dataset_version
timestamp[s] | queId
stringlengths 32
32
| difficulty
stringclasses 5
values | qtype
stringclasses 1
value | problem
stringlengths 12
1.31k
| knowledge_point_routes
sequence |
---|---|---|---|---|---|
2023-07-07T00:00:00 | 9ee6acf1851f433e978243e78cfde6c0 | 2 | short_answer | 设$${{x}_{k}}\in \left[ -2,2 \right]$$$$\left( k=1,2,\cdots ,2013 \right)$$,且$${{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{2013}}=0$$.试求$$M=x_{1}^{3}+x_{2}^{3}+\cdots $$ $$+x_{2013}^{3}$$的最大值. | [
"竞赛->知识点->不等式->常用手法->局部处理"
] |
2023-07-07T00:00:00 | cf715490fdb54722ad03e4a0b0923bdf | 2 | short_answer | $$8.01\times 1.24+8.02\times 1.23+8.03\times 1.22$$的整数部分是多少? | [
"拓展思维->能力->数据处理"
] |
2023-07-07T00:00:00 | 44675ada2f1e4032aa15e17265836b7f | 2 | short_answer | 某团体有$$100$$名会员,男女会员人数之比是$$14:11$$,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为$$12:13$$、$$5:3$$、$$2:1$$,那么丙组有多少名男会员? | [
"知识标签->拓展思维->应用题模块->比例应用题->方程法解比例问题"
] |
2023-07-07T00:00:00 | 1934f5ee850e48659099166094ad3207 | 2 | short_answer | 小美从家去学校,如果每分钟走$$80$$米,能在上课前$$6$$分钟到校;如果每分钟走$$50$$米,就要迟到$$3$$分钟,那么小美家到学校的路程有多远? | [
"拓展思维->拓展思维->行程模块->比例解行程问题->行程中的比例"
] |
2023-07-07T00:00:00 | 62a8fb5c3fa04f3d8cb29ee7dc8847c2 | 1 | short_answer | 有四个不同的数字.任意两数之和的结果如下: $$7$$,$$11$$,$$14$$,$$18$$,$$21$$,$$25$$ 求这四个数字的平均值. There are four different numbers. The sum of any two numbers are as follows: $$7$$, $$11$$, $$14$$, $$18$$, $$21$$, $$25$$ Find the mean of these four numbers. | [
"拓展思维->拓展思维->应用题模块->平均数问题->公式类->直接求平均数"
] |
2023-07-07T00:00:00 | c75944fd5ecb4125a58acf84de4d50f4 | 2 | short_answer | 甲、乙二人以均匀的速度分别从$$A、B$$两地同时出发,相向而行,他们第一次相遇地点离$$A$$地$$6$$千米,相遇后二人继续前进,走到对方出发点后立即返回,在距$$B$$地$$4$$千米处第二次相遇,求两人从开始到第二次相遇一共走了多远? | [
"拓展思维->能力->逻辑分析"
] |
2023-07-07T00:00:00 | b6904c2e7f92486ebb0f2aefa81b2f8b | 1 | short_answer | 紫逸共花了$$10$$天去阅读一本故事书.在首$$4$$天,她每天阅读$$25$$页,其后,她每天阅读$$40$$页.问紫逸平均每天阅读这本故事书多少页? Erica spent $$10$$ days to read a story book. She read$$\textasciitilde25$$ pages every day for the first $$4$$ days. After that, she read $$40$$ pages every day. How many pages of the book did Erica read on average every day? | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 01807e4d693543c9a262b702c53cdd2f | 1 | short_answer | 有小华、小夏、小杯三人,小夏的年龄是小华的$$4$$倍,而小夏的年龄是小杯的$$3$$倍,小杯的年龄是小华的$$2$$倍小$$4$$岁,那么小夏多少岁? | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | 6af918a67d254953b804afa77ef7a718 | 2 | short_answer | 黑板上写有一个十进制正整数$$N$$.首先,擦去$$N$$的末位数字$$c$$得到数$$m$$,然后用数$$\textbar m-3c\textbar$$代替$$N$$(若$$N=1204$$,则用$$120-3\times4=108$$替换$$1204$$).继续这样的操作,直到黑板上的数变成一位数为止.求所有的正整数$$N$$,经过有限次操作,使黑板上的数变为$$0$$. | [
"竞赛->知识点->组合->染色与操作问题(二试)"
] |
2023-07-07T00:00:00 | a004ed3818474701bb580ce3084effe5 | 2 | short_answer | 求$$(1+0.234+0.345+0.456)\times (0.234+0.345+0.456+0.567)$$ $$-(1+0.234+0.345+0.456+0.567)\times (0.234+0.345+0.456)$$的值.(提示:使用换元法,相同部分先用字母表示,化简到最简再计算) | [
"拓展思维->拓展思维->计算模块->小数->小数换元法"
] |
2023-07-07T00:00:00 | ff808081477bd88b0147af0875ff61f0 | 1 | short_answer | 某商品按照零售价$$10$$元卖出$$20$$件所得到的利润和按照零售价$$9$$元卖出$$30$$件所得到的利润相等,求该商品的进货价. | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 753e918b9e9944f49db681403fdf513f | 2 | short_answer | 甲﹑乙两间学校合共有$$1600$$名学生﹐当中有$$35 \%$$戴眼镜.若甲学校有$$33 \%$$学生戴眼镜,而乙学校有$$41 \%$$学生戴眼镜,问甲学校有多少名学生? | [
"拓展思维->能力->构造模型->模型思想"
] |
