File size: 3,175 Bytes
cd650c7 9cbb806 09b14bf 418de0b 18cb91d 09b14bf adba430 923f75f 418de0b 8115786 09b14bf 418de0b adba430 18cb91d 418de0b fa4d0d9 18cb91d 09b14bf 7b026a2 18cb91d a5056fa 18cb91d d53066f 18cb91d a5056fa 18cb91d a5056fa 18cb91d 09b14bf 7b026a2 18cb91d fa4d0d9 18cb91d 34421df 18cb91d 9cbb806 18cb91d 418de0b 1fd65af 418de0b 1fd65af 18cb91d 418de0b adba430 09b14bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from huggingface_hub import InferenceClient
import gradio as gr
import PyPDF2
import random
import pandas as pd
from io import BytesIO
import csv
import os
import io
import tempfile
import re
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def extract_text_from_excel(file):
df = pd.read_excel(file)
text = ' '.join(df['Column_Name'].astype(str))
return text
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
with open(filename, mode='a', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow([sentence, output])
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
text = extract_text_from_excel(file)
sentences = text.split('.')
random.shuffle(sentences) # Shuffle sentences
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
fieldnames = ['Original Sentence', 'Generated Sentence']
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
writer.writeheader()
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
try:
stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', output)
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
for generated_sentence in generated_sentences:
writer.writerow({'Original Sentence': sentence, 'Generated Sentence': generated_sentence})
except Exception as e:
print(f"Error generating data for sentence '{sentence}': {e}")
tmp_path = tmp.name
return tmp_path
gr.Interface(
fn=generate,
inputs=[
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
],
outputs=gr.File(label="Synthetic Data "),
title="SDG",
description="AYE QABIL.",
allow_flagging="never",
).launch() |