File size: 73,414 Bytes
322b74c
 
07d589f
322b74c
 
e737d2f
322b74c
 
bffbc7a
 
b8d3277
bffbc7a
 
 
 
e737d2f
 
bffbc7a
 
e737d2f
 
7ac1cac
3663584
7ac1cac
3663584
 
 
 
 
 
e737d2f
 
7ac1cac
 
 
 
 
3663584
 
 
 
e737d2f
 
 
 
 
3663584
cba6d8a
e737d2f
 
3663584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e737d2f
 
 
 
3663584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e737d2f
 
 
 
3663584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e737d2f
 
 
 
 
3663584
e737d2f
 
 
 
 
 
3663584
 
e737d2f
 
3663584
 
 
 
 
 
e737d2f
 
3663584
e737d2f
 
 
3663584
 
 
 
 
e737d2f
 
 
 
3663584
e737d2f
 
 
 
 
 
 
 
 
 
464321b
e737d2f
3663584
 
 
e737d2f
 
3663584
464321b
e737d2f
 
 
3663584
e737d2f
 
 
 
 
464321b
e737d2f
 
464321b
cba6d8a
e737d2f
 
 
 
cba6d8a
464321b
3663584
 
e737d2f
 
3663584
464321b
e737d2f
 
 
 
 
 
 
3663584
cba6d8a
e737d2f
 
3663584
e737d2f
 
 
 
 
 
 
3663584
e737d2f
 
3663584
e737d2f
 
 
 
 
 
 
3663584
e737d2f
 
3663584
e737d2f
 
 
 
 
 
3663584
 
 
e737d2f
3663584
e737d2f
 
 
 
 
 
3663584
 
e737d2f
3663584
e737d2f
 
 
 
 
 
 
 
 
 
 
9428dec
 
e737d2f
3663584
9428dec
7d091ea
 
9428dec
 
e737d2f
 
 
 
 
 
 
 
cba6d8a
3663584
 
 
 
464321b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9428dec
 
3663584
 
 
 
 
 
cba6d8a
e737d2f
 
 
 
 
 
 
 
3663584
e737d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31508e9
e737d2f
 
 
 
31508e9
e737d2f
 
 
 
31508e9
e737d2f
 
 
31508e9
e737d2f
 
31508e9
e737d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c009a22
7ac1cac
c009a22
7ac1cac
 
c009a22
 
 
 
 
e737d2f
aae782c
e737d2f
 
 
 
 
 
 
 
 
 
9408331
 
 
 
dc178ee
 
 
9408331
 
 
7d091ea
9408331
 
 
3663584
 
 
cba6d8a
9408331
3663584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cba6d8a
3663584
cba6d8a
044e2c9
 
e737d2f
 
6f0e911
 
9408331
e737d2f
 
 
 
9428dec
e737d2f
 
 
 
6f0e911
e737d2f
 
 
 
9428dec
 
 
 
 
6f0e911
9428dec
 
 
 
e737d2f
 
 
 
 
 
 
 
aae782c
7ac1cac
aae782c
 
7ac1cac
 
 
bc42514
7ac1cac
 
 
 
 
 
 
 
 
 
 
bc42514
 
 
 
aae782c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464321b
 
aae782c
 
464321b
 
 
28c8cbd
 
aae782c
 
 
e737d2f
464321b
aae782c
 
 
 
9408331
464321b
aae782c
 
464321b
 
 
 
 
 
aae782c
 
 
 
 
28c8cbd
aae782c
 
 
 
 
 
9408331
aae782c
 
044e2c9
aae782c
 
 
 
 
 
 
 
 
ba83473
 
 
 
 
 
 
 
89d2387
 
ba83473
464321b
ba83473
 
 
 
 
 
 
 
 
 
 
464321b
ba83473
89d2387
ba83473
 
464321b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89d2387
464321b
 
 
aae782c
464321b
aae782c
 
 
464321b
 
aae782c
 
464321b
b028096
aae782c
 
 
 
 
 
 
28c8cbd
b028096
464321b
 
 
aae782c
 
464321b
28c8cbd
464321b
 
 
 
 
 
 
 
 
 
b028096
464321b
 
 
b028096
464321b
 
 
 
 
 
 
 
b028096
464321b
 
 
 
28c8cbd
464321b
28c8cbd
464321b
 
e737d2f
044e2c9
5ee9210
e737d2f
0a4dbe7
 
 
 
 
 
 
 
 
5ee9210
 
e737d2f
5ee9210
 
 
e737d2f
 
 
 
 
 
 
 
5ee9210
3663584
e737d2f
 
5ee9210
 
 
 
 
 
50f5a4c
5ee9210
f0c8c23
5ee9210
 
 
 
 
 
 
 
 
50f5a4c
5ee9210
f0c8c23
5ee9210
 
 
 
d7146b8
 
 
 
 
 
 
 
 
 
 
5ee9210
0a4dbe7
 
 
 
 
 
 
 
 
 
 
f0c8c23
0a4dbe7
 
 
 
 
 
89d2387
9408331
 
 
 
89d2387
 
 
6f0e911
f0c8c23
5ee9210
9408331
 
dc178ee
6f0e911
 
 
 
dc178ee
 
 
5ee9210
6f0e911
f0c8c23
5ee9210
6f0e911
e737d2f
044e2c9
 
9408331
c009a22
 
 
044e2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9408331
044e2c9
 
b09bd9c
044e2c9
 
 
 
 
 
 
 
 
 
 
 
aae782c
 
 
 
 
044e2c9
aae782c
 
28c8cbd
aae782c
28c8cbd
 
aae782c
28c8cbd
 
aae782c
28c8cbd
aae782c
 
 
 
28c8cbd
aae782c
 
 
 
 
28c8cbd
 
 
 
 
 
aae782c
 
 
 
 
28c8cbd
 
 
 
 
 
aae782c
ba83473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae782c
28c8cbd
 
 
 
 
 
b028096
28c8cbd
aae782c
28c8cbd
aae782c
28c8cbd
044e2c9
 
aae782c
28c8cbd
aae782c
28c8cbd
 
044e2c9
 
 
9ca7c3a
044e2c9
0a4dbe7
 
 
 
 
 
 
 
 
5ee9210
 
6f0e911
 
 
 
 
 
5ee9210
 
 
 
 
 
 
 
 
 
 
 
 
50f5a4c
5ee9210
f0c8c23
5ee9210
 
 
 
 
 
 
 
 
50f5a4c
5ee9210
f0c8c23
5ee9210
 
 
 
d7146b8
 
 
 
 
 
 
 
 
 
 
044e2c9
0a4dbe7
 
 
 
 
f0c8c23
0a4dbe7
 
 
 
 
 
dc178ee
6f0e911
dc178ee
 
5ee9210
6f0e911
f0c8c23
5ee9210
6f0e911
9ca7c3a
0a4dbe7
 
f0c8c23
0a4dbe7
 
ba83473
 
 
 
 
 
 
 
 
 
aae782c
044e2c9
 
e737d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464321b
 
 
 
 
 
 
 
 
 
 
 
 
 
e737d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464321b
 
 
e737d2f
 
 
 
 
 
 
 
 
 
 
 
464321b
 
 
e737d2f
 
 
 
 
 
 
 
464321b
 
 
e737d2f
 
 
 
 
 
 
 
 
 
 
 
464321b
 
 
e737d2f
 
 
 
 
bffbc7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d3277
 
39b4e26
b8d3277
322b74c
b8d3277
 
 
 
 
322b74c
b8d3277
 
 
 
 
322b74c
 
 
 
 
b8d3277
 
 
 
 
 
 
 
 
 
 
 
bffbc7a
322b74c
bffbc7a
322b74c
bffbc7a
 
322b74c
 
bffbc7a
 
322b74c
 
 
bffbc7a
 
 
 
b8d3277
322b74c
 
 
bffbc7a
 
322b74c
b8d3277
322b74c
c744bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322b74c
 
 
39b4e26
b8d3277
322b74c
b8d3277
322b74c
 
 
 
 
 
b8d3277
322b74c
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d3277
 
322b74c
 
 
 
 
 
 
 
27431d4
 
322b74c
 
b8d3277
 
 
27431d4
b8d3277
322b74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d3277
 
322b74c
 
 
 
 
 
 
 
27431d4
 
322b74c
 
b8d3277
 
 
27431d4
b8d3277
322b74c
 
 
 
 
 
 
 
