File size: 14,998 Bytes
e7e593a 5723e66 f1cd1c6 55bb7be e7e593a 23d48f5 e7e593a 23d48f5 e7e593a 23d48f5 e7e593a 93f53ae e7e593a 93f53ae e7e593a 55bb7be e7e593a 5723e66 e7e593a 93f53ae e7e593a f1cd1c6 e7e593a f1cd1c6 e7e593a f1cd1c6 e7e593a f1cd1c6 e7e593a f1cd1c6 e7e593a 55bb7be e7e593a 5723e66 e7e593a 5723e66 e7e593a 5723e66 e7e593a f1cd1c6 e7e593a f1cd1c6 e7e593a f1cd1c6 e7e593a 93f53ae e7e593a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# app.py
import streamlit as st
import json
import re
import os
import traceback
from dotenv import load_dotenv
# Import agent logic and message types from agent.py
try:
from agent import ClinicalAgent, AgentState, check_red_flags
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
except ImportError as e:
st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.")
st.stop()
# --- Environment Variable Loading & Validation ---
load_dotenv()
# Check keys required by agent.py are present before initializing the agent
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
missing_keys = []
if not UMLS_API_KEY: missing_keys.append("UMLS_API_KEY")
if not GROQ_API_KEY: missing_keys.append("GROQ_API_KEY")
if not TAVILY_API_KEY: missing_keys.append("TAVILY_API_KEY")
if missing_keys:
st.error(f"Missing required API Key(s): {', '.join(missing_keys)}. Please set them in Hugging Face Space Secrets or environment variables.")
st.stop()
# --- App Configuration ---
class ClinicalAppSettings:
APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
PAGE_LAYOUT = "wide"
MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)" # Defined in agent.py
# --- Streamlit UI ---
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "patient_data" not in st.session_state:
st.session_state.patient_data = None
if "summary" not in st.session_state:
st.session_state.summary = None
# Initialize the agent instance only once
if "agent" not in st.session_state:
try:
st.session_state.agent = ClinicalAgent()
print("ClinicalAgent successfully initialized in Streamlit session state.")
except Exception as e:
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
print(f"ERROR Initializing ClinicalAgent: {e}")
traceback.print_exc()
st.stop()
# --- Patient Data Input Sidebar ---
with st.sidebar:
st.header("π Patient Intake Form")
# Input fields... (Using shorter versions for brevity, assume full fields are here)
st.subheader("Demographics")
age = st.number_input("Age", 0, 120, 55, key="sb_age")
sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
st.subheader("HPI")
chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc")
hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi")
symptoms = st.multiselect(
"Symptoms",
["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"],
default=["Nausea", "Diaphoresis"],
key="sb_sym"
)
st.subheader("History")
pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh")
psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
st.subheader("Meds & Allergies")
current_meds_str = st.text_area(
"Current Meds",
"Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily",
key="sb_meds"
)
allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
st.subheader("Social/Family")
social_history = st.text_area("SH", "Smoker", key="sb_sh")
family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
st.subheader("Vitals & Exam")
col1, col2 = st.columns(2)
with col1:
temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp")
hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr")
rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
with col2:
bp_mmhg = st.text_input("BP", "155/90", key="sb_bp")
spo2_percent = st.number_input("SpO2", 70, 100, 96, key="sb_spo2")
pain_scale = st.slider("Pain", 0, 10, 8, key="sb_pain")
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=68, key="sb_exam")
if st.button("Start/Update Consultation", key="sb_start"):
# Compile data...
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
current_med_names_only = []
for med in current_meds_list:
match = re.match(r"^\s*([a-zA-Z\-]+)", med)
if match:
current_med_names_only.append(match.group(1).lower())
allergies_list = []
for a in allergies_str.split(','):
cleaned_allergy = a.strip()
if cleaned_allergy:
match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy)
name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower()
allergies_list.append(name_part)
# Update patient data in session state
st.session_state.patient_data = {
"demographics": {"age": age, "sex": sex},
"hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms},
"pmh": {"conditions": pmh},
"psh": {"procedures": psh},
"medications": {"current": current_meds_list, "names_only": current_med_names_only},
"allergies": allergies_list,
"social_history": {"details": social_history},
"family_history": {"details": family_history},
"vitals": {
"temp_c": temp_c,
"hr_bpm": hr_bpm,
"bp_mmhg": bp_mmhg,
"rr_rpm": rr_rpm,
"spo2_percent": spo2_percent,
"pain_scale": pain_scale
},
"exam_findings": {"notes": exam_notes}
}
# Call check_red_flags from agent module
red_flags = check_red_flags(st.session_state.patient_data)
st.sidebar.markdown("---")
if red_flags:
st.sidebar.warning("**Initial Red Flags:**")
for flag in red_flags:
st.sidebar.warning(f"- {flag.replace('Red Flag: ', '')}")
else:
st.sidebar.success("No immediate red flags.")
