File size: 6,651 Bytes
bd977a3 bf1fd9f 0f3d01e bf1fd9f b60852c bf1fd9f 540d913 b60852c bf1fd9f 6f2c705 bf1fd9f 540d913 15df14e 540d913 6f2c705 540d913 15df14e 540d913 6f2c705 15df14e 6f2c705 bf1fd9f 15df14e bf1fd9f 540d913 bf1fd9f 540d913 bf1fd9f 15df14e 540d913 56ff081 540d913 6f2c705 540d913 6f2c705 540d913 6f2c705 540d913 6f2c705 15df14e 6f2c705 540d913 bf1fd9f 15df14e bf1fd9f b60852c 540d913 15df14e b60852c 540d913 bf1fd9f 15df14e 540d913 bf1fd9f 540d913 bf1fd9f b60852c bf1fd9f b60852c bf1fd9f 0f3d01e bf1fd9f 15df14e bf1fd9f 15df14e bf1fd9f 15df14e bf1fd9f 15df14e bf1fd9f b60852c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess
# ========== Load Environment Variables ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# CountGD Config (Replace DINO-X)
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
# Inisialisasi YOLO Model dari Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi untuk Mengecek Overlap antara YOLO dan CountGD ==========
def is_overlap(box1, boxes2, threshold=0.5):
"""
Mengecek apakah box1 (format: (x_min, y_min, x_max, y_max)) overlap
dengan salah satu box di boxes2 (format: (x_center, y_center, width, height))
berdasarkan IoU, menggunakan threshold yang ditetapkan.
"""
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x_center, y_center, w2, h2 = b2
x2_min = x_center - w2 / 2
x2_max = x_center + w2 / 2
y2_min = y_center - h2 / 2
y2_max = y_center + h2 / 2
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if dx > 0 and dy > 0:
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_box1 > 0 and (area_overlap / area_box1) > threshold:
return True
return False
# ========== Fungsi untuk Menghitung IoU antar dua bounding box ==========
def iou(boxA, boxB):
"""
Menghitung Intersection over Union (IoU) antara dua bounding box.
Masing-masing box dalam format (x_min, y_min, x_max, y_max).
"""
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
return interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
# Simpan image ke file sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ===== YOLO Detection =====
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
# Get YOLO boxes as (x_center, y_center, width, height)
nestle_boxes = [(pred['x'], pred['y'], pred['width'], pred['height']) for pred in yolo_pred['predictions']]
# ===== CountGD Detection =====
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
competitor_boxes = []
COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]
for prompt in COUNTGD_PROMPTS:
with open(temp_path, "rb") as f:
files = {"image": f}
data = {"prompts": [prompt], "model": "countgd"}
response = requests.post(url, files=files, data=data, headers=headers)
result = response.json()
if 'data' in result and result['data']:
detections = result['data'][0]
for obj in detections:
if 'bounding_box' in obj:
x1, y1, x2, y2 = obj['bounding_box']
countgd_box = (x1, y1, x2, y2)
# Prioritaskan deteksi YOLO: hapus jika overlap dengan YOLO (threshold 0.5)
if is_overlap(countgd_box, nestle_boxes, threshold=0.5):
continue
# Hindari duplikasi antar CountGD: jika IoU dengan deteksi lain > 0.4, lewati
duplicate = False
for existing_box in competitor_boxes:
if iou(countgd_box, existing_box) > 0.4:
duplicate = True
break
if not duplicate:
competitor_boxes.append(countgd_box)
# ===== Visualisasi =====
img = cv2.imread(temp_path)
# Gambar bounding box YOLO (hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
pt1 = (int(x - w/2), int(y - h/2))
pt2 = (int(x + w/2), int(y + h/2))
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
# Gambar bounding box CountGD (merah)
for box in competitor_boxes:
x1, y1, x2, y2 = box
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
# Buat result text untuk counting object
result_text = f"Total Produk Nestlé: {len(nestle_boxes)}\nTotal Unclassified Products: {len(competitor_boxes)}"
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
with gr.Row():
with gr.Column():
detect_image_button = gr.Button("Detect Image")
with gr.Row():
with gr.Column():
output_image = gr.Image(label="Detect Object")
with gr.Row():
with gr.Column():
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
iface.launch()
|