Spaces:
Running
Running
File size: 3,012 Bytes
be6deff 834978e be6deff 8392b33 d8a8ced 4b96e78 d8a8ced 6aaa0db d8a8ced 0ecf059 b18cd84 6f9e91f 78b66c2 1ecd2bc a23a68c 2b0664d 78b66c2 1ecd2bc 624e912 1ecd2bc 6aaa0db 1ecd2bc 4b96e78 1ecd2bc 4b96e78 1ecd2bc 624e912 1ecd2bc 2b0664d c129d7d 4c644f1 624e912 4863bc1 4ae9174 1ecd2bc 834978e 34da184 78b66c2 4863bc1 cf70e4a 78b66c2 969d05d 48963dc 78b66c2 b855d19 4863bc1 78b66c2 8392b33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
import subprocess
'''
import gradio as gr
def greet(name):
return "Hello " + name + "!"
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()
'''
def greet(name1, name2):
# Storing each input in a variable, you can process or save them as you like
str1_openai = name1 ## openai
str2_bioportal = "213e22ba-4c3b-402b-bd36-6e9d4e86b1b5" #bioportal
str3_huggingface = "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" # huggingface
str4_input = name2
with open('abstractsave.txt', 'w') as f:
f.write(str4_input)
'''
def run_command(command):
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
output_string = result.stdout
error_string = result.stderr
return output_string, error_string
##### output_string1, error_string1= run_command("pip install optogpt")
output_string1, error_string1 = run_command("curl -sSL https://install.python-poetry.org | python3 -")
output_string2, error_string2 = run_command(f"poetry run runoak set-apikey -e openai {str1_openai}")
run_command(f"poetry run runoak set-apikey -e bioportal {str2_bioportal}")
run_command(f"poetry run runoak set-apikey -e hfhub-key {str3_huggingface}")
##### output = run_command(f"ontogpt extract -t gocam.GoCamAnnotations -i ./abstract.txt")
output = run_command(f"cancerontogpt extract -t cancer.CancerAnnotations -i ./abstractsave.txt")
output = output[0].replace('\\n', '\n')
# Find the positions of the start and end markers
start_marker = "raw_completion_output: |-"
end_marker = "prompt: "
start_position = output.find(start_marker)
end_position = output.find(end_marker)
# Extract the text between the start and end positions
output = output[start_position + len(start_marker):end_position].strip()
# Output the extracted text
output
'''
data = {
"Name": [name, name, name],
"Age": [30, 25, 35],
"City": ["New York", "San Francisco", "Los Angeles"]
}
df = pd.DataFrame(data)
return df.to_html()
#### output_string1, error_string1=run_command("poetry")# ontogpt")
# return location
# For the purpose of this example, I'm just returning the values concatenated
# return f"Inputs received: {str1} \n, {str2}, {str3}, {str4}, '--------------', '--------------', {output_string1},{error_string1},{output_string2},{error_string2},{output}"
# # return location
# For the purpose of this example, I'm just returning the values concatenated
# return f"{str4_input}"
# Define 5 text input boxes with labels
input_boxes = [
gr.inputs.Textbox(label="openai api key"),
gr.inputs.Textbox(lines=20,label="Input cencer report"),
]
# iface = gr.Interface(fn=greet, inputs=input_boxes, outputs="text")
iface = gr.Interface(fn=greet, inputs=input_boxes, gr.outputs.HTML(label="Output Table"))
iface.launch()
|