Spaces:
Runtime error
Runtime error
File size: 6,494 Bytes
b308128 937be2f 7f877a9 2baca0d 738a5f6 94f53fc f2bf6a1 94f53fc 21090d3 04fc021 738a5f6 1941971 6204d1b 1941971 8c76c4e b2e68d1 2baca0d b2e68d1 2baca0d 94f53fc c15f723 d067fae c15f723 3c712c1 c15f723 d067fae 2b07352 ee8b9cc f2bf6a1 94f53fc 2b07352 94f53fc ee8b9cc 94f53fc 5d98961 94f53fc c15f723 d067fae 2b07352 ee8b9cc f2bf6a1 94f53fc 2b07352 94f53fc ee8b9cc 94f53fc 5d98961 3c712c1 5cdbb3f 738a5f6 49c7ae8 076d731 1941971 c15f723 8c76c4e c15f723 8cbc513 42ca545 75c4a83 738a5f6 076d731 94f53fc 738a5f6 2b06a1b adf1293 8c76c4e 35e0ec8 edb0bcd 94f53fc 35e0ec8 8c245db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import os
import openai
# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")
# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf")
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
def update_api_key(new_key):
global api_key
os.environ['OPENAI_API_TOKEN'] = new_key
openai.api_key = os.environ['OPENAI_API_TOKEN']
def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
''' Normal call of OpenAI API '''
response = openai.ChatCompletion.create(
temperature = temperature,
model=model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
])
res = response['choices'][0]['message']['content']
if verbose:
print('System prompt:', system_prompt)
print('User prompt:', user_prompt)
print('GPT response:', res)
return res
def format_chat_prompt(message, chat_history, max_convo_length):
prompt = ""
for turn in chat_history[-max_convo_length:]:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('Prompt + Context:')
print(formatted_prompt)
bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text.''',
user_prompt = formatted_prompt)
chat_history.append((message, bot_message))
return "", chat_history
def vicuna_respond(tab_name, message, chat_history):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {tab_name} in the following sentence one per line without any additional text: {message}'''
print('Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=149, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", bot_message
def llama_respond(tab_name, message, chat_history):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {tab_name} in the following sentence one per line without any additional text: {message}'''
print('Prompt + Context:')
print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=149, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", bot_message
def interface():
gr.Markdown(" Description ")
textbox_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
with gr.Row():
api_key_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
api_key_btn = gr.Button(value="Submit Key", scale=0)
tab_name = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity")
btn = gr.Button(value="Submit")
# prompt = template_single.format(tab_name, textbox_prompt)
gr.Markdown("Strategy 1 QA-Based Prompting")
with gr.Row():
vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton(components=[textbox_prompt, api_key_input, vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot])
# gr.Markdown("Strategy 2 Instruction-Based Prompting")
# with gr.Row():
# vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
# llama_S2_chatbot = gr.Chatbot(label="llama-7b")
# gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
# clear = gr.ClearButton(components=[textbox_prompt, vicuna_S2_chatbot])
# gr.Markdown("Strategy 3 Structured Prompting")
# with gr.Row():
# vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
# llama_S3_chatbot = gr.Chatbot(label="llama-7b")
# gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
# clear = gr.ClearButton(components=[textbox_prompt, vicuna_S3_chatbot])
textbox_prompt.submit(vicuna_respond, inputs=[textbox_prompt, vicuna_S1_chatbot], outputs=[textbox_prompt, vicuna_S1_chatbot])
# textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S2_chatbot], outputs=[textbox_prompt, vicuna_S2_chatbot])
# textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S3_chatbot], outputs=[textbox_prompt, vicuna_S3_chatbot])
textbox_prompt.submit(llama_respond, inputs=[textbox_prompt, llama_S1_chatbot], outputs=[textbox_prompt, llama_S1_chatbot])
btn.click(vicuna_respond, inputs=[tab_name, textbox_prompt, vicuna_S1_chatbot], outputs=[tab_name, textbox_prompt, vicuna_S1_chatbot])
btn.click(llama_respond, inputs=[tab_name, textbox_prompt, llama_S1_chatbot], outputs=[tab_name, textbox_prompt, llama_S1_chatbot])
#api_key_btn.click(update_api_key, inputs=api_key_input)
#btn.click(gpt_respond, inputs=[tab_name, textbox_prompt, gpt_S1_chatbot], outputs=[tab_name, textbox_prompt, gpt_S1_chatbot])
with gr.Blocks() as demo:
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
interface()
demo.launch()
|