id
stringlengths
15
19
document_id
stringlengths
15
19
passages
list
entities
list
events
list
coreferences
list
relations
list
split_0_train_28100
split_0_train_28100
[ { "id": "split_0_train_28100_passage", "type": "progene_text", "text": [ "The differences between smoking groups were statistically significant ( p < 0.05 ) ." ], "offsets": [ [ 0, 84 ] ] } ]
[]
[]
[]
[]
split_0_train_28101
split_0_train_28101
[ { "id": "split_0_train_28101_passage", "type": "progene_text", "text": [ "The influence of smoking was independent of age , plaque and gingival inflammation ." ], "offsets": [ [ 0, 84 ] ] } ]
[]
[]
[]
[]
split_0_train_28102
split_0_train_28102
[ { "id": "split_0_train_28102_passage", "type": "progene_text", "text": [ "In former smokers who had stopped smoking in the distant past , the occurrence and severity of supragingival calculus were very close to those in individuals who had never smoked , suggesting that the effect of smoking is reversible ." ], "offsets": [ [ 0, 234 ] ] } ]
[]
[]
[]
[]
split_0_train_28103
split_0_train_28103
[ { "id": "split_0_train_28103_passage", "type": "progene_text", "text": [ "The observations indicate a strong and independent association between tobacco smoking and supragingival calculus deposition ." ], "offsets": [ [ 0, 126 ] ] } ]
[]
[]
[]
[]
split_0_train_28104
split_0_train_28104
[ { "id": "split_0_train_28104_passage", "type": "progene_text", "text": [ "The avoidance of excess deposition of supragingival calculus , therefore , is a further argument for reducing smoking in the population ." ], "offsets": [ [ 0, 137 ] ] } ]
[]
[]
[]
[]
split_0_train_28105
split_0_train_28105
[ { "id": "split_0_train_28105_passage", "type": "progene_text", "text": [ "Active - site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis ." ], "offsets": [ [ 0, 116 ] ] } ]
[ { "id": "split_0_train_45553_entity", "type": "progene_text", "text": [ "Xrn1p" ], "offsets": [ [ 31, 36 ] ], "normalized": [] }, { "id": "split_0_train_45554_entity", "type": "progene_text", "text": [ "exoribonuclease" ], "offsets": [ [ 37, 52 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28106
split_0_train_28106
[ { "id": "split_0_train_28106_passage", "type": "progene_text", "text": [ "Xrn1p of Saccharomyces cerevisiae is a major cytoplasmic RNA turnover exonuclease which is evolutionarily conserved from yeasts to mammals ." ], "offsets": [ [ 0, 140 ] ] } ]
[ { "id": "split_0_train_45555_entity", "type": "progene_text", "text": [ "Xrn1p" ], "offsets": [ [ 0, 5 ] ], "normalized": [] }, { "id": "split_0_train_45556_entity", "type": "progene_text", "text": [ "exonuclease" ], "offsets": [ [ 70, 81 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28107
split_0_train_28107
[ { "id": "split_0_train_28107_passage", "type": "progene_text", "text": [ "Deletion of the XRN1 gene causes pleiotropic phenotypes , which have been interpreted as indirect consequences of the RNA turnover defect ." ], "offsets": [ [ 0, 139 ] ] } ]
[ { "id": "split_0_train_45557_entity", "type": "progene_text", "text": [ "XRN1" ], "offsets": [ [ 16, 20 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28108
split_0_train_28108
[ { "id": "split_0_train_28108_passage", "type": "progene_text", "text": [ "By sequence comparisons , we have identified three loosely defined , common 5'-3' exonuclease motifs ." ], "offsets": [ [ 0, 102 ] ] } ]
[ { "id": "split_0_train_45558_entity", "type": "progene_text", "text": [ "5'-3' exonuclease" ], "offsets": [ [ 76, 93 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28109
split_0_train_28109
[ { "id": "split_0_train_28109_passage", "type": "progene_text", "text": [ "The significance of motif II has been confirmed by mutant analysis with Xrn1p ." ], "offsets": [ [ 0, 79 ] ] } ]
[ { "id": "split_0_train_45559_entity", "type": "progene_text", "text": [ "Xrn1p" ], "offsets": [ [ 72, 77 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28110
split_0_train_28110
[ { "id": "split_0_train_28110_passage", "type": "progene_text", "text": [ "The amino acid changes D206A and D208A abolish singly or in combination the exonuclease activity in vivo ." ], "offsets": [ [ 0, 106 ] ] } ]
[ { "id": "split_0_train_45560_entity", "type": "progene_text", "text": [ "exonuclease" ], "offsets": [ [ 76, 87 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28111
split_0_train_28111
[ { "id": "split_0_train_28111_passage", "type": "progene_text", "text": [ "These mutations show separation of function ." ], "offsets": [ [ 0, 45 ] ] } ]
[]
[]
[]
[]
split_0_train_28112
split_0_train_28112
[ { "id": "split_0_train_28112_passage", "type": "progene_text", "text": [ "They cause identical phenotypes to that of xrn1Delta in vegetative cells but do not exhibit the severe meiotic arrest and the spore lethality phenotype typical for the deletion ." ], "offsets": [ [ 0, 178 ] ] } ]
[ { "id": "split_0_train_45561_entity", "type": "progene_text", "text": [ "xrn1Delta" ], "offsets": [ [ 43, 52 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28113
split_0_train_28113
[ { "id": "split_0_train_28113_passage", "type": "progene_text", "text": [ "In addition , xrn1 - D208A does not cause the severe reduction in meiotic popout recombination in a double mutant with dmc1 as does xrn1Delta ." ], "offsets": [ [ 0, 143 ] ] } ]
[ { "id": "split_0_train_45562_entity", "type": "progene_text", "text": [ "xrn1" ], "offsets": [ [ 14, 18 ] ], "normalized": [] }, { "id": "split_0_train_45563_entity", "type": "progene_text", "text": [ "dmc1" ], "offsets": [ [ 119, 123 ] ], "normalized": [] }, { "id": "split_0_train_45564_entity", "type": "progene_text", "text": [ "xrn1Delta" ], "offsets": [ [ 132, 141 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28114
split_0_train_28114
[ { "id": "split_0_train_28114_passage", "type": "progene_text", "text": [ "Biochemical analysis of the DNA binding , exonuclease , and homologous pairing activity of purified mutant enzyme demonstrated the specific loss of exonuclease activity ." ], "offsets": [ [ 0, 170 ] ] } ]
[ { "id": "split_0_train_45565_entity", "type": "progene_text", "text": [ "exonuclease" ], "offsets": [ [ 42, 53 ] ], "normalized": [] }, { "id": "split_0_train_45566_entity", "type": "progene_text", "text": [ "exonuclease" ], "offsets": [ [ 148, 159 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28115
