id
stringlengths 15
19
| document_id
stringlengths 15
19
| passages
list | entities
list | events
list | coreferences
list | relations
list |
---|---|---|---|---|---|---|
split_0_train_28100
|
split_0_train_28100
|
[
{
"id": "split_0_train_28100_passage",
"type": "progene_text",
"text": [
"The differences between smoking groups were statistically significant ( p < 0.05 ) ."
],
"offsets": [
[
0,
84
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28101
|
split_0_train_28101
|
[
{
"id": "split_0_train_28101_passage",
"type": "progene_text",
"text": [
"The influence of smoking was independent of age , plaque and gingival inflammation ."
],
"offsets": [
[
0,
84
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28102
|
split_0_train_28102
|
[
{
"id": "split_0_train_28102_passage",
"type": "progene_text",
"text": [
"In former smokers who had stopped smoking in the distant past , the occurrence and severity of supragingival calculus were very close to those in individuals who had never smoked , suggesting that the effect of smoking is reversible ."
],
"offsets": [
[
0,
234
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28103
|
split_0_train_28103
|
[
{
"id": "split_0_train_28103_passage",
"type": "progene_text",
"text": [
"The observations indicate a strong and independent association between tobacco smoking and supragingival calculus deposition ."
],
"offsets": [
[
0,
126
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28104
|
split_0_train_28104
|
[
{
"id": "split_0_train_28104_passage",
"type": "progene_text",
"text": [
"The avoidance of excess deposition of supragingival calculus , therefore , is a further argument for reducing smoking in the population ."
],
"offsets": [
[
0,
137
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28105
|
split_0_train_28105
|
[
{
"id": "split_0_train_28105_passage",
"type": "progene_text",
"text": [
"Active - site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis ."
],
"offsets": [
[
0,
116
]
]
}
] |
[
{
"id": "split_0_train_45553_entity",
"type": "progene_text",
"text": [
"Xrn1p"
],
"offsets": [
[
31,
36
]
],
"normalized": []
},
{
"id": "split_0_train_45554_entity",
"type": "progene_text",
"text": [
"exoribonuclease"
],
"offsets": [
[
37,
52
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28106
|
split_0_train_28106
|
[
{
"id": "split_0_train_28106_passage",
"type": "progene_text",
"text": [
"Xrn1p of Saccharomyces cerevisiae is a major cytoplasmic RNA turnover exonuclease which is evolutionarily conserved from yeasts to mammals ."
],
"offsets": [
[
0,
140
]
]
}
] |
[
{
"id": "split_0_train_45555_entity",
"type": "progene_text",
"text": [
"Xrn1p"
],
"offsets": [
[
0,
5
]
],
"normalized": []
},
{
"id": "split_0_train_45556_entity",
"type": "progene_text",
"text": [
"exonuclease"
],
"offsets": [
[
70,
81
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28107
|
split_0_train_28107
|
[
{
"id": "split_0_train_28107_passage",
"type": "progene_text",
"text": [
"Deletion of the XRN1 gene causes pleiotropic phenotypes , which have been interpreted as indirect consequences of the RNA turnover defect ."
],
"offsets": [
[
0,
139
]
]
}
] |
[
{
"id": "split_0_train_45557_entity",
"type": "progene_text",
"text": [
"XRN1"
],
"offsets": [
[
16,
20
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28108
|
split_0_train_28108
|
[
{
"id": "split_0_train_28108_passage",
"type": "progene_text",
"text": [
"By sequence comparisons , we have identified three loosely defined , common 5'-3' exonuclease motifs ."
],
"offsets": [
[
0,
102
]
]
}
] |
[
{
"id": "split_0_train_45558_entity",
"type": "progene_text",
"text": [
"5'-3' exonuclease"
],
"offsets": [
[
76,
93
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28109
|
split_0_train_28109
|
[
{
"id": "split_0_train_28109_passage",
"type": "progene_text",
"text": [
"The significance of motif II has been confirmed by mutant analysis with Xrn1p ."
],
"offsets": [
[
0,
79
]
]
}
] |
[
{
"id": "split_0_train_45559_entity",
"type": "progene_text",
"text": [
"Xrn1p"
],
"offsets": [
[
72,
77
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28110
|
split_0_train_28110
|
[
{
"id": "split_0_train_28110_passage",
"type": "progene_text",
"text": [
"The amino acid changes D206A and D208A abolish singly or in combination the exonuclease activity in vivo ."
],
"offsets": [
[
0,
106
]
]
}
] |
[
{
"id": "split_0_train_45560_entity",
"type": "progene_text",
"text": [
"exonuclease"
],
"offsets": [
[
76,
87
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28111
|
split_0_train_28111
|
[
{
"id": "split_0_train_28111_passage",
"type": "progene_text",
"text": [
"These mutations show separation of function ."