# Reset conversation and summary on new intake
initial_prompt = "Initiate consultation. Review patient data and begin analysis."
st.session_state.messages = [HumanMessage(content=initial_prompt)]
st.session_state.summary = None # Reset summary
st.success("Patient data loaded/updated.")
# Rerun might be needed if the main area should clear or update based on new data
st.rerun()
# --- Main Chat Interface Area ---
st.header("π¬ Clinical Consultation")
# Display loop
for msg in st.session_state.messages:
if isinstance(msg, HumanMessage):
with st.chat_message("user"):
st.markdown(msg.content)
elif isinstance(msg, AIMessage):
with st.chat_message("assistant"):
ai_content = msg.content
structured_output = None
try:
# JSON Parsing logic...
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
if json_match:
json_str = json_match.group(1)
prefix = ai_content[:json_match.start()].strip()
suffix = ai_content[json_match.end():].strip()
if prefix:
st.markdown(prefix)
structured_output = json.loads(json_str)
if suffix:
st.markdown(suffix)
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"):
structured_output = json.loads(ai_content)
ai_content = ""
else:
st.markdown(ai_content) # Display non-JSON content
except Exception as e:
st.markdown(ai_content)
print(f"Error parsing/displaying AI JSON: {e}")
if structured_output and isinstance(structured_output, dict):
# Structured JSON display logic...
st.divider()
st.subheader("π AI Analysis & Recommendations")
cols = st.columns(2)
with cols[0]:
st.markdown("**Assessment:**")
st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
st.markdown("**Differential Diagnosis:**")
ddx = structured_output.get('differential_diagnosis', [])
if ddx:
for item in ddx:
likelihood = item.get('likelihood', 'Low')
medal = ('π₯' if likelihood.startswith('H') else 'π₯' if likelihood.startswith('M') else 'π₯')
expander_title = f"{medal} {item.get('diagnosis', 'Unknown')} ({likelihood})"
with st.expander(expander_title):
st.write(f"**Rationale:** {item.get('rationale', 'N/A')}")
else:
st.info("No DDx provided.")
st.markdown("**Risk Assessment:**")
risk = structured_output.get('risk_assessment', {})
flags = risk.get('identified_red_flags', [])
concerns = risk.get('immediate_concerns', [])
comps = risk.get('potential_complications', [])
if flags:
st.warning(f"**Flags:** {', '.join(flags)}")
if concerns:
st.warning(f"**Concerns:** {', '.join(concerns)}")
if comps:
st.info(f"**Potential Complications:** {', '.join(comps)}")
if not flags and not concerns:
st.success("No major risks highlighted.")
with cols[1]:
st.markdown("**Recommended Plan:**")
plan = structured_output.get('recommended_plan', {})
for section in ["investigations","therapeutics","consultations","patient_education"]:
st.markdown(f"_{section.replace('_',' ').capitalize()}:_")
items = plan.get(section)
if items and isinstance(items, list):
for it in items:
st.markdown(f"- {it}")
elif items:
st.markdown(f"- {items}")
else:
st.markdown("_None_")
st.markdown("")
st.markdown("**Rationale & Guideline Check:**")
st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
interaction_summary = structured_output.get('interaction_check_summary', "")
if interaction_summary:
st.markdown("**Interaction Check Summary:**")
st.markdown(f"> {interaction_summary}")
st.divider()
# Tool Call Display
if getattr(msg, 'tool_calls', None):
with st.expander("π οΈ AI requested actions", expanded=False):
if msg.tool_calls:
for tc in msg.tool_calls:
try:
st.code(
f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}",
language="json"
)
except Exception as display_e:
st.error(f"Could not display tool call args: {display_e}", icon="β οΈ")
st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
else:
st.caption("_No actions requested._")
# --- Chat Input Logic ---
if prompt := st.chat_input("Your message or follow-up query..."):
if not st.session_state.patient_data:
st.warning("Please load patient data first.")
st.stop()
if 'agent' not in st.session_state or not st.session_state.agent:
st.error("Agent not initialized. Check logs.")
st.stop()
# Append user message and display immediately
user_message = HumanMessage(content=prompt)
st.session_state.messages.append(user_message)
with st.chat_message("user"):
st.markdown(prompt)
# Prepare state for the agent
current_state_dict = {
"messages": st.session_state.messages,
"patient_data": st.session_state.patient_data,
"summary": st.session_state.get("summary"),
"interaction_warnings": None # Start clean
}
# Invoke the agent's graph for one turn
with st.spinner("SynapseAI is processing..."):
try:
final_state = st.session_state.agent.invoke_turn(current_state_dict)
st.session_state.messages = final_state.get('messages', [])
st.session_state.summary = final_state.get('summary')
except Exception as e:
print(f"CRITICAL ERROR during agent invocation: {type(e).__name__} - {e}")
traceback.print_exc()
st.error(f"An error occurred during processing: {e}", icon="β")
st.session_state.messages.append(AIMessage(content=f"Error during processing: {e}"))
st.rerun()
# Disclaimer
st.markdown("---")
st.warning("**Disclaimer:** SynapseAI is for demonstration...")
if __name__ == "__main__":
main() |