2023-07-07T00:00:00 | ce53f933558a40f0a4237100aeb22781 | 2 | short_answer | 恰有$$100$$个因数的自然数中,最小的那个是多少? | [
"竞赛->知识点->数论->整除->因数与倍数"
] |
2023-07-07T00:00:00 | bcaebe373c64489eb32dc27c05b93115 | 1 | short_answer | 有一个整数,除以$$3$$余数是$$2$$,除以$$5$$余数是$$3$$,除以$$7$$余数是$$4$$,这个数可能是. | [
"拓展思维->拓展思维->数论模块->余数问题->中国剩余定理->逐级满足法"
] |
2023-07-07T00:00:00 | b573a749743d4a17a873e95c8d41a212 | 2 | short_answer | 一批冰箱,每台售价是$$2400$$元,预计获利$$7.2$$万元,但实际上由于制作成本提高了$$\frac{1}{6}$$,所以利润减少了$$25 \%$$.求这批冰箱的台数. | [
"拓展思维->思想->转化与化归的思想"
] |
2023-07-07T00:00:00 | af91e271c1b54a26905eaa65eb03d4a4 | 2 | short_answer | 甲、乙、丙三人每分钟分别行$$60$$米、$$50$$米和$$40$$米,甲从$$B$$地、乙和丙从$$A$$地同时出发相向而行,途中甲遇到乙后$$15$$分又遇到丙.那么$$A$$,$$B$$两地相距多少千米? | [
"拓展思维->拓展思维->行程模块->直线型行程问题->多人相遇与追及问题->多人相遇问题"
] |
2023-07-07T00:00:00 | b56c76f24a1549a3b12575392c356b92 | 1 | short_answer | $$2$$台抽水机$$3$$小时可以抽水$$28.2$$吨.照这样计算,$$5$$台抽水机$$6$$小时可以抽水多少吨? | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | 2715b58c67514fcea4f05851f42b0c21 | 3 | short_answer | 有五个正整数排成一列,从第二个数起,每一个数都不小于前一个的两倍.已知这五个数之和是$$2018$$,请问最后一个数的最小可能值是多少? | [
"拓展思维->拓展思维->数论模块->高斯记号->高斯记号的复杂应用"
] |
2023-07-07T00:00:00 | ff808081481c1eb501481ef70f6b00dc | 2 | short_answer | 有一杯子装满了浓度为$$15 \%$$的盐水,有大、中、小铁球各一个,它们的体积比为$$10:5:3$$.首先将小球沉入盐水杯中,结果盐水溢出$$10 \%$$,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止,此时杯子盐水的浓度是多少? | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 9bb5f9edf600423e9a6f245f74899c5a | 2 | short_answer | 2019年亚洲国际数学奥林匹克公开赛(AIMO) 某道路的两旁由头到尾每隔$$12$$米种了一棵大树,共种了$$52$$棵.这道路长多少米? On the both sides of a road, trees are planted for every $$12$$ metres, from one end to another. There are $$52$$ trees planted in total. How long is the road in metres? | [
"Overseas Competition->知识点->应用题模块->间隔问题->直线型两端都有->两端植树问题",
"拓展思维->能力->实践应用"
] |
2023-07-07T00:00:00 | 865a6513801f4dd0905633582a7af9d1 | 1 | short_answer | 甲乙两镇之间只有上坡路与下坡路(没有平路),小明上山每小时走$$3$$千米,下山每小时走$$6$$千米,那么他往返一趟,平均每小时走多少千米? | [
"课内体系->能力->逻辑分析",
"拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->平均速度"
] |
2023-07-07T00:00:00 | b162368ec56f4adf877e39c99111bbeb | 2 | short_answer | 一本书共$$2020$$页,编上页码∶$$1$$、$$2$$、$$3$$、$$\cdots $$、$$2020$$.在页码中一共出现了多少个数码「$$0$$」? There is a book of $$2020$$ pages. The page numbers are $$1$$, $$2$$, $$3$$,$$\cdots $$, $$2020$$, How many \textquotesingle$$0$$\textquotesingle s are there in all the page numbers? | [
"拓展思维->能力->实践应用"
] |
2023-07-07T00:00:00 | 2ab531141d1b4c2da85c5b390428d186 | 2 | short_answer | 如果$$a,b,c,d$$是质数(可以相同),且$$a\times b\times c\times d$$是$$77$$个连续正整数之和,试求$$a+b+c+d$$的最小值. | [
"拓展思维->思想->枚举思想"
] |
2023-07-07T00:00:00 | eea93f7c57bc47c289c1137224593865 | 2 | short_answer | Find the number of integer values of $$k$$ in the closed interval $$[-500,500]$$ for which the equation $$\log(kx)=2\log(x+2)$$ has exactly one real solution. 求闭合区间 $$[−500,500]$$ 中 $$k$$ 的整数值的个数,对于该区间,方程 $$\log(kx)=2\log(x+2)$$ 正好有一个实解. | [
"美国AMC10/12->知识点->代数->计算",
"美国AMC10/12->Knowledge Point->Algebra->Calculation"
] |
2023-07-07T00:00:00 | ff80808148880257014888cce5640f69 | 4 | short_answer | 在乘法算式$$\overline{ABCBD}\times \overline{ABCBD}=\overline{CCCBCCBBCB}$$中,相同的字母代表相同的数字,不同的字母代表不同的数字,如果$$D=9$$,那么$$A+B+C$$的值是多少? | [
"拓展思维->拓展思维->数论模块->位值原理与进制->位值原理运用->位值原理的综合应用"
] |
