Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,835 Bytes
820ac3d a5e055b 2796a5e 7e2d83a 820ac3d 7e2d83a 2796a5e 1b8f6f0 2796a5e a5e055b 820ac3d d45486e 820ac3d a5e055b 820ac3d 2796a5e a5e055b 820ac3d 2796a5e ab8bcac 2796a5e 820ac3d 2796a5e 820ac3d f09bc1d 820ac3d 2796a5e 820ac3d a5e055b 820ac3d 7e2d83a 820ac3d f09bc1d 11cd804 c39dc38 820ac3d 7e2d83a 820ac3d 106d95c 820ac3d 1b8f6f0 820ac3d d3fde93 1b8f6f0 d3fde93 820ac3d 1b8f6f0 820ac3d 1b8f6f0 820ac3d d3fde93 1b8f6f0 d3fde93 1b8f6f0 a5e055b 1b8f6f0 f073c65 1b8f6f0 d3fde93 820ac3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
from PIL import Image
import subprocess
import spaces
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
# Install flash-attention
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"
# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Quantization config for text model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
TEXT_MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
vision_model = AutoModelForCausalLM.from_pretrained(
VISION_MODEL_ID,
trust_remote_code=True,
torch_dtype="auto",
attn_implementation="flash_attention_2"
).to(device).eval()
vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)
# Helper functions
@spaces.GPU
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
conversation = [{"role": "system", "content": system_prompt}]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=temperature > 0,
top_p=top_p,
top_k=top_k,
temperature=temperature,
eos_token_id=[128001, 128008, 128009],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield history + [[message, buffer]]
@spaces.GPU # Add this decorator
def process_vision_query(image, text_input):
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
image = Image.fromarray(image).convert("RGB")
inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
with torch.no_grad():
generate_ids = vision_model.generate(
**inputs,
max_new_tokens=1000,
eos_token_id=vision_processor.tokenizer.eos_token_id
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return response
# Load Parler-TTS model
tts_device = "cuda:0" if torch.cuda.is_available() else "cpu"
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to(tts_device)
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
@spaces.GPU
def generate_speech(prompt, description):
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to(tts_device)
prompt_input_ids = tts_tokenizer(prompt, return_tensors="pt").input_ids.to(tts_device)
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
output_path = "output_audio.wav"
sf.write(output_path, audio_arr, tts_model.config.sampling_rate)
return output_path
# Custom CSS
custom_css = """
body { background-color: #0b0f19; color: #e2e8f0; font-family: 'Arial', sans-serif;}
#custom-header { text-align: center; padding: 20px 0; background-color: #1a202c; margin-bottom: 20px; border-radius: 10px;}
#custom-header h1 { font-size: 2.5rem; margin-bottom: 0.5rem;}
#custom-header h1 .blue { color: #60a5fa;}
#custom-header h1 .pink { color: #f472b6;}
#custom-header h2 { font-size: 1.5rem; color: #94a3b8;}
.suggestions { display: flex; justify-content: center; flex-wrap: wrap; gap: 1rem; margin: 20px 0;}
.suggestion { background-color: #1e293b; border-radius: 0.5rem; padding: 1rem; display: flex; align-items: center; transition: transform 0.3s ease; width: 200px;}
.suggestion:hover { transform: translateY(-5px);}
.suggestion-icon { font-size: 1.5rem; margin-right: 1rem; background-color: #2d3748; padding: 0.5rem; border-radius: 50%;}
.gradio-container { max-width: 100% !important;}
#component-0, #component-1, #component-2 { max-width: 100% !important;}
footer { text-align: center; margin-top: 2rem; color: #64748b;}
"""
# Custom HTML for the header
custom_header = """
<div id="custom-header">
<h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1>
<h2>Text and Vision AI at Your Service</h2>
</div>
"""
# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
<div class="suggestion">
<span class="suggestion-icon">π¬</span>
<p>Chat with the Text Model</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">πΌοΈ</span>
<p>Analyze Images with Vision Model</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">π</span>
<p>Generate Speech with Parler-TTS</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">π</span>
<p>Explore advanced options</p>
</div>
</div>
"""
# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
body_background_fill="#0b0f19",
body_text_color="#e2e8f0",
button_primary_background_fill="#3b82f6",
button_primary_background_fill_hover="#2563eb",
button_primary_text_color="white",
block_title_text_color="#94a3b8",
block_label_text_color="#94a3b8",
)) as demo:
gr.HTML(custom_header)
gr.HTML(custom_suggestions)
with gr.Tab("Text Model (Phi-3.5-mini)"):
# ... (previous text model code remains the same)
with gr.Tab("Vision Model (Phi-3.5-vision)"):
# ... (previous vision model code remains the same)
with gr.Tab("Text-to-Speech (Parler-TTS)"):
with gr.Row():
with gr.Column(scale=1):
tts_prompt = gr.Textbox(label="Text to Speak", placeholder="Enter the text you want to convert to speech...")
tts_description = gr.Textbox(label="Voice Description", value="A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up.", lines=3)
tts_submit_btn = gr.Button("Generate Speech", variant="primary")
with gr.Column(scale=1):
tts_output_audio = gr.Audio(label="Generated Speech")
tts_submit_btn.click(generate_speech, inputs=[tts_prompt, tts_description], outputs=[tts_output_audio])
gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI and Parler-TTS</footer>")
if __name__ == "__main__":
demo.launch() |