File size: 5,710 Bytes
b5a72fa
 
 
de5541d
 
7d2e23d
de5541d
 
 
 
7d2e23d
659f386
7d2e23d
de5541d
 
 
 
b5a72fa
659f386
b5a72fa
dcf2982
7d2e23d
 
 
 
dcf2982
 
 
b5a72fa
620caaa
dcf2982
620caaa
 
 
7d2e23d
dcf2982
b5a72fa
dcf2982
 
b5a72fa
dcf2982
7d2e23d
 
dcf2982
b5a72fa
659f386
de5541d
 
7d2e23d
de5541d
 
 
 
 
 
 
b5a72fa
dcf2982
b5a72fa
dcf2982
b5a72fa
dcf2982
7d2e23d
 
dcf2982
7d2e23d
 
 
dcf2982
de5541d
 
dcf2982
de5541d
 
dcf2982
de5541d
 
dcf2982
659f386
dcf2982
 
 
 
b5a72fa
 
 
 
7d2e23d
b5a72fa
 
 
 
dcf2982
b5a72fa
dcf2982
 
b5a72fa
 
 
dcf2982
b5a72fa
dcf2982
 
b5a72fa
 
 
dcf2982
 
b5a72fa
7d2e23d
 
 
 
 
b5a72fa
 
 
0bae7d4
 
 
7d2e23d
dcf2982
7d2e23d
 
659f386
7d2e23d
dcf2982
 
7d2e23d
dcf2982
 
 
 
 
 
 
 
7d2e23d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import csv
import datasets
from datasets import Audio, BuilderConfig

# Konfiguratsiya sinfi: til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
class STTConfig(BuilderConfig):
    def __init__(self, language_abbr, data_dir, **kwargs):
        """

        Args:

            language_abbr (str): Masalan, "uz".

            data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".

            **kwargs: Qolgan parametrlar.

        """
        super().__init__(**kwargs)
        self.language_abbr = language_abbr
        self.data_dir = data_dir

# Dataset yuklash skripti
class MySTTDataset(datasets.GeneratorBasedBuilder):
    """

    Uzbek STT dataset yuklash skripti:

      - Audio fayllar .tar arxiv ichida joylashgan.

      - Transkripsiya ma'lumotlari mos TSV faylda.

      - "audio" ustuni Audio() tipida aniqlangan, shuning uchun Hub Viewer "play" tugmasini ko'rsatadi.

    """
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        STTConfig(
            name="uz",
            version=datasets.Version("1.0.0"),
            description="Uzbek subset of the STT dataset",
            language_abbr="uz",
            data_dir="Dataset_STT",  # Asosiy papka nomi
        )
    ]
    DEFAULT_CONFIG_NAME = "uz"

    def _info(self):
        """

        Dataset ustunlarini aniqlaydi.

        "audio" ustuni Audio() tipida belgilangan – bu orqali Viewer audio faylni avtomatik dekodlaydi.

        """
        return datasets.DatasetInfo(
            description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.",
            features=datasets.Features({
                "id": datasets.Value("string"),
                "audio": Audio(sampling_rate=None),  # Asl sampling rate saqlanadi
                "sentence": datasets.Value("string"),
                "duration": datasets.Value("float"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "locale": datasets.Value("string"),
            }),
            supervised_keys=None,
            version=self.VERSION,
        )

    def _split_generators(self, dl_manager):
        """

        Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi,

        va tar fayllar dl_manager.extract() orqali ochiladi.

        """
        config = self.config
        base_dir = config.data_dir  # Misol: "Dataset_STT"
        lang = config.language_abbr   # Misol: "uz"

        train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
        train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")

        test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
        test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")

        val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
        val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")

        # Tar arxiv extract qilinadi:
        train_tar_extracted = dl_manager.extract(train_tar)
        test_tar_extracted = dl_manager.extract(test_tar)
        val_tar_extracted = dl_manager.extract(val_tar)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive_dir": train_tar_extracted,
                    "tsv_path": train_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "archive_dir": test_tar_extracted,
                    "tsv_path": test_tsv,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archive_dir": val_tar_extracted,
                    "tsv_path": val_tsv,
                },
            ),
        ]

    def _generate_examples(self, archive_dir, tsv_path):
        """

        TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.

        Keyin, archive papkasidan mos .mp3 faylni topib,

        audio ustunini quyidagicha shakllantiradi:

            {"path": <relative file name>, "bytes": <audio file baytlari>}

        Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanib, "play" tugmasini ko'rsatishga imkon beradi.

        """
        with open(tsv_path, "r", encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for idx, row in enumerate(reader):
                audio_id = row["id"]
                mp3_file = audio_id + ".mp3"
                full_path = os.path.join(archive_dir, mp3_file)

                if os.path.isfile(full_path):
                    with open(full_path, "rb") as audio_file:
                        audio_bytes = audio_file.read()
                    # MUHIM: "path" qiymatini lokal extract qilingan papka o'rniga, faqat fayl nomi sifatida uzatamiz
                    yield idx, {
                        "id": audio_id,
                        "audio": {"path": mp3_file, "bytes": audio_bytes},
                        "sentence": row.get("sentence", ""),
                        "duration": float(row.get("duration", 0.0)),
                        "age": row.get("age", ""),
                        "gender": row.get("gender", ""),
                        "accents": row.get("accents", ""),
                        "locale": row.get("locale", ""),
                    }
                else:
                    continue