 
 
b8d3277
322b74c
b8d3277
 
13dff28
 
 
 
 
 
 
 
322b74c
13dff28
 
b8d3277
 
13dff28
322b74c
 
 
5b3ed4c
b8d3277
322b74c
 
 
 
9a26d72
5b3ed4c
13dff28
322b74c
 
 
 
 
 
 
 
 
 
 
 
5b3ed4c
 
322b74c
 
9a26d72
b8d3277
27431d4
322b74c
9a26d72
 
 
 
 
322b74c
 
c744bf3
bffbc7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322b74c
5ee9210
322b74c
 
abbde7d
322b74c
bffbc7a
 
 
 
 
5ee9210
 
 
bffbc7a
464321b
 
 
 
 
 
 
 
b028096
464321b
 
b028096
464321b
5ee9210
464321b
 
5ee9210
 
 
 
 
 
 
 
 
 
 
 
464321b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31508e9
464321b
31508e9
3663584
 
464321b
 
 
 
b028096
464321b
b028096
464321b
 
3663584
 
 
 
 
 
 
 
 
 
 
 
bffbc7a
aae782c
bffbc7a
 
31508e9
bffbc7a
 
 
 
 
aae782c
464321b
 
 
 
 
 
 
 
aae782c
464321b
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d3277
322b74c
 
 
 
e737d2f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
import requests
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
import json
# Commenting out blockchain-related imports that cause loading issues
# from web3 import Web3
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import random
import logging
from typing import List, Dict, Any
# Comment out the import for now and replace with dummy functions
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
# APR visualization functions integrated directly

# Set up logging with appropriate verbosity
logging.basicConfig(
    level=logging.INFO,  # Use INFO level instead of DEBUG to reduce verbosity
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[
        logging.FileHandler("app_debug.log"),  # Log to file for persistence
        logging.StreamHandler()  # Also log to console
    ]
)
logger = logging.getLogger(__name__)

# Reduce third-party library logging
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

# Log the startup information
logger.info("============= APPLICATION STARTING =============")
logger.info(f"Running from directory: {os.getcwd()}")

# Global variable to store the data for reuse
global_df = None

# Configuration
API_BASE_URL = "https://afmdb.autonolas.tech"
logger.info(f"Using API endpoint: {API_BASE_URL}")

def get_agent_type_by_name(type_name: str) -> Dict[str, Any]:
    """Get agent type by name"""
    url = f"{API_BASE_URL}/api/agent-types/name/{type_name}"
    logger.debug(f"Calling API: {url}")
    
    try:
        response = requests.get(url)
        logger.debug(f"Response status: {response.status_code}")
        
        if response.status_code == 404:
            logger.error(f"Agent type '{type_name}' not found")
            return None
            
        response.raise_for_status()
        result = response.json()
        logger.debug(f"Agent type response: {result}")
        return result
    except Exception as e:
        logger.error(f"Error in get_agent_type_by_name: {e}")
        return None

def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]:
    """Get attribute definition by name"""
    url = f"{API_BASE_URL}/api/attributes/name/{attr_name}"
    logger.debug(f"Calling API: {url}")
    
    try:
        response = requests.get(url)
        logger.debug(f"Response status: {response.status_code}")
        
        if response.status_code == 404:
            logger.error(f"Attribute definition '{attr_name}' not found")
            return None
            
        response.raise_for_status()
        result = response.json()
        logger.debug(f"Attribute definition response: {result}")
        return result
    except Exception as e:
        logger.error(f"Error in get_attribute_definition_by_name: {e}")
        return None

def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]:
    """Get all agents of a specific type"""
    url = f"{API_BASE_URL}/api/agent-types/{type_id}/agents/"
    logger.debug(f"Calling API: {url}")
    
    try:
        response = requests.get(url)
        logger.debug(f"Response status: {response.status_code}")
        
        if response.status_code == 404:
            logger.error(f"No agents found for type ID {type_id}")
            return []
            
        response.raise_for_status()
        result = response.json()
        logger.debug(f"Agents count: {len(result)}")
        logger.debug(f"First few agents: {result[:2] if result else []}")
        return result
    except Exception as e:
        logger.error(f"Error in get_agents_by_type: {e}")
        return []

def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]:
    """Get all attribute values for a specific attribute definition across all agents of a given list"""
    all_attributes = []
    logger.debug(f"Getting attributes for {len(agents)} agents with attr_def_id: {attr_def_id}")
    
    # For each agent, get their attributes and filter for the one we want
    for agent in agents:
        agent_id = agent["agent_id"]
        
        # Call the /api/agents/{agent_id}/attributes/ endpoint
        url = f"{API_BASE_URL}/api/agents/{agent_id}/attributes/"
        logger.debug(f"Calling API for agent {agent_id}: {url}")
        
        try:
            response = requests.get(url, params={"limit": 1000})
            
            if response.status_code == 404:
                logger.error(f"No attributes found for agent ID {agent_id}")
                continue
            
            response.raise_for_status()
            agent_attrs = response.json()
            logger.debug(f"Agent {agent_id} has {len(agent_attrs)} attributes")
            
            # Filter for the specific attribute definition ID
            filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id]
            logger.debug(f"Agent {agent_id} has {len(filtered_attrs)} APR attributes")
            
            if filtered_attrs:
                logger.debug(f"Sample attribute for agent {agent_id}: {filtered_attrs[0]}")
            
            all_attributes.extend(filtered_attrs)
        except requests.exceptions.RequestException as e:
            logger.error(f"Error fetching attributes for agent ID {agent_id}: {e}")
    
    logger.info(f"Total APR attributes found across all agents: {len(all_attributes)}")
    return all_attributes

def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
    """Get agent name from agent ID"""
    for agent in agents:
        if agent["agent_id"] == agent_id:
            return agent["agent_name"]
    return "Unknown"

def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
    """Extract APR value, adjusted APR value, and timestamp from JSON value"""
    try:
        agent_id = attr.get("agent_id", "unknown")
        logger.debug(f"Extracting APR value for agent {agent_id}")
        
        # The APR value is stored in the json_value field
        if attr["json_value"] is None:
            logger.debug(f"Agent {agent_id}: json_value is None")
            return {"apr": None, "adjusted_apr": None, "timestamp": None, "agent_id": agent_id, "is_dummy": False}
        
        # If json_value is a string, parse it
        if isinstance(attr["json_value"], str):
            logger.debug(f"Agent {agent_id}: json_value is string, parsing")
            json_data = json.loads(attr["json_value"])
        else:
            json_data = attr["json_value"]
        
        apr = json_data.get("apr")
        adjusted_apr = json_data.get("adjusted_apr")  # Extract adjusted_apr if present
        timestamp = json_data.get("timestamp")
        
        logger.debug(f"Agent {agent_id}: Raw APR value: {apr}, adjusted APR value: {adjusted_apr}, timestamp: {timestamp}")
        
        # Convert timestamp to datetime if it exists
        timestamp_dt = None
        if timestamp:
            timestamp_dt = datetime.fromtimestamp(timestamp)
            
        result = {"apr": apr, "adjusted_apr": adjusted_apr, "timestamp": timestamp_dt, "agent_id": agent_id, "is_dummy": False}
        logger.debug(f"Agent {agent_id}: Extracted result: {result}")
        return result
    except (json.JSONDecodeError, KeyError, TypeError) as e:
        logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}")
        logger.error(f"Problematic json_value: {attr.get('json_value')}")
        return {"apr": None, "adjusted_apr": None, "timestamp": None, "agent_id": attr.get('agent_id'), "is_dummy": False}

def fetch_apr_data_from_db():
    """
    Fetch APR data from database using the API.
    """
    global global_df
    
    logger.info("==== Starting APR data fetch ====")
    
    try:
        # Step 1: Find the Modius agent type
        logger.info("Finding Modius agent type")
        modius_type = get_agent_type_by_name("Modius")
        if not modius_type:
            logger.error("Modius agent type not found, using placeholder data")
            global_df = pd.DataFrame([])
            return global_df
        
        type_id = modius_type["type_id"]
        logger.info(f"Found Modius agent type with ID: {type_id}")
        
        # Step 2: Find the APR attribute definition
        logger.info("Finding APR attribute definition")
        apr_attr_def = get_attribute_definition_by_name("APR")
        if not apr_attr_def:
            logger.error("APR attribute definition not found, using placeholder data")
            global_df = pd.DataFrame([])
            return global_df
            
        attr_def_id = apr_attr_def["attr_def_id"]
        logger.info(f"Found APR attribute definition with ID: {attr_def_id}")
        