split_0_train_28115
[ { "id": "split_0_train_28115_passage", "type": "progene_text", "text": [ "However , the mutant enzyme is competent to promote in vitro assembly of tubulin into microtubules ." ], "offsets": [ [ 0, 100 ] ] } ]
[ { "id": "split_0_train_45567_entity", "type": "progene_text", "text": [ "tubulin" ], "offsets": [ [ 73, 80 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28116
split_0_train_28116
[ { "id": "split_0_train_28116_passage", "type": "progene_text", "text": [ "These results define a separable and specific function of Xrn1p in meiosis which appears unrelated to its RNA turnover function in vegetative cells ." ], "offsets": [ [ 0, 149 ] ] } ]
[ { "id": "split_0_train_45568_entity", "type": "progene_text", "text": [ "Xrn1p" ], "offsets": [ [ 58, 63 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28117
split_0_train_28117
[ { "id": "split_0_train_28117_passage", "type": "progene_text", "text": [ "Effect of co - activation of tongue protrudor and retractor muscles on tongue movements and pharyngeal airflow mechanics in the rat ." ], "offsets": [ [ 0, 133 ] ] } ]
[]
[]
[]
[]
split_0_train_28118
split_0_train_28118
[ { "id": "split_0_train_28118_passage", "type": "progene_text", "text": [ "1 ." ], "offsets": [ [ 0, 3 ] ] } ]
[]
[]
[]
[]
split_0_train_28119
split_0_train_28119
[ { "id": "split_0_train_28119_passage", "type": "progene_text", "text": [ "The purpose of these experiments was to examine the mechanisms by which either co - activation or independent activation of tongue protrudor and retractor muscles influence upper airway flow mechanics ." ], "offsets": [ [ 0, 202 ] ] } ]
[]
[]
[]
[]
split_0_train_28120
split_0_train_28120
[ { "id": "split_0_train_28120_passage", "type": "progene_text", "text": [ "We studied the influence of selective hypoglossal ( XIIth ) nerve stimulation on tongue movements and flow mechanics in anaesthetized rats that were prepared with an isolated upper airway ." ], "offsets": [ [ 0, 189 ] ] } ]
[]
[]
[]
[]
split_0_train_28121
split_0_train_28121
[ { "id": "split_0_train_28121_passage", "type": "progene_text", "text": [ "In this preparation , both nasal and oral flow pathways are available ." ], "offsets": [ [ 0, 71 ] ] } ]
[]
[]
[]
[]
split_0_train_28122
split_0_train_28122
[ { "id": "split_0_train_28122_passage", "type": "progene_text", "text": [ "2 ." ], "offsets": [ [ 0, 3 ] ] } ]
[]
[]
[]
[]
split_0_train_28123
split_0_train_28123
[ { "id": "split_0_train_28123_passage", "type": "progene_text", "text": [ "Inspiratory flow limitation was achieved by rapidly lowering hypopharyngeal pressure ( Php ) with a vacuum pump , and the maximal rate of flow ( VI,max) and the nasopharyngeal pressure associated with flow limitation ( Pcrit ) were measured ." ], "offsets": [ [ 0, 242 ] ] } ]
[]
[]
[]
[]
split_0_train_28124
split_0_train_28124
[ { "id": "split_0_train_28124_passage", "type": "progene_text", "text": [ "These experimental trials were repeated while nerve branches innervating tongue protrudor ( genioglossus ; medial XIIth nerve branch ) and retractor ( hyoglossus and styloglossus ; lateral XIIth nerve branch ) muscles were stimulated either simultaneously or independently at frequencies ranging from 20-100 Hz ." ], "offsets": [ [ 0, 312 ] ] } ]
[]
[]
[]
[]
split_0_train_28125
split_0_train_28125
[ { "id": "split_0_train_28125_passage", "type": "progene_text", "text": [ "Co - activating the protrudor and retractor muscles produced tongue retraction , whereas independently activating the genioglossus resulted in tongue protrusion ." ], "offsets": [ [ 0, 162 ] ] } ]
[]
[]
[]
[]
split_0_train_28126
split_0_train_28126
[ { "id": "split_0_train_28126_passage", "type": "progene_text", "text": [ "3 ." ], "offsets": [ [ 0, 3 ] ] } ]
[]
[]
[]
[]
split_0_train_28127
split_0_train_28127
[ { "id": "split_0_train_28127_passage", "type": "progene_text", "text": [ "Co - activation of tongue protrudor and retractor muscles increased VI , max ( peak increase 44 % , P < 0.05 ) , made Pcrit more negative ( peak decrease of 44 % , P < 0.05 ) , and did not change upstream nasopharyngeal resistance ( Rn ) ." ], "offsets": [ [ 0, 239 ] ] } ]
[]
[]
[]
[]
split_0_train_28128
split_0_train_28128
[ { "id": "split_0_train_28128_passage", "type": "progene_text", "text": [ "Independent protrudor muscle stimulation increased VI,max ( peak increase 61 % , P < 0.05 ) , did not change Pcrit , and decreased Rn ( peak decrease of 41 % , P < 0.05 ) ." ], "offsets": [ [ 0, 172 ] ] } ]
[]
[]
[]
[]
split_0_train_28129
split_0_train_28129
[ { "id": "split_0_train_28129_passage", "type": "progene_text", "text": [ "Independent retractor muscle stimulation did not significantly alter flow mechanics ." ], "offsets": [ [ 0, 85 ] ] } ]
[]
[]
[]
[]
split_0_train_28130
split_0_train_28130
[ { "id": "split_0_train_28130_passage", "type": "progene_text", "text": [ "Changes in Pcrit and VI , max at all stimulation frequencies were significantly correlated during co - activation of protrudor and retractor muscles ( r2 = 0.63 , P < 0.05 ) , but not during independent protrudor muscle stimulation ( r2 = 0.09 ) ." ], "offsets": [ [ 0, 247 ] ] } ]
[]
[]
[]
[]
split_0_train_28131
split_0_train_28131
[ { "id": "split_0_train_28131_passage", "type": "progene_text", "text": [ "4 ." ], "offsets": [ [ 0, 3 ] ] } ]
[]
[]
[]
[]
split_0_train_28132
split_0_train_28132
[ { "id": "split_0_train_28132_passage", "type": "progene_text", "text": [ "These findings indicate that either co - activation of protrudor and retractor muscles or independent activation of protrudor muscles can improve upper airway flow mechanics , although the underlying mechanisms are different ." ], "offsets": [ [ 0, 226 ] ] } ]
[]
[]
[]
[]
split_0_train_28133
split_0_train_28133
[ { "id": "split_0_train_28133_passage", "type": "progene_text", "text": [ "We suggest that co - activation decreases pharyngeal collapsibility but does not dilate the pharyngeal airway ." ], "offsets": [ [ 0, 111 ] ] } ]
[]
[]
[]
[]
split_0_train_28134
split_0_train_28134
[ { "id": "split_0_train_28134_passage", "type": "progene_text", "text": [ "In contrast , unopposed tongue protrusion dilates the oropharynx , but has a minimal effect on pharyngeal airway collapsibility ." ], "offsets": [ [ 0, 129 ] ] } ]
[]
[]
[]
[]
split_0_train_28135
split_0_train_28135
