Spaces:
Build error
Build error
File size: 5,780 Bytes
7d6d701 04a1583 7d6d701 0a1cd5f f4087b0 1ad0dcf 7d6d701 6a95bbc 7d6d701 a4da0c1 6f02f68 a4da0c1 e38fd6d a4da0c1 b610816 6a95bbc 6553dbd ff7b136 dc12c17 b12409c 9960268 dc12c17 a4da0c1 dc12c17 996e450 a4da0c1 996e450 a4da0c1 996e450 a4da0c1 996e450 a4da0c1 eedb77b f6df106 0f74892 a4da0c1 e38fd6d f6df106 7d6d701 60c9aea 5397e21 7949ca0 58e1865 b3af0cf a4da0c1 25d020d c874a48 5397e21 dc12c17 a5cb1b3 7d6d701 a4da0c1 9ed9edc 908ded3 7d6d701 a4da0c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import gradio as gr
import openai, os
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#openai.api_key = os.environ["OPENAI_API_KEY"]
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say
"🔥 Thanks for using the app - Bernd Straehle." at the end of the answer. """
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: "
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: "
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"],
template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
template = rag_template)
CHROMA_DIR = "docs/chroma"
YOUTUBE_DIR = "docs/youtube"
YOUTUBE_URL = "https://www.youtube.com/watch?v=--khbXchTeE"
MODEL_NAME = "gpt-4"
def invoke(openai_api_key, use_rag, prompt):
llm = ChatOpenAI(model_name = MODEL_NAME,
openai_api_key = openai_api_key,
temperature = 0)
if (use_rag):
if (os.path.isdir(CHROMA_DIR)):
vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
persist_directory = CHROMA_DIR)
else:
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL], YOUTUBE_DIR),
OpenAIWhisperParser())
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
chunk_size = 1500)
splits = text_splitter.split_documents(docs)
vector_db = Chroma.from_documents(documents = splits,
embedding = OpenAIEmbeddings(),
persist_directory = CHROMA_DIR)
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
return_source_documents = True)
result = rag_chain({"query": prompt})
result = result["result"]
else:
chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
result = chain.run({"question": prompt})
return result
description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
(in this case a YouTube video, but it could be PDFs, URLs, or other structured/unstructured private/public
<a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
<strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases on a <a href='https://www.youtube.com/watch?v=--khbXchTeE'>short video about GPT-4</a>
(semantic search, sentiment analysis, summarization, translation, etc.)
<ul style="list-style-type:square;">
<li>Set "Retrieval Augmented Generation" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
<li>Set "Retrieval Augmented Generation" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
<li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a poem about gpt-4".</li>
</ul>
In a production system, processing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
<a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a>.\n\n
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first
<a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and
<a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native <a href='https://www.trychroma.com/'>Chroma</a>
embedding database."""
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Radio([True, False], label="Retrieval Augmented Generation", value = False), gr.Textbox(label = "Prompt", value = "what is gpt-4", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & RAG",
description = description)
demo.launch() |