        # Step 3: Get all agents of type Modius
        logger.info(f"Getting all agents of type Modius (type_id: {type_id})")
        modius_agents = get_agents_by_type(type_id)
        if not modius_agents:
            logger.error("No agents of type 'Modius' found")
            global_df = pd.DataFrame([])
            return global_df
        
        logger.info(f"Found {len(modius_agents)} Modius agents")
        logger.debug(f"Modius agents: {[{'agent_id': a['agent_id'], 'agent_name': a['agent_name']} for a in modius_agents]}")
        
        # Step 4: Fetch all APR values for Modius agents
        logger.info(f"Fetching APR values for all Modius agents (attr_def_id: {attr_def_id})")
        apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id)
        if not apr_attributes:
            logger.error("No APR values found for 'Modius' agents")
            global_df = pd.DataFrame([])
            return global_df
        
        logger.info(f"Found {len(apr_attributes)} APR attributes total")
        
        # Step 5: Extract APR data
        logger.info("Extracting APR data from attributes")
        apr_data_list = []
        for attr in apr_attributes:
            apr_data = extract_apr_value(attr)
            if apr_data["apr"] is not None and apr_data["timestamp"] is not None:
                # Get agent name
                agent_name = get_agent_name(attr["agent_id"], modius_agents)
                # Add agent name to the data
                apr_data["agent_name"] = agent_name
                # Add is_dummy flag (all real data)
                apr_data["is_dummy"] = False
                
                # Include all APR values (including negative ones) EXCEPT zero and -100
                if apr_data["apr"] != 0 and apr_data["apr"] != -100:
                    apr_data["metric_type"] = "APR"
                    logger.debug(f"Agent {agent_name} ({attr['agent_id']}): APR value: {apr_data['apr']}")
                    # Add to the data list
                    apr_data_list.append(apr_data)
                else:
                    # Log that we're skipping zero or -100 values
                    logger.debug(f"Skipping value for agent {agent_name} ({attr['agent_id']}): {apr_data['apr']} (zero or -100)")
        
        # Convert list of dictionaries to DataFrame
        if not apr_data_list:
            logger.error("No valid APR data extracted")
            global_df = pd.DataFrame([])
            return global_df
        
        global_df = pd.DataFrame(apr_data_list)
        
        # Log the resulting dataframe
        logger.info(f"Created DataFrame with {len(global_df)} rows")
        logger.info(f"DataFrame columns: {global_df.columns.tolist()}")
        logger.info(f"APR statistics: min={global_df['apr'].min()}, max={global_df['apr'].max()}, mean={global_df['apr'].mean()}")
        
        # Log adjusted APR statistics if available
        if 'adjusted_apr' in global_df.columns and global_df['adjusted_apr'].notna().any():
            logger.info(f"Adjusted APR statistics: min={global_df['adjusted_apr'].min()}, max={global_df['adjusted_apr'].max()}, mean={global_df['adjusted_apr'].mean()}")
            logger.info(f"Number of records with adjusted_apr: {global_df['adjusted_apr'].notna().sum()} out of {len(global_df)}")
            
            # Log the difference between APR and adjusted APR
            valid_rows = global_df[global_df['adjusted_apr'].notna()]
            if not valid_rows.empty:
                avg_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).mean()
                max_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).max()
                min_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).min()
                logger.info(f"APR vs Adjusted APR difference: avg={avg_diff:.2f}, max={max_diff:.2f}, min={min_diff:.2f}")
        else:
            logger.info("No adjusted APR values found in the data")
            
        # All values are APR type (excluding zero and -100 values)
        logger.info("All values are APR type (excluding zero and -100 values)")
        logger.info(f"Agents count: {global_df['agent_name'].value_counts().to_dict()}")
        
        # Log the entire dataframe for debugging
        logger.debug("Final DataFrame contents:")
        for idx, row in global_df.iterrows():
            logger.debug(f"Row {idx}: {row.to_dict()}")
        
        return global_df
        
    except requests.exceptions.RequestException as e:
        logger.error(f"API request error: {e}")
        global_df = pd.DataFrame([])
        return global_df
    except Exception as e:
        logger.error(f"Error fetching APR data: {e}")
        logger.exception("Exception details:")
        global_df = pd.DataFrame([])
        return global_df

def generate_apr_visualizations():
    """Generate APR visualizations with real data only (no dummy data)"""
    global global_df
    
    # Fetch data from database
    df = fetch_apr_data_from_db()
    
    # If we got no data at all, return placeholder figures
    if df.empty:
        logger.info("No APR data available. Using fallback visualization.")
        # Create empty visualizations with a message using Plotly
        fig = go.Figure()
        fig.add_annotation(
            x=0.5, y=0.5,
            text="No APR data available",
            font=dict(size=20),
            showarrow=False
        )
        fig.update_layout(
            xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
            yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
        )
        
        # Save as static file for reference
        fig.write_html("modius_apr_combined_graph.html")
        fig.write_image("modius_apr_combined_graph.png")
        
        csv_file = None
        return fig, csv_file
    
    # No longer generating dummy data
    # Set global_df for access by other functions
    global_df = df
    
    # Save to CSV before creating visualizations
    csv_file = save_to_csv(df)
    
    # Only create combined time series graph
    combined_fig = create_combined_time_series_graph(df)
    
    return combined_fig, csv_file

def create_time_series_graph_per_agent(df):
    """Create a time series graph for each agent using Plotly"""
    # Get unique agents
    unique_agents = df['agent_id'].unique()
    
    if len(unique_agents) == 0:
        logger.error("No agent data to plot")
        fig = go.Figure()
        fig.add_annotation(
            text="No agent data available",
            x=0.5, y=0.5,
            showarrow=False, font=dict(size=20)
        )
        return fig
    
    # Create a subplot figure for each agent
    fig = make_subplots(rows=len(unique_agents), cols=1, 
                       subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}" 
                                      for agent_id in unique_agents],
                       vertical_spacing=0.1)
    
    # Plot data for each agent
    for i, agent_id in enumerate(unique_agents):
        agent_data = df[df['agent_id'] == agent_id].copy()
        agent_name = agent_data['agent_name'].iloc[0]
        row = i + 1
        
        # Add zero line to separate APR and Performance
        fig.add_shape(
            type="line", line=dict(dash="solid", width=1.5, color="black"),
            y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
            row=row, col=1
        )
        
        # Add background colors
        fig.add_shape(
            type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0),
            y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
            row=row, col=1, layer="below"
        )
        fig.add_shape(
            type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0),
            y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
            row=row, col=1, layer="below"
        )
        
        # Create separate dataframes for different data types
        apr_data = agent_data[agent_data['metric_type'] == 'APR']
        perf_data = agent_data[agent_data['metric_type'] == 'Performance']
        
        # Sort all data by timestamp for the line plots
        combined_agent_data = agent_data.sort_values('timestamp')
        
        # Add main line connecting all points
        fig.add_trace(
            go.Scatter(
                x=combined_agent_data['timestamp'], 
                y=combined_agent_data['apr'],
                mode='lines',
                line=dict(color='purple', width=2),
                name=f'{agent_name}',
                legendgroup=agent_name,
                showlegend=(i == 0),  # Only show in legend once
                hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
            ),
            row=row, col=1
        )
        
        # Add scatter points for APR values
        if not apr_data.empty:
            fig.add_trace(
                go.Scatter(
                    x=apr_data['timestamp'], 
                    y=apr_data['apr'],
                    mode='markers',
                    marker=dict(color='blue', size=10, symbol='circle'),
                    name='APR',
                    legendgroup='APR',
                    showlegend=(i == 0),
                    hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>'
                ),
                row=row, col=1
            )
        
        # Add scatter points for Performance values
        if not perf_data.empty:
            fig.add_trace(
                go.Scatter(
                    x=perf_data['timestamp'], 
                    y=perf_data['apr'],
                    mode='markers',
                    marker=dict(color='red', size=10, symbol='square'),
                    name='Performance',
                    legendgroup='Performance',
                    showlegend=(i == 0),
                    hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>'
                ),
                row=row, col=1
            )
        
        # Update axes
        fig.update_xaxes(title_text="Time", row=row, col=1)
        fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)')
    
