id
stringlengths
15
19
document_id
stringlengths
15
19
passages
list
entities
list
events
list
coreferences
list
relations
list
split_0_train_2000
split_0_train_2000
[ { "id": "split_0_train_2000_passage", "type": "progene_text", "text": [ "A rapid and sensitive HPLC method is reported , which may be suitable for automation and allows phenotyping of human liver microsomes ." ], "offsets": [ [ 0, 135 ] ] } ]
[]
[]
[]
[]
split_0_train_2001
split_0_train_2001
[ { "id": "split_0_train_2001_passage", "type": "progene_text", "text": [ "PLIF , a novel human ferritin subunit from placenta with immunosuppressive activity ." ], "offsets": [ [ 0, 85 ] ] } ]
[ { "id": "split_0_train_3005_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 0, 4 ] ], "normalized": [] }, { "id": "split_0_train_3006_entity", "type": "progene_text", "text": [ "ferritin" ], "offsets": [ [ 21, 29 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2002
split_0_train_2002
[ { "id": "split_0_train_2002_passage", "type": "progene_text", "text": [ "Ferritin is a ubiquitous iron storage protein existing in multiple isoforms composed of 24 heavy and light chain subunits ." ], "offsets": [ [ 0, 123 ] ] } ]
[ { "id": "split_0_train_3007_entity", "type": "progene_text", "text": [ "Ferritin" ], "offsets": [ [ 0, 8 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2003
split_0_train_2003
[ { "id": "split_0_train_2003_passage", "type": "progene_text", "text": [ "We describe here a third ferritin - related subunit cloned from human placenta cDNA library and named PLIF ( placental immunomodulatory ferritin ) ." ], "offsets": [ [ 0, 148 ] ] } ]
[ { "id": "split_0_train_3008_entity", "type": "progene_text", "text": [ "ferritin" ], "offsets": [ [ 25, 33 ] ], "normalized": [] }, { "id": "split_0_train_3009_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 102, 106 ] ], "normalized": [] }, { "id": "split_0_train_3010_entity", "type": "progene_text", "text": [ "placental immunomodulatory ferritin" ], "offsets": [ [ 109, 144 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2004
split_0_train_2004
[ { "id": "split_0_train_2004_passage", "type": "progene_text", "text": [ "The PLIF coding region is composed of ferritin heavy chain ( FTH ) sequence lacking the 65 C - terminal amino acids , which are substituted with a novel 48 amino acid domain ( C48 ) ." ], "offsets": [ [ 0, 183 ] ] } ]
[ { "id": "split_0_train_3011_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 4, 8 ] ], "normalized": [] }, { "id": "split_0_train_3012_entity", "type": "progene_text", "text": [ "ferritin heavy chain" ], "offsets": [ [ 38, 58 ] ], "normalized": [] }, { "id": "split_0_train_3013_entity", "type": "progene_text", "text": [ "FTH" ], "offsets": [ [ 61, 64 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2005
split_0_train_2005
[ { "id": "split_0_train_2005_passage", "type": "progene_text", "text": [ "In contrast to FTH , PLIF mRNA does not include the iron response element in the 5' - untranslated region , suggesting that PLIF synthesis is not regulated by iron ." ], "offsets": [ [ 0, 165 ] ] } ]
[ { "id": "split_0_train_3014_entity", "type": "progene_text", "text": [ "FTH" ], "offsets": [ [ 15, 18 ] ], "normalized": [] }, { "id": "split_0_train_3015_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 21, 25 ] ], "normalized": [] }, { "id": "split_0_train_3016_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 124, 128 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2006
split_0_train_2006
[ { "id": "split_0_train_2006_passage", "type": "progene_text", "text": [ "The linkage between the FTH and C48 domains created a restriction site for EcoRI ." ], "offsets": [ [ 0, 82 ] ] } ]
[ { "id": "split_0_train_3017_entity", "type": "progene_text", "text": [ "FTH" ], "offsets": [ [ 24, 27 ] ], "normalized": [] }, { "id": "split_0_train_3018_entity", "type": "progene_text", "text": [ "EcoRI" ], "offsets": [ [ 75, 80 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2007
split_0_train_2007
[ { "id": "split_0_train_2007_passage", "type": "progene_text", "text": [ "PLIF protein was found to localize in syncytiotrophoblasts of placentas ( 8 weeks of gestation ) at the fetal - maternal interface ." ], "offsets": [ [ 0, 132 ] ] } ]
[ { "id": "split_0_train_3019_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 0, 4 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2008
split_0_train_2008
[ { "id": "split_0_train_2008_passage", "type": "progene_text", "text": [ "Increased levels of PLIF transcript and protein were also detected in the breast carcinoma cell lines T47D and MCF-7 but not in the benign corresponding cell line HBL-100 ." ], "offsets": [ [ 0, 172 ] ] } ]
[ { "id": "split_0_train_3020_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 20, 24 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2009
split_0_train_2009
[ { "id": "split_0_train_2009_passage", "type": "progene_text", "text": [ "In vitro , PLIF was shown to down - modulate mixed lymphocyte reactions and to inhibit the proliferation of peripheral blood mononuclear cells stimulated with OKT3 ." ], "offsets": [ [ 0, 165 ] ] } ]
[ { "id": "split_0_train_3021_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 11, 15 ] ], "normalized": [] }, { "id": "split_0_train_3022_entity", "type": "progene_text", "text": [ "OKT3" ], "offsets": [ [ 159, 163 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2010
split_0_train_2010
[ { "id": "split_0_train_2010_passage", "type": "progene_text", "text": [ "The accumulated data indicate that PLIF is an embryonic immune factor involved in down - modulating the maternal immune recognition of the embryo toward anergy ." ], "offsets": [ [ 0, 161 ] ] } ]
[ { "id": "split_0_train_3023_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 35, 39 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2011
split_0_train_2011
[ { "id": "split_0_train_2011_passage", "type": "progene_text", "text": [ "This mechanism may have been adapted by breast cancer cells over expressing PLIF ." ], "offsets": [ [ 0, 82 ] ] } ]
[ { "id": "split_0_train_3024_entity", "type": "progene_text", "text": [ "PLIF" ], "offsets": [ [ 76, 80 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2012
split_0_train_2012
[ { "id": "split_0_train_2012_passage", "type": "progene_text", "text": [ "Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu - 3 ." ], "offsets": [ [ 0, 111 ] ] } ]
[ { "id": "split_0_train_3025_entity", "type": "progene_text", "text": [ "K+ channels" ], "offsets": [ [ 32, 43 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2013
split_0_train_2013
[ { "id": "split_0_train_2013_passage", "type": "progene_text", "text": [ "Transepithelial anion secretion in many tissues depends upon the activity of basolateral channels ." ], "offsets": [ [ 0, 99 ] ] } ]
