Spaces:
Sleeping
Sleeping
File size: 5,379 Bytes
c0032bb 58bda3d c0032bb 58bda3d 20ae2d2 c0032bb 58bda3d f156242 222fb9e f156242 58bda3d c0032bb f156242 58bda3d 222fb9e c0032bb f156242 58bda3d c0032bb 3baa867 f156242 3baa867 58bda3d c0032bb f156242 c0032bb 58bda3d c0032bb f156242 5feda0d 20ae2d2 5feda0d 20ae2d2 5feda0d 20ae2d2 58bda3d 20ae2d2 67df04a 20ae2d2 58bda3d 20ae2d2 58bda3d f156242 58bda3d 20ae2d2 4215f3c 58bda3d 20ae2d2 58bda3d e89f25d 5feda0d e89f25d 20ae2d2 0f9515d 5feda0d 20ae2d2 5feda0d 0f9515d c0032bb 20ae2d2 c0032bb 5feda0d 0f9515d c0032bb 20ae2d2 c0032bb 58bda3d 0f9515d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import torch
import pandas as pd
import numpy as np
from torch_geometric.data import Data
from torch_geometric.nn import GATConv
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
# Define the GATConv model architecture
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
self.dropout1 = torch.nn.Dropout(0.45)
self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1)
def forward(self, x, edge_index, edge_attr=None):
x = self.conv1(x, edge_index, edge_attr)
x = torch.relu(x)
x = self.dropout1(x)
x = self.conv2(x, edge_index, edge_attr)
return x
# Load the dataset and the GATConv model
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
# Correct the state dictionary's key names
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
corrected_state_dict = {}
for key, value in original_state_dict.items():
if "lin.weight" in key:
corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
else:
corrected_state_dict[key] = value
# Initialize the GATConv model with the corrected state dictionary
gatconv_model = ModeratelySimplifiedGATConvModel(
in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
)
gatconv_model.load_state_dict(corrected_state_dict)
# Load the BERT-based sentence transformer model
model_bert = SentenceTransformer("all-mpnet-base-v2")
# Ensure the DataFrame is loaded properly
try:
df = pd.read_json("combined_data.json.gz", orient='records', lines=True, compression='gzip')
except Exception as e:
print(f"Error reading JSON file: {e}")
# Generate GNN-based embeddings
with torch.no_grad():
all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
# Function to find the most similar video and recommend the top 10 based on GNN embeddings
def get_similar_and_recommend(input_text):
# Find the most similar video based on input text
embeddings_matrix = np.array(df["embeddings"].tolist())
input_embedding = model_bert.encode([input_text])[0]
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
most_similar_index = np.argmax(similarities) # Use unweighted scores for the most similar video
# Get all features of the most similar video
most_similar_video_features = df.iloc[most_similar_index].to_dict()
# Get all features of the most similar video
most_similar_video_features = df.iloc[most_similar_index].to_dict()
# Remove the "embeddings" key from most_similar_video_features
if "embeddings" in most_similar_video_features:
del most_similar_video_features["embeddings"]
if "text_for_embedding" in most_similar_video_features:
del most_similar_video_features["text_for_embedding"]
# Apply search context weight for GNN recommendations
user_keywords = input_text.split() # Create a list of keywords from user input
weight = 1.0 # Initial weight factor
for keyword in user_keywords:
if keyword.lower() in df["title"].str.lower().tolist(): # Check for matching keywords
weight += 0.1 # Increase weight for each match
# Recommend the top 10 videos based on GNN embeddings and weighted dot product
def recommend_next_10_videos(given_video_index, all_video_embeddings, weight):
dot_products = [
torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i]) * weight
for i in range(all_video_embeddings.shape[0])
]
dot_products[given_video_index] = -float("inf")
top_10_indices = np.argsort(dot_products)[[::-1][:10]
return [df.iloc[idx].to_dict() for idx in top_10_indices]
top_10_recommended_videos_features = recommend_next_10_videos(
most_similar_index, all_video_embeddings, weight
)
# Exclude unwanted features for recommended videos
for recommended_video in top_10_recommended_videos_features:
if "text_for_embedding" in recommended_video:
del recommended_video["text_for_embedding"]
if "embeddings" in recommended_video:
del recommended_video["embeddings"]
# Create the output JSON with the search context
output = {
"search_context": {
"input_text": input_text,
"weight": weight, # Weight applied to the GNN recommendations
},
"most_similar_video": most_similar_video_features,
"top_10_recommended_videos": top_10_recommended_videos_features,
}
return output
# Update the Gradio interface to output JSON with search context for GNN recommendations
interface = gr.Interface(
fn=get_similar_and_recommend,
inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"),
outputs=gr.JSON(),
title="Video Recommendation System with GNN-based Recommendations",
description="Enter text to find the most similar video and get top 10 recommended videos with search context applied to GNN results.",
)
interface.launch()
|