    # Update layout
    fig.update_layout(
        height=400 * len(unique_agents),
        width=1000,
        title_text="APR and Performance Values per Agent",
        template="plotly_white",
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        ),
        margin=dict(r=20, l=20, t=30, b=20),
        hovermode="closest"
    )
    
    # Save the figure (still useful for reference)
    graph_file = "modius_apr_per_agent_graph.html"
    fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
    
    # Also save as image for compatibility
    img_file = "modius_apr_per_agent_graph.png"
    fig.write_image(img_file)
    
    logger.info(f"Per-agent graph saved to {graph_file} and {img_file}")
    
    # Return the figure object for direct use in Gradio
    return fig

def write_debug_info(df, fig):
    """Minimal debug info function"""
    try:
        # Just log minimal information
        logger.debug(f"Graph created with {len(df)} data points and {len(fig.data)} traces")
        return True
    except Exception as e:
        logger.error(f"Error writing debug info: {e}")
        return False

def create_combined_time_series_graph(df):
    """Create a time series graph showing average APR values across all agents"""
    if len(df) == 0:
        logger.error("No data to plot combined graph")
        fig = go.Figure()
        fig.add_annotation(
            text="No data available",
            x=0.5, y=0.5,
            showarrow=False, font=dict(size=20)
        )
        return fig
    
    # IMPORTANT: Force data types to ensure consistency
    df['apr'] = df['apr'].astype(float)  # Ensure APR is float
    df['metric_type'] = df['metric_type'].astype(str)  # Ensure metric_type is string
    
    # Set x-axis start date to April 17, 2025 as requested by user
    x_start_date = datetime(2025, 4, 17, 0, 0, 0)
    
    # CRITICAL: Log the exact dataframe we're using for plotting to help debug
    logger.info(f"Graph data - shape: {df.shape}, columns: {df.columns}")
    logger.info(f"Graph data - unique agents: {df['agent_name'].unique().tolist()}")
    logger.info("Graph data - all positive APR values only")
    logger.info(f"Graph data - min APR: {df['apr'].min()}, max APR: {df['apr'].max()}")
    
    # Export full dataframe to CSV for debugging
    debug_csv = "debug_graph_data.csv"
    df.to_csv(debug_csv)
    logger.info(f"Exported graph data to {debug_csv} for debugging")
    
    # Write detailed data report
    with open("debug_graph_data_report.txt", "w") as f:
        f.write("==== GRAPH DATA REPORT ====\n\n")
        f.write(f"Total data points: {len(df)}\n")
        f.write(f"Timestamp range: {df['timestamp'].min()} to {df['timestamp'].max()}\n\n")
        
        # Output per-agent details
        unique_agents = df['agent_id'].unique()
        f.write(f"Number of agents: {len(unique_agents)}\n\n")
        
        for agent_id in unique_agents:
            agent_data = df[df['agent_id'] == agent_id]
            agent_name = agent_data['agent_name'].iloc[0]
            
            f.write(f"== Agent: {agent_name} (ID: {agent_id}) ==\n")
            f.write(f"  Total data points: {len(agent_data)}\n")
            
            apr_data = agent_data[agent_data['metric_type'] == 'APR']
            
            f.write(f"  APR data points: {len(apr_data)}\n")
            
            if not apr_data.empty:
                f.write(f"  APR values: {apr_data['apr'].tolist()}\n")
                f.write(f"  APR timestamps: {[ts.strftime('%Y-%m-%d %H:%M:%S') if ts is not None else 'None' for ts in apr_data['timestamp']]}\n")
            
            f.write("\n")
    
    logger.info("Generated detailed graph data report")
    
    # ENSURE THERE ARE NO CONFLICTING AXES OR TRACES
    # Create Plotly figure in a clean state
    fig = go.Figure()
    
    # Enable autoscaling instead of fixed ranges
    logger.info("Using autoscaling for axes ranges")
    
    # Add background shapes for APR and Performance regions
    min_time = df['timestamp'].min()
    max_time = df['timestamp'].max()
    
    # Add shape for positive APR region (above zero)
    fig.add_shape(
        type="rect",
        fillcolor="rgba(230, 243, 255, 0.3)",
        line=dict(width=0),
        y0=0, y1=100,  # Use a fixed positive value
        x0=min_time, x1=max_time,
        layer="below"
    )
    
    # Add shape for negative APR region (below zero)
    fig.add_shape(
        type="rect",
        fillcolor="rgba(255, 230, 230, 0.3)",
        line=dict(width=0),
        y0=-100, y1=0,  # Use a fixed negative value
        x0=min_time, x1=max_time,
        layer="below"
    )
    
    # Add zero line
    fig.add_shape(
        type="line",
        line=dict(dash="solid", width=1.5, color="black"),
        y0=0, y1=0,
        x0=min_time, x1=max_time
    )
    
    # MODIFIED: Calculate average APR values across all agents for each timestamp
    # Filter for APR data only
    apr_data = df[df['metric_type'] == 'APR'].copy()
    
    # Filter out outliers (APR values above 200 or below -200)
    outlier_data = apr_data[(apr_data['apr'] > 200) | (apr_data['apr'] < -200)].copy()
    apr_data_filtered = apr_data[(apr_data['apr'] <= 200) & (apr_data['apr'] >= -200)].copy()
    
    # Log the outliers for better debugging
    if len(outlier_data) > 0:
        excluded_count = len(outlier_data)
        logger.info(f"Excluded {excluded_count} data points with outlier APR values (>200 or <-200)")
        
        # Group outliers by agent for detailed logging
        outlier_agents = outlier_data.groupby('agent_name')
        for agent_name, agent_outliers in outlier_agents:
            logger.info(f"Agent '{agent_name}' has {len(agent_outliers)} outlier values:")
            for idx, row in agent_outliers.iterrows():
                logger.info(f"  - APR: {row['apr']}, timestamp: {row['timestamp']}")
    
    # Use the filtered data for all subsequent operations
    apr_data = apr_data_filtered
    
    # Group by timestamp and calculate mean APR
    avg_apr_data = apr_data.groupby('timestamp')['apr'].mean().reset_index()
    
    # Sort by timestamp
    avg_apr_data = avg_apr_data.sort_values('timestamp')
    
    # Log the average APR data
    logger.info(f"Calculated average APR data with {len(avg_apr_data)} points")
    for idx, row in avg_apr_data.iterrows():
        logger.info(f"  Average point {idx}: timestamp={row['timestamp']}, avg_apr={row['apr']}")
    
    # Calculate moving average based on a time window (2 hours)
    # Sort data by timestamp
    apr_data_sorted = apr_data.sort_values('timestamp')
    
    # Create a new dataframe for the moving average
    avg_apr_data_with_ma = avg_apr_data.copy()
    avg_apr_data_with_ma['moving_avg'] = None  # Initialize the moving average column
    
    # Define the time window for the moving average (3 days)
    time_window = pd.Timedelta(days=3)
    logger.info(f"Calculating moving average with time window of {time_window}")
    
    # Calculate moving averages: one for APR and one for adjusted APR
    avg_apr_data_with_ma['moving_avg'] = None  # 3-day window for APR
    avg_apr_data_with_ma['adjusted_moving_avg'] = None  # 3-day window for adjusted APR
    
    # Calculate the moving averages for each timestamp
    for i, row in avg_apr_data_with_ma.iterrows():
        current_time = row['timestamp']
        window_start = current_time - time_window
        
        # Get all data points within the 3-day time window
        window_data = apr_data_sorted[
            (apr_data_sorted['timestamp'] >= window_start) & 
            (apr_data_sorted['timestamp'] <= current_time)
        ]
        
        # Calculate the average APR for the 3-day time window
        if not window_data.empty:
            avg_apr_data_with_ma.at[i, 'moving_avg'] = window_data['apr'].mean()
            logger.debug(f"APR time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['apr'].mean()}")
            
            # Calculate adjusted APR moving average if data exists
            if 'adjusted_apr' in window_data.columns and window_data['adjusted_apr'].notna().any():
                avg_apr_data_with_ma.at[i, 'adjusted_moving_avg'] = window_data['adjusted_apr'].mean()
                logger.debug(f"Adjusted APR time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['adjusted_apr'].mean()}")
        else:
            # If no data points in the window, use the current value
            avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr']
            logger.debug(f"No data points in time window for {current_time}, using current value {row['apr']}")
    
    logger.info(f"Calculated time-based moving averages with {len(avg_apr_data_with_ma)} points")
    