[]
[]
[]
[]
split_0_train_2014
split_0_train_2014
[ { "id": "split_0_train_2014_passage", "type": "progene_text", "text": [ "Using monolayers of the Calu-3 cell line , a human submucosal serous cell model mounted in an Ussing chamber apparatus , we investigated the nature of the K + channels involved in basal , cAMP - and Ca2 + - stimulated anion secretion , as reflected by the transepithelial short circuit current ( I ( sc ) ) ." ], "offsets": [ [ 0, 308 ] ] } ]
[ { "id": "split_0_train_3026_entity", "type": "progene_text", "text": [ "K + channels" ], "offsets": [ [ 155, 167 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2015
split_0_train_2015
[ { "id": "split_0_train_2015_passage", "type": "progene_text", "text": [ "The non - specific K+ channel inhibitor Ba2 + inhibited the basal I ( sc ) by either 77 or 16 % when applied directly to the basolateral or apical membranes , respectively , indicating that a basolateral K + conductance is required for maintenance of basal anion secretion ." ], "offsets": [ [ 0, 274 ] ] } ]
[ { "id": "split_0_train_3027_entity", "type": "progene_text", "text": [ "K+ channel" ], "offsets": [ [ 19, 29 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2016
split_0_train_2016
[ { "id": "split_0_train_2016_passage", "type": "progene_text", "text": [ "Using the K+ channel blockers clofilium and clotrimazole , we found basal I ( sc ) to be sensitive to clofilium , with a small clotrimazole - sensitive component ." ], "offsets": [ [ 0, 163 ] ] } ]
[ { "id": "split_0_train_3028_entity", "type": "progene_text", "text": [ "K+ channel" ], "offsets": [ [ 10, 20 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2017
split_0_train_2017
[ { "id": "split_0_train_2017_passage", "type": "progene_text", "text": [ "By stimulating the cAMP and Ca2+ pathways , we determined that cAMP - stimulated anion secretion was almost entirely abolished by clofilium , but insensitive to clotrimazole ." ], "offsets": [ [ 0, 175 ] ] } ]
[]
[]
[]
[]
split_0_train_2018
split_0_train_2018
[ { "id": "split_0_train_2018_passage", "type": "progene_text", "text": [ "In contrast , the Ca2+ - stimulated response was sensitive to both clofilium and clotrimazole ." ], "offsets": [ [ 0, 95 ] ] } ]
[]
[]
[]
[]
split_0_train_2019
split_0_train_2019
[ { "id": "split_0_train_2019_passage", "type": "progene_text", "text": [ "Thus , pharmacologically distinct basolateral K + channels are differentially involved in the control of anion secretion under different conditions ." ], "offsets": [ [ 0, 149 ] ] } ]
[ { "id": "split_0_train_3029_entity", "type": "progene_text", "text": [ "K + channels" ], "offsets": [ [ 46, 58 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2020
split_0_train_2020
[ { "id": "split_0_train_2020_passage", "type": "progene_text", "text": [ "Isolation of the basolateral K + conductance in permeabilized monolayers revealed a small basal and forskolin - stimulated I ( sc ) ." ], "offsets": [ [ 0, 133 ] ] } ]
[]
[]
[]
[]
split_0_train_2021
split_0_train_2021
[ { "id": "split_0_train_2021_passage", "type": "progene_text", "text": [ "Finally , using the reverse transcriptase - polymerase chain reaction , we found that Calu-3 cells express the K + channel genes KCNN4 and KCNQ1 and the subunits KCNE2 and KCNE3 ." ], "offsets": [ [ 0, 179 ] ] } ]
[ { "id": "split_0_train_3030_entity", "type": "progene_text", "text": [ "K + channel" ], "offsets": [ [ 111, 122 ] ], "normalized": [] }, { "id": "split_0_train_3031_entity", "type": "progene_text", "text": [ "KCNN4" ], "offsets": [ [ 129, 134 ] ], "normalized": [] }, { "id": "split_0_train_3032_entity", "type": "progene_text", "text": [ "KCNQ1" ], "offsets": [ [ 139, 144 ] ], "normalized": [] }, { "id": "split_0_train_3033_entity", "type": "progene_text", "text": [ "KCNE2" ], "offsets": [ [ 162, 167 ] ], "normalized": [] }, { "id": "split_0_train_3034_entity", "type": "progene_text", "text": [ "KCNE3" ], "offsets": [ [ 172, 177 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2022
split_0_train_2022
[ { "id": "split_0_train_2022_passage", "type": "progene_text", "text": [ "We conclude that while KCNN4 contributes to Ca2+ - activated anion secretion by Calu-3 cells , basal and cAMP - activated secretion are more critically dependent on other K + channel types , possibly involving one or more class of KCNQ1 - containing channel complexes ." ], "offsets": [ [ 0, 269 ] ] } ]
[ { "id": "split_0_train_3035_entity", "type": "progene_text", "text": [ "KCNN4" ], "offsets": [ [ 23, 28 ] ], "normalized": [] }, { "id": "split_0_train_3036_entity", "type": "progene_text", "text": [ "K + channel" ], "offsets": [ [ 171, 182 ] ], "normalized": [] }, { "id": "split_0_train_3037_entity", "type": "progene_text", "text": [ "KCNQ1" ], "offsets": [ [ 231, 236 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2023
split_0_train_2023
[ { "id": "split_0_train_2023_passage", "type": "progene_text", "text": [ "CSF total tau , Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer 's disease ." ], "offsets": [ [ 0, 95 ] ] } ]
[ { "id": "split_0_train_3038_entity", "type": "progene_text", "text": [ "tau" ], "offsets": [ [ 10, 13 ] ], "normalized": [] }, { "id": "split_0_train_3039_entity", "type": "progene_text", "text": [ "Abeta42" ], "offsets": [ [ 16, 23 ] ], "normalized": [] }, { "id": "split_0_train_3040_entity", "type": "progene_text", "text": [ "tau" ], "offsets": [ [ 43, 46 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2024
split_0_train_2024
[ { "id": "split_0_train_2024_passage", "type": "progene_text", "text": [ "With the arrival of effective symptomatic treatments and the promise of drugs that may delay progression , we now need to identify Alzheimer 's disease ( AD ) at an early stage of the disease ." ], "offsets": [ [ 0, 193 ] ] } ]
[]
[]
[]
[]
split_0_train_2025
split_0_train_2025
[ { "id": "split_0_train_2025_passage", "type": "progene_text", "text": [ "To diagnose AD earlier and more accurately , attention has been directed toward peripheral biochemical markers ." ], "offsets": [ [ 0, 112 ] ] } ]
[]
[]
[]
[]
split_0_train_2026
split_0_train_2026
[ { "id": "split_0_train_2026_passage", "type": "progene_text", "text": [ "This article reviews promising potential cerebrospinal fluid ( CSF ) biomarkers for AD focussing on their role in clinical diagnosis ." ], "offsets": [ [ 0, 134 ] ] } ]
[]
[]
[]
[]
split_0_train_2027
split_0_train_2027
[ { "id": "split_0_train_2027_passage", "type": "progene_text", "text": [ "In particular , two biochemical markers , CSF total tau ( t - tau ) protein and the 42 amino acid form of beta-amyloid ( Abeta42 ) , perform satisfactorily enough to achieve a role in the clinical diagnostic settings of patients with dementia together with the cumulative information from basic clinical work - up , genetic screening , and brain imaging ." ], "offsets": [ [ 0, 355 ] ] } ]