2023-07-07T00:00:00 | 538dd5edc0634581810b9b06135dd05b | 2 | short_answer | 对于任意正整数$$n$$,令$$f(n)$$表示$$1+2+3+\cdots \cdots +n$$的末位数字,如,$$f(1)=1$$,$$f(2)=3$$,$$f(5)=5$$,等等.求$$f(2)+f(4)+f(6)+\cdots +f(2022)$$的值. | [
"拓展思维->思想->整体思想"
] |
2023-07-07T00:00:00 | 1853bc9b48b946b6ad7edcb58914ed27 | 2 | short_answer | 某年的$$6$$月$$1$$是星期一,梓谦在该天收到一封信件.在$$6$$月份中,邮局每逢星期日休息,$$6$$月$$15$$日公众假期亦休息.已知梓谦在邮局休息的日子没有收到任何信件.此外,由$$6$$月$$2$$日开始,梓谦在邮局开放的日子所收到的信件数目均是上一天所收到的信件数目的两倍.问梓谦在$$6$$月份中共收到多少封信件? In a certain year,~ June $$1$$ is Monday. Terrance receives one letter on that day. In June,~~the post office is closed on Sundays, as well as June $$15$$ which is a public holiday. It is known that Terrance does not receive any letters on the days when the post office is closed. Also,~~starting from June $$2$$ onwards, the letters received by Terrance on the days when the post office is open are twice as many as the letters received on the day before. How many letters does Terrance receive in total in June? | [
"拓展思维->能力->实践应用"
] |
2023-07-07T00:00:00 | 34e45d5f4c124475816355e7af8052a3 | 1 | short_answer | 求$$25349$$和$$18225$$的最大公因数. | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 84a1d7246d964d84862340ca3c81542c | 2 | short_answer | 一个$$20$$行若干列的$$0$$、$$1$$数阵满足:各列互不相同且任意两列中同一行都取$$1$$的行数不超过$$2$$.求当列数最多时,数阵中$$1$$的个数的最小值. | [
"竞赛->知识点->排列组合与概率->排列与组合"
] |
2023-07-07T00:00:00 | 09f041cd281e4cc4909fbb922764fd3b | 3 | short_answer | Call a set $$S$$ \emph{product-free} if there do not exist $$a$$, $$b$$, $$c\in S$$ (not necessarily distinct) such that $$ab=c$$. For example, the empty set and the set $$ {16,20 }$$ are product-free, whereas the sets $$ {4,16 }$$ and $$ {2,8,16 }$$ are not product-free. Find the number of product-free subsets of the set $$ {1,2,3,4,5,6,7,8,9,10 }$$. 如果不存在 $$a$$,b,$$c\in S$$(不一定是不同的),使得 $$ab=c$$,则称集 $$S$$ 为无积.例如,空集和集 $$ {16,20 }$$ 是无积的,而集 $$ {4,16 }$$ 和 $$ {2,8,16 }$$ 不是无积的.求集 $$ {1,2,3,4,5,6,7,8,9,10 }$$ 的无积子集的个数. | [
"美国AMC10/12->知识点->代数->计算",
"美国AMC10/12->Knowledge Point->Algebra->Calculation"
] |
2023-07-07T00:00:00 | 9075fbd551514606aa5fb09011682c22 | 1 | short_answer | 将$$A$$、$$B$$、$$C$$、$$D$$、$$E$$、$$F$$、$$G$$七位同学在操场排成一列,其中学生$$B$$与$$C$$必须相邻.共有~\uline{~~~~~~~~~~}~种不同的排列方法 . | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | 3be46fbf920f4ecca8510035b88a07e5 | 3 | short_answer | 甲、乙两人同时$$A$$地出发,在 $$A、 B$$两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达$$ A$$地、$$B$$地或遇到乙都会调头往回走,除此以外,两人在$$AB$$之间行走方向不会改变,已知两人第一次相遇的地点距离$$ B$$地$$1800 $$米,第三次的相遇点距离$$B$$地 $$800$$米,那么第二次相遇的地点距离$$B$$地的距离是多少? | [
"知识标签->课内知识点->式与方程->数量关系->路程=速度×时间"
] |
2023-07-07T00:00:00 | b3d30b33f5e8496aaf4f0ca4a632dac5 | 1 | short_answer | 求$$1$$至$$1000$$(包括$$1$$及$$1000$$)之内不能被$$2$$或$$3$$整除的整数的数目. Find the number of integers between $$1$$ and $$1000$$ (included $$1$$ and $$1000$$) which cannot be divided by either $$2$$ or $$3$$. | [
"拓展思维->能力->逻辑分析"
] |
2023-07-07T00:00:00 | c846b94bb39f40dfbeb0918d51edcafe | 2 | short_answer | 一个心烦的学生走过一个大厅,大厅中有一排关着的柜子,柜子从$$1$$到$$1024$$编号,他打开$$1$$号柜之后朝前走,交替地不碰动或者打开每一个关着的柜子.当他走到大厅的末端,他转过身重新往回走,他打开遇到的第一个关着的柜子,然后继续刚才的过程.这学生按这方式来来回回走来走去,直到每个柜子都打开,他打开的最后一个柜子的号码是什么? | [
"竞赛->知识点->数列与数学归纳法->数列的通项与求和"
] |