],
"offsets": [
[
0,
45
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28112
|
split_0_train_28112
|
[
{
"id": "split_0_train_28112_passage",
"type": "progene_text",
"text": [
"They cause identical phenotypes to that of xrn1Delta in vegetative cells but do not exhibit the severe meiotic arrest and the spore lethality phenotype typical for the deletion ."
],
"offsets": [
[
0,
178
]
]
}
] |
[
{
"id": "split_0_train_45561_entity",
"type": "progene_text",
"text": [
"xrn1Delta"
],
"offsets": [
[
43,
52
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28113
|
split_0_train_28113
|
[
{
"id": "split_0_train_28113_passage",
"type": "progene_text",
"text": [
"In addition , xrn1 - D208A does not cause the severe reduction in meiotic popout recombination in a double mutant with dmc1 as does xrn1Delta ."
],
"offsets": [
[
0,
143
]
]
}
] |
[
{
"id": "split_0_train_45562_entity",
"type": "progene_text",
"text": [
"xrn1"
],
"offsets": [
[
14,
18
]
],
"normalized": []
},
{
"id": "split_0_train_45563_entity",
"type": "progene_text",
"text": [
"dmc1"
],
"offsets": [
[
119,
123
]
],
"normalized": []
},
{
"id": "split_0_train_45564_entity",
"type": "progene_text",
"text": [
"xrn1Delta"
],
"offsets": [
[
132,
141
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28114
|
split_0_train_28114
|
[
{
"id": "split_0_train_28114_passage",
"type": "progene_text",
"text": [
"Biochemical analysis of the DNA binding , exonuclease , and homologous pairing activity of purified mutant enzyme demonstrated the specific loss of exonuclease activity ."
],
"offsets": [
[
0,
170
]
]
}
] |
[
{
"id": "split_0_train_45565_entity",
"type": "progene_text",
"text": [
"exonuclease"
],
"offsets": [
[
42,
53
]
],
"normalized": []
},
{
"id": "split_0_train_45566_entity",
"type": "progene_text",
"text": [
"exonuclease"
],
"offsets": [
[
148,
159
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28115
|
split_0_train_28115
|
[
{
"id": "split_0_train_28115_passage",
"type": "progene_text",
"text": [
"However , the mutant enzyme is competent to promote in vitro assembly of tubulin into microtubules ."
],
"offsets": [
[
0,
100
]
]
}
] |
[
{
"id": "split_0_train_45567_entity",
"type": "progene_text",
"text": [
"tubulin"
],
"offsets": [
[
73,
80
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28116
|
split_0_train_28116
|
[
{
"id": "split_0_train_28116_passage",
"type": "progene_text",
"text": [
"These results define a separable and specific function of Xrn1p in meiosis which appears unrelated to its RNA turnover function in vegetative cells ."
],
"offsets": [
[
0,
149
]
]
}
] |
[
{
"id": "split_0_train_45568_entity",
"type": "progene_text",
"text": [
"Xrn1p"
],
"offsets": [
[
58,
63
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28117
|
split_0_train_28117
|
[
{
"id": "split_0_train_28117_passage",
"type": "progene_text",
"text": [
"Effect of co - activation of tongue protrudor and retractor muscles on tongue movements and pharyngeal airflow mechanics in the rat ."
],
"offsets": [
[
0,
133
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28118
|
split_0_train_28118
|
[
{
"id": "split_0_train_28118_passage",
"type": "progene_text",
"text": [
"1 ."
],
"offsets": [
[
0,
3
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28119
|
split_0_train_28119
|
[
{
"id": "split_0_train_28119_passage",
"type": "progene_text",
"text": [
"The purpose of these experiments was to examine the mechanisms by which either co - activation or independent activation of tongue protrudor and retractor muscles influence upper airway flow mechanics ."
],
"offsets": [
[
0,
202
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28120
|
split_0_train_28120
|
[
{
"id": "split_0_train_28120_passage",
"type": "progene_text",
"text": [
"We studied the influence of selective hypoglossal ( XIIth ) nerve stimulation on tongue movements and flow mechanics in anaesthetized rats that were prepared with an isolated upper airway ."
],
"offsets": [
[
0,
189
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28121
|
split_0_train_28121
|
[
{
"id": "split_0_train_28121_passage",
"type": "progene_text",
"text": [
"In this preparation , both nasal and oral flow pathways are available ."
],
"offsets": [
[
0,
71
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28122
|
split_0_train_28122
|
[
{
"id": "split_0_train_28122_passage",
"type": "progene_text",
"text": [
"2 ."
],
"offsets": [
[
0,
3
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28123
|
split_0_train_28123
|
[
{
"id": "split_0_train_28123_passage",
"type": "progene_text",
"text": [
"Inspiratory flow limitation was achieved by rapidly lowering hypopharyngeal pressure ( Php ) with a vacuum pump , and the maximal rate of flow ( VI,max) and the nasopharyngeal pressure associated with flow limitation ( Pcrit ) were measured ."