[ { "id": "split_0_train_3041_entity", "type": "progene_text", "text": [ "tau" ], "offsets": [ [ 52, 55 ] ], "normalized": [] }, { "id": "split_0_train_3042_entity", "type": "progene_text", "text": [ "tau" ], "offsets": [ [ 62, 65 ] ], "normalized": [] }, { "id": "split_0_train_3043_entity", "type": "progene_text", "text": [ "beta-amyloid" ], "offsets": [ [ 106, 118 ] ], "normalized": [] }, { "id": "split_0_train_3044_entity", "type": "progene_text", "text": [ "Abeta42" ], "offsets": [ [ 121, 128 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2028
split_0_train_2028
[ { "id": "split_0_train_2028_passage", "type": "progene_text", "text": [ "These CSF markers are particularly useful to discriminate early or incipient AD from age - associated memory impairment , depression , and some secondary dementias ." ], "offsets": [ [ 0, 165 ] ] } ]
[]
[]
[]
[]
split_0_train_2029
split_0_train_2029
[ { "id": "split_0_train_2029_passage", "type": "progene_text", "text": [ "In order to discriminate AD from other primary dementia disorders , however , more accurate and specific markers are needed ." ], "offsets": [ [ 0, 125 ] ] } ]
[]
[]
[]
[]
split_0_train_2030
split_0_train_2030
[ { "id": "split_0_train_2030_passage", "type": "progene_text", "text": [ "Preliminary evidence strongly suggests that quantification of tau phosphorylated at specific sites in CSF improves early detection , differential diagnosis , and tracking of disease progression in AD ." ], "offsets": [ [ 0, 201 ] ] } ]
[]
[]
[]
[]
split_0_train_2031
split_0_train_2031
[ { "id": "split_0_train_2031_passage", "type": "progene_text", "text": [ "Expression of the genes of methyl - binding domain proteins in human gliomas ." ], "offsets": [ [ 0, 78 ] ] } ]
[]
[]
[]
[]
split_0_train_2032
split_0_train_2032
[ { "id": "split_0_train_2032_passage", "type": "progene_text", "text": [ "DNA methylation is the most common epigenetic alteration in tumor genomes and might result in transcriptional repression of tumor suppressor genes ." ], "offsets": [ [ 0, 148 ] ] } ]
[]
[]
[]
[]
split_0_train_2033
split_0_train_2033
[ { "id": "split_0_train_2033_passage", "type": "progene_text", "text": [ "Moreover , recent results have demonstrated that both specific methylation patterns and functional components of the mismatch repair system are involved in the development of therapy resistance of tumor cells ." ], "offsets": [ [ 0, 210 ] ] } ]
[]
[]
[]
[]
split_0_train_2034
split_0_train_2034
[ { "id": "split_0_train_2034_passage", "type": "progene_text", "text": [ "Here we investigated the expression of the genes of methyl binding domain containing proteins ( MBD ) in human gliomas both in vivo and in vitro ." ], "offsets": [ [ 0, 146 ] ] } ]
[ { "id": "split_0_train_3045_entity", "type": "progene_text", "text": [ "MBD" ], "offsets": [ [ 96, 99 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2035
split_0_train_2035
[ { "id": "split_0_train_2035_passage", "type": "progene_text", "text": [ "We found expression of MBDs including MBD1 , MBD2 , MBD3 and MBD4 / MED1 in all glioma cell lines and glioma biopsies ." ], "offsets": [ [ 0, 119 ] ] } ]
[ { "id": "split_0_train_3046_entity", "type": "progene_text", "text": [ "MBDs" ], "offsets": [ [ 23, 27 ] ], "normalized": [] }, { "id": "split_0_train_3047_entity", "type": "progene_text", "text": [ "MBD1" ], "offsets": [ [ 38, 42 ] ], "normalized": [] }, { "id": "split_0_train_3048_entity", "type": "progene_text", "text": [ "MBD2" ], "offsets": [ [ 45, 49 ] ], "normalized": [] }, { "id": "split_0_train_3049_entity", "type": "progene_text", "text": [ "MBD3" ], "offsets": [ [ 52, 56 ] ], "normalized": [] }, { "id": "split_0_train_3050_entity", "type": "progene_text", "text": [ "MBD4" ], "offsets": [ [ 61, 65 ] ], "normalized": [] }, { "id": "split_0_train_3051_entity", "type": "progene_text", "text": [ "MED1" ], "offsets": [ [ 68, 72 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2036
split_0_train_2036
[ { "id": "split_0_train_2036_passage", "type": "progene_text", "text": [ "No differences existed in vitro with regard to individual MBDs and individual cell lines ." ], "offsets": [ [ 0, 90 ] ] } ]
[ { "id": "split_0_train_3052_entity", "type": "progene_text", "text": [ "MBDs" ], "offsets": [ [ 58, 62 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2037
split_0_train_2037
[ { "id": "split_0_train_2037_passage", "type": "progene_text", "text": [ "In vivo , MBD1 and MBD2 were also expressed in all biopsies with only minor differences between individual tumors ." ], "offsets": [ [ 0, 115 ] ] } ]
[ { "id": "split_0_train_3053_entity", "type": "progene_text", "text": [ "MBD1" ], "offsets": [ [ 10, 14 ] ], "normalized": [] }, { "id": "split_0_train_3054_entity", "type": "progene_text", "text": [ "MBD2" ], "offsets": [ [ 19, 23 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2038
split_0_train_2038
[ { "id": "split_0_train_2038_passage", "type": "progene_text", "text": [ "MBD3 and MBD4 / MED1 , however , showed a correlation of expression with the grade of malignancy ." ], "offsets": [ [ 0, 98 ] ] } ]
[ { "id": "split_0_train_3055_entity", "type": "progene_text", "text": [ "MBD3" ], "offsets": [ [ 0, 4 ] ], "normalized": [] }, { "id": "split_0_train_3056_entity", "type": "progene_text", "text": [ "MBD4" ], "offsets": [ [ 9, 13 ] ], "normalized": [] }, { "id": "split_0_train_3057_entity", "type": "progene_text", "text": [ "MED1" ], "offsets": [ [ 16, 20 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2039
split_0_train_2039
[ { "id": "split_0_train_2039_passage", "type": "progene_text", "text": [ "Astrocytomas and anaplastic astrocytomas showed a weak expression compared with a high expression in glioblastoma multiforme ." ], "offsets": [ [ 0, 126 ] ] } ]
[]
[]
[]
[]
split_0_train_2040
split_0_train_2040
[ { "id": "split_0_train_2040_passage", "type": "progene_text", "text": [ "Influence of delayed isotopic equilibration in urine on the accuracy of the (2)H(2)(18)O method in the elderly ." ], "offsets": [ [ 0, 112 ] ] } ]
[]
[]
[]
[]
split_0_train_2041
split_0_train_2041
[ { "id": "split_0_train_2041_passage", "type": "progene_text", "text": [ "Isotopic determination of total energy expenditure ( TEE ) by the doubly labeled water ( DLW ) method may be affected by urine retention in the elderly ." ], "offsets": [ [ 0, 153 ] ] } ]
[]
[]
[]
[]
split_0_train_2042
split_0_train_2042
[ { "id": "split_0_train_2042_passage", "type": "progene_text", "text": [ "The isotopic enrichments in urine and plasma sampled simultaneously 4 h post - DLW dose were compared in a subset of 281 subjects [ 139 women , 142 men , 75 +/- 3 ( SD ) yr ] of the 3,075 participants in the Health , Aging , and Body Composition study ." ], "offsets": [ [ 0, 253 ] ] } ]