[ { "id": "split_0_train_28135_passage", "type": "progene_text", "text": [ "[ Micturition syncope : a peculiar cause of diagnostic doubt ]" ], "offsets": [ [ 0, 62 ] ] } ]
[]
[]
[]
[]
split_0_train_28136
split_0_train_28136
[ { "id": "split_0_train_28136_passage", "type": "progene_text", "text": [ "A 22 - year old healthy man lost consciousness during urination in standing after night 's sleep ." ], "offsets": [ [ 0, 98 ] ] } ]
[]
[]
[]
[]
split_0_train_28137
split_0_train_28137
[ { "id": "split_0_train_28137_passage", "type": "progene_text", "text": [ "He fell down to the floor without convulsions ." ], "offsets": [ [ 0, 47 ] ] } ]
[]
[]
[]
[]
split_0_train_28138
split_0_train_28138
[ { "id": "split_0_train_28138_passage", "type": "progene_text", "text": [ "A physician present by chance found on bradycardia ." ], "offsets": [ [ 0, 52 ] ] } ]
[]
[]
[]
[]
split_0_train_28139
split_0_train_28139
[ { "id": "split_0_train_28139_passage", "type": "progene_text", "text": [ "A 24 - hours ECG monitoring disclosed an almost permanent sinus bradycardia ( 50 - 55 per minute ) ." ], "offsets": [ [ 0, 100 ] ] } ]
[]
[]
[]
[]
split_0_train_28140
split_0_train_28140
[ { "id": "split_0_train_28140_passage", "type": "progene_text", "text": [ "CT showed an arachnoid cyst at the base of the left temporal lobe without mass effect ." ], "offsets": [ [ 0, 87 ] ] } ]
[]
[]
[]
[]
split_0_train_28141
split_0_train_28141
[ { "id": "split_0_train_28141_passage", "type": "progene_text", "text": [ "In EEG only single slow waves above left temporal region were revealed ." ], "offsets": [ [ 0, 72 ] ] } ]
[]
[]
[]
[]
split_0_train_28142
split_0_train_28142
[ { "id": "split_0_train_28142_passage", "type": "progene_text", "text": [ "It seems , the cyst was found by chance and had no any pathogenetic relevance to the syncope ." ], "offsets": [ [ 0, 94 ] ] } ]
[]
[]
[]
[]
split_0_train_28143
split_0_train_28143
[ { "id": "split_0_train_28143_passage", "type": "progene_text", "text": [ "However , the presence of a structural change of the brain had not been described in micturition syncope till now and this makes careful differentiation from epileptic seizure essential ." ], "offsets": [ [ 0, 187 ] ] } ]
[]
[]
[]
[]
split_0_train_28144
split_0_train_28144
[ { "id": "split_0_train_28144_passage", "type": "progene_text", "text": [ "During the following 2 years the patient was well and the episode did not recur again ." ], "offsets": [ [ 0, 87 ] ] } ]
[]
[]
[]
[]
split_0_train_28145
split_0_train_28145
[ { "id": "split_0_train_28145_passage", "type": "progene_text", "text": [ "The control CT and EEG remained unchanged ." ], "offsets": [ [ 0, 43 ] ] } ]
[]
[]
[]
[]
split_0_train_28146
split_0_train_28146
[ { "id": "split_0_train_28146_passage", "type": "progene_text", "text": [ "Data from literature about syncope in association with micturition also in older persons , in majority women with chronic illnesses , are cited ." ], "offsets": [ [ 0, 145 ] ] } ]
[]
[]
[]
[]
split_0_train_28147
split_0_train_28147
[ { "id": "split_0_train_28147_passage", "type": "progene_text", "text": [ "A novel group - II intron in the cox1 gene of the fission yeast Schizosaccharomyces pombe is inserted in the same codon as the mobile group - II intron aI2 in the Saccharomyces cerevisiae cox1 homologue ." ], "offsets": [ [ 0, 204 ] ] } ]
[ { "id": "split_0_train_45569_entity", "type": "progene_text", "text": [ "cox1" ], "offsets": [ [ 33, 37 ] ], "normalized": [] }, { "id": "split_0_train_45570_entity", "type": "progene_text", "text": [ "cox1" ], "offsets": [ [ 188, 192 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28148
split_0_train_28148
[ { "id": "split_0_train_28148_passage", "type": "progene_text", "text": [ "We describe herein a large group - II intron which is inserted in the mitochondrial cox1 gene of the Schizosaccharomyces pombe strain EF2 ." ], "offsets": [ [ 0, 139 ] ] } ]
[ { "id": "split_0_train_45571_entity", "type": "progene_text", "text": [ "cox1" ], "offsets": [ [ 84, 88 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28149
split_0_train_28149
[ { "id": "split_0_train_28149_passage", "type": "progene_text", "text": [ "The intron RNA consists of 2492 nucleotides which can be folded into a secondary structure with all the expected sequence motifs of subgroup - IIA1 introns ( Michel et al. 1989 ) ." ], "offsets": [ [ 0, 180 ] ] } ]
[]
[]
[]
[]
split_0_train_28150
split_0_train_28150
[ { "id": "split_0_train_28150_passage", "type": "progene_text", "text": [ "Determination of the exact splice point revealed that the intron is inserted in the same codon , but 1 bp downstream , as the mobile intron aI2 in the Saccharomyces cerevisiae cox1 homologue ." ], "offsets": [ [ 0, 192 ] ] } ]
[ { "id": "split_0_train_45572_entity", "type": "progene_text", "text": [ "cox1" ], "offsets": [ [ 176, 180 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28151
split_0_train_28151
[ { "id": "split_0_train_28151_passage", "type": "progene_text", "text": [ "A total of nine nucleotide changes was observed around the insertion site of the intron in the cox1 gene of strain EF2 compared with the reference strain ade7-50h(-) ." ], "offsets": [ [ 0, 167 ] ] } ]
[ { "id": "split_0_train_45573_entity", "type": "progene_text", "text": [ "cox1" ], "offsets": [ [ 95, 99 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28152
split_0_train_28152
[ { "id": "split_0_train_28152_passage", "type": "progene_text", "text": [ "Seven of these changes are clustered within the 51 bp upstream of the splice point ." ], "offsets": [ [ 0, 84 ] ] } ]
[]
[]
[]
[]
split_0_train_28153
split_0_train_28153
[ { "id": "split_0_train_28153_passage", "type": "progene_text", "text": [ "Only one sequence deviation was found in the downstream exon ." ], "offsets": [ [ 0, 62 ] ] } ]
[]
[]
[]
[]
split_0_train_28154
split_0_train_28154
[ { "id": "split_0_train_28154_passage", "type": "progene_text", "text": [ "The intron is capable of splicing despite the fact that both the EBS1 / IBS1 and the EBS2 / IBS2 sequence motifs , thought to be necessary for correct splicing , extend over 5 instead of 6 bp ." ], "offsets": [ [ 0, 193 ] ] } ]
[]
[]
[]
[]
split_0_train_28155
split_0_train_28155