    # Plot individual agent data points with agent names in hover, but limit display for scalability
    if not apr_data.empty:
        # Group by agent to use different colors for each agent
        unique_agents = apr_data['agent_name'].unique()
        colors = px.colors.qualitative.Plotly[:len(unique_agents)]
        
        # Create a color map for agents
        color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)}
        
        # Calculate the total number of data points per agent to determine which are most active
        agent_counts = apr_data['agent_name'].value_counts()
        
        # Determine how many agents to show individually (limit to top 5 most active)
        MAX_VISIBLE_AGENTS = 5
        top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist()
        
        logger.info(f"Showing {len(top_agents)} agents by default out of {len(unique_agents)} total agents")
        
        # Add data points for each agent, but only make top agents visible by default
        for agent_name in unique_agents:
            agent_data = apr_data[apr_data['agent_name'] == agent_name]
            
            # Explicitly convert to Python lists
            x_values = agent_data['timestamp'].tolist()
            y_values = agent_data['apr'].tolist()
            
            # Change default visibility to False to hide all agent data points
            is_visible = False
            
            # Add data points as markers for APR
            fig.add_trace(
                go.Scatter(
                    x=x_values,
                    y=y_values,
                    mode='markers',  # Only markers for original data
                    marker=dict(
                        color=color_map[agent_name],
                        symbol='circle',
                        size=10,
                        line=dict(width=1, color='black')
                    ),
                    name=f'Agent: {agent_name} (APR)',
                    hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
                    visible=is_visible  # All agents hidden by default
                )
            )
            logger.info(f"Added APR data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})")
            
            # Add data points for adjusted APR if it exists
            if 'adjusted_apr' in agent_data.columns and agent_data['adjusted_apr'].notna().any():
                x_values_adj = agent_data['timestamp'].tolist()
                y_values_adj = agent_data['adjusted_apr'].tolist()
                
                fig.add_trace(
                    go.Scatter(
                        x=x_values_adj,
                        y=y_values_adj,
                        mode='markers',  # Only markers for original data
                        marker=dict(
                            color=color_map[agent_name],
                            symbol='diamond',  # Different symbol for adjusted APR
                            size=10,
                            line=dict(width=1, color='black')
                        ),
                        name=f'Agent: {agent_name} (Adjusted APR)',
                        hovertemplate='Time: %{x}<br>Adjusted APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
                        visible=is_visible  # All agents hidden by default
                    )
                )
                logger.info(f"Added Adjusted APR data points for agent {agent_name} with {len(x_values_adj)} points (visible: {is_visible})")
        
        # Add APR moving average as a smooth line
        x_values_ma = avg_apr_data_with_ma['timestamp'].tolist()
        y_values_ma = avg_apr_data_with_ma['moving_avg'].tolist()
        
        # Create hover template for the APR moving average line
        hover_data_apr = []
        for idx, row in avg_apr_data_with_ma.iterrows():
            timestamp = row['timestamp']
            hover_data_apr.append(
                f"Time: {timestamp}<br>Avg APR (3d window): {row['moving_avg']:.2f}"
            )
        
        fig.add_trace(
            go.Scatter(
                x=x_values_ma,
                y=y_values_ma,
                mode='lines',  # Only lines for moving average
                line=dict(color='red', width=2),  # Thinner line
                name='Average APR (3d window)',
                hovertext=hover_data_apr,
                hoverinfo='text',
                visible=True  # Visible by default
            )
        )
        logger.info(f"Added 3-day moving average APR trace with {len(x_values_ma)} points")
        
        # Add adjusted APR moving average line if it exists
        if 'adjusted_moving_avg' in avg_apr_data_with_ma.columns and avg_apr_data_with_ma['adjusted_moving_avg'].notna().any():
            y_values_adj_ma = avg_apr_data_with_ma['adjusted_moving_avg'].tolist()
            
            # Create hover template for the adjusted APR moving average line
            hover_data_adj = []
            for idx, row in avg_apr_data_with_ma.iterrows():
                timestamp = row['timestamp']
                if pd.notna(row['adjusted_moving_avg']):
                    hover_data_adj.append(
                        f"Time: {timestamp}<br>Avg ETH Adjusted APR (3d window): {row['adjusted_moving_avg']:.2f}"
                    )
                else:
                    hover_data_adj.append(
                        f"Time: {timestamp}<br>Avg ETH Adjusted APR (3d window): N/A"
                    )
            
            fig.add_trace(
                go.Scatter(
                    x=x_values_ma,
                    y=y_values_adj_ma,
                    mode='lines',  # Only lines for moving average
                    line=dict(color='green', width=4),  # Thicker solid line for adjusted APR
                    name='Average ETH Adjusted APR (3d window)',
                    hovertext=hover_data_adj,
                    hoverinfo='text',
                    visible=True  # Visible by default
                )
            )
            logger.info(f"Added 3-day moving average Adjusted APR trace with {len(x_values_ma)} points")
        
        # Removed cumulative APR as requested
        logger.info("Cumulative APR graph line has been removed as requested")
    
    # Update layout - use simple boolean values everywhere
    # Make chart responsive instead of fixed width
    fig.update_layout(
        title=dict(
            text="Modius Agents",
            font=dict(
                family="Arial, sans-serif",
                size=22,
                color="black",
                weight="bold"
            )
        ),
        xaxis_title=None,  # Remove x-axis title to use annotation instead
        yaxis_title=None,  # Remove the y-axis title as we'll use annotations instead
        template="plotly_white",
        height=600,  # Reduced height for better fit on smaller screens
        # Removed fixed width to enable responsiveness
        autosize=True,  # Enable auto-sizing for responsiveness
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1,
            groupclick="toggleitem"
        ),
        margin=dict(r=30, l=120, t=40, b=50),  # Increased bottom margin for x-axis title
        hovermode="closest"
    )
    
    # Add annotations for y-axis regions
    fig.add_annotation(
        x=-0.08,  # Position further from the y-axis to avoid overlapping with tick labels
        y=-25,    # Middle of the negative region
        xref="paper",
        yref="y",
        text="Percent drawdown [%]",
        showarrow=False,
        font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
        textangle=-90,  # Rotate text to be vertical
        align="center"
    )
    
    fig.add_annotation(
        x=-0.08,  # Position further from the y-axis to avoid overlapping with tick labels
        y=50,     # Middle of the positive region
        xref="paper",
        yref="y",
        text="Agent APR [%]",
        showarrow=False,
        font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
        textangle=-90,  # Rotate text to be vertical
        align="center"
    )
    
    # Remove x-axis title annotation
    # fig.add_annotation(
    #     x=0.5,    # Center of the x-axis
    #     y=-0.15,  # Below the x-axis
    #     xref="paper",
    #     yref="paper",
    #     text="Date",
    #     showarrow=False,
    #     font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
    #     align="center"
    # )
    
    # Update layout for legend
    fig.update_layout(
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1,
            groupclick="toggleitem",
            font=dict(
                family="Arial, sans-serif",
                size=14,  # Adjusted font size
                color="black",
                weight="bold"
            )
        )
    )
    
    # Update y-axis with fixed range of -50 to +100 for psychological effect
    fig.update_yaxes(
        showgrid=True, 
        gridwidth=1, 
        gridcolor='rgba(0,0,0,0.1)',
        # Use fixed range instead of autoscaling
        autorange=False,  # Disable autoscaling
        range=[-50, 100],  # Set fixed range from -50 to +100
        tickformat=".2f",  # Format tick labels with 2 decimal places
        tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
        title=None  # Remove the built-in axis title since we're using annotations
    )
    
    # Update x-axis with better formatting and fixed range
    fig.update_xaxes(
        showgrid=True, 
        gridwidth=1, 
        gridcolor='rgba(0,0,0,0.1)',
        # Set fixed range with April 17 as start date
        autorange=False,  # Disable autoscaling
        range=[x_start_date, max_time],  # Set fixed range from April 17 to max date
        tickformat="%b %d",  # Simplified date format without time
        tickangle=-30,  # Angle the labels for better readability
        tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
        title=None  # Remove built-in title to use annotation instead
    )
    
    # SIMPLIFIED APPROACH: Do a direct plot without markers for comparison
    # This creates a simple, reliable fallback plot if the advanced one fails
    try:
        # Write detailed debug information before saving the figure
        write_debug_info(df, fig)
        