[]
[]
[]
[]
split_0_train_2043
split_0_train_2043
[ { "id": "split_0_train_2043_passage", "type": "progene_text", "text": [ "Based on analytic precisions , a +/- 2 % urine - plasma difference was set as the cut - off value ." ], "offsets": [ [ 0, 99 ] ] } ]
[]
[]
[]
[]
split_0_train_2044
split_0_train_2044
[ { "id": "split_0_train_2044_passage", "type": "progene_text", "text": [ "Ten percent of the population presented a difference lower than - 2 % , suggesting a delay in urine isotopic equilibration ." ], "offsets": [ [ 0, 124 ] ] } ]
[]
[]
[]
[]
split_0_train_2045
split_0_train_2045
[ { "id": "split_0_train_2045_passage", "type": "progene_text", "text": [ "This - 13 +/- 10 % urine - plasma difference was not linked to analytic errors , illnesses , the sampling time , or the time and quantity of water intake , suggesting that urine retention may be the main factor ." ], "offsets": [ [ 0, 212 ] ] } ]
[]
[]
[]
[]
split_0_train_2046
split_0_train_2046
[ { "id": "split_0_train_2046_passage", "type": "progene_text", "text": [ "The consequences are an 18 +/- 13 and 21 +/- 16 % overestimation of the total body water and the TEE , respectively ." ], "offsets": [ [ 0, 117 ] ] } ]
[]
[]
[]
[]
split_0_train_2047
split_0_train_2047
[ { "id": "split_0_train_2047_passage", "type": "progene_text", "text": [ "Unexpectedly , 21 % of the population presented a urine - plasma difference higher than +/- 2 % that resulted , however , in a nonsignificant TEE underestimation of - 3 +/- 5 % ." ], "offsets": [ [ 0, 178 ] ] } ]
[]
[]
[]
[]
split_0_train_2048
split_0_train_2048
[ { "id": "split_0_train_2048_passage", "type": "progene_text", "text": [ "In conclusion , the delayed isotopic equilibration observed in urine reduces the accuracy of the DLW method in the elderly ." ], "offsets": [ [ 0, 124 ] ] } ]
[]
[]
[]
[]
split_0_train_2049
split_0_train_2049
[ { "id": "split_0_train_2049_passage", "type": "progene_text", "text": [ "It is recommended , when blood sampling is impossible , to adopt the intercept method with urine sampling 24 h postdose ." ], "offsets": [ [ 0, 121 ] ] } ]
[]
[]
[]
[]
split_0_train_2050
split_0_train_2050
[ { "id": "split_0_train_2050_passage", "type": "progene_text", "text": [ "Crystal structure of a ternary SAP-1 / SRF / c-fos SRE DNA complex ." ], "offsets": [ [ 0, 68 ] ] } ]
[ { "id": "split_0_train_3058_entity", "type": "progene_text", "text": [ "SAP-1" ], "offsets": [ [ 31, 36 ] ], "normalized": [] }, { "id": "split_0_train_3059_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 39, 42 ] ], "normalized": [] }, { "id": "split_0_train_3060_entity", "type": "progene_text", "text": [ "c-fos" ], "offsets": [ [ 45, 50 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2051
split_0_train_2051
[ { "id": "split_0_train_2051_passage", "type": "progene_text", "text": [ "Combinatorial DNA binding by proteins for promoter - specific gene activation is a common mode of DNA regulation in eukaryotic organisms , and occurs at the promoter of the c-fos proto - oncogene ." ], "offsets": [ [ 0, 197 ] ] } ]
[ { "id": "split_0_train_3061_entity", "type": "progene_text", "text": [ "c-fos" ], "offsets": [ [ 173, 178 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2052
split_0_train_2052
[ { "id": "split_0_train_2052_passage", "type": "progene_text", "text": [ "The c-fos promoter contains a serum response element ( SRE ) that mediates ternary complex formation with the Ets proteins SAP-1 or Elk-1 and the MADS - box protein , serum response factor ( SRF ) ." ], "offsets": [ [ 0, 198 ] ] } ]
[ { "id": "split_0_train_3062_entity", "type": "progene_text", "text": [ "c-fos" ], "offsets": [ [ 4, 9 ] ], "normalized": [] }, { "id": "split_0_train_3063_entity", "type": "progene_text", "text": [ "Ets" ], "offsets": [ [ 110, 113 ] ], "normalized": [] }, { "id": "split_0_train_3064_entity", "type": "progene_text", "text": [ "SAP-1" ], "offsets": [ [ 123, 128 ] ], "normalized": [] }, { "id": "split_0_train_3065_entity", "type": "progene_text", "text": [ "Elk-1" ], "offsets": [ [ 132, 137 ] ], "normalized": [] }, { "id": "split_0_train_3066_entity", "type": "progene_text", "text": [ "serum response factor" ], "offsets": [ [ 167, 188 ] ], "normalized": [] }, { "id": "split_0_train_3067_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 191, 194 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2053
split_0_train_2053
[ { "id": "split_0_train_2053_passage", "type": "progene_text", "text": [ "Here , we report the crystal structure of a ternary SAP-1 / SRF / c-fos SRE DNA complex containing the minimal DNA - binding domains of each protein ." ], "offsets": [ [ 0, 150 ] ] } ]
[ { "id": "split_0_train_3068_entity", "type": "progene_text", "text": [ "SAP-1" ], "offsets": [ [ 52, 57 ] ], "normalized": [] }, { "id": "split_0_train_3069_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 60, 63 ] ], "normalized": [] }, { "id": "split_0_train_3070_entity", "type": "progene_text", "text": [ "c-fos" ], "offsets": [ [ 66, 71 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2054
split_0_train_2054
[ { "id": "split_0_train_2054_passage", "type": "progene_text", "text": [ "The structure of the complex reveals that the SAP-1 monomer and SRF dimer are bound on opposite faces of the DNA , and that the DNA recognition helix of SAP-1 makes direct contact with the DNA recognition helix of one of the two SRF subunits ." ], "offsets": [ [ 0, 243 ] ] } ]
[ { "id": "split_0_train_3071_entity", "type": "progene_text", "text": [ "SAP-1" ], "offsets": [ [ 46, 51 ] ], "normalized": [] }, { "id": "split_0_train_3072_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 64, 67 ] ], "normalized": [] }, { "id": "split_0_train_3073_entity", "type": "progene_text", "text": [ "SAP-1" ], "offsets": [ [ 153, 158 ] ], "normalized": [] }, { "id": "split_0_train_3074_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 229, 232 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2055
split_0_train_2055
[ { "id": "split_0_train_2055_passage", "type": "progene_text", "text": [ "These interactions facilitate an 82 degrees DNA bend around SRF and a modulation of protein - DNA contacts by each protein when compared to each of the binary DNA complexes ." ], "offsets": [ [ 0, 174 ] ] } ]
[ { "id": "split_0_train_3075_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 60, 63 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2056
split_0_train_2056
[ { "id": "split_0_train_2056_passage", "type": "progene_text", "text": [ "A comparison with a recently determined complex containing SRF , an idealized DNA site , and a SAP-1 fragment containing a SRF - interacting B-box region , shows a similar overall architecture but also shows important differences ." ], "offsets": [ [ 0, 231 ] ] } ]
