File size: 7,147 Bytes
bd977a3 bf1fd9f 0f3d01e bf1fd9f b60852c bf1fd9f d2c5459 b60852c bf1fd9f 6f2c705 bf1fd9f 540d913 15df14e 540d913 6f2c705 540d913 15df14e 540d913 6f2c705 15df14e 6f2c705 bf1fd9f 15df14e bf1fd9f 540d913 bf1fd9f 540d913 bf1fd9f 8741a65 540d913 57395b8 540d913 6f2c705 a366a77 540d913 6f2c705 57395b8 6f2c705 540d913 6f2c705 540d913 6f2c705 15df14e 8741a65 15df14e 6f2c705 540d913 bf1fd9f 15df14e bf1fd9f b60852c 540d913 e3f7ce6 15df14e b60852c 540d913 e3f7ce6 540d913 bf1fd9f 15df14e 8741a65 381bc65 8741a65 15df14e 540d913 bf1fd9f 540d913 bf1fd9f b60852c bf1fd9f b60852c bf1fd9f a6bf8fc 16fa06b a6bf8fc 16fa06b a6bf8fc 16fa06b 15df14e a6bf8fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess
# ========== Load Environment Variables ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# CountGD Config
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
# Inisialisasi YOLO Model dari Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi untuk Mengecek Overlap antara YOLO dan CountGD ==========
def is_overlap(box1, boxes2, threshold=0.5):
"""
Mengecek apakah box1 (format: (x_min, y_min, x_max, y_max)) overlap
dengan salah satu box di boxes2 (format: (x_center, y_center, width, height))
berdasarkan IoU, menggunakan threshold yang ditetapkan.
"""
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x_center, y_center, w2, h2 = b2
x2_min = x_center - w2 / 2
x2_max = x_center + w2 / 2
y2_min = y_center - h2 / 2
y2_max = y_center + h2 / 2
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if dx > 0 and dy > 0:
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_box1 > 0 and (area_overlap / area_box1) > threshold:
return True
return False
# ========== Fungsi untuk Menghitung IoU antar dua bounding box ==========
def iou(boxA, boxB):
"""
Menghitung Intersection over Union (IoU) antara dua bounding box.
Masing-masing box dalam format (x_min, y_min, x_max, y_max).
"""
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
return interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
# Simpan image ke file sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ===== YOLO Detection =====
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
# Hitung bounding box dan count per class untuk produk Nestlé
nestle_boxes = []
nestle_class_count = {}
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
# ===== CountGD Detection =====
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
competitor_boxes = []
COUNTGD_PROMPTS = ["cans", "bottle", "boxed milk", "milk"]
for prompt in COUNTGD_PROMPTS:
with open(temp_path, "rb") as f:
files = {"image": f}
data = {"prompts": [prompt], "model": "owlv2"}
response = requests.post(url, files=files, data=data, headers=headers)
result = response.json()
if 'data' in result and result['data']:
detections = result['data'][0]
for obj in detections:
if 'bounding_box' in obj:
x1, y1, x2, y2 = obj['bounding_box']
countgd_box = (x1, y1, x2, y2)
# Prioritaskan deteksi YOLO: hapus jika overlap dengan YOLO (threshold 0.5)
if is_overlap(countgd_box, nestle_boxes, threshold=0.5):
continue
# Hindari duplikasi antar deteksi CountGD: jika IoU dengan deteksi lain > 0.4, lewati
duplicate = False
for existing_box in competitor_boxes:
if iou(countgd_box, existing_box) > 0.4:
duplicate = True
break
if not duplicate:
competitor_boxes.append(countgd_box)
# ===== Visualisasi =====
img = cv2.imread(temp_path)
# Gambar bounding box YOLO (hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
pt1 = (int(x - w/2), int(y - h/2))
pt2 = (int(x + w/2), int(y + h/2))
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
# Gambar bounding box CountGD (merah)
for box in competitor_boxes:
x1, y1, x2, y2 = box
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
# Buat result text untuk count produk Nestlé per class dan total keseluruhan
result_text = "Produk Nestlé:\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
total_nestle = sum(nestle_class_count.values())
result_text += f"\nTotal Produk Nestlé: {total_nestle}\n"
result_text += f"Total Unclassified Products: {len(competitor_boxes)}"
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
with gr.Column():
output_image = gr.Image(label="Detect Object")
with gr.Column():
output_text = gr.Textbox(label="Counting Object")
# Tombol untuk memproses input
detect_button = gr.Button("Detect")
# Hubungkan tombol dengan fungsi deteksi
detect_button.click(
fn=detect_combined,
inputs=input_image,
outputs=[output_image, output_text]
)
iface.launch() |