        # Save the figure (still useful for reference)
        graph_file = "modius_apr_combined_graph.html"
        fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
        
        # Also save as image for compatibility
        img_file = "modius_apr_combined_graph.png"
        try:
            fig.write_image(img_file)
            logger.info(f"Combined graph saved to {graph_file} and {img_file}")
        except Exception as e:
            logger.error(f"Error saving image: {e}")
            logger.info(f"Combined graph saved to {graph_file} only")
        
        # Return the figure object for direct use in Gradio
        return fig
    except Exception as e:
        # If the complex graph approach fails, create a simpler one
        logger.error(f"Error creating advanced graph: {e}")
        logger.info("Falling back to Simpler graph")
        
        # Create a simpler graph as fallback
        simple_fig = go.Figure()
        
        # Add zero line
        simple_fig.add_shape(
            type="line",
            line=dict(dash="solid", width=1.5, color="black"),
            y0=0, y1=0,
            x0=min_time, x1=max_time
        )
        
        # Define colors for the fallback graph
        fallback_colors = px.colors.qualitative.Plotly
        
        # Simply plot the average APR data with moving average
        if not avg_apr_data.empty:
            # Sort by timestamp
            avg_apr_data = avg_apr_data.sort_values('timestamp')
            
            # Calculate both moving averages for the fallback graph
            avg_apr_data_with_ma = avg_apr_data.copy()
            avg_apr_data_with_ma['moving_avg'] = None  # 2-hour window
            avg_apr_data_with_ma['infinite_avg'] = None  # Infinite window
            
            # Define the time window (6 hours)
            time_window = pd.Timedelta(hours=6)
            
            # Calculate the moving averages for each timestamp
            for i, row in avg_apr_data_with_ma.iterrows():
                current_time = row['timestamp']
                window_start = current_time - time_window
                
                # Get all data points within the 2-hour time window
                window_data = apr_data[
                    (apr_data['timestamp'] >= window_start) & 
                    (apr_data['timestamp'] <= current_time)
                ]
                
                # Get all data points up to the current timestamp (infinite window)
                infinite_window_data = apr_data[
                    apr_data['timestamp'] <= current_time
                ]
                
                # Calculate the average APR for the 2-hour time window
                if not window_data.empty:
                    avg_apr_data_with_ma.at[i, 'moving_avg'] = window_data['apr'].mean()
                else:
                    # If no data points in the window, use the current value
                    avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr']
                
                # Calculate the average APR for the infinite window
                if not infinite_window_data.empty:
                    avg_apr_data_with_ma.at[i, 'infinite_avg'] = infinite_window_data['apr'].mean()
                else:
                    avg_apr_data_with_ma.at[i, 'infinite_avg'] = row['apr']
            
            # Add data points for each agent, but only make top agents visible by default
            unique_agents = apr_data['agent_name'].unique()
            colors = px.colors.qualitative.Plotly[:len(unique_agents)]
            color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)}
            
            # Calculate the total number of data points per agent
            agent_counts = apr_data['agent_name'].value_counts()
            
            # Determine how many agents to show individually (limit to top 5 most active)
            MAX_VISIBLE_AGENTS = 5
            top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist()
            
            for agent_name in unique_agents:
                agent_data = apr_data[apr_data['agent_name'] == agent_name]
                
                # Determine if this agent should be visible by default
                is_visible = agent_name in top_agents
                
                # Add data points as markers
                simple_fig.add_trace(
                    go.Scatter(
                        x=agent_data['timestamp'],
                        y=agent_data['apr'],
                        mode='markers',
                        name=f'Agent: {agent_name}',
                        marker=dict(
                            size=10, 
                            color=color_map[agent_name]
                        ),
                        hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
                        visible=is_visible  # Only top agents visible by default
                    )
                )
            
            # Add 2-hour moving average as a line
            simple_fig.add_trace(
                go.Scatter(
                    x=avg_apr_data_with_ma['timestamp'],
                    y=avg_apr_data_with_ma['moving_avg'],
                    mode='lines',
                    name='Average APR (6h window)',
                    line=dict(width=2, color='red')  # Thinner line
                )
            )
            
            # Add infinite window moving average as another line
            simple_fig.add_trace(
                go.Scatter(
                    x=avg_apr_data_with_ma['timestamp'],
                    y=avg_apr_data_with_ma['infinite_avg'],
                    mode='lines',
                    name='Cumulative Average APR (all data)',
                    line=dict(width=4, color='green')  # Thicker solid line
                )
            )
        
        # Simplified layout with adjusted y-axis range and increased size
        simple_fig.update_layout(
            title=dict(
                text="Modius Agents",
                font=dict(
                    family="Arial, sans-serif",
                    size=22,
                    color="black",
                    weight="bold"
                )
            ),
            xaxis_title=None,  # Remove x-axis title to use annotation instead
            yaxis_title=None,  # Remove the y-axis title as we'll use annotations instead
                    yaxis=dict(
                        # No fixed range - let Plotly autoscale
                        autorange=True,  # Explicitly enable autoscaling
                        tickformat=".2f",  # Format tick labels with 2 decimal places
                        tickfont=dict(size=12)  # Larger font for tick labels
                    ),
            height=600,  # Reduced height for better fit
            # Removed fixed width to enable responsiveness
            autosize=True,  # Enable auto-sizing for responsiveness
            template="plotly_white",  # Use a cleaner template
            margin=dict(r=30, l=120, t=40, b=50)  # Increased bottom margin for x-axis title
        )
        
        # Add annotations for y-axis regions in the fallback graph
        simple_fig.add_annotation(
            x=-0.08,  # Position further from the y-axis to avoid overlapping with tick labels
            y=-25,    # Middle of the negative region
            xref="paper",
            yref="y",
            text="Percent drawdown [%]",
            showarrow=False,
            font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
            textangle=-90,  # Rotate text to be vertical
            align="center"
        )
        
        simple_fig.add_annotation(
            x=-0.08,  # Position further from the y-axis to avoid overlapping with tick labels
            y=50,     # Middle of the positive region
            xref="paper",
            yref="y",
            text="Agent APR [%]",
            showarrow=False,
            font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
            textangle=-90,  # Rotate text to be vertical
            align="center"
        )
        
        # Remove x-axis title annotation
        # simple_fig.add_annotation(
        #     x=0.5,    # Center of the x-axis
        #     y=-0.15,  # Below the x-axis
        #     xref="paper",
        #     yref="paper",
        #     text="Date",
        #     showarrow=False,
        #     font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
        #     align="center"
        # )
        
        # Update legend font for fallback graph
        simple_fig.update_layout(
            legend=dict(
                font=dict(
                    family="Arial, sans-serif",
                    size=14,  # Adjusted font size
                    color="black",
                    weight="bold"
                )
            )
        )
        
        # Apply fixed range to the x-axis for the fallback graph 
        simple_fig.update_xaxes(
            autorange=False,  # Disable autoscaling
            range=[x_start_date, max_time],  # Set fixed range from April 17
            tickformat="%b %d",  # Simplified date format without time
            tickangle=-30,
            tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),  # Adjusted font size
            title=None  # Remove built-in title to use annotation instead
        )
        
        # Update y-axis tick font for fallback graph
        simple_fig.update_yaxes(
            tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold")  # Adjusted font size
        )
        
        # Add a note about hidden agents if there are more than MAX_VISIBLE_AGENTS
        if len(unique_agents) > MAX_VISIBLE_AGENTS:
            simple_fig.add_annotation(
                text=f"Note: Only showing top {MAX_VISIBLE_AGENTS} agents by default. Toggle others in legend.",
                xref="paper", yref="paper",
                x=0.5, y=1.05,
                showarrow=False,
                font=dict(size=12, color="gray"),
                align="center"
            )
        
        # Return the simple figure
        return simple_fig

def save_to_csv(df):
    """Save the APR data DataFrame to a CSV file and return the file path"""
    if df.empty:
        logger.error("No APR data to save to CSV")
        return None
    
    # Define the CSV file path
    csv_file = "modius_apr_values.csv"
    
    # Save to CSV
    df.to_csv(csv_file, index=False)
    logger.info(f"APR data saved to {csv_file}")
    
    # Also generate a statistics CSV file
    stats_df = generate_statistics_from_data(df)
    stats_csv = "modius_apr_statistics.csv"
    stats_df.to_csv(stats_csv, index=False)
    logger.info(f"Statistics saved to {stats_csv}")
    