[ { "id": "split_0_train_3076_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 59, 62 ] ], "normalized": [] }, { "id": "split_0_train_3077_entity", "type": "progene_text", "text": [ "SAP-1" ], "offsets": [ [ 95, 100 ] ], "normalized": [] }, { "id": "split_0_train_3078_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 123, 126 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2057
split_0_train_2057
[ { "id": "split_0_train_2057_passage", "type": "progene_text", "text": [ "Specifically , the comparison suggests that the B-box region of the Ets protein does not significantly influence DNA recognition by either of the proteins , and that the sequence of the DNA target effects the way in which the two proteins cooperate for DNA recognition ." ], "offsets": [ [ 0, 270 ] ] } ]
[ { "id": "split_0_train_3079_entity", "type": "progene_text", "text": [ "Ets" ], "offsets": [ [ 68, 71 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2058
split_0_train_2058
[ { "id": "split_0_train_2058_passage", "type": "progene_text", "text": [ "These studies have implications for how DNA - bound SRF may modulate the DNA - binding properties of other Ets proteins such as Elk-1 , and for how other Ets proteins may modulate the DNA - binding properties of other DNA - bound accessory factors to facilitate promoter - specific transcriptional responses ." ], "offsets": [ [ 0, 309 ] ] } ]
[ { "id": "split_0_train_3080_entity", "type": "progene_text", "text": [ "SRF" ], "offsets": [ [ 52, 55 ] ], "normalized": [] }, { "id": "split_0_train_3081_entity", "type": "progene_text", "text": [ "Ets" ], "offsets": [ [ 107, 110 ] ], "normalized": [] }, { "id": "split_0_train_3082_entity", "type": "progene_text", "text": [ "Elk-1" ], "offsets": [ [ 128, 133 ] ], "normalized": [] }, { "id": "split_0_train_3083_entity", "type": "progene_text", "text": [ "Ets" ], "offsets": [ [ 154, 157 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2059
split_0_train_2059
[ { "id": "split_0_train_2059_passage", "type": "progene_text", "text": [ "KRIT1 association with the integrin - binding protein ICAP-1 : a new direction in the elucidation of cerebral cavernous malformations ( CCM1 ) pathogenesis ." ], "offsets": [ [ 0, 157 ] ] } ]
[ { "id": "split_0_train_3084_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 0, 5 ] ], "normalized": [] }, { "id": "split_0_train_3085_entity", "type": "progene_text", "text": [ "integrin" ], "offsets": [ [ 27, 35 ] ], "normalized": [] }, { "id": "split_0_train_3086_entity", "type": "progene_text", "text": [ "ICAP-1" ], "offsets": [ [ 54, 60 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2060
split_0_train_2060
[ { "id": "split_0_train_2060_passage", "type": "progene_text", "text": [ "Mutations in KRIT1 , a protein initially identified based on a yeast two - hybrid interaction with the RAS - family GTPase RAP1A , are responsible for the development of the inherited vascular disorder cerebral cavernous malformations ( CCM1 ) ." ], "offsets": [ [ 0, 245 ] ] } ]
[ { "id": "split_0_train_3087_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 13, 18 ] ], "normalized": [] }, { "id": "split_0_train_3088_entity", "type": "progene_text", "text": [ "RAS - family GTPase" ], "offsets": [ [ 103, 122 ] ], "normalized": [] }, { "id": "split_0_train_3089_entity", "type": "progene_text", "text": [ "RAP1A" ], "offsets": [ [ 123, 128 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2061
split_0_train_2061
[ { "id": "split_0_train_2061_passage", "type": "progene_text", "text": [ "As the function of the KRIT1 protein and its role in CCM pathogenesis remain unknown , we performed yeast two - hybrid screens to identify additional protein binding partners ." ], "offsets": [ [ 0, 176 ] ] } ]
[ { "id": "split_0_train_3090_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 23, 28 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2062
split_0_train_2062
[ { "id": "split_0_train_2062_passage", "type": "progene_text", "text": [ "A fragment containing the N - terminal 272 amino acid residues of KRIT1 , a region lacking similarity to any known protein upon database searches , was used as bait ." ], "offsets": [ [ 0, 166 ] ] } ]
[ { "id": "split_0_train_3091_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 66, 71 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2063
split_0_train_2063
[ { "id": "split_0_train_2063_passage", "type": "progene_text", "text": [ "From parallel screens of human fetal brain and HeLa cDNA libraries , we obtained multiple independent isolates of human integrin cytoplasmic domain - associated protein-1 ( ICAP-1 ) as interacting clones ." ], "offsets": [ [ 0, 205 ] ] } ]
[ { "id": "split_0_train_3092_entity", "type": "progene_text", "text": [ "integrin cytoplasmic domain - associated protein-1" ], "offsets": [ [ 120, 170 ] ], "normalized": [] }, { "id": "split_0_train_3093_entity", "type": "progene_text", "text": [ "ICAP-1" ], "offsets": [ [ 173, 179 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2064
split_0_train_2064
[ { "id": "split_0_train_2064_passage", "type": "progene_text", "text": [ "The interaction of KRIT1 and ICAP-1 was confirmed by GST - KRIT1 trapping of endogenous ICAP-1 from 293T cells ." ], "offsets": [ [ 0, 112 ] ] } ]
[ { "id": "split_0_train_3094_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 19, 24 ] ], "normalized": [] }, { "id": "split_0_train_3095_entity", "type": "progene_text", "text": [ "ICAP-1" ], "offsets": [ [ 29, 35 ] ], "normalized": [] }, { "id": "split_0_train_3096_entity", "type": "progene_text", "text": [ "GST" ], "offsets": [ [ 53, 56 ] ], "normalized": [] }, { "id": "split_0_train_3097_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 59, 64 ] ], "normalized": [] }, { "id": "split_0_train_3098_entity", "type": "progene_text", "text": [ "ICAP-1" ], "offsets": [ [ 88, 94 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2065
split_0_train_2065
[ { "id": "split_0_train_2065_passage", "type": "progene_text", "text": [ "The alpha isoform of ICAP-1 is a 200 amino acid serine / threonine - rich phosphoprotein which binds the cytoplasmic tail of beta1 integrins ." ], "offsets": [ [ 0, 142 ] ] } ]
[ { "id": "split_0_train_3099_entity", "type": "progene_text", "text": [ "ICAP-1" ], "offsets": [ [ 21, 27 ] ], "normalized": [] }, { "id": "split_0_train_3100_entity", "type": "progene_text", "text": [ "beta1 integrins" ], "offsets": [ [ 125, 140 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2066
split_0_train_2066