2023-07-07T00:00:00 | 37779204f98847ce843318d0c152854a | 1 | short_answer | 求$$464+388-592+612-108+436$$的值.(简算) | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | cbf2152a1e7841c081065f969ae6ef79 | 2 | short_answer | 小彤和小怡在玩一个游戏.游戏开始前,老师首先在黑板上写上$$2016$$,接着﹐先由其中一名学生从$$2$$﹑$$3$$﹑$$4$$和$$7$$之中选出一个数字﹐并把黑板上的数字除以所选出的数字.若除式的答案不是整数﹐游戏结束﹐选出数字的一方即告落败﹐由另一人获胜﹔若除式的答案是整数﹐把这个答案写在黑板上﹐并把原来的数字擦去﹐然后由另一方按照相同的规则挑选数字及更新黑板上的数字.两人轮流操作,直至游戏结束.已知小彤为先选出数字的一方﹐并且有必胜策略(即若小彤在每一回合选出合适的数字﹐无论小怡在每一回合怎样选取数字﹐小彤也能保证胜出游戏).为了必定胜出游戏,小彤在开始选取了$$n$$﹐求$$n$$的所有可能值之和. Charlene and Clara are playing a game. Before the game starts, the teacher writer down $$2016$$ on the blackboard. Then, one of the students chooses one number from $$2$$﹑$$3$$﹑$$4$$ and $$7$$, and divide the number on the blackboard by the chosen number. If the quotient is not an integer, then the game will be over and the one who just chooses the number will lose. If the quotient is an integer, then the quotient will be written on the blackboard and the original number will be erased. Then the opponent will continue to choose a number according to the same rules and update the number on the blackboard. Two players take turn until the game ends. It is known that Charlene is the first one who chooses a number, and she has a winning strategy (i.e. If Charlene chooses a number appropriately in every round, then no matter what number Clara chooses, Charlene can guarantee to win the game). To guarantee victory, Charlene chooses $$n$$ at first. Find the sum of all possible value(s) of $$n$$. | [
"拓展思维->思想->分类讨论思想"
] |
2023-07-07T00:00:00 | 829efe5269d94c8da92e208c64c98d10 | 2 | short_answer | 在一个聚会里,$$36$$位男生中的每位男生都与$$3$$位女生对过话,而每位女生也与$$2$$位男生对过话. 问:在该聚会里,共有几位女生? | [
"拓展思维->拓展思维->组合模块->逻辑推理->体育比赛->单循环赛"
] |
2023-07-07T00:00:00 | ff808081488801c601488c21797b0d24 | 2 | short_answer | 甲、乙两站从上午$$6$$时开始每隔$$8$$分同时相向发出一辆公共汽车,汽车单程运行需$$45$$分.有一名乘客乘坐$$6$$点$$16$$分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车? | [
"拓展思维->拓展思维->行程模块->直线型行程问题->多人相遇与追及问题->多人追及问题"
] |
2023-07-07T00:00:00 | ff80808147e705d80147f0f405711529 | 2 | short_answer | 菜地里黄瓜获得丰收,收下全部的$$\frac{3}{8}$$时,装满了$$4$$筐还多$$36$$千克,收完其余的部分时,又刚好装满$$8$$筐,求共收黄瓜多少千克? | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | 8119ea724e1140b98f70d0e025d8d6bf | 1 | short_answer | 某城市按以下规定收取电费:用电如果不超过$$50$$度,按每度$$0.53$$元收费;如果超过$$50$$度不超过$$200$$度,超出部分按每度$$0.56$$元收费.小奥家七月份的电费为$$107.7$$元,小奥家七月份用电多少度. | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | f2b81b67ba9e45ff8fe85b163ba7d45d | 1 | short_answer | 一些糖果,如果每天吃$$3$$个,十多天吃完,最后一天只吃了$$2$$个,如果每天吃$$4$$个,不到$$10$$天就吃完了,最后一天吃了$$3$$个.那么,这些糖果原来有个. | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | 646ae6080ca841b687129916261fca37 | 2 | short_answer | 一个$$150\times 324\times 372$$的长方体由$$1\times 1\times 1$$的单位立方体胶合在一起而做成的.这长方体的一条内对角线穿过多少个单位立方体的内部? | [
"竞赛->知识点->排列组合与概率->排列与组合"
] |
2023-07-07T00:00:00 | a39cc0c968aa4e59b8e91de490b339ff | 1 | short_answer | 计算:$$2017\times \frac{2015}{2016}+\frac{1}{2016}$$. | [
"知识标签->课内知识点->数与运算->运算律->乘法运算律->乘法分配律"
] |
2023-07-07T00:00:00 | f77c7a73320747d0aaa4d6e78ba1a81a | 2 | short_answer | $$239$$是一个有以下特点的数:被$$2$$,$$3$$,$$4$$,$$5$$及$$6$$所除的余数分别是$$1$$,$$2$$,$$3$$,$$4$$及$$5$$.包括$$239$$这个数,共有几个三位正整数具有此特性? | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | eee2e45b97844306b6f4d2c9aff3700b | 3 | short_answer | 张老师把三个非零自然数$$A$$、$$B$$、$$C$$分别告诉给甲、乙、丙三位同学.三名同学不知道别人的数是多少,但他们知道$$A+B+C=21$$.张老师让他们猜一猜这三个数分别是多少,结果先是甲说:``我不知道$$B$$和$$C$$是多少,但我可以断定它们大小不同.''然后乙说:``不用你说,我早就已经看出来$$A$$、$$B$$、$$C$$均不相等.''最后丙说:``喔!那我现在知道$$A$$、$$B$$、$$C$$各是多少了!''假设三位同学都非常聪明且从不说假话,那么$$A\times B\times C=$$?. | [
