File size: 4,021 Bytes
be6deff
834978e
5769515
be6deff
8392b33
d8a8ced
4b96e78
d8a8ced
 
6aaa0db
d8a8ced
0ecf059
b18cd84
6f9e91f
78b66c2
1ecd2bc
 
 
 
a23a68c
2b0664d
78b66c2
1ecd2bc
bb0161f
1ecd2bc
 
6aaa0db
1ecd2bc
 
4b96e78
1ecd2bc
4b96e78
1ecd2bc
 
 
 
 
624e912
1ecd2bc
2b0664d
c129d7d
4c644f1
 
 
 
 
 
 
 
 
 
bb0161f
 
 
 
bc0561b
 
 
 
 
 
 
 
 
 
 
 
bb0161f
 
 
7d4e93a
bb0161f
 
 
5769515
bb0161f
 
 
 
 
 
 
4ae9174
1ecd2bc
834978e
34da184
78b66c2
 
 
 
 
4863bc1
cf70e4a
78b66c2
 
969d05d
1c477ba
78b66c2
b855d19
4863bc1
1c477ba
 
 
 
6caedd6
78b66c2
8392b33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import subprocess
import pandas as pd

'''
import gradio as gr

def greet(name):
    return "Hello " + name + "!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()
'''
def greet(name1, name2):
    # Storing each input in a variable, you can process or save them as you like
    str1_openai = name1 ## openai
    str2_bioportal = "213e22ba-4c3b-402b-bd36-6e9d4e86b1b5"   #bioportal
    str3_huggingface = "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"   # huggingface
    str4_input = name2
    
    
    with open('abstractsave.txt', 'w') as f:
        f.write(str4_input)
    
    def run_command(command):
        result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)

        output_string = result.stdout
        error_string = result.stderr

        return output_string, error_string

#####     output_string1, error_string1= run_command("pip install optogpt")
    output_string1, error_string1 = run_command("curl -sSL https://install.python-poetry.org | python3 -")
    output_string2, error_string2 = run_command(f"poetry run runoak set-apikey -e openai {str1_openai}")
    run_command(f"poetry run runoak set-apikey -e bioportal {str2_bioportal}")
    run_command(f"poetry run runoak set-apikey -e hfhub-key {str3_huggingface}")
#####     output = run_command(f"ontogpt extract -t gocam.GoCamAnnotations -i ./abstract.txt")
    output = run_command(f"cancerontogpt extract -t cancer.CancerAnnotations -i ./abstractsave.txt")
    
    output = output[0].replace('\\n', '\n')
    
    # Find the positions of the start and end markers
    start_marker = "raw_completion_output: |-"
    end_marker = "prompt: "
    start_position = output.find(start_marker)
    end_position = output.find(end_marker)

    # Extract the text between the start and end positions
    output = output[start_position + len(start_marker):end_position].strip()


    # Splitting the data string into lines and then split each line into key-value pairs
    key_value_pairs = [line.split(": ", 1) for line in output.split("\n")[1:] if line.strip()]

    def format_identifier(identifier: str) -> str:
        # Split the string by underscores
        words = identifier.strip().split('_')

        # Capitalize each word
        capitalized_words = [word.capitalize() for word in words]

        # Join the words with spaces
        formatted_identifier = ' '.join(capitalized_words)

        return formatted_identifier

    key_value_pairs = [[format_identifier(x[0]), *x[1:]] for x in key_value_pairs]
    
    # Convert the key-value pairs into a table format (a list of lists)
    df_pred = pd.DataFrame(key_value_pairs, columns = ["Ontology Attribute", "Value"]).iloc[:19,:]
    
    
    
    
#     data = {
#         "Name": ['fawef', 'fseaf', 'asef'],
#         "Age": [30, 25, 35],
#         "City": ["New York", "San Francisco", "Los Angeles"]
#     }
#     df = pd.DataFrame(data)
    return df_pred.to_html()

####     output_string1, error_string1=run_command("poetry")# ontogpt")

    
#     return location
    # For the purpose of this example, I'm just returning the values concatenated
#     return f"Inputs received: {str1} \n, {str2}, {str3}, {str4}, '--------------',   '--------------', {output_string1},{error_string1},{output_string2},{error_string2},{output}"
#     #     return location
    # For the purpose of this example, I'm just returning the values concatenated
#     return f"{str4_input}"

# Define 5 text input boxes with labels
input_boxes = [
    gr.inputs.Textbox(label="openai api key"),
    gr.inputs.Textbox(lines=20, label="Input cencer report", placeholder='Type text here...'),
]

# iface = gr.Interface(fn=greet, inputs=input_boxes, outputs="text")
iface = gr.Interface(fn=greet, inputs=input_boxes, outputs=gr.outputs.HTML(label="Output Table"),examples=[                                    # Sample text examples
        ["this is a sample text"],
        ["gradio is great"]
    ])

iface.launch()