    # Log detailed statistics about adjusted APR
    if 'adjusted_apr' in df.columns and df['adjusted_apr'].notna().any():
        adjusted_stats = stats_df[stats_df['avg_adjusted_apr'].notna()]
        logger.info(f"Agents with adjusted APR data: {len(adjusted_stats)} out of {len(stats_df)}")
        
        for _, row in adjusted_stats.iterrows():
            if row['agent_id'] != 'ALL':  # Skip the overall stats row
                logger.info(f"Agent {row['agent_name']} adjusted APR stats: avg={row['avg_adjusted_apr']:.2f}, min={row['min_adjusted_apr']:.2f}, max={row['max_adjusted_apr']:.2f}")
        
        # Log overall adjusted APR stats
        overall_row = stats_df[stats_df['agent_id'] == 'ALL']
        if not overall_row.empty and pd.notna(overall_row['avg_adjusted_apr'].iloc[0]):
            logger.info(f"Overall adjusted APR stats: avg={overall_row['avg_adjusted_apr'].iloc[0]:.2f}, min={overall_row['min_adjusted_apr'].iloc[0]:.2f}, max={overall_row['max_adjusted_apr'].iloc[0]:.2f}")
    
    return csv_file

def generate_statistics_from_data(df):
    """Generate statistics from the APR data"""
    if df.empty:
        return pd.DataFrame()
    
    # Get unique agents
    unique_agents = df['agent_id'].unique()
    stats_list = []
    
    # Generate per-agent statistics
    for agent_id in unique_agents:
        agent_data = df[df['agent_id'] == agent_id]
        agent_name = agent_data['agent_name'].iloc[0]
        
        # APR statistics
        apr_data = agent_data[agent_data['metric_type'] == 'APR']
        real_apr = apr_data[apr_data['is_dummy'] == False]
        
        # Performance statistics
        perf_data = agent_data[agent_data['metric_type'] == 'Performance']
        real_perf = perf_data[perf_data['is_dummy'] == False]
        
        # Check if adjusted_apr exists and has non-null values
        has_adjusted_apr = 'adjusted_apr' in apr_data.columns and apr_data['adjusted_apr'].notna().any()
        
        stats = {
            'agent_id': agent_id,
            'agent_name': agent_name,
            'total_points': len(agent_data),
            'apr_points': len(apr_data),
            'performance_points': len(perf_data),
            'real_apr_points': len(real_apr),
            'real_performance_points': len(real_perf),
            'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None,
            'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
            'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
            'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
            'avg_adjusted_apr': apr_data['adjusted_apr'].mean() if has_adjusted_apr else None,
            'max_adjusted_apr': apr_data['adjusted_apr'].max() if has_adjusted_apr else None,
            'min_adjusted_apr': apr_data['adjusted_apr'].min() if has_adjusted_apr else None,
            'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
        }
        stats_list.append(stats)
    
    # Generate overall statistics
    apr_only = df[df['metric_type'] == 'APR']
    perf_only = df[df['metric_type'] == 'Performance']
    
    # Check if adjusted_apr exists and has non-null values for overall stats
    has_adjusted_apr_overall = 'adjusted_apr' in apr_only.columns and apr_only['adjusted_apr'].notna().any()
    
    overall_stats = {
        'agent_id': 'ALL',
        'agent_name': 'All Agents',
        'total_points': len(df),
        'apr_points': len(apr_only),
        'performance_points': len(perf_only),
        'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]),
        'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]),
        'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None,
        'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
        'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
        'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
        'avg_adjusted_apr': apr_only['adjusted_apr'].mean() if has_adjusted_apr_overall else None,
        'max_adjusted_apr': apr_only['adjusted_apr'].max() if has_adjusted_apr_overall else None,
        'min_adjusted_apr': apr_only['adjusted_apr'].min() if has_adjusted_apr_overall else None,
        'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
    }
    stats_list.append(overall_stats)
    
    return pd.DataFrame(stats_list)

# Create dummy functions for the commented out imports
def create_transcation_visualizations():
    """Dummy implementation that returns a placeholder graph"""
    fig = go.Figure()
    fig.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    return fig

def create_active_agents_visualizations():
    """Dummy implementation that returns a placeholder graph"""
    fig = go.Figure()
    fig.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    return fig

# Comment out the blockchain connection code
"""
# Load environment variables from .env file
# RPC URLs
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
MODE_RPC_URL = os.getenv('MODE_RPC_URL')

# Initialize Web3 instances
web3_instances = {
    'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)),
    'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL))
}

# Contract addresses for service registries
contract_addresses = {
    'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44',
    'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE'
}

# Load the ABI from the provided JSON file
with open('./contracts/service_registry_abi.json', 'r') as abi_file:
    contract_abi = json.load(abi_file)

# Create the contract instances
service_registries = {
    chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi)
    for chain_name, web3 in web3_instances.items()
}

# Check if connections are successful
for chain_name, web3_instance in web3_instances.items():
    if not web3_instance.is_connected():
        raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
    else:
        print(f"Successfully connected to the {chain_name.capitalize()} network.")
"""

# Dummy blockchain functions to replace the commented ones
def get_transfers(integrator: str, wallet: str) -> str:
    """Dummy function that returns an empty result"""
    return {"transfers": []}

def fetch_and_aggregate_transactions():
    """Dummy function that returns empty data"""
    return [], {}

# Function to parse the transaction data and prepare it for visualization
def process_transactions_and_agents(data):
    """Dummy function that returns empty dataframes"""
    df_transactions = pd.DataFrame()
    df_agents = pd.DataFrame(columns=['date', 'agent_count'])
    df_agents_weekly = pd.DataFrame()
    return df_transactions, df_agents, df_agents_weekly

# Function to create visualizations based on the metrics
def create_visualizations():
    """
    # Commenting out the original visualization code temporarily for debugging
    transactions_data = fetch_and_aggregate_transactions()
    df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)

    # Fetch daily value locked data
    df_tvl = pd.read_csv('daily_value_locked.csv')

    # Calculate total value locked per chain per day
    df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"]
    df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index()
    df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date'])

    # Filter out dates with zero total value locked
    df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0]

    chain_name_map = {
        "mode": "Mode",
        "base": "Base",
        "ethereum": "Ethereum",
        "optimism": "Optimism"
    }
    df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map)
    
    # Plot total value locked
    fig_tvl = px.bar(
        df_tvl_daily,
        x="date",
        y="total_value_locked_usd",
        color="chain_name",
        opacity=0.7,
        title="Total Volume Invested in Pools in Different Chains Daily",
        labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"},
        barmode='stack',
        color_discrete_map={
            "Mode": "orange",
            "Base": "purple",
            "Ethereum": "darkgreen",
            "Optimism": "blue"
        }
    )
    fig_tvl.update_layout(
        xaxis_title="Date",
        
        yaxis=dict(tickmode='linear', tick0=0, dtick=4),
        xaxis=dict(
            tickmode='array',
            tickvals=df_tvl_daily['date'],
            ticktext=df_tvl_daily['date'].dt.strftime('%b %d'),
            tickangle=-45,
        ),
        bargap=0.6,  # Increase gap between bar groups (0-1)
        bargroupgap=0.1,  # Decrease gap between bars in a group (0-1)
        height=600,
        width=1200, # Specify width to prevent bars from being too wide
        showlegend=True,
        template='plotly_white'
    )
    fig_tvl.update_xaxes(tickformat="%b %d") 

    chain_name_map = {
        10: "Optimism",
        8453: "Base",
        1: "Ethereum",
        34443: "Mode"
    }

    df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map)
    df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map)

    df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str)
    df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str)
    df_transactions['date'] = pd.to_datetime(df_transactions['date'])
    df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1)

    swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count")
    fig_swaps_chain = px.bar(
        swaps_per_chain,
        x="date",
        y="swap_count",
        color="sending_chain",
        title="Chain Daily Activity: Swaps",
        labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"},
        barmode="stack",
        opacity=0.7,
        color_discrete_map={
            "Optimism": "blue",
            "Ethereum": "darkgreen",
            "Base": "purple",
            "Mode": "orange"
        }
    )
    fig_swaps_chain.update_layout(
        xaxis_title="Date",
        yaxis_title="Daily Swap Count",
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=[d for d in swaps_per_chain['date']],
            ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date']],
            tickangle=-45,
        ),
        bargap=0.6,
        bargroupgap=0.1,
        height=600,
        width=1200,
        margin=dict(l=50, r=50, t=50, b=50),
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99
        ),
        template='plotly_white'
    )
    fig_swaps_chain.update_xaxes(tickformat="%m-%d")

