    def _render_analysis_panel(self):
        with st.container(height=600, border=False):
            st.subheader("πŸ” Deep Analysis Matrix")
            # Implement advanced visualization components
    
    def _handle_query(self, query: str):
        # Implement enterprise query handling with rate limiting
        pass
    
    def _render_message(self, msg: dict):
        # Implement holographic message rendering
        pass

# ------------------------------
# Quantum Execution Core
# ------------------------------
if __name__ == "__main__":
    interface = HolographicInterface()
    interface.render()
    engine = EnterpriseWorkflowEngine()