[ { "id": "split_0_train_2066_passage", "type": "progene_text", "text": [ "We show that mutagenesis of the N - terminal KRIT1 NPXY amino acid sequence , a motif critical for ICAP-1 binding to beta1 integrin molecules , completely abrogates the KRIT1 / ICAP-1 interaction ." ], "offsets": [ [ 0, 197 ] ] } ]
[ { "id": "split_0_train_3101_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 45, 50 ] ], "normalized": [] }, { "id": "split_0_train_3102_entity", "type": "progene_text", "text": [ "ICAP-1" ], "offsets": [ [ 99, 105 ] ], "normalized": [] }, { "id": "split_0_train_3103_entity", "type": "progene_text", "text": [ "beta1 integrin" ], "offsets": [ [ 117, 131 ] ], "normalized": [] }, { "id": "split_0_train_3104_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 169, 174 ] ], "normalized": [] }, { "id": "split_0_train_3105_entity", "type": "progene_text", "text": [ "ICAP-1" ], "offsets": [ [ 177, 183 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2067
split_0_train_2067
[ { "id": "split_0_train_2067_passage", "type": "progene_text", "text": [ "The interaction between ICAP-1 and KRIT1 , and the presence of a FERM domain in the latter , suggest that KRIT1 might be involved in the bidirectional signaling between integrin molecules and the cytoskeleton ." ], "offsets": [ [ 0, 210 ] ] } ]
[ { "id": "split_0_train_3106_entity", "type": "progene_text", "text": [ "ICAP-1" ], "offsets": [ [ 24, 30 ] ], "normalized": [] }, { "id": "split_0_train_3107_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 35, 40 ] ], "normalized": [] }, { "id": "split_0_train_3108_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 106, 111 ] ], "normalized": [] }, { "id": "split_0_train_3109_entity", "type": "progene_text", "text": [ "integrin" ], "offsets": [ [ 169, 177 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2068
split_0_train_2068
[ { "id": "split_0_train_2068_passage", "type": "progene_text", "text": [ "Furthermore , these data suggest that KRIT1 might affect cell adhesion processes via integrin signaling in CCM1 pathogenesis ." ], "offsets": [ [ 0, 126 ] ] } ]
[ { "id": "split_0_train_3110_entity", "type": "progene_text", "text": [ "KRIT1" ], "offsets": [ [ 38, 43 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2069
split_0_train_2069
[ { "id": "split_0_train_2069_passage", "type": "progene_text", "text": [ "Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype ." ], "offsets": [ [ 0, 96 ] ] } ]
[ { "id": "split_0_train_3111_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 82, 85 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2070
split_0_train_2070
[ { "id": "split_0_train_2070_passage", "type": "progene_text", "text": [ "Killer Ig - like receptor ( KIR ) genes are a multigene family on human chromosome 19 ." ], "offsets": [ [ 0, 87 ] ] } ]
[ { "id": "split_0_train_3112_entity", "type": "progene_text", "text": [ "Killer Ig - like receptor" ], "offsets": [ [ 0, 25 ] ], "normalized": [] }, { "id": "split_0_train_3113_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 28, 31 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2071
split_0_train_2071
[ { "id": "split_0_train_2071_passage", "type": "progene_text", "text": [ "KIR genes occur in various combinations on different haplotypes ." ], "offsets": [ [ 0, 65 ] ] } ]
[ { "id": "split_0_train_3114_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 0, 3 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2072
split_0_train_2072
[ { "id": "split_0_train_2072_passage", "type": "progene_text", "text": [ "Additionally , KIR genes are polymorphic ." ], "offsets": [ [ 0, 42 ] ] } ]
[ { "id": "split_0_train_3115_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 15, 18 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2073
split_0_train_2073
[ { "id": "split_0_train_2073_passage", "type": "progene_text", "text": [ "To examine how allelic polymorphism diversifies KIR haplotypes with similar or identical combinations of KIR genes , we devised methods for discriminating alleles of KIR2DL1 , - 2DL3 , - 3DL1 , and - 3DL2 ." ], "offsets": [ [ 0, 206 ] ] } ]
[ { "id": "split_0_train_3116_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 48, 51 ] ], "normalized": [] }, { "id": "split_0_train_3117_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 105, 108 ] ], "normalized": [] }, { "id": "split_0_train_3118_entity", "type": "progene_text", "text": [ "KIR2DL1" ], "offsets": [ [ 166, 173 ] ], "normalized": [] }, { "id": "split_0_train_3119_entity", "type": "progene_text", "text": [ "2DL3" ], "offsets": [ [ 178, 182 ] ], "normalized": [] }, { "id": "split_0_train_3120_entity", "type": "progene_text", "text": [ "3DL1" ], "offsets": [ [ 187, 191 ] ], "normalized": [] }, { "id": "split_0_train_3121_entity", "type": "progene_text", "text": [ "3DL2" ], "offsets": [ [ 200, 204 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2074
split_0_train_2074
[ { "id": "split_0_train_2074_passage", "type": "progene_text", "text": [ "These methods were applied to 143 individuals from 34 families to define 98 independent KIR haplotypes at the allele level ." ], "offsets": [ [ 0, 124 ] ] } ]
[ { "id": "split_0_train_3122_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 88, 91 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2075
split_0_train_2075
[ { "id": "split_0_train_2075_passage", "type": "progene_text", "text": [ "Three novel 3DL2 alleles and a chimeric 3DL1 / 3DL2 sequence were also identified ." ], "offsets": [ [ 0, 83 ] ] } ]
[ { "id": "split_0_train_3123_entity", "type": "progene_text", "text": [ "3DL2" ], "offsets": [ [ 12, 16 ] ], "normalized": [] }, { "id": "split_0_train_3124_entity", "type": "progene_text", "text": [ "3DL1" ], "offsets": [ [ 40, 44 ] ], "normalized": [] }, { "id": "split_0_train_3125_entity", "type": "progene_text", "text": [ "3DL2" ], "offsets": [ [ 47, 51 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2076
split_0_train_2076
[ { "id": "split_0_train_2076_passage", "type": "progene_text", "text": [ "Among the A group haplotypes were 22 different combinations of 2DL1 , 2DL3 , 3DL1 , and 3DL2 alleles ." ], "offsets": [ [ 0, 102 ] ] } ]
[ { "id": "split_0_train_3126_entity", "type": "progene_text", "text": [ "2DL1" ], "offsets": [ [ 63, 67 ] ], "normalized": [] }, { "id": "split_0_train_3127_entity", "type": "progene_text", "text": [ "2DL3" ], "offsets": [ [ 70, 74 ] ], "normalized": [] }, { "id": "split_0_train_3128_entity", "type": "progene_text", "text": [ "3DL1" ], "offsets": [ [ 77, 81 ] ], "normalized": [] }, { "id": "split_0_train_3129_entity", "type": "progene_text", "text": [ "3DL2" ], "offsets": [ [ 88, 92 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2077
split_0_train_2077
[ { "id": "split_0_train_2077_passage", "type": "progene_text", "text": [ "Among the B group haplotypes that were unambiguously determined were 15 distinct haplotypes involving 9 different combinations of KIR genes ." ], "offsets": [ [ 0, 141 ] ] } ]