    df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1)

    bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count")
    fig_bridges_chain = px.bar(
        bridges_per_chain,
        x="date",
        y="bridge_count",
        color="sending_chain",
        title="Chain Daily Activity: Bridges",
        labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"},
        barmode="stack",
        opacity=0.7,
        color_discrete_map={
            "Optimism": "blue",
            "Ethereum": "darkgreen",
            "Base": "purple",
            "Mode": "orange"
        }
    )
    fig_bridges_chain.update_layout(
        xaxis_title="Date",
        yaxis_title="Daily Bridge Count",
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=[d for d in bridges_per_chain['date']],
            ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date']],
            tickangle=-45,
        ),
        bargap=0.6,
        bargroupgap=0.1,
        height=600,
        width=1200,
        margin=dict(l=50, r=50, t=50, b=50),
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99
        ),
        template='plotly_white'
    )
    fig_bridges_chain.update_xaxes(tickformat="%m-%d")
    df_agents['date'] = pd.to_datetime(df_agents['date'])

    daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index()
    daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True)
    # Sort by date to ensure proper running total calculation
    daily_agents_df = daily_agents_df.sort_values('date')
    
    # Create week column
    daily_agents_df['week'] = daily_agents_df['date'].dt.to_period('W').apply(lambda r: r.start_time)
    
    # Calculate running total within each week
    daily_agents_df['running_weekly_total'] = daily_agents_df.groupby('week')['daily_agent_count'].cumsum()
    
    # Create final merged dataframe
    weekly_merged_df = daily_agents_df.copy()
    adjustment_date = pd.to_datetime('2024-11-15')
    weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1
    weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'running_weekly_total'] -= 1
    fig_agents_registered = go.Figure(data=[
        go.Bar(
            name='Daily nr of Registered Agents',
            x=weekly_merged_df['date'].dt.strftime("%b %d"),
            y=weekly_merged_df['daily_agent_count'],
            opacity=0.7,
            marker_color='blue'
        ),
        go.Bar(
            name='Weekly Nr of Registered Agents',
            x=weekly_merged_df['date'].dt.strftime("%b %d"),
            y=weekly_merged_df['running_weekly_total'],
            opacity=0.7,
            marker_color='purple'
        )
    ])

    fig_agents_registered.update_layout(
        xaxis_title='Date',
        yaxis_title='Number of Agents',
        title="Nr of Agents Registered",
        barmode='group',
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            categoryorder='array',
            categoryarray=weekly_merged_df['date'].dt.strftime("%b %d"),
            tickangle=-45
        ),
        bargap=0.3,
        height=600,
        width=1200,
        showlegend=True,
        legend=dict(
            yanchor="top",
            xanchor="right",
        ),
        template='plotly_white',
    )

    return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl
    """
    # Placeholder figures for testing
    fig_swaps_chain = go.Figure()
    fig_swaps_chain.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    
    fig_bridges_chain = go.Figure()
    fig_bridges_chain.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    
    fig_agents_registered = go.Figure()
    fig_agents_registered.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    
    fig_tvl = go.Figure()
    fig_tvl.add_annotation(
        text="Blockchain data loading disabled - placeholder visualization", 
        x=0.5, y=0.5, xref="paper", yref="paper",
        showarrow=False, font=dict(size=20)
    )
    
    return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_tvl

# Modify dashboard function to make the plot container responsive
def dashboard():
    with gr.Blocks() as demo:
        gr.Markdown("# Average Modius Agent Performance")
        
        # APR Metrics tab - the only tab
        with gr.Tab("APR Metrics"):
            with gr.Column():
                refresh_btn = gr.Button("Refresh APR Data")
                
                # Create container for plotly figure with responsive sizing
                with gr.Column():
                    combined_graph = gr.Plot(label="APR for All Agents", elem_id="responsive_plot")
                
                # Create compact toggle controls at the bottom of the graph
                with gr.Row(visible=True):
                    gr.Markdown("##### Toggle Graph Lines", elem_id="toggle_title")
                
                with gr.Row():
                    with gr.Column():
                        with gr.Row(elem_id="toggle_container"):
                            with gr.Column(scale=1, min_width=150):
                                apr_toggle = gr.Checkbox(label="APR Average", value=True, elem_id="apr_toggle")
                            
                            with gr.Column(scale=1, min_width=150):
                                adjusted_apr_toggle = gr.Checkbox(label="ETH Adjusted APR Average", value=True, elem_id="adjusted_apr_toggle")
                
                # Add custom CSS for making the plot responsive
                gr.HTML("""
                <style>
                    /* Make plot responsive */
                    #responsive_plot {
                        width: 100% !important;
                        max-width: 100% !important;
                    }
                    #responsive_plot > div {
                        width: 100% !important;
                        height: auto !important;
                        min-height: 500px !important;
                    }
                    
                    /* Existing toggle checkbox styling */
                    #apr_toggle .gr-checkbox {
                        accent-color: #e74c3c !important;
                    }
                    
                    #adjusted_apr_toggle .gr-checkbox {
                        accent-color: #2ecc71 !important;
                    }
                    
                    /* Make the toggle section more compact */
                    #toggle_title {
                        margin-bottom: 0;
                        margin-top: 10px;
                    }
                    
                    #toggle_container {
                        margin-top: 5px;
                    }
                    
                    /* Style the checkbox labels */
                    .gr-form.gr-box {
                        border: none !important;
                        background: transparent !important;
                    }
                    
                    /* Make checkboxes and labels appear on the same line */
                    .gr-checkbox-container {
                        display: flex !important;
                        align-items: center !important;
                    }
                    
                    /* Add colored indicators */
                    #apr_toggle .gr-checkbox-label::before {
                        content: "●";
                        color: #e74c3c;
                        margin-right: 5px;
                    }
                    
                    #adjusted_apr_toggle .gr-checkbox-label::before {
                        content: "●";
                        color: #2ecc71;
                        margin-right: 5px;
                    }
                </style>
                """)
                
                # Function to update the graph
                def update_apr_graph(show_apr_ma=True, show_adjusted_apr_ma=True):
                    # Generate visualization and get figure object directly
                    try:
                        combined_fig, _ = generate_apr_visualizations()
                        
                        # Update visibility of traces based on toggle values
                        for i, trace in enumerate(combined_fig.data):
                            # Check if this is a moving average trace
                            if trace.name == 'Average APR (3d window)':
                                trace.visible = show_apr_ma
                            elif trace.name == 'Average ETH Adjusted APR (3d window)':
                                trace.visible = show_adjusted_apr_ma
                        
                        return combined_fig
                    except Exception as e:
                        logger.exception("Error generating APR visualization")
                        # Create error figure
                        error_fig = go.Figure()
                        error_fig.add_annotation(
                            text=f"Error: {str(e)}", 
                            x=0.5, y=0.5, 
                            showarrow=False, 
                            font=dict(size=15, color="red")
                        )
                        return error_fig
                
                # Initialize the graph on load with a placeholder
                placeholder_fig = go.Figure()
                placeholder_fig.add_annotation(
                    text="Click 'Refresh APR Data' to load APR graph", 
                    x=0.5, y=0.5, 
                    showarrow=False, 
                    font=dict(size=15)
                )
                combined_graph.value = placeholder_fig
                
                # Function to update the graph based on toggle states
                def update_graph_with_toggles(apr_visible, adjusted_apr_visible):
                    return update_apr_graph(apr_visible, adjusted_apr_visible)
                
                # Function to update the graph without parameters (for refresh button)
                def refresh_graph():
                    return update_apr_graph(apr_toggle.value, adjusted_apr_toggle.value)
                
                # Set up the button click event
                refresh_btn.click(fn=refresh_graph, inputs=None, outputs=[combined_graph])
                
                # Set up the toggle switch events
                apr_toggle.change(
                    fn=update_graph_with_toggles,
                    inputs=[apr_toggle, adjusted_apr_toggle],
                    outputs=[combined_graph]
                )
                
                adjusted_apr_toggle.change(
                    fn=update_graph_with_toggles,
                    inputs=[apr_toggle, adjusted_apr_toggle],
                    outputs=[combined_graph]
                )
        
    return demo

# Launch the dashboard
if __name__ == "__main__":
    dashboard().launch()