"拓展思维->思想->逐步调整思想"
] |
2023-07-07T00:00:00 | 7c2a8080964d4e709dde2c09b86d2db5 | 1 | short_answer | 已知七位数$$\overline{182AB25}$$能被$$455$$整除,求该数. It is known that seven-digit number $$\overline{182AB25}$$ is divisible by $$455$$, find the number. | [
"竞赛->知识点->数论->整除->整除的概念与基本性质"
] |
2023-07-07T00:00:00 | 2be723edabf349c09fcdb82eecd9b540 | 3 | short_answer | 三名围棋选手,年龄在$$10$$岁到$$20$$岁之间,这三名选手年龄的最小公倍数是$$336$$.这三名选手中年龄最小的是几岁? | [
"拓展思维->思想->逆向思想"
] |
2023-07-07T00:00:00 | ff8080814830aa3e01483f855cf01a2b | 1 | short_answer | 从$$A$$到$$B$$是$$6$$千米下坡路,从$$B$$到$$C$$是$$4$$千米平路,从$$C$$到$$D$$是$$4$$千米上坡路.小张步行,下坡的速度都是$$6$$千米/小时,平路速度都是$$4$$千米/小时,上坡速度都是$$2$$千米/小时.问小张从$$A$$到$$D$$的平均速度是多少? | [
"拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->平均速度->公式法"
] |
2023-07-07T00:00:00 | 939fb815d8294c06a755cb98e74cdef5 | 2 | short_answer | 质数$$a、$$b$$、$$c$$、d$$满足$$a\times b\times (c+d)=2013$$,则数$$a、$$b$$、$$c$$、d$$乘积为多少? | [
"知识标签->拓展思维->数论模块->分解质因数->分解质因数的应用->已知乘积求因数"
] |
2023-07-07T00:00:00 | fc19f4ef13d146f4b4e0a2593f1b7abd | 2 | short_answer | 已知$$a$$、$$b$$、$$c$$、$$d$$是质数,且$$a\times b\times c\times d$$是$$77$$个非零连续自然数之和.则$$a\times b\times c\times d$$的最小值是多少? | [
"拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求和"
] |
2023-07-07T00:00:00 | 3436b24b5b4440ac805b1802c3c18fb6 | 4 | short_answer | 二项展开式的幂可以不是整数.对于任意实数$$x$$,$$y$$,$$r$$,若$$\left\textbar{} x \right\textbar\textgreater\left\textbar{} y \right\textbar$$,则有$${{\left( x+y \right)}^{r}}={{x}^{r}}+r{{x}^{r-1}}y+\frac{r\left( r-1 \right)}{2!}{{x}^{r-2}}{{y}^{2}}+\frac{r\left( r-1 \right)\left( r-2 \right)}{3!}{{x}^{r-3}}{{y}^{3}}+...$$. 求$${{\left( {{10}^{2002}}+1 \right)}^{\frac{10}{7}}}$$小数点的后三位数是多少? | [
"竞赛->知识点->排列组合与概率->二项式定理及其应用"
] |
2023-07-07T00:00:00 | 1db88486902947858fe3f02f5ca5c12d | 2 | short_answer | 从电车总站每隔一定时间开出一辆电车.甲与乙两人在一条街上反方向步行.甲沿电车发车方向每分钟步行$$60$$米,每隔$$20$$分钟有一辆电车从后方超过自己;乙每分钟步行$$80$$米,每隔$$10$$分钟遇上迎面开来的一辆电车.那么电车总站每隔多少分钟开出一辆电车? | [
"知识标签->数学思想->方程思想"
] |
2023-07-07T00:00:00 | 82f479d927214958a8111383ab0c69d7 | 1 | short_answer | 在$$1$ $160$$这些数中,是$$5$$的倍数或$$7$$的倍数的数共有多少个? | [
"拓展思维->拓展思维->计数模块->容斥原理->二量容斥"
] |
2023-07-07T00:00:00 | 7efb9e9f6e004b55a532e94968d43470 | 3 | short_answer | 甲、乙、丙三个学校去给同学们买书,书的总数在$$200$$本以内,如果乙校买的书比甲校买的书本数的$$\frac{3}{7}$$多$$3$$本,而丙校买的书比甲校买的书的$$\frac{2}{5}$$少$$1$$本,则这三个学校合计最多会买多少本书? | [
"拓展思维->拓展思维->应用题模块->分百应用题->量率对应已知单位1",
"课内体系->能力->逻辑分析"
] |
2023-07-07T00:00:00 | fe8f7114d16840c1b65042707f27eebd | 2 | short_answer | 盒子里有红,黄两种玻璃球,红球为黄球个数的$$\frac{3}{5}$$,如果每次取出$$3$$个红球,$$4$$个黄球,若干次后,盒子里还剩$$3$$个红球,$$25$$个黄球,那么盒子里原有多少个玻璃球? | [
"拓展思维->知识点->应用题模块->还原问题->多量还原问题"
] |
2023-07-07T00:00:00 | 1abe474ed9764aaf9c14a42b722e40d5 | 1 | short_answer | 计算: $$({{1}^{2}}+{{3}^{2}}+{{5}^{2}}+\cdots +{{99}^{2}})-({{2}^{2}}+{{4}^{2}}+{{6}^{2}}+\cdots +{{100}^{2}})$$. | [
"课内体系->知识点->式->整式的乘除->乘法公式->平方差公式的计算",
"课内体系->能力->运算能力"
] |
2023-07-07T00:00:00 | 346ef5bb560747569528f005889adaf7 | 2 | short_answer | 一箱牛奶有$$10$$瓶,明明每天喝$$1$$瓶或$$2$$瓶,喝完这一箱牛奶,一共有多少种不同的喝法? | [
"知识标签->学习能力->七大能力->实践应用"
] |
2023-07-07T00:00:00 | 9a917b1006654fe3ab53d83b8e36dff2 | 2 | short_answer | 假设$$n$$个大小不同之圆形相交最多有$$1260$$相交点,求$$n$$的值. If the maximum number of the points of intersection from $$n$$ different sizes of circles is $$1260$$, find the value of $$n$$. | [
