File size: 5,374 Bytes
5dc2016
fc731db
 
 
ddff90b
7ce5b82
ddff90b
98ac1da
ddff90b
275028e
3279179
 
 
4a37eb1
ddff90b
9f09f8c
7537ef6
98ac1da
a334ada
6792ef6
9f09f8c
 
c9b72ab
fc731db
e7caceb
6d2e57c
e7caceb
 
6d2e57c
e7caceb
4a37eb1
e7caceb
 
4a37eb1
 
e7caceb
6d2e57c
e7caceb
 
 
6d2e57c
9f09f8c
c9b72ab
fb5e624
9f09f8c
 
f2852e3
38efeba
847adc5
a224dfa
0416a61
f2852e3
ddff90b
9f09f8c
 
cde5ff7
b102419
 
 
 
 
fc731db
9f09f8c
31ca6c1
7780086
091df08
 
 
fc731db
9f09f8c
 
27bf394
 
 
0d9531e
fc731db
0d9531e
b28ab8e
 
 
062e24e
f435314
e1cbd0e
b28ab8e
 
 
f435314
 
 
b28ab8e
062e24e
 
 
 
 
fc731db
b424a32
0d9531e
9f09f8c
 
8f768aa
6e2f665
a8b6710
9f09f8c
96ea770
9f09f8c
a8b6710
 
fb5e624
a8b6710
 
7ead1f4
6d2e57c
8e409e1
fc731db
 
8e409e1
 
091df08
c6171a2
8e409e1
091df08
8e409e1
 
 
 
062e24e
fc731db
83629fc
 
fc731db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import nltk
nltk.data.path.append("./nltk_data/")
#nltk.download('stopwords')
#nltk.download('punkt')
import pandas as pd
import classify_abs
import extract_abs
#pd.set_option('display.max_colwidth', None)
import streamlit as st
st.set_page_config(layout="wide")
import spacy
import tensorflow as tf
import pickle
import plotly.graph_objects as go

#### LOGO ####
st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/raw/main/ncats.svg" alt="National Center for Advancing Translational Sciences Logo" width=800>''',unsafe_allow_html=True)
st.markdown("")
st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/Logo_GARD_fullres.png" alt="NIH Genetic and Rare Diseases Information Center Logo" width=800>''',unsafe_allow_html=True)
#st.markdown("![National Center for Advancing Translational Sciences (NCATS) Logo](https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/NCATS_logo.png)")

#### TITLE ####
st.title("Epidemiology Information Extraction Pipeline for Rare Diseases")
#st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)")

#### CHANGE SIDEBAR WIDTH ###
st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 250px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 250px;
        margin-left: -350px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

#### DESCRIPTION ####
st.markdown("This application was built by the [National Center for Advancing Translational Sciences (NCATS)](https://ncats.nih.gov/) to automatically search and extract rare disease epidemiology information from PubMed abstracts.")

#### SIDEBAR WIDGETS ####

#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)

filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None')).lower()

extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)

#### MODEL LOADING ####

@st.experimental_singleton(show_spinner=False)
def load_models_experimental():
    classify_model_vars = classify_abs.init_classify_model()
    NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
    GARD_dict, max_length = extract_abs.load_GARD_diseases()
    return classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length

#### DOWNLOAD FUNCTION ####

@st.cache
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv().encode('utf-8')

#### SANKEY FUNCTION ####

#@st.cache(allow_output_mutation=True)
@st.experimental_singleton()
def epi_sankey(sankey_data, disease_or_gard_id):
    gathered, relevant, epidemiologic = sankey_data

    fig = go.Figure(data=[go.Sankey(
        node = dict(
          pad = 15,
          thickness = 20,
          line = dict(color = "white", width = 0.5),
          label = ["PubMed IDs Gathered", "Irrelevant Abstracts","Relevant Abstracts Gathered","Epidemiologic Abstracts","Not Epidemiologic"],
          color = "purple"
        ),
        #label = ["A1", "A2", "B1", "B2", "C1", "C2"]
        link = dict(
          source = [0, 0, 2, 2],
          target = [2, 1, 3, 4],
          value = [relevant, gathered-relevant, epidemiologic, relevant-epidemiologic]
      ))])
    fig.update_layout(
    hovermode = 'x',
    title="Search for the Epidemiology of "+disease_or_gard_id,
    font=dict(size = 10, color = 'black'),
)

    return fig

#### BEGIN APP ####

with st.spinner('Loading Epidemiology Models and Dependencies...'):
    classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
loaded = st.success('All Models and Dependencies Loaded!')

disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.")

loaded.empty()

st.markdown("Examples of rare diseases include [**Fellman syndrome**](https://rarediseases.info.nih.gov/diseases/1/gracile-syndrome), [**Classic Homocystinuria**](https://rarediseases.info.nih.gov/diseases/6667/classic-homocystinuria), [**7383**](https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria), and [**GARD:0009941**](https://rarediseases.info.nih.gov/diseases/9941/fshmd1a).")

st.markdown("A full list of rare diseases tracked by GARD can be found [here](https://rarediseases.info.nih.gov/diseases/browse-by-first-letter).")

if disease_or_gard_id:
    df, sankey_data = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering,
                                NER_pipeline, entity_classes,
                                extract_diseases,GARD_dict, max_length,
                                classify_model_vars)
    st.dataframe(df, height=100)
    csv = convert_df(df)
    st.download_button(
        label="Download epidemiology results for "+disease_or_gard_id+" as CSV",
        data = csv,
        file_name=disease_or_gard_id+'.csv',
        mime='text/csv',
        )
    #st.dataframe(data=None, width=None, height=None)
    fig = epi_sankey(sankey_data,disease_or_gard_id)

    #if st.button('Display Sankey Diagram of Automated Search'):
    st.plotly_chart(fig, use_container_width=True)
# st.code(body, language="python")