Spaces:
Build error
Build error
File size: 5,179 Bytes
7d6d701 04a1583 7d6d701 0a1cd5f f4087b0 1ad0dcf 7d6d701 6a95bbc 7d6d701 c8f85cc 8af1727 52f3a4a 6f02f68 752918c b610816 6a95bbc 6553dbd ff7b136 dc12c17 b12409c 9960268 dc12c17 04a1583 dc12c17 996e450 04a1583 0f74892 04a1583 a26bf39 6f02f68 7d6d701 60c9aea 5397e21 7949ca0 58e1865 b3af0cf 58e1865 c874a48 5397e21 dc12c17 a5cb1b3 7d6d701 dc12c17 9ed9edc 908ded3 7d6d701 377a584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import gradio as gr
import openai, os
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#openai.api_key = os.environ["OPENAI_API_KEY"]
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up
an answer. Keep the answer as concise as possible. Always say "🔥 Thanks for using the app - Bernd Straehle." at the end of the answer.
{context} Question: {question} Helpful Answer: """
QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template)
CHROMA_DIR = "docs/chroma"
YOUTUBE_DIR = "docs/youtube"
YOUTUBE_URL = "https://www.youtube.com/watch?v=--khbXchTeE"
MODEL_NAME = "gpt-4"
def invoke(openai_api_key, use_rag, prompt):
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature = 0)
if (use_rag):
if (os.path.isdir(CHROMA_DIR)):
vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
else:
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL], YOUTUBE_DIR), OpenAIWhisperParser())
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
splits = text_splitter.split_documents(docs)
vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
rag_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
result = rag_chain({"query": prompt})
else:
#qa_chain = RetrievalQA.from_chain_type(llm, retriever = None, return_source_documents = True, cchain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
#result = qa_chain({"query": prompt})
chain = LLMChain(llm = llm)
result = chain({"query": prompt})
#print(result)
return result["result"]
description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
(in this case a YouTube video, but it could be PDFs, URLs, or other structured/unstructured private/public
<a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
<strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases on a <a href='https://www.youtube.com/watch?v=--khbXchTeE'>short video about GPT-4</a>
(semantic search, sentiment analysis, summarization, translation, etc.)
<ul style="list-style-type:square;">
<li>Set "Use RAG" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
<li>Set "Use RAG" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
<li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
</ul>
In a production system, processing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
<a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a>.\n\n
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first
<a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and
<a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native <a href='https://www.trychroma.com/'>Chroma</a>
embedding database."""
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Radio([True, False], label="Use RAG", value = False), gr.Textbox(label = "Prompt", value = "what is gpt-4", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & RAG",
description = description)
demo.queue().launch() |