[ { "id": "split_0_train_28155_passage", "type": "progene_text", "text": [ "The maturase , endonuclease and reverse transcriptase domains of the putative protein encoded by the newly described S. pombe group - II intron were not closer to those encoded by the other two , cobI and cox2I , S. pombe group - II introns than to the group-II intron - encoded proteins in Allomyces , Marchantia , Podospora and Saccharomyces ." ], "offsets": [ [ 0, 345 ] ] } ]
[ { "id": "split_0_train_45574_entity", "type": "progene_text", "text": [ "maturase" ], "offsets": [ [ 4, 12 ] ], "normalized": [] }, { "id": "split_0_train_45575_entity", "type": "progene_text", "text": [ "endonuclease" ], "offsets": [ [ 15, 27 ] ], "normalized": [] }, { "id": "split_0_train_45576_entity", "type": "progene_text", "text": [ "reverse transcriptase" ], "offsets": [ [ 32, 53 ] ], "normalized": [] }, { "id": "split_0_train_45577_entity", "type": "progene_text", "text": [ "cobI" ], "offsets": [ [ 196, 200 ] ], "normalized": [] }, { "id": "split_0_train_45578_entity", "type": "progene_text", "text": [ "cox2I" ], "offsets": [ [ 205, 210 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28156
split_0_train_28156
[ { "id": "split_0_train_28156_passage", "type": "progene_text", "text": [ "Cytoskeletal reorganization leads to induction of the urokinase - type plasminogen activator gene by activating FAK and Src and subsequently the Ras / Erk signaling pathway ." ], "offsets": [ [ 0, 174 ] ] } ]
[ { "id": "split_0_train_45579_entity", "type": "progene_text", "text": [ "urokinase - type plasminogen activator" ], "offsets": [ [ 54, 92 ] ], "normalized": [] }, { "id": "split_0_train_45580_entity", "type": "progene_text", "text": [ "FAK" ], "offsets": [ [ 112, 115 ] ], "normalized": [] }, { "id": "split_0_train_45581_entity", "type": "progene_text", "text": [ "Src" ], "offsets": [ [ 120, 123 ] ], "normalized": [] }, { "id": "split_0_train_45582_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 145, 148 ] ], "normalized": [] }, { "id": "split_0_train_45583_entity", "type": "progene_text", "text": [ "Erk" ], "offsets": [ [ 151, 154 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28157
split_0_train_28157
[ { "id": "split_0_train_28157_passage", "type": "progene_text", "text": [ "Previously , we showed that cytoskeletal reorganization ( CSR ) induced by colchicine or cyochalasins leads to activation of the urokinase - type plasminogen activator ( uPA ) gene in LLC - PK ( 1 ) cells via the Ras / Erk signaling pathway [ Irigoyen et al. ( 1997 ) J. Biol. Chem. 272 , 1904 ] ." ], "offsets": [ [ 0, 297 ] ] } ]
[ { "id": "split_0_train_45584_entity", "type": "progene_text", "text": [ "urokinase - type plasminogen activator" ], "offsets": [ [ 129, 167 ] ], "normalized": [] }, { "id": "split_0_train_45585_entity", "type": "progene_text", "text": [ "uPA" ], "offsets": [ [ 170, 173 ] ], "normalized": [] }, { "id": "split_0_train_45586_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 213, 216 ] ], "normalized": [] }, { "id": "split_0_train_45587_entity", "type": "progene_text", "text": [ "Erk" ], "offsets": [ [ 219, 222 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28158
split_0_train_28158
[ { "id": "split_0_train_28158_passage", "type": "progene_text", "text": [ "It remained to be seen how CSR activates Ras / Erk signaling ." ], "offsets": [ [ 0, 62 ] ] } ]
[ { "id": "split_0_train_45588_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 41, 44 ] ], "normalized": [] }, { "id": "split_0_train_45589_entity", "type": "progene_text", "text": [ "Erk" ], "offsets": [ [ 47, 50 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28159
split_0_train_28159
[ { "id": "split_0_train_28159_passage", "type": "progene_text", "text": [ "Changes in cell morphology triggered by extracellular signals are often mediated by integrin - associated proteins , such as focal adhesion kinase ( FAK ) and Src ." ], "offsets": [ [ 0, 164 ] ] } ]
[ { "id": "split_0_train_45590_entity", "type": "progene_text", "text": [ "integrin" ], "offsets": [ [ 84, 92 ] ], "normalized": [] }, { "id": "split_0_train_45591_entity", "type": "progene_text", "text": [ "focal adhesion kinase" ], "offsets": [ [ 125, 146 ] ], "normalized": [] }, { "id": "split_0_train_45592_entity", "type": "progene_text", "text": [ "FAK" ], "offsets": [ [ 149, 152 ] ], "normalized": [] }, { "id": "split_0_train_45593_entity", "type": "progene_text", "text": [ "Src" ], "offsets": [ [ 159, 162 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28160
split_0_train_28160
[ { "id": "split_0_train_28160_passage", "type": "progene_text", "text": [ "We found that CSR induced the activation of FAK and Src and the association of FAK and Shc , a signaling molecule linking growth factor receptor tyrosine kinase and Grb2 ." ], "offsets": [ [ 0, 171 ] ] } ]
[ { "id": "split_0_train_45594_entity", "type": "progene_text", "text": [ "FAK" ], "offsets": [ [ 44, 47 ] ], "normalized": [] }, { "id": "split_0_train_45595_entity", "type": "progene_text", "text": [ "Src" ], "offsets": [ [ 52, 55 ] ], "normalized": [] }, { "id": "split_0_train_45596_entity", "type": "progene_text", "text": [ "FAK" ], "offsets": [ [ 79, 82 ] ], "normalized": [] }, { "id": "split_0_train_45597_entity", "type": "progene_text", "text": [ "Shc" ], "offsets": [ [ 87, 90 ] ], "normalized": [] }, { "id": "split_0_train_45598_entity", "type": "progene_text", "text": [ "growth factor receptor tyrosine kinase" ], "offsets": [ [ 122, 160 ] ], "normalized": [] }, { "id": "split_0_train_45599_entity", "type": "progene_text", "text": [ "Grb2" ], "offsets": [ [ 165, 169 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28161
split_0_train_28161
[ { "id": "split_0_train_28161_passage", "type": "progene_text", "text": [ "Furthermore , expression of either FRNK , a kinase - minus FAK - like molecule acting as a dominant negative FAK , or a dominant negative Src suppressed CSR - induced uPA gene promoter activation ." ], "offsets": [ [ 0, 197 ] ] } ]
[ { "id": "split_0_train_45600_entity", "type": "progene_text", "text": [ "FRNK" ], "offsets": [ [ 35, 39 ] ], "normalized": [] }, { "id": "split_0_train_45601_entity", "type": "progene_text", "text": [ "kinase" ], "offsets": [ [ 44, 50 ] ], "normalized": [] }, { "id": "split_0_train_45602_entity", "type": "progene_text", "text": [ "FAK" ], "offsets": [ [ 59, 62 ] ], "normalized": [] }, { "id": "split_0_train_45603_entity", "type": "progene_text", "text": [ "FAK" ], "offsets": [ [ 109, 112 ] ], "normalized": [] }, { "id": "split_0_train_45604_entity", "type": "progene_text", "text": [ "Src" ], "offsets": [ [ 138, 141 ] ], "normalized": [] }, { "id": "split_0_train_45605_entity", "type": "progene_text", "text": [ "uPA" ], "offsets": [ [ 167, 170 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28162