[ { "id": "split_0_train_3130_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 130, 133 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2078
split_0_train_2078
[ { "id": "split_0_train_2078_passage", "type": "progene_text", "text": [ "A and B haplotypes both exhibit strong linkage disequilibrium ( LD ) between 2DL1 and 2DL3 alleles , and between 3DL1 and 3DL2 alleles ." ], "offsets": [ [ 0, 136 ] ] } ]
[ { "id": "split_0_train_3131_entity", "type": "progene_text", "text": [ "2DL1" ], "offsets": [ [ 77, 81 ] ], "normalized": [] }, { "id": "split_0_train_3132_entity", "type": "progene_text", "text": [ "2DL3" ], "offsets": [ [ 86, 90 ] ], "normalized": [] }, { "id": "split_0_train_3133_entity", "type": "progene_text", "text": [ "3DL1" ], "offsets": [ [ 113, 117 ] ], "normalized": [] }, { "id": "split_0_train_3134_entity", "type": "progene_text", "text": [ "3DL2" ], "offsets": [ [ 122, 126 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2079
split_0_train_2079
[ { "id": "split_0_train_2079_passage", "type": "progene_text", "text": [ "In contrast , there was little LD between the 2DL1 / 2DL3 and 3DL1 / 3DL2 pairs that define the two halves of the KIR gene complex ." ], "offsets": [ [ 0, 132 ] ] } ]
[ { "id": "split_0_train_3135_entity", "type": "progene_text", "text": [ "2DL1" ], "offsets": [ [ 46, 50 ] ], "normalized": [] }, { "id": "split_0_train_3136_entity", "type": "progene_text", "text": [ "2DL3" ], "offsets": [ [ 53, 57 ] ], "normalized": [] }, { "id": "split_0_train_3137_entity", "type": "progene_text", "text": [ "3DL1" ], "offsets": [ [ 62, 66 ] ], "normalized": [] }, { "id": "split_0_train_3138_entity", "type": "progene_text", "text": [ "3DL2" ], "offsets": [ [ 69, 73 ] ], "normalized": [] }, { "id": "split_0_train_3139_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 114, 117 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2080
split_0_train_2080
[ { "id": "split_0_train_2080_passage", "type": "progene_text", "text": [ "The synergistic combination of allelic polymorphism and variable gene content individualize KIR genotype to an extent where unrelated individuals almost always have different KIR types ." ], "offsets": [ [ 0, 186 ] ] } ]
[ { "id": "split_0_train_3140_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 92, 95 ] ], "normalized": [] }, { "id": "split_0_train_3141_entity", "type": "progene_text", "text": [ "KIR" ], "offsets": [ [ 175, 178 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2081
split_0_train_2081
[ { "id": "split_0_train_2081_passage", "type": "progene_text", "text": [ "This level of diversity likely reflects strong pressure from pathogens on the human NK cell response ." ], "offsets": [ [ 0, 102 ] ] } ]
[]
[]
[]
[]
split_0_train_2082
split_0_train_2082
[ { "id": "split_0_train_2082_passage", "type": "progene_text", "text": [ "Human bronchial epithelium expresses interleukin-9 receptors and releases neutrophil chemotactic factor ." ], "offsets": [ [ 0, 105 ] ] } ]
[ { "id": "split_0_train_3142_entity", "type": "progene_text", "text": [ "interleukin-9 receptors" ], "offsets": [ [ 37, 60 ] ], "normalized": [] }, { "id": "split_0_train_3143_entity", "type": "progene_text", "text": [ "neutrophil chemotactic factor" ], "offsets": [ [ 74, 103 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2083
split_0_train_2083
[ { "id": "split_0_train_2083_passage", "type": "progene_text", "text": [ "Growing evidence obtained from human genomic analysis and antigen - challenged transgenic mice suggests that interleukin-9 ( IL-9 ) is a candidate factor in immunoglobulin E ( IgE ) production and thus is thought to be associated with bronchial inflammation and bronchial hyperresponsiveness ( BHR ) ." ], "offsets": [ [ 0, 301 ] ] } ]
[ { "id": "split_0_train_3144_entity", "type": "progene_text", "text": [ "interleukin-9" ], "offsets": [ [ 109, 122 ] ], "normalized": [] }, { "id": "split_0_train_3145_entity", "type": "progene_text", "text": [ "IL-9" ], "offsets": [ [ 125, 129 ] ], "normalized": [] }, { "id": "split_0_train_3146_entity", "type": "progene_text", "text": [ "immunoglobulin E" ], "offsets": [ [ 157, 173 ] ], "normalized": [] }, { "id": "split_0_train_3147_entity", "type": "progene_text", "text": [ "IgE" ], "offsets": [ [ 176, 179 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2084
split_0_train_2084
[ { "id": "split_0_train_2084_passage", "type": "progene_text", "text": [ "To evaluate the expression of the IL-9 receptor and its effect on the IL-9 human bronchial cell line BEAS-2B cells , reverse transcriptase - polymerase chain reaction ( RT - PCR ) , immunohistochemical investigation , and chemotaxis assay were performed ." ], "offsets": [ [ 0, 255 ] ] } ]
[ { "id": "split_0_train_3148_entity", "type": "progene_text", "text": [ "IL-9 receptor" ], "offsets": [ [ 34, 47 ] ], "normalized": [] }, { "id": "split_0_train_3149_entity", "type": "progene_text", "text": [ "IL-9" ], "offsets": [ [ 70, 74 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2085
split_0_train_2085
[ { "id": "split_0_train_2085_passage", "type": "progene_text", "text": [ "The components of the IL-9 receptor , consisting of IL-9 receptor alpha ( CD129 ) and IL-2 receptory ((1) 132 ) , were expressed on BEAS-2B cells as determined by RT - PCR and flow cytometry ." ], "offsets": [ [ 0, 192 ] ] } ]
[ { "id": "split_0_train_3150_entity", "type": "progene_text", "text": [ "IL-9 receptor" ], "offsets": [ [ 22, 35 ] ], "normalized": [] }, { "id": "split_0_train_3151_entity", "type": "progene_text", "text": [ "IL-9 receptor alpha" ], "offsets": [ [ 52, 71 ] ], "normalized": [] }, { "id": "split_0_train_3152_entity", "type": "progene_text", "text": [ "CD129" ], "offsets": [ [ 74, 79 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2086
split_0_train_2086
[ { "id": "split_0_train_2086_passage", "type": "progene_text", "text": [ "BEAS-2B cells exposed to IL-9 released neutrophil chemotactic activity ( NCA ) in a time - and dose - dependent manner , and the presence of granulocyte colony - stimulating factor ( G-CSF ) was also detected ." ], "offsets": [ [ 0, 210 ] ] } ]
[ { "id": "split_0_train_3153_entity", "type": "progene_text", "text": [ "IL-9" ], "offsets": [ [ 25, 29 ] ], "normalized": [] }, { "id": "split_0_train_3154_entity", "type": "progene_text", "text": [ "granulocyte colony - stimulating factor" ], "offsets": [ [ 141, 180 ] ], "normalized": [] }, { "id": "split_0_train_3155_entity", "type": "progene_text", "text": [ "G-CSF" ], "offsets": [ [ 183, 188 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2087
split_0_train_2087
