File size: 7,835 Bytes
820ac3d
a5e055b
2796a5e
7e2d83a
820ac3d
7e2d83a
2796a5e
1b8f6f0
 
 
2796a5e
 
 
a5e055b
820ac3d
 
 
d45486e
820ac3d
 
 
a5e055b
820ac3d
2796a5e
 
 
 
 
 
 
 
a5e055b
820ac3d
 
 
 
2796a5e
ab8bcac
2796a5e
820ac3d
 
 
 
 
2796a5e
 
820ac3d
 
 
 
 
f09bc1d
820ac3d
 
 
 
 
 
 
 
 
2796a5e
820ac3d
 
 
 
 
 
 
 
 
 
 
 
a5e055b
820ac3d
 
 
7e2d83a
820ac3d
 
 
f09bc1d
11cd804
c39dc38
820ac3d
 
 
 
7e2d83a
820ac3d
 
 
 
 
 
106d95c
820ac3d
 
 
1b8f6f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820ac3d
d3fde93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b8f6f0
 
d3fde93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820ac3d
 
1b8f6f0
820ac3d
 
1b8f6f0
 
 
820ac3d
d3fde93
1b8f6f0
 
 
d3fde93
1b8f6f0
a5e055b
1b8f6f0
f073c65
1b8f6f0
d3fde93
820ac3d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
from PIL import Image
import subprocess
import spaces
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf

# Install flash-attention
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"

# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"

device = "cuda" if torch.cuda.is_available() else "cpu"

# Quantization config for text model
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
    TEXT_MODEL_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config
)

vision_model = AutoModelForCausalLM.from_pretrained(
    VISION_MODEL_ID, 
    trust_remote_code=True, 
    torch_dtype="auto", 
    attn_implementation="flash_attention_2"
).to(device).eval()

vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)

# Helper functions
@spaces.GPU
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
    conversation = [{"role": "system", "content": system_prompt}]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    conversation.append({"role": "user", "content": message})

    input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
    streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=temperature > 0,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        eos_token_id=[128001, 128008, 128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
        thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield history + [[message, buffer]]

@spaces.GPU  # Add this decorator
def process_vision_query(image, text_input):
    prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
    image = Image.fromarray(image).convert("RGB")
    inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
    
    with torch.no_grad():
        generate_ids = vision_model.generate(
            **inputs, 
            max_new_tokens=1000, 
            eos_token_id=vision_processor.tokenizer.eos_token_id
        )
    
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    return response
    
# Load Parler-TTS model
tts_device = "cuda:0" if torch.cuda.is_available() else "cpu"
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to(tts_device)
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")

@spaces.GPU
def generate_speech(prompt, description):
    input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to(tts_device)
    prompt_input_ids = tts_tokenizer(prompt, return_tensors="pt").input_ids.to(tts_device)

    generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
    audio_arr = generation.cpu().numpy().squeeze()
    
    output_path = "output_audio.wav"
    sf.write(output_path, audio_arr, tts_model.config.sampling_rate)
    
    return output_path

# Custom CSS
custom_css = """
body { background-color: #0b0f19; color: #e2e8f0; font-family: 'Arial', sans-serif;}
#custom-header { text-align: center; padding: 20px 0; background-color: #1a202c; margin-bottom: 20px; border-radius: 10px;}
#custom-header h1 { font-size: 2.5rem; margin-bottom: 0.5rem;}
#custom-header h1 .blue { color: #60a5fa;}
#custom-header h1 .pink { color: #f472b6;}
#custom-header h2 { font-size: 1.5rem; color: #94a3b8;}
.suggestions { display: flex; justify-content: center; flex-wrap: wrap; gap: 1rem; margin: 20px 0;}
.suggestion { background-color: #1e293b; border-radius: 0.5rem; padding: 1rem; display: flex; align-items: center; transition: transform 0.3s ease; width: 200px;}
.suggestion:hover { transform: translateY(-5px);}
.suggestion-icon { font-size: 1.5rem; margin-right: 1rem; background-color: #2d3748; padding: 0.5rem; border-radius: 50%;}
.gradio-container { max-width: 100% !important;}
#component-0, #component-1, #component-2 { max-width: 100% !important;}
footer { text-align: center; margin-top: 2rem; color: #64748b;}
"""

# Custom HTML for the header
custom_header = """
<div id="custom-header">
    <h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1>
    <h2>Text and Vision AI at Your Service</h2>
</div>
"""

# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
    <div class="suggestion">
        <span class="suggestion-icon">πŸ’¬</span>
        <p>Chat with the Text Model</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">πŸ–ΌοΈ</span>
        <p>Analyze Images with Vision Model</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">πŸ”Š</span>
        <p>Generate Speech with Parler-TTS</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">πŸ”</span>
        <p>Explore advanced options</p>
    </div>
</div>
"""

# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
    body_background_fill="#0b0f19",
    body_text_color="#e2e8f0",
    button_primary_background_fill="#3b82f6",
    button_primary_background_fill_hover="#2563eb",
    button_primary_text_color="white",
    block_title_text_color="#94a3b8",
    block_label_text_color="#94a3b8",
)) as demo:
    gr.HTML(custom_header)
    gr.HTML(custom_suggestions)

    with gr.Tab("Text Model (Phi-3.5-mini)"):
        # ... (previous text model code remains the same)

    with gr.Tab("Vision Model (Phi-3.5-vision)"):
        # ... (previous vision model code remains the same)

    with gr.Tab("Text-to-Speech (Parler-TTS)"):
        with gr.Row():
            with gr.Column(scale=1):
                tts_prompt = gr.Textbox(label="Text to Speak", placeholder="Enter the text you want to convert to speech...")
                tts_description = gr.Textbox(label="Voice Description", value="A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up.", lines=3)
                tts_submit_btn = gr.Button("Generate Speech", variant="primary")
            with gr.Column(scale=1):
                tts_output_audio = gr.Audio(label="Generated Speech")
        
        tts_submit_btn.click(generate_speech, inputs=[tts_prompt, tts_description], outputs=[tts_output_audio])

    gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI and Parler-TTS</footer>")

if __name__ == "__main__":
    demo.launch()