],
"offsets": [
[
0,
242
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28124
|
split_0_train_28124
|
[
{
"id": "split_0_train_28124_passage",
"type": "progene_text",
"text": [
"These experimental trials were repeated while nerve branches innervating tongue protrudor ( genioglossus ; medial XIIth nerve branch ) and retractor ( hyoglossus and styloglossus ; lateral XIIth nerve branch ) muscles were stimulated either simultaneously or independently at frequencies ranging from 20-100 Hz ."
],
"offsets": [
[
0,
312
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28125
|
split_0_train_28125
|
[
{
"id": "split_0_train_28125_passage",
"type": "progene_text",
"text": [
"Co - activating the protrudor and retractor muscles produced tongue retraction , whereas independently activating the genioglossus resulted in tongue protrusion ."
],
"offsets": [
[
0,
162
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28126
|
split_0_train_28126
|
[
{
"id": "split_0_train_28126_passage",
"type": "progene_text",
"text": [
"3 ."
],
"offsets": [
[
0,
3
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28127
|
split_0_train_28127
|
[
{
"id": "split_0_train_28127_passage",
"type": "progene_text",
"text": [
"Co - activation of tongue protrudor and retractor muscles increased VI , max ( peak increase 44 % , P < 0.05 ) , made Pcrit more negative ( peak decrease of 44 % , P < 0.05 ) , and did not change upstream nasopharyngeal resistance ( Rn ) ."
],
"offsets": [
[
0,
239
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28128
|
split_0_train_28128
|
[
{
"id": "split_0_train_28128_passage",
"type": "progene_text",
"text": [
"Independent protrudor muscle stimulation increased VI,max ( peak increase 61 % , P < 0.05 ) , did not change Pcrit , and decreased Rn ( peak decrease of 41 % , P < 0.05 ) ."
],
"offsets": [
[
0,
172
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28129
|
split_0_train_28129
|
[
{
"id": "split_0_train_28129_passage",
"type": "progene_text",
"text": [
"Independent retractor muscle stimulation did not significantly alter flow mechanics ."
],
"offsets": [
[
0,
85
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28130
|
split_0_train_28130
|
[
{
"id": "split_0_train_28130_passage",
"type": "progene_text",
"text": [
"Changes in Pcrit and VI , max at all stimulation frequencies were significantly correlated during co - activation of protrudor and retractor muscles ( r2 = 0.63 , P < 0.05 ) , but not during independent protrudor muscle stimulation ( r2 = 0.09 ) ."
],
"offsets": [
[
0,
247
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28131
|
split_0_train_28131
|
[
{
"id": "split_0_train_28131_passage",
"type": "progene_text",
"text": [
"4 ."
],
"offsets": [
[
0,
3
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28132
|
split_0_train_28132
|
[
{
"id": "split_0_train_28132_passage",
"type": "progene_text",
"text": [
"These findings indicate that either co - activation of protrudor and retractor muscles or independent activation of protrudor muscles can improve upper airway flow mechanics , although the underlying mechanisms are different ."
],
"offsets": [
[
0,
226
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28133
|
split_0_train_28133
|
[
{
"id": "split_0_train_28133_passage",
"type": "progene_text",
"text": [
"We suggest that co - activation decreases pharyngeal collapsibility but does not dilate the pharyngeal airway ."
],
"offsets": [
[
0,
111
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28134
|
split_0_train_28134
|
[
{
"id": "split_0_train_28134_passage",
"type": "progene_text",
"text": [
"In contrast , unopposed tongue protrusion dilates the oropharynx , but has a minimal effect on pharyngeal airway collapsibility ."
],
"offsets": [
[
0,
129
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28135
|
split_0_train_28135
|
[
{
"id": "split_0_train_28135_passage",
"type": "progene_text",
"text": [
"[ Micturition syncope : a peculiar cause of diagnostic doubt ]"
],
"offsets": [
[
0,
62
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28136
|
split_0_train_28136
|
[
{
"id": "split_0_train_28136_passage",
"type": "progene_text",
"text": [
"A 22 - year old healthy man lost consciousness during urination in standing after night 's sleep ."
],
"offsets": [
[
0,
98
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28137
|
split_0_train_28137
|
[
{
"id": "split_0_train_28137_passage",
"type": "progene_text",
"text": [
"He fell down to the floor without convulsions ."
],
"offsets": [
[
0,
47
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28138
|
split_0_train_28138
|
[
{
"id": "split_0_train_28138_passage",
"type": "progene_text",
"text": [
"A physician present by chance found on bradycardia ."
