Spaces:
Paused
Paused
File size: 5,517 Bytes
87b2711 db47c8b 7c99e50 1ca62bc 87b2711 f52050f 7c99e50 f52050f db47c8b 965cbb7 ea69d06 6082f24 f52050f 7c99e50 6082f24 f52050f 2fecabe 6082f24 f52050f ec4bd6c f52050f ec4bd6c db47c8b f52050f 0dfbb26 965cbb7 a515837 965cbb7 807214f f52050f 807214f f52050f 807214f f52050f 807214f f52050f 7c99e50 f52050f 807214f f52050f 807214f f52050f 40a85e4 f52050f 7f5acb9 40a85e4 807214f a515837 0dfbb26 0f7e32d 0dfbb26 4a7bfda 807214f db47c8b 0dfbb26 807214f 965cbb7 7c99e50 6082f24 7c99e50 6082f24 25ad79c a515837 c7c2a12 0dfbb26 c7c2a12 a515837 0dfbb26 25ad79c 807214f 6082f24 7c99e50 6082f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
import tempfile
import gradio as gr
import numpy as np
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from ast import literal_eval
from PIL import Image
import json
# Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
# Define your prompts
other_benifits = '''Extract the following information in the given format:
{'other_benefits_and_information': {
'401k eru: {'This Period':'', 'Year-to-Date':''}},
'quota summary':
{
'sick:': '',
'vacation:': '',
}
'payment method': 'eg. Direct payment',
'Amount': 'eg. 12.99'
}
'''
tax_deductions = '''Extract the following information in the given format:
{
'tax_deductions': {
'federal:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee social security tax:': {'Amount':'', 'Year-To_Date':""},
'ee medicare tax:': {'Amount':'', 'Year-To_Date':""}},
'california:': {
'withholding tax:': {'Amount':'', 'Year-To_Date':""},
'ee disability tax:': {'Amount':'', 'Year-To-Date':""}}},
}
'''
intro = '''Extract the following information in the given format:
{
'check date': "",
'name': "",
'address': ""
}
'''
def format_nested_dict(data, indent=0):
formatted_str = ""
indent_str = " " * indent # Indentation for the current level
for key, value in data.items():
# If value is a dictionary, recurse deeper
if isinstance(value, dict):
formatted_str += f"{indent_str}{key}:\n"
formatted_str += format_nested_dict(value, indent + 1)
else:
formatted_str += f"{indent_str}{key}: {value}\n"
return formatted_str
def process_function(image_path, prompt):
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path, # Use the file path here
},
{"type": "text", "text": prompt},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1500)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# Handle output text to convert it into JSON
try:
almost_json = output_text[0].split('```\n')[-1].split('\n```')[0]
json = literal_eval(almost_json)
except:
try:
almost_json = output_text[0].split('```json\n')[-1].split('\n```')[0]
json = literal_eval(almost_json)
except:
json = output_text[0]
return json
def process_document(image):
# Save the uploaded image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
image = Image.fromarray(image) # Convert NumPy array to PIL Image
image.save(tmp_file.name) # Save the image to the temporary file
image_path = tmp_file.name # Get the path of the saved file
# Process the image with your model
one = process_function(image_path, other_benifits)
two = process_function(image_path, tax_deductions)
three = process_function(image_path, intro)
text_one = format_nested_dict(one)
text_two = format_nested_dict(two)
text_three = format_nested_dict(three)
# Optionally, you can delete the temporary file after use
os.remove(image_path)
return text_one, text_two, text_three, one, two, three
# Create Gradio interface
demo = gr.Interface(
fn=process_document,
inputs="image", # Gradio will handle the image input
outputs=[
gr.Textbox(label="Other Benefits and Information"), # Second output box with heading
gr.Textbox(label="Tax Deductions Information"), # Second output box with heading
gr.Textbox(label="Introduction"), # Second output box with heading
gr.JSON(label="Other Benefits and Information"), # First output box with heading
gr.JSON(label="Tax Deductions Information"), # First output box with heading
gr.JSON(label="Introduction"),
],
title="<div style='text-align: center;'>Information Extraction From PaySlip</div>",
examples=[["Slip_1.jpg"], ["Slip_2.jpg"]],
cache_examples=False
)
demo.launch()
|