split_0_train_28162
[ { "id": "split_0_train_28162_passage", "type": "progene_text", "text": [ "These results suggest that cells respond to a morphology change , using the cytoskeleton as a sensor , by activating FAK and Src and subsequently the Ras / Erk signaling pathway ." ], "offsets": [ [ 0, 179 ] ] } ]
[ { "id": "split_0_train_45606_entity", "type": "progene_text", "text": [ "FAK" ], "offsets": [ [ 117, 120 ] ], "normalized": [] }, { "id": "split_0_train_45607_entity", "type": "progene_text", "text": [ "Src" ], "offsets": [ [ 125, 128 ] ], "normalized": [] }, { "id": "split_0_train_45608_entity", "type": "progene_text", "text": [ "Ras" ], "offsets": [ [ 150, 153 ] ], "normalized": [] }, { "id": "split_0_train_45609_entity", "type": "progene_text", "text": [ "Erk" ], "offsets": [ [ 156, 159 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28163
split_0_train_28163
[ { "id": "split_0_train_28163_passage", "type": "progene_text", "text": [ "The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis ." ], "offsets": [ [ 0, 106 ] ] } ]
[ { "id": "split_0_train_45610_entity", "type": "progene_text", "text": [ "FAST-1" ], "offsets": [ [ 12, 18 ] ], "normalized": [] }, { "id": "split_0_train_45611_entity", "type": "progene_text", "text": [ "Smads" ], "offsets": [ [ 23, 28 ] ], "normalized": [] }, { "id": "split_0_train_45612_entity", "type": "progene_text", "text": [ "activin" ], "offsets": [ [ 62, 69 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28164
split_0_train_28164
[ { "id": "split_0_train_28164_passage", "type": "progene_text", "text": [ "Smads are signal transducers for the transforming growth factor - beta superfamily of factors ." ], "offsets": [ [ 0, 95 ] ] } ]
[ { "id": "split_0_train_45613_entity", "type": "progene_text", "text": [ "Smads" ], "offsets": [ [ 0, 5 ] ], "normalized": [] }, { "id": "split_0_train_45614_entity", "type": "progene_text", "text": [ "transforming growth factor - beta superfamily" ], "offsets": [ [ 37, 82 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28165
split_0_train_28165
[ { "id": "split_0_train_28165_passage", "type": "progene_text", "text": [ "In early Xenopus embryos , the transforming growth factor - beta member activin induces the gene Mix.2 by stimulating the formation of a multiprotein complex , activin - responsive factor ( ARF ) ." ], "offsets": [ [ 0, 197 ] ] } ]
[ { "id": "split_0_train_45615_entity", "type": "progene_text", "text": [ "transforming growth factor - beta" ], "offsets": [ [ 31, 64 ] ], "normalized": [] }, { "id": "split_0_train_45616_entity", "type": "progene_text", "text": [ "activin" ], "offsets": [ [ 72, 79 ] ], "normalized": [] }, { "id": "split_0_train_45617_entity", "type": "progene_text", "text": [ "Mix.2" ], "offsets": [ [ 97, 102 ] ], "normalized": [] }, { "id": "split_0_train_45618_entity", "type": "progene_text", "text": [ "activin - responsive factor" ], "offsets": [ [ 160, 187 ] ], "normalized": [] }, { "id": "split_0_train_45619_entity", "type": "progene_text", "text": [ "ARF" ], "offsets": [ [ 190, 193 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28166
split_0_train_28166
[ { "id": "split_0_train_28166_passage", "type": "progene_text", "text": [ "This complex contains Smad2 or Smad3 , Smad4 , and a novel forkhead transcription factor , FAST-1 , and binds to an enhancer ( activin - responsive element ; ARE ) that confers activin regulation of Mix.2 transcription ." ], "offsets": [ [ 0, 220 ] ] } ]
[ { "id": "split_0_train_45620_entity", "type": "progene_text", "text": [ "Smad2" ], "offsets": [ [ 22, 27 ] ], "normalized": [] }, { "id": "split_0_train_45621_entity", "type": "progene_text", "text": [ "Smad3" ], "offsets": [ [ 31, 36 ] ], "normalized": [] }, { "id": "split_0_train_45622_entity", "type": "progene_text", "text": [ "Smad4" ], "offsets": [ [ 39, 44 ] ], "normalized": [] }, { "id": "split_0_train_45623_entity", "type": "progene_text", "text": [ "transcription factor" ], "offsets": [ [ 68, 88 ] ], "normalized": [] }, { "id": "split_0_train_45624_entity", "type": "progene_text", "text": [ "FAST-1" ], "offsets": [ [ 91, 97 ] ], "normalized": [] }, { "id": "split_0_train_45625_entity", "type": "progene_text", "text": [ "activin" ], "offsets": [ [ 127, 134 ] ], "normalized": [] }, { "id": "split_0_train_45626_entity", "type": "progene_text", "text": [ "activin" ], "offsets": [ [ 177, 184 ] ], "normalized": [] }, { "id": "split_0_train_45627_entity", "type": "progene_text", "text": [ "Mix.2" ], "offsets": [ [ 199, 204 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28167
split_0_train_28167
[ { "id": "split_0_train_28167_passage", "type": "progene_text", "text": [ "Both FAST-1 and Smads can bind directly to the ARE ; we have investigated 1 ) the role of FAST-1 and Smad DNA binding sites in ARF recognition of the ARE , 2 ) the contributions of FAST-1 and Smad binding to ARF binding in vitro and to ARE regulation in early Xenopus embryos , 3 ) the extent to which different Smads can replace Smad4 in regulation of the ARE ." ], "offsets": [ [ 0, 362 ] ] } ]
[ { "id": "split_0_train_45628_entity", "type": "progene_text", "text": [ "FAST-1" ], "offsets": [ [ 5, 11 ] ], "normalized": [] }, { "id": "split_0_train_45629_entity", "type": "progene_text", "text": [ "Smads" ], "offsets": [ [ 16, 21 ] ], "normalized": [] }, { "id": "split_0_train_45630_entity", "type": "progene_text", "text": [ "FAST-1" ], "offsets": [ [ 90, 96 ] ], "normalized": [] }, { "id": "split_0_train_45631_entity", "type": "progene_text", "text": [ "Smad" ], "offsets": [ [ 101, 105 ] ], "normalized": [] }, { "id": "split_0_train_45632_entity", "type": "progene_text", "text": [ "ARF" ], "offsets": [ [ 127, 130 ] ], "normalized": [] }, { "id": "split_0_train_45633_entity", "type": "progene_text", "text": [ "FAST-1" ], "offsets": [ [ 181, 187 ] ], "normalized": [] }, { "id": "split_0_train_45634_entity", "type": "progene_text", "text": [ "ARF" ], "offsets": [ [ 208, 211 ] ], "normalized": [] }, { "id": "split_0_train_45635_entity", "type": "progene_text", "text": [ "Smads" ], "offsets": [ [ 312, 317 ] ], "normalized": [] }, { "id": "split_0_train_45636_entity", "type": "progene_text", "text": [ "Smad4" ], "offsets": [ [ 330, 335 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28168