"拓展思维->拓展思维->组合模块->操作与策略->归纳递推->基本图形递推"
] |
2023-07-07T00:00:00 | 9239439b0e6c40409de0d591c4ce6297 | 2 | short_answer | 求$$1$$到$$100$$内有多少个数不能被$$2$$、$$3$$、$$7$$中的任何一个整除? | [
"知识标签->拓展思维->计数模块->容斥原理->多量容斥的最值问题"
] |
2023-07-07T00:00:00 | 5d67cb37bdac4b238737a850ebe3f942 | 2 | short_answer | 如果$$A=3+33+333+\cdots +\underbrace{33\cdots 3}_{2010个3}$$,那么$$A$$的各位数字之和等于__________. | [
"拓展思维->能力->数据处理"
] |
2023-07-07T00:00:00 | 8dc4f0c0d198429b842d17846b5b33c9 | 2 | short_answer | 小明为了备考 XRS 综合能力测评,七天一共做了一百多道题,前三天所做题量与后四天所做题量的比是$$\textasciitilde3:4$$,前四天所做题量与后三天所做题量的比是$$\textasciitilde6:5$$,那么小明第四天做了多少道题? | [
"知识标签->学习能力->七大能力->实践应用"
] |
2023-07-07T00:00:00 | f2491ba56abd4f6cb93664500042b713 | 1 | short_answer | 学校举办秋季旅行,同学们到烧烤场烧烤,如果每$$4$$人用一个烧烤炉,会有$$6$$人不能烧烤,如果每$$5$$人用一个烧烤炉,则刚刚好.问烧烤场有多少个烧烤炉? | [
"拓展思维->七大能力->逻辑分析"
] |
2023-07-07T00:00:00 | 952dd2a9557d488784d83e38534f1b73 | 2 | short_answer | 若$$\begin{cases}{{a}^{4}}+9=2b(2c+b) {{b}^{4}}+9=2c(2a+c) {{c}^{4}}+9=2a(2b+a) \end{cases}$$,则$$a-b+c$$的值为~\uline{~~~~~~~~~~}~. | [
"课内体系->知识点->式->整式的乘除->乘法公式->配方思想的运用",
"课内体系->能力->运算能力"
] |
2023-07-07T00:00:00 | 9824212cb4544ad2a46fe0282b5483e9 | 2 | short_answer | 学学和思思分别做一本同样的练习册,学学每天做$$32$$道,思思第一天做$$1$$道,第二天做$$2$$道,第$$3$$天做$$3$$道,\ldots\ldots 第$$n$$天做$$n$$道,以此类推,结果两个人同时做完了这本练习册(一道也不多一道也不少),那么这本练习册一共有~\uline{~~~~~~~~~~}~道练习题. | [
"知识标签->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题"
] |
2023-07-07T00:00:00 | 57b53309b4cc460c9e799f989b5a29bf | 2 | short_answer | 计算$$11$$至$$51$$内的合数的总和. Calculate the sum of all composite numbers from $$11$$ to $$51$$. | [
"拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求和"
] |
2023-07-07T00:00:00 | 16d891224c064064ace61bc0fb71f98e | 1 | short_answer | 若$$a$$为质数,且$$a+20$$与$$a+40$$也都为质数,请问这样的$$a$$值共有多少个? | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 01e8887d28694e75b0fcd2cb6152e5de | 2 | short_answer | 阿姨给小朋友分糖果,如果每人分$$4$$块,还多$$3$$块,如果每人分$$5$$块,则少$$6$$块,阿姨一共有多少块糖?(写出过程) | [
"拓展思维->能力->构造模型->模型思想",
"Overseas Competition->知识点->应用题模块->盈亏问题"
] |
2023-07-07T00:00:00 | 0d4a8f1cc5ca4812bf7c02f479ec9526 | 1 | short_answer | 计算:$$9999+999\times 999$$. | [
"课内体系->思想->转化与化归的思想",
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 68c305ef6f7b4d2481d819c4fa1f23a9 | 2 | short_answer | 从$$1$$至$$11$$这$$11$$个自然数中至少选出几个不同的数,才能保证其中一定有两个数的和为$$12$$? | [
"课内体系->思想->转化与化归的思想",
"拓展思维->思想->转化与化归的思想"
] |
2023-07-07T00:00:00 | 0c9655dbf9494b48838a5a90e11f6409 | 2 | short_answer | 两个非$$0$$自然数之差为$$120$$,它们的最小公倍数是它们最大公因数的$$105$$倍,那么这两个自然数的和是多少? | [
"拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->两数的最小公倍数"
] |
2023-07-07T00:00:00 | 164c1f5b1ae8468495a526a20c30a40c | 3 | short_answer | 已知学校、公园两地的距离是$$3600$$米. 艾迪说:我从学校出发,每走$$5$$分钟就要休息$$2$$分钟,需要$$50$$分钟走到公园. 薇儿说:我从公园出发,每走$$4$$分钟就要休息$$1$$分钟,需要$$74$$分钟走到学校. 聪明的小朋友们,若两人同时出发,相向而行,当两人相遇时,你知道艾迪从出发开始总共走了多少米吗? | [
"知识标签->学习能力->七大能力->运算求解"
] |
2023-07-07T00:00:00 | dfb9d3f0c6524626aed1594fe62e7675 | 1 | short_answer | 某人骑自行车过一座桥,上桥速度为每小时$$12$$千米,下桥速度为每小时$$24$$千米.而且上桥与下桥所经过的路程相等,中间也没有停顿.问这个人骑车过这座桥,往返的平均速度是每小时千米. | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | 2d83d1c9be4f4b58b144862b2faef393 | 3 | short_answer | 计算:$$1155\times \left( \frac{5}{2\times 3\times 4}+\frac{7}{3\times 4\times 5}+\cdots +\frac{17}{8\times 9\times 10}+\frac{19}{9\times 10\times 11} \right)$$ . | [
