Spaces:
Running
Running
File size: 5,364 Bytes
5dc2016 2126c7c ddff90b 7ce5b82 ddff90b 2126c7c ddff90b 275028e 3279179 4a37eb1 ddff90b 9f09f8c fb5e624 6792ef6 8bf2961 9f09f8c c9b72ab 44803cb e7caceb 6d2e57c e7caceb 6d2e57c e7caceb 4a37eb1 e7caceb 4a37eb1 e7caceb 6d2e57c e7caceb 6d2e57c 9f09f8c c9b72ab fb5e624 9f09f8c f2852e3 38efeba 847adc5 a224dfa 0416a61 f2852e3 ddff90b 9f09f8c cde5ff7 b102419 d501651 9f09f8c 31ca6c1 7780086 091df08 9f09f8c 27bf394 0d9531e b28ab8e 0d9531e b28ab8e 062e24e f435314 e1cbd0e b28ab8e f435314 b28ab8e 062e24e b28ab8e b424a32 0d9531e 9f09f8c 8f768aa 6e2f665 a8b6710 9f09f8c 96ea770 9f09f8c a8b6710 fb5e624 a8b6710 7ead1f4 6d2e57c 8e409e1 091df08 c6171a2 8e409e1 091df08 8e409e1 062e24e 4a37eb1 83629fc f2852e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import nltk
nltk.download('stopwords')
nltk.download('punkt')
import pandas as pd
import classify_abs
import extract_abs
pd.set_option('display.max_colwidth', None)
import streamlit as st
st.set_page_config(layout="wide")
import spacy
import tensorflow as tf
import pickle
import plotly.graph_objects as go
#### LOGO ####
st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/Logo_GARD_fullres.png" alt="NIH Genetic and Rare Diseases Information Center Logo" width=550>''',unsafe_allow_html=True)
#st.markdown("![National Center for Advancing Translational Sciences (NCATS) Logo](https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/NCATS_logo.png)")
#st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/raw/main/NCATS_logo.svg" alt="National Center for Advancing Translational Sciences Logo" width="800" height="300">''',unsafe_allow_html=True)
#### TITLE ####
st.title("Epidemiology Information Extraction Pipeline for Rare Diseases")
#st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)")
#### CHANGE SIDEBAR WIDTH ###
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 250px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 250px;
margin-left: -350px;
}
</style>
""",
unsafe_allow_html=True,
)
#### DESCRIPTION ####
st.markdown("This application was built by the [National Center for Advancing Translational Sciences (NCATS)](https://ncats.nih.gov/) to automatically search and extract rare disease epidemiology information from PubMed abstracts.")
#### SIDEBAR WIDGETS ####
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None')).lower()
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
#### MODEL LOADING ####
@st.experimental_singleton(show_spinner=False)
def load_models_experimental():
classify_model_vars = classify_abs.init_classify_model()
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
GARD_dict, max_length = extract_abs.load_GARD_diseases()
return classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length
#### DOWNLOAD FUNCTION ####
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
#### SANKEY FUNCTION ####
#@st.cache(allow_output_mutation=True)
@st.experimental_singleton()
def epi_sankey(sankey_data, disease_or_gard_id):
gathered, relevant, epidemiologic = sankey_data
fig = go.Figure(data=[go.Sankey(
node = dict(
pad = 15,
thickness = 20,
line = dict(color = "white", width = 0.5),
label = ["PubMed IDs Gathered", "Irrelevant Abstracts","Relevant Abstracts Gathered","Epidemiologic Abstracts","Not Epidemiologic"],
color = "purple"
),
#label = ["A1", "A2", "B1", "B2", "C1", "C2"]
link = dict(
source = [0, 0, 2, 2],
target = [2, 1, 3, 4],
value = [relevant, gathered-relevant, epidemiologic, relevant-epidemiologic]
))])
fig.update_layout(
hovermode = 'x',
title="Search for the Epidemiology of "+disease_or_gard_id,
font=dict(size = 10, color = 'black'),
)
return fig
#### BEGIN APP ####
with st.spinner('Loading Epidemiology Models and Dependencies...'):
classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
loaded = st.success('All Models and Dependencies Loaded!')
disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.")
loaded.empty()
st.markdown("Examples of rare diseases include [**Fellman syndrome**](https://rarediseases.info.nih.gov/diseases/1/gracile-syndrome), [**Classic Homocystinuria**](https://rarediseases.info.nih.gov/diseases/6667/classic-homocystinuria), [**7383**](https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria), and [**GARD:0009941**](https://rarediseases.info.nih.gov/diseases/9941/fshmd1a).")
st.markdown("A full list of rare diseases tracked by GARD can be found [here](https://rarediseases.info.nih.gov/diseases/browse-by-first-letter).")
if disease_or_gard_id:
df, sankey_data = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering,
NER_pipeline, entity_classes,
extract_diseases,GARD_dict, max_length,
classify_model_vars)
st.dataframe(df, height=100)
csv = convert_df(df)
st.download_button(
label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
data = csv,
file_name=disease_or_gard_id+'.csv',
mime='text/csv',
)
#st.dataframe(data=None, width=None, height=None)
fig = epi_sankey(sankey_data,disease_or_gard_id)
#if st.button('Display Sankey Diagram of Automated Search'):
st.plotly_chart(fig, use_container_width=True)
# st.code(body, language="python") |