split_0_train_28168
[ { "id": "split_0_train_28168_passage", "type": "progene_text", "text": [ "We find that ARF binds to ARE through both FAST-1 and Smad binding sites ." ], "offsets": [ [ 0, 74 ] ] } ]
[ { "id": "split_0_train_45637_entity", "type": "progene_text", "text": [ "ARF" ], "offsets": [ [ 13, 16 ] ], "normalized": [] }, { "id": "split_0_train_45638_entity", "type": "progene_text", "text": [ "FAST-1" ], "offsets": [ [ 43, 49 ] ], "normalized": [] }, { "id": "split_0_train_45639_entity", "type": "progene_text", "text": [ "Smad" ], "offsets": [ [ 54, 58 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28169
split_0_train_28169
[ { "id": "split_0_train_28169_passage", "type": "progene_text", "text": [ "FAST-1 recognition of the ARE is essential both for ARF binding in vitro and activin regulation in vivo ." ], "offsets": [ [ 0, 105 ] ] } ]
[ { "id": "split_0_train_45640_entity", "type": "progene_text", "text": [ "FAST-1" ], "offsets": [ [ 0, 6 ] ], "normalized": [] }, { "id": "split_0_train_45641_entity", "type": "progene_text", "text": [ "ARF" ], "offsets": [ [ 52, 55 ] ], "normalized": [] }, { "id": "split_0_train_45642_entity", "type": "progene_text", "text": [ "activin" ], "offsets": [ [ 77, 84 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28170
split_0_train_28170
[ { "id": "split_0_train_28170_passage", "type": "progene_text", "text": [ "In contrast , Smad binding of ARE is unnecessary for ARF binding or activin regulation but does enhance the binding and regulatory activity of ARF ." ], "offsets": [ [ 0, 148 ] ] } ]
[ { "id": "split_0_train_45643_entity", "type": "progene_text", "text": [ "Smad" ], "offsets": [ [ 14, 18 ] ], "normalized": [] }, { "id": "split_0_train_45644_entity", "type": "progene_text", "text": [ "ARF" ], "offsets": [ [ 53, 56 ] ], "normalized": [] }, { "id": "split_0_train_45645_entity", "type": "progene_text", "text": [ "activin" ], "offsets": [ [ 68, 75 ] ], "normalized": [] }, { "id": "split_0_train_45646_entity", "type": "progene_text", "text": [ "ARF" ], "offsets": [ [ 143, 146 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28171
split_0_train_28171
[ { "id": "split_0_train_28171_passage", "type": "progene_text", "text": [ "Also , Smad3 can partially substitute for Smad4 in the regulation of the ARE ." ], "offsets": [ [ 0, 78 ] ] } ]
[ { "id": "split_0_train_45647_entity", "type": "progene_text", "text": [ "Smad3" ], "offsets": [ [ 7, 12 ] ], "normalized": [] }, { "id": "split_0_train_45648_entity", "type": "progene_text", "text": [ "Smad4" ], "offsets": [ [ 42, 47 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28172
split_0_train_28172
[ { "id": "split_0_train_28172_passage", "type": "progene_text", "text": [ "These observations elucidate how broadly expressed signal transducers ( Smads ) regulate a developmentally specific transcriptional response in conjunction with a temporally restricted transcription factor , FAST-1 ." ], "offsets": [ [ 0, 216 ] ] } ]
[ { "id": "split_0_train_45649_entity", "type": "progene_text", "text": [ "Smads" ], "offsets": [ [ 72, 77 ] ], "normalized": [] }, { "id": "split_0_train_45650_entity", "type": "progene_text", "text": [ "transcription factor" ], "offsets": [ [ 185, 205 ] ], "normalized": [] }, { "id": "split_0_train_45651_entity", "type": "progene_text", "text": [ "FAST-1" ], "offsets": [ [ 208, 214 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28173
split_0_train_28173
[ { "id": "split_0_train_28173_passage", "type": "progene_text", "text": [ "Curcumin blocks cytokine - mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity ." ], "offsets": [ [ 0, 153 ] ] } ]
[ { "id": "split_0_train_45652_entity", "type": "progene_text", "text": [ "cytokine" ], "offsets": [ [ 16, 24 ] ], "normalized": [] }, { "id": "split_0_train_45653_entity", "type": "progene_text", "text": [ "NF-kappa B" ], "offsets": [ [ 36, 46 ] ], "normalized": [] }, { "id": "split_0_train_45654_entity", "type": "progene_text", "text": [ "I-kappa B kinase" ], "offsets": [ [ 126, 142 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28174
split_0_train_28174
[ { "id": "split_0_train_28174_passage", "type": "progene_text", "text": [ "NF-kappa B plays a critical role in the transcriptional regulation of proinflammatory gene expression in various cells ." ], "offsets": [ [ 0, 120 ] ] } ]
[ { "id": "split_0_train_45655_entity", "type": "progene_text", "text": [ "NF-kappa B" ], "offsets": [ [ 0, 10 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28175
split_0_train_28175
[ { "id": "split_0_train_28175_passage", "type": "progene_text", "text": [ "Cytokine - mediated activation of NF-kappa B requires activation of various kinases , which ultimately leads to the phosphorylation and degradation of I kappa B , the NF-kappa B cytoplasmic inhibitor ." ], "offsets": [ [ 0, 201 ] ] } ]
[ { "id": "split_0_train_45656_entity", "type": "progene_text", "text": [ "Cytokine" ], "offsets": [ [ 0, 8 ] ], "normalized": [] }, { "id": "split_0_train_45657_entity", "type": "progene_text", "text": [ "NF-kappa B" ], "offsets": [ [ 34, 44 ] ], "normalized": [] }, { "id": "split_0_train_45658_entity", "type": "progene_text", "text": [ "kinases" ], "offsets": [ [ 76, 83 ] ], "normalized": [] }, { "id": "split_0_train_45659_entity", "type": "progene_text", "text": [ "I kappa B" ], "offsets": [ [ 151, 160 ] ], "normalized": [] }, { "id": "split_0_train_45660_entity", "type": "progene_text", "text": [ "NF-kappa B" ], "offsets": [ [ 167, 177 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28176
split_0_train_28176
[ { "id": "split_0_train_28176_passage", "type": "progene_text", "text": [ "The food derivative curcumin has been shown to inhibit NF-kappa B activity in some cell types ." ], "offsets": [ [ 0, 95 ] ] } ]
[ { "id": "split_0_train_45661_entity", "type": "progene_text", "text": [ "NF-kappa B" ], "offsets": [ [ 55, 65 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28177
split_0_train_28177
