Spaces:
Sleeping
Sleeping
File size: 4,629 Bytes
5dc2016 ddff90b 7ce5b82 ddff90b 7ce5b82 ddff90b 3279179 ddff90b 0416a61 bda3587 445b26a 8bf2961 f2852e3 44803cb e7caceb 6d2e57c e7caceb 6d2e57c e7caceb 388fbdd e7caceb 388fbdd e7caceb 6d2e57c e7caceb 6d2e57c f2852e3 38efeba 847adc5 f2852e3 0416a61 f2852e3 ddff90b cde5ff7 b102419 2360c00 388fbdd 81c44d2 971a385 81c44d2 8f768aa 4e45f70 31ca6c1 8f768aa b102419 80b9099 b102419 a8b6710 33ca54e a8b6710 7ead1f4 6d2e57c 916be64 8f768aa a8b6710 31ca6c1 cde5ff7 31ca6c1 1656abd f2852e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import nltk
nltk.download('stopwords')
nltk.download('punkt')
import pandas as pd
import classify_abs
import extract_abs
#pd.set_option('display.max_colwidth', None)
import streamlit as st
import spacy
import tensorflow as tf
import pickle
########## Title for the Web App ##########
st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/NCATS_logo.png" alt="National Center for Advancing Translational Sciences Logo" width=550>''',unsafe_allow_html=True)
#st.markdown("![National Center for Advancing Translational Sciences (NCATS) Logo](https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/NCATS_logo.png")
#st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/raw/main/NCATS_logo.svg" alt="National Center for Advancing Translational Sciences Logo" width="800" height="300">''',unsafe_allow_html=True)
st.title("Epidemiology Extraction Pipeline for Rare Diseases")
#st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)")
#### CHANGE SIDEBAR WIDTH ###
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 275px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 275px;
margin-left: -400px;
}
</style>
""",
unsafe_allow_html=True,
)
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
@st.experimental_singleton(show_spinner=False)
def load_models_experimental():
classify_model_vars = classify_abs.init_classify_model()
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
GARD_dict, max_length = extract_abs.load_GARD_diseases()
return classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length
@st.cache(allow_output_mutation=True)
def load_models():
# load the tokenizer
with open('tokenizer.pickle', 'rb') as handle:
classify_tokenizer = pickle.load(handle)
# load the model
classify_model = tf.keras.models.load_model("LSTM_RNN_Model")
#classify_model_vars = classify_abs.init_classify_model()
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
GARD_dict, max_length = extract_abs.load_GARD_diseases()
return classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length
with st.spinner('Loading Epidemiology Models and Dependencies...'):
classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
#classify_tokenizer, classify_model, NER_pipeline, entity_classes, GARD_dict, max_length = load_models()
#Load spaCy models which cannot be cached due to hash function error
#nlp = spacy.load('en_core_web_lg')
#nlpSci = spacy.load("en_ner_bc5cdr_md")
#nlpSci2 = spacy.load('en_ner_bionlp13cg_md')
#classify_model_vars = (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer)
loaded = st.success('All Models and Dependencies Loaded!')
disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.")
loaded.empty()
st.markdown("Examples of rare diseases include [**Fellman syndrome**](https://rarediseases.info.nih.gov/diseases/1/gracile-syndrome), [**Classic Homocystinuria**](https://rarediseases.info.nih.gov/diseases/6667/classic-homocystinuria), [**phenylketonuria**](https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria), and [GARD:0009941](https://rarediseases.info.nih.gov/diseases/9941/fshmd1a).")
st.markdown("A full list of rare diseases tracked by GARD can be found [here](https://rarediseases.info.nih.gov/diseases/browse-by-first-letter).")
if disease_or_gard_id:
df = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering,
NER_pipeline, entity_classes,
extract_diseases,GARD_dict, max_length,
classify_model_vars)
st.dataframe(df, height=100))
csv = convert_df(df)
st.download_button(
label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
data=df.to_csv().encode('utf-8'),
file_name=disease_or_gard_id+'.csv',
mime='text/csv',
)
#st.dataframe(data=None, width=None, height=None)
# st.code(body, language="python") |