"知识标签->数学思想->整体思想"
] |
2023-07-07T00:00:00 | 32c3a0d302f34e3c8afc1385e5c35c20 | 2 | short_answer | 将$$2$$、$$3$$和$$4$$组成所有不同的三位数(所有数字不能重复使用),求这些三位数之和是多少. Find the sum of all different $$3$$-digit numbers formed by $$2$$, $$3$$ and $$4$$ (all digits cannot be repeated). | [
"拓展思维->能力->实践应用"
] |
2023-07-07T00:00:00 | e30bbd9b7e7a4b8398d972fe56f0971f | 1 | short_answer | 已知关于$$x$$的二次方程$${{x}^{2}}+mx+2520=0$$的两个根都是正整数,求$$m$$的最大可能值. Given the two roots of $${{x}^{2}}+mx+2520=0$$, a quadratic equation about $$x$$, are both positive integers. Find the maximum possible value of $$m$$. | [
"课内体系->知识点->方程与不等式->一元二次方程->根与系数的关系->一元二次方程根与系数的关系"
] |
2023-07-07T00:00:00 | e5830a2f02f84b1597b8b06cc777e360 | 1 | short_answer | 有甲乙两筐重量相等的橘子,从甲筐取出$$14$$千克,从乙筐取出$$7$$千克,这时乙筐橘子的重量是甲筐的$$1.5$$倍,问甲乙两筐原来各有橘子多少千克?(列方程解答) | [
"拓展思维->知识点->应用题模块->列方程解应用题"
] |
2023-07-07T00:00:00 | 29b8f3e4b0d64a42b0b43e7b7787d013 | 1 | short_answer | 6、韩梅梅的妈妈要烤面包,第一面需要烤$$2$$分钟,烤第二面时,面包比较干了, 只要烤一分钟足够了,也就是说烤一片面包需要$$3$$分钟.现在要烤$$3$$片面包,一次 最多只能放两片面包,问至少要用多长时间? | [
"拓展思维->能力->实践应用"
] |
2023-07-07T00:00:00 | 1c294d8470144783a787c04dd5060760 | 0 | short_answer | 一班同学在聚会中互相握手,若每人均与其他同学握手一次,所有同学共握手$$36$$次,问这次聚会中的同学共有多少人? A group of students are in a gathering. They shake hands with each other once. There are total $$36$$ handshakes. How many students are there? | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 16b77dc77b6e42638a9888ba6819d4b6 | 2 | short_answer | 少年科技组制成一台单项功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数$${{x}_{1}}$$,只显示不运算,接着再输入整数$${{x}_{2}}$$后则显示$$\left\textbar{} {{x}_{1}}-{{x}_{2}} \right\textbar$$的结果,此后每输入一个整数都是与前次显示的结果进行求差取绝对值的运算,现小明将从$$1$$到$$1991$$个整数随意地一个一个地输入,全部输入完毕之后显示的最后结果设为$$P$$.试求出$$P$$的最大值,并说明理由. | [
"知识标签->知识点->数->有理数->绝对值->绝对值的性质",
"知识标签->知识点->式->整式的加减->整式的加减运算",
"知识标签->知识点->规律探究和程序框图",
"知识标签->题型->数->有理数->绝对值->题型:绝对值综合"
] |
2023-07-07T00:00:00 | aceb0a8776ee48ff97e454986e10bcb3 | 2 | short_answer | 存在多少个小于或等于$$1000$$的正整数,使得对于任意实数$$t$$都有$${{\left( \sin t+i\cos t \right)}^{n}}=\sin nt+i\cos nt$$. | [
"竞赛->知识点->复数与平面向量->模、辐角与单位根",
"竞赛->知识点->复数与平面向量->复数的概念与运算"
] |
2023-07-07T00:00:00 | 28b76f4544fb421aa413e4bcca826565 | 3 | short_answer | 已知$$n$$,$$k$$为正整数使得$${{n}^{2}}\textless{}4k\textless{}{{n}^{2}}+\frac{2016}{{{n}^{2}}}$$,则$$n$$最大可能值是~\uline{~~~~~~~~~~}~ | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 1245db5230f544b8b3af124e4d224b07 | 1 | short_answer | 某机器工厂$$8$$个工人$$3$$小时制作机器零件$$360$$个,如果人数缩小到原来的$\dfrac{1}{2}$,时间增加了$$5$$小时,可制作机器零件多少个. | [
"拓展思维->思想->整体思想"
] |
2023-07-07T00:00:00 | afeec19db5ca40aaa4a3b39e5443e10c | 2 | short_answer | 已知实数$$a\ne b$$,且满足$${{\left( a+1 \right)}^{2}}=3-3\left( a+1 \right)$$,$$3\left( b+1 \right)=3-{{\left( b+1 \right)}^{2}}$$,求$$b\sqrt{\frac{b}{a}}+a\sqrt{\frac{a}{b}}$$的值. | [
"知识标签->题型->方程与不等式->一元二次方程->根与系数的关系->题型:韦达定理应用",
"知识标签->知识点->方程与不等式->一元二次方程->一元二次方程的根与系数的关系",
"知识标签->知识点->方程与不等式->一元二次方程->一元二次方程的解"
] |
2023-07-07T00:00:00 | ee6d076bdd124aba8c7a368eeda45daa | 2 | short_answer | 计算. $$999\times 222+333\times 334$$. | [
"拓展思维->拓展思维->计算模块->整数->整数提取公因数",
"课内体系->思想->对应思想"
] |
2023-07-07T00:00:00 | 16bf3f40bb90458d8377ad2aec9c3137 | 1 | short_answer | 用简便的方法计算: $$0.1+0.2+0.3+\cdots +0.9+0.11+0.12+\cdots +0.19+0.21+\cdots +0.99$$. | [