[ { "id": "split_0_train_28177_passage", "type": "progene_text", "text": [ "In this report we investigate the mechanism of action of curcumin on cytokine - induced proinflammatory gene expression using intestinal epithelial cells ( IEC ) ." ], "offsets": [ [ 0, 163 ] ] } ]
[ { "id": "split_0_train_45662_entity", "type": "progene_text", "text": [ "cytokine" ], "offsets": [ [ 69, 77 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28178
split_0_train_28178
[ { "id": "split_0_train_28178_passage", "type": "progene_text", "text": [ "Curcumin inhibited IL-1 beta - mediated ICAM-1 and IL-8 gene expression in IEC-6 , HT-29 , and Caco-2 cells ." ], "offsets": [ [ 0, 109 ] ] } ]
[ { "id": "split_0_train_45663_entity", "type": "progene_text", "text": [ "IL-1 beta" ], "offsets": [ [ 19, 28 ] ], "normalized": [] }, { "id": "split_0_train_45664_entity", "type": "progene_text", "text": [ "ICAM-1" ], "offsets": [ [ 40, 46 ] ], "normalized": [] }, { "id": "split_0_train_45665_entity", "type": "progene_text", "text": [ "IL-8" ], "offsets": [ [ 51, 55 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28179
split_0_train_28179
[ { "id": "split_0_train_28179_passage", "type": "progene_text", "text": [ "Cytokine - induced NF-kappa B DNA binding activity , RelA nuclear translocation , I kappa B alpha degradation , I kappa B serine 32 phosphorylation , and I kappa B kinase ( IKK ) activity were blocked by curcumin treatment ." ], "offsets": [ [ 0, 224 ] ] } ]
[ { "id": "split_0_train_45666_entity", "type": "progene_text", "text": [ "Cytokine" ], "offsets": [ [ 0, 8 ] ], "normalized": [] }, { "id": "split_0_train_45667_entity", "type": "progene_text", "text": [ "NF-kappa B" ], "offsets": [ [ 19, 29 ] ], "normalized": [] }, { "id": "split_0_train_45668_entity", "type": "progene_text", "text": [ "RelA" ], "offsets": [ [ 53, 57 ] ], "normalized": [] }, { "id": "split_0_train_45669_entity", "type": "progene_text", "text": [ "I kappa B alpha" ], "offsets": [ [ 82, 97 ] ], "normalized": [] }, { "id": "split_0_train_45670_entity", "type": "progene_text", "text": [ "I kappa B" ], "offsets": [ [ 112, 121 ] ], "normalized": [] }, { "id": "split_0_train_45671_entity", "type": "progene_text", "text": [ "I kappa B kinase" ], "offsets": [ [ 154, 170 ] ], "normalized": [] }, { "id": "split_0_train_45672_entity", "type": "progene_text", "text": [ "IKK" ], "offsets": [ [ 173, 176 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28180
split_0_train_28180
[ { "id": "split_0_train_28180_passage", "type": "progene_text", "text": [ "Wound - induced p38 phosphorylation was not inhibited by curcumin treatment ." ], "offsets": [ [ 0, 77 ] ] } ]
[ { "id": "split_0_train_45673_entity", "type": "progene_text", "text": [ "p38" ], "offsets": [ [ 16, 19 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28181
split_0_train_28181
[ { "id": "split_0_train_28181_passage", "type": "progene_text", "text": [ "In addition , mitogen - activated protein kinase / ERK kinase kinase-1 - induced IL-8 gene expression and 12-O-tetraphorbol 12-myristate 13-acetate - responsive element - driven luciferase expression were inhibited by curcumin ." ], "offsets": [ [ 0, 228 ] ] } ]
[ { "id": "split_0_train_45674_entity", "type": "progene_text", "text": [ "mitogen - activated protein kinase" ], "offsets": [ [ 14, 48 ] ], "normalized": [] }, { "id": "split_0_train_45675_entity", "type": "progene_text", "text": [ "ERK kinase kinase-1" ], "offsets": [ [ 51, 70 ] ], "normalized": [] }, { "id": "split_0_train_45676_entity", "type": "progene_text", "text": [ "IL-8" ], "offsets": [ [ 81, 85 ] ], "normalized": [] }, { "id": "split_0_train_45677_entity", "type": "progene_text", "text": [ "luciferase" ], "offsets": [ [ 178, 188 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28182
split_0_train_28182
[ { "id": "split_0_train_28182_passage", "type": "progene_text", "text": [ "However , I kappa B alpha degradation induced by ectopically expressed NF-kappa B-inducing kinase or IKK was not inhibited by curcumin treatment ." ], "offsets": [ [ 0, 146 ] ] } ]
[ { "id": "split_0_train_45678_entity", "type": "progene_text", "text": [ "I kappa B alpha" ], "offsets": [ [ 10, 25 ] ], "normalized": [] }, { "id": "split_0_train_45679_entity", "type": "progene_text", "text": [ "NF-kappa B-inducing kinase" ], "offsets": [ [ 71, 97 ] ], "normalized": [] }, { "id": "split_0_train_45680_entity", "type": "progene_text", "text": [ "IKK" ], "offsets": [ [ 101, 104 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28183
split_0_train_28183
[ { "id": "split_0_train_28183_passage", "type": "progene_text", "text": [ "Therefore , curcumin blocks a signal upstream of NF-kappa B-inducing kinase and IKK ." ], "offsets": [ [ 0, 85 ] ] } ]
[ { "id": "split_0_train_45681_entity", "type": "progene_text", "text": [ "NF-kappa B-inducing kinase" ], "offsets": [ [ 49, 75 ] ], "normalized": [] }, { "id": "split_0_train_45682_entity", "type": "progene_text", "text": [ "IKK" ], "offsets": [ [ 80, 83 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28184
split_0_train_28184
[ { "id": "split_0_train_28184_passage", "type": "progene_text", "text": [ "We conclude that curcumin potently inhibits cytokine - mediated NF-kappa B activation by blocking a signal leading to IKK activity ." ], "offsets": [ [ 0, 132 ] ] } ]
[ { "id": "split_0_train_45683_entity", "type": "progene_text", "text": [ "cytokine" ], "offsets": [ [ 44, 52 ] ], "normalized": [] }, { "id": "split_0_train_45684_entity", "type": "progene_text", "text": [ "NF-kappa B" ], "offsets": [ [ 64, 74 ] ], "normalized": [] }, { "id": "split_0_train_45685_entity", "type": "progene_text", "text": [ "IKK" ], "offsets": [ [ 118, 121 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28185
split_0_train_28185
[ { "id": "split_0_train_28185_passage", "type": "progene_text", "text": [ "Cxc chemokine receptor expression on human endothelial cells ." ], "offsets": [ [ 0, 62 ] ] } ]
[ { "id": "split_0_train_45686_entity", "type": "progene_text", "text": [ "Cxc chemokine receptor" ], "offsets": [ [ 0, 22 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28186
split_0_train_28186
[ { "id": "split_0_train_28186_passage", "type": "progene_text", "text": [ "CXC chemokines play a important role in the process of leukocyte recruitment and activation at sites of inflammation ." ], "offsets": [ [ 0, 118 ] ] } ]