[ { "id": "split_0_train_2087_passage", "type": "progene_text", "text": [ "This factor is primarily involved in NCA for the measurement of cytokines and in the inhibition assay of neutrophil chemotaxis ." ], "offsets": [ [ 0, 128 ] ] } ]
[ { "id": "split_0_train_3156_entity", "type": "progene_text", "text": [ "cytokines" ], "offsets": [ [ 64, 73 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2088
split_0_train_2088
[ { "id": "split_0_train_2088_passage", "type": "progene_text", "text": [ "These findings suggest that bronchial epithelial cells may express IL-9 receptors , and that IL-9 may induce airway inflammation through the release of G-CSF from bronchial epithelial cells ." ], "offsets": [ [ 0, 191 ] ] } ]
[ { "id": "split_0_train_3157_entity", "type": "progene_text", "text": [ "IL-9 receptors" ], "offsets": [ [ 67, 81 ] ], "normalized": [] }, { "id": "split_0_train_3158_entity", "type": "progene_text", "text": [ "IL-9" ], "offsets": [ [ 93, 97 ] ], "normalized": [] }, { "id": "split_0_train_3159_entity", "type": "progene_text", "text": [ "G-CSF" ], "offsets": [ [ 152, 157 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2089
split_0_train_2089
[ { "id": "split_0_train_2089_passage", "type": "progene_text", "text": [ "RasGRP4 is a novel Ras activator isolated from acute myeloid leukemia ." ], "offsets": [ [ 0, 71 ] ] } ]
[ { "id": "split_0_train_3160_entity", "type": "progene_text", "text": [ "RasGRP4" ], "offsets": [ [ 0, 7 ] ], "normalized": [] }, { "id": "split_0_train_3161_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 19, 22 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2090
split_0_train_2090
[ { "id": "split_0_train_2090_passage", "type": "progene_text", "text": [ "Although a number of genetic defects are commonly associated with acute myeloid leukemia ( AML ) , a large percentage of AML cases are cytogenetically normal ." ], "offsets": [ [ 0, 159 ] ] } ]
[]
[]
[]
[]
split_0_train_2091
split_0_train_2091
[ { "id": "split_0_train_2091_passage", "type": "progene_text", "text": [ "This suggests a functional screen for transforming genes is required to identify genetic mutations that are missed by cytogenetic analyses ." ], "offsets": [ [ 0, 140 ] ] } ]
[]
[]
[]
[]
split_0_train_2092
split_0_train_2092
[ { "id": "split_0_train_2092_passage", "type": "progene_text", "text": [ "We utilized a retrovirus - based cDNA expression system to identify transforming genes expressed in cytogenetically normal AML patients ." ], "offsets": [ [ 0, 137 ] ] } ]
[]
[]
[]
[]
split_0_train_2093
split_0_train_2093
[ { "id": "split_0_train_2093_passage", "type": "progene_text", "text": [ "We identified a new member of the Ras guanyl nucleotide - releasing protein ( RasGRP ) family of Ras guanine nucleotide exchange factors , designating it RasGRP4 ." ], "offsets": [ [ 0, 163 ] ] } ]
[ { "id": "split_0_train_3162_entity", "type": "progene_text", "text": [ "Ras guanyl nucleotide - releasing protein ( RasGRP ) family" ], "offsets": [ [ 34, 93 ] ], "normalized": [] }, { "id": "split_0_train_3163_entity", "type": "progene_text", "text": [ "Ras guanine nucleotide exchange factors" ], "offsets": [ [ 97, 136 ] ], "normalized": [] }, { "id": "split_0_train_3164_entity", "type": "progene_text", "text": [ "RasGRP4" ], "offsets": [ [ 154, 161 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2094
split_0_train_2094
[ { "id": "split_0_train_2094_passage", "type": "progene_text", "text": [ "Subsequently , cDNA sequences encoding rodent and human RasGRP4 proteins were deposited in GenBank ." ], "offsets": [ [ 0, 100 ] ] } ]
[ { "id": "split_0_train_3165_entity", "type": "progene_text", "text": [ "RasGRP4" ], "offsets": [ [ 56, 63 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2095
split_0_train_2095
[ { "id": "split_0_train_2095_passage", "type": "progene_text", "text": [ "RasGRP4 contains the same protein domain structure as other members of the RasGRP family , including a Ras exchange motif , a CDC25 homology domain , a C1 / diacyglycerol - binding domain , and putative calcium - binding EF hands ." ], "offsets": [ [ 0, 231 ] ] } ]
[ { "id": "split_0_train_3166_entity", "type": "progene_text", "text": [ "RasGRP4" ], "offsets": [ [ 0, 7 ] ], "normalized": [] }, { "id": "split_0_train_3167_entity", "type": "progene_text", "text": [ "RasGRP family" ], "offsets": [ [ 75, 88 ] ], "normalized": [] }, { "id": "split_0_train_3168_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 103, 106 ] ], "normalized": [] }, { "id": "split_0_train_3169_entity", "type": "progene_text", "text": [ "CDC25" ], "offsets": [ [ 126, 131 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2096
split_0_train_2096
[ { "id": "split_0_train_2096_passage", "type": "progene_text", "text": [ "We show that expression of RasGRP4 induces anchorage - independent growth of Rat1 fibroblasts ." ], "offsets": [ [ 0, 95 ] ] } ]
[ { "id": "split_0_train_3170_entity", "type": "progene_text", "text": [ "RasGRP4" ], "offsets": [ [ 27, 34 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2097
split_0_train_2097
[ { "id": "split_0_train_2097_passage", "type": "progene_text", "text": [ "RasGRP4 is a Ras - specific activator and , interestingly , is highly expressed in peripheral blood leukocytes and myeloid cell lines ." ], "offsets": [ [ 0, 135 ] ] } ]
[ { "id": "split_0_train_3171_entity", "type": "progene_text", "text": [ "RasGRP4" ], "offsets": [ [ 0, 7 ] ], "normalized": [] }, { "id": "split_0_train_3172_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 13, 16 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2098
split_0_train_2098
[ { "id": "split_0_train_2098_passage", "type": "progene_text", "text": [ "Unlike other RasGRP proteins , RasGRP4 is not expressed in the brain or in lymphoid cells ." ], "offsets": [ [ 0, 91 ] ] } ]
[ { "id": "split_0_train_3173_entity", "type": "progene_text", "text": [ "RasGRP" ], "offsets": [ [ 13, 19 ] ], "normalized": [] }, { "id": "split_0_train_3174_entity", "type": "progene_text", "text": [ "RasGRP4" ], "offsets": [ [ 31, 38 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_2099
split_0_train_2099
[ { "id": "split_0_train_2099_passage", "type": "progene_text", "text": [ "We demonstrated that 32D myeloid cells expressing RasGRP4 have elevated levels of activated Ras compared with control cells , and phorbol 12-myristate 13-acetate ( PMA ) treatment greatly enhanced Ras activation ." ], "offsets": [ [ 0, 213 ] ] } ]
[ { "id": "split_0_train_3175_entity", "type": "progene_text", "text": [ "RasGRP4" ], "offsets": [ [ 50, 57 ] ], "normalized": [] }, { "id": "split_0_train_3176_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 92, 95 ] ], "normalized": [] }, { "id": "split_0_train_3177_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 197, 200 ] ], "normalized": [] } ]
[]
[]
[]