"拓展思维->能力->数据处理"
] |
2023-07-07T00:00:00 | 1ba6d0ad5de44fddb5abe76b3c15c324 | 2 | short_answer | 过年了,小明家买了很多瓶果汁.年三十喝了总量的一半少$$1$$瓶;初一又喝了剩下的一半;初二又喝了剩下的一半多$$1$$瓶,这时还剩$$2$$瓶没有喝,那么小明家一共买了多少瓶果汁? | [
"知识标签->课内知识点->数学广角->推理->解决简单逻辑推理问题"
] |
2023-07-07T00:00:00 | 42ae91f98add454284b4228485001c57 | 3 | short_answer | 甲乙两车同时从$$A$$、$$B$$两地相对开出,$$4$$小时相遇,甲车再行$$3$$小时到达$$B$$地,甲车每小时比乙车多行$$20$$千米,$$A$$、$$B$$两地相距多少千米? | [
"拓展思维->能力->逻辑分析"
] |
2023-07-07T00:00:00 | 28c0584c2830499eb5c6c904fca0db80 | 1 | short_answer | 甲、乙两队学生从相距$$2700$$米的两地同时出发,相向而行,同时一位同学骑自行车以每分钟$$150$$米的速度在两队间不停地往返联络,甲队每分钟行$$25$$米,乙队每分钟行$$20$$米,两队相遇时,骑自行车的同学共行了多少米? | [
"拓展思维->能力->运算求解"
] |
2023-07-07T00:00:00 | 01f279c8c69e486a87296280e942dd05 | 3 | short_answer | 设$$K$$为所有的$$\left( b-a \right)$$(这些值不一定相异)之积,其中正整数$$a$$,$$b$$满足$$1\leqslant a\textless b\leqslant 20$$.求出最大的正整数$$n$$使得$${{2}^{n}}$$整除$$K$$. | [
"课内体系->知识点->数列->等差数列->等差数列的前n项和->等差数列求和问题",
"竞赛->知识点->数论模块->整除->质数(算数基本定理)"
] |
2023-07-07T00:00:00 | 9e6026043ed14313850195c7abe3baba | 1 | short_answer | 小朋友们排队去买电影票,小麦斯前面已经有$$6$$人在排队,后来又来了$$3$$人,排在小麦斯的后面,请问现在这一队一共有多少人?画一画,写一写。 | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | c3e4bff4be154d678ad18e78f1c1e6c2 | 1 | short_answer | $$2020$$刚好能被它的数位和$$\left( 2+0+2+0=4 \right)$$整除.有多少个两位数能被它的数位和整除? $$2020$$ is divisible by the sum of its digits $$\left( 2+0+2+0=4 \right)$$. How many two-digit numbers are divisible by their own sum of digits are there? | [
"竞赛->知识点->数论->整除->整除的概念与基本性质"
] |
2023-07-07T00:00:00 | 2136e5b722df4c309cf00dd2955d8bb7 | 3 | short_answer | 一件工作,甲独做要$$24$$天完成,乙独做要$$16$$天完成.如果两人合做三天后,剩下的任务改为甲、乙两人一人一天轮流单独做,如果由甲开始先做,完成任务那天是谁在工作,他们从$$2014$$年$$2$$月$$25$$日开工,完成全部工作是$$3$$月几日? | [
"拓展思维->思想->整体思想"
] |
2023-07-07T00:00:00 | ea01d9ae39ec4c618a8570d44e58ee13 | 2 | short_answer | 要想用天平称出$$1\sim 40$$克所有整数克的质量,如果允许两边放砝码,至少要用多少个砝码? | [
"拓展思维->拓展思维->组合模块->智巧趣题->数学趣题->砝码问题"
] |
2023-07-07T00:00:00 | 0bc96d6d8b314da58cd975c231c2e5e3 | 1 | short_answer | 一副扑克牌有$$54$$张,最少要抽取几张牌,方能使其中至少有$$2$$张牌有相同的点数? | [
"拓展思维->思想->对应思想"
] |
2023-07-07T00:00:00 | ad64ca90edd84eedbeea112d06dba1d3 | 1 | short_answer | 有一两位数,它与它的两数位的和为$$106$$,求这两位数. Given $$2$$-digit number, if the sum of this number and the two digits is $$106$$ . Find the number. | [
"拓展思维->能力->逻辑分析"
] |
2023-07-07T00:00:00 | a4d02a7aaa844b7f99aeea35fc07e58b | 2 | short_answer | 求$$111111\times 123$$的最后两个位数字. | [
"拓展思维->能力->数据处理"
] |
2023-07-07T00:00:00 | 00c1d372ec7a422081e22cee4dbb487f | 2 | short_answer | 由$$2022$$个$$2$$组成的多位数$$222\cdots 222$$除以$$404$$所得的余数是多少? | [
"拓展思维->拓展思维->数论模块->余数问题->余数的性质->余数性质综合"
] |
2023-07-07T00:00:00 | 8d394de09d9b4fda95af9869abeeab9d | 1 | short_answer | 有$$31$$个连续偶数,最大的数比最小的数多$$150 \%$$,求最大的数的值. There are $$31$$ consecutive even numbers. The largest number is freater than the least number by $$150 \%$$. Find the value of the largest number. | [
"拓展思维->能力->逻辑分析"
] |
2023-07-07T00:00:00 | 6018d7fa939046c09a313d0606d5e419 | 1 | short_answer | 一个正方行阵队进行操练,小华发现无论他从左数起还是从右数起,从前方数起还是从后方数起,他都是第$$4$$个,那么一共有多少名童军进行操练? | [
"拓展思维->拓展思维->应用题模块->应用题模块排队问题->矩形队伍求总数"
] |
2023-07-07T00:00:00 | 91cf19492b654cc3818cc5c0fad28ce4 | 1 | short_answer | 在一次测验中,甲、乙两班的平均分分别是$$88$$和$$63$$分,两班的平均分是$$73$$.已知甲班有学生$$24$$人,那么乙班有学生多少人? | [
"拓展思维->思想->对应思想"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.