[ { "id": "split_0_train_45687_entity", "type": "progene_text", "text": [ "CXC chemokines" ], "offsets": [ [ 0, 14 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28187
split_0_train_28187
[ { "id": "split_0_train_28187_passage", "type": "progene_text", "text": [ "However , recent evidence suggests that these molecules can also regulate endothelial cell functions such as migration , angiogenesis and proliferation ." ], "offsets": [ [ 0, 153 ] ] } ]
[]
[]
[]
[]
split_0_train_28188
split_0_train_28188
[ { "id": "split_0_train_28188_passage", "type": "progene_text", "text": [ "In this study we have investigated CXC chemokine receptor expression in both primary cultures of human umbilical vein endothelial cells ( HUVEC ) and the spontaneously transformed HUVEC cell line , ECV304 ." ], "offsets": [ [ 0, 206 ] ] } ]
[ { "id": "split_0_train_45688_entity", "type": "progene_text", "text": [ "CXC chemokine receptor" ], "offsets": [ [ 35, 57 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28189
split_0_train_28189
[ { "id": "split_0_train_28189_passage", "type": "progene_text", "text": [ "We found that both cell types express mRNA for chemokine receptors CXCR1 , CXCR2 and CXCR4 , but not CXCR3 ." ], "offsets": [ [ 0, 108 ] ] } ]
[ { "id": "split_0_train_45689_entity", "type": "progene_text", "text": [ "CXCR1" ], "offsets": [ [ 67, 72 ] ], "normalized": [] }, { "id": "split_0_train_45690_entity", "type": "progene_text", "text": [ "CXCR2" ], "offsets": [ [ 75, 80 ] ], "normalized": [] }, { "id": "split_0_train_45691_entity", "type": "progene_text", "text": [ "CXCR4" ], "offsets": [ [ 85, 90 ] ], "normalized": [] }, { "id": "split_0_train_45692_entity", "type": "progene_text", "text": [ "CXCR3" ], "offsets": [ [ 101, 106 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28190
split_0_train_28190
[ { "id": "split_0_train_28190_passage", "type": "progene_text", "text": [ "Flow cytometric analysis revealed low levels of CXCR1 but higher levels of CXCR4 cell surface expression ." ], "offsets": [ [ 0, 106 ] ] } ]
[ { "id": "split_0_train_45693_entity", "type": "progene_text", "text": [ "CXCR1" ], "offsets": [ [ 48, 53 ] ], "normalized": [] }, { "id": "split_0_train_45694_entity", "type": "progene_text", "text": [ "CXCR4" ], "offsets": [ [ 75, 80 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28191
split_0_train_28191
[ { "id": "split_0_train_28191_passage", "type": "progene_text", "text": [ "HUVECs responded to SDF-1alpha with a rapid and robust calcium flux , however no calcium flux was seen with either IL-8 or Gro-alpha ." ], "offsets": [ [ 0, 134 ] ] } ]
[ { "id": "split_0_train_45695_entity", "type": "progene_text", "text": [ "SDF-1alpha" ], "offsets": [ [ 20, 30 ] ], "normalized": [] }, { "id": "split_0_train_45696_entity", "type": "progene_text", "text": [ "IL-8" ], "offsets": [ [ 115, 119 ] ], "normalized": [] }, { "id": "split_0_train_45697_entity", "type": "progene_text", "text": [ "Gro-alpha" ], "offsets": [ [ 123, 132 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28192
split_0_train_28192
[ { "id": "split_0_train_28192_passage", "type": "progene_text", "text": [ "HUVECs and ECV304 cells did not proliferate in response to CXC chemokines , although ECV304 cells did migrate towards SDF-1alpha and IL-8 ." ], "offsets": [ [ 0, 139 ] ] } ]
[ { "id": "split_0_train_45698_entity", "type": "progene_text", "text": [ "CXC chemokines" ], "offsets": [ [ 59, 73 ] ], "normalized": [] }, { "id": "split_0_train_45699_entity", "type": "progene_text", "text": [ "SDF-1alpha" ], "offsets": [ [ 118, 128 ] ], "normalized": [] }, { "id": "split_0_train_45700_entity", "type": "progene_text", "text": [ "IL-8" ], "offsets": [ [ 133, 137 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28193
split_0_train_28193
[ { "id": "split_0_train_28193_passage", "type": "progene_text", "text": [ "These data demonstrate that HUVECs and the endothelial cell line , ECV304 express functional CXC chemokine receptors ." ], "offsets": [ [ 0, 118 ] ] } ]
[ { "id": "split_0_train_45701_entity", "type": "progene_text", "text": [ "CXC chemokine receptors" ], "offsets": [ [ 93, 116 ] ], "normalized": [] } ]
[]
[]
[]
split_0_train_28194
split_0_train_28194
[ { "id": "split_0_train_28194_passage", "type": "progene_text", "text": [ "Use of the North American Adult Reading Test to estimate premorbid intellectual function in patients with multiple sclerosis ." ], "offsets": [ [ 0, 126 ] ] } ]
[]
[]
[]
[]
split_0_train_28195
split_0_train_28195
[ { "id": "split_0_train_28195_passage", "type": "progene_text", "text": [ "The North American Adult Reading Test ( NART-R ) has proven to be a valid means of estimating premorbid intellectual function in a variety of neurologic patient samples ." ], "offsets": [ [ 0, 170 ] ] } ]
[]
[]
[]
[]
split_0_train_28196
split_0_train_28196
[ { "id": "split_0_train_28196_passage", "type": "progene_text", "text": [ "The NART-R was administered to a group of patients with multiple sclerosis ( MS ) varying in course and degree of physical disability and healthy controls as part of an extensive neuropsychological battery examining numerous verbal cognitive functions , particularly language ." ], "offsets": [ [ 0, 277 ] ] } ]
[]
[]
[]
[]
split_0_train_28197
split_0_train_28197
[ { "id": "split_0_train_28197_passage", "type": "progene_text", "text": [ "The MS sample demonstrated significantly worse NART-R performance than did controls which could not be explained by differences in estimated premorbid intellectual function ." ], "offsets": [ [ 0, 174 ] ] } ]
[]
[]
[]
[]
split_0_train_28198
split_0_train_28198
[ { "id": "split_0_train_28198_passage", "type": "progene_text", "text": [ "Patients with a chronic - progressive course specifically obtained significantly lower scores than did controls , whereas there were no differences in the scores obtained by patients with chronic - progressive and relapsing - remitting courses or by patients with a relapsing - remitting course and controls ." ], "offsets": [ [ 0, 309 ] ] } ]
[]
[]
[]
[]
split_0_train_28199
split_0_train_28199
[ { "id": "split_0_train_28199_passage", "type": "progene_text", "text": [ "Thus , NART-R performance may not be a valid estimate of baseline IQ for patients with neurologic disorders with suspected language impairment ." ], "offsets": [ [ 0, 144 ] ] } ]
[]
[]
[]
[]