],
"offsets": [
[
0,
52
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28139
|
split_0_train_28139
|
[
{
"id": "split_0_train_28139_passage",
"type": "progene_text",
"text": [
"A 24 - hours ECG monitoring disclosed an almost permanent sinus bradycardia ( 50 - 55 per minute ) ."
],
"offsets": [
[
0,
100
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28140
|
split_0_train_28140
|
[
{
"id": "split_0_train_28140_passage",
"type": "progene_text",
"text": [
"CT showed an arachnoid cyst at the base of the left temporal lobe without mass effect ."
],
"offsets": [
[
0,
87
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28141
|
split_0_train_28141
|
[
{
"id": "split_0_train_28141_passage",
"type": "progene_text",
"text": [
"In EEG only single slow waves above left temporal region were revealed ."
],
"offsets": [
[
0,
72
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28142
|
split_0_train_28142
|
[
{
"id": "split_0_train_28142_passage",
"type": "progene_text",
"text": [
"It seems , the cyst was found by chance and had no any pathogenetic relevance to the syncope ."
],
"offsets": [
[
0,
94
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28143
|
split_0_train_28143
|
[
{
"id": "split_0_train_28143_passage",
"type": "progene_text",
"text": [
"However , the presence of a structural change of the brain had not been described in micturition syncope till now and this makes careful differentiation from epileptic seizure essential ."
],
"offsets": [
[
0,
187
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28144
|
split_0_train_28144
|
[
{
"id": "split_0_train_28144_passage",
"type": "progene_text",
"text": [
"During the following 2 years the patient was well and the episode did not recur again ."
],
"offsets": [
[
0,
87
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28145
|
split_0_train_28145
|
[
{
"id": "split_0_train_28145_passage",
"type": "progene_text",
"text": [
"The control CT and EEG remained unchanged ."
],
"offsets": [
[
0,
43
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28146
|
split_0_train_28146
|
[
{
"id": "split_0_train_28146_passage",
"type": "progene_text",
"text": [
"Data from literature about syncope in association with micturition also in older persons , in majority women with chronic illnesses , are cited ."
],
"offsets": [
[
0,
145
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28147
|
split_0_train_28147
|
[
{
"id": "split_0_train_28147_passage",
"type": "progene_text",
"text": [
"A novel group - II intron in the cox1 gene of the fission yeast Schizosaccharomyces pombe is inserted in the same codon as the mobile group - II intron aI2 in the Saccharomyces cerevisiae cox1 homologue ."
],
"offsets": [
[
0,
204
]
]
}
] |
[
{
"id": "split_0_train_45569_entity",
"type": "progene_text",
"text": [
"cox1"
],
"offsets": [
[
33,
37
]
],
"normalized": []
},
{
"id": "split_0_train_45570_entity",
"type": "progene_text",
"text": [
"cox1"
],
"offsets": [
[
188,
192
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28148
|
split_0_train_28148
|
[
{
"id": "split_0_train_28148_passage",
"type": "progene_text",
"text": [
"We describe herein a large group - II intron which is inserted in the mitochondrial cox1 gene of the Schizosaccharomyces pombe strain EF2 ."
],
"offsets": [
[
0,
139
]
]
}
] |
[
{
"id": "split_0_train_45571_entity",
"type": "progene_text",
"text": [
"cox1"
],
"offsets": [
[
84,
88
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28149
|
split_0_train_28149
|
[
{
"id": "split_0_train_28149_passage",
"type": "progene_text",
"text": [
"The intron RNA consists of 2492 nucleotides which can be folded into a secondary structure with all the expected sequence motifs of subgroup - IIA1 introns ( Michel et al. 1989 ) ."
],
"offsets": [
[
0,
180
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28150
|
split_0_train_28150
|
[
{
"id": "split_0_train_28150_passage",
"type": "progene_text",
"text": [
"Determination of the exact splice point revealed that the intron is inserted in the same codon , but 1 bp downstream , as the mobile intron aI2 in the Saccharomyces cerevisiae cox1 homologue ."
],
"offsets": [
[
0,
192
]
]
}
] |
[
{
"id": "split_0_train_45572_entity",
"type": "progene_text",
"text": [
"cox1"
],
"offsets": [
[
176,
180
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28151
|
split_0_train_28151
|
[
{
"id": "split_0_train_28151_passage",
"type": "progene_text",
"text": [
"A total of nine nucleotide changes was observed around the insertion site of the intron in the cox1 gene of strain EF2 compared with the reference strain ade7-50h(-) ."
],
"offsets": [
[
0,
167
]
]
}
] |
[
{
"id": "split_0_train_45573_entity",
"type": "progene_text",
"text": [
"cox1"
],
"offsets": [
[
95,
99
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28152
|
split_0_train_28152
|
[
{
"id": "split_0_train_28152_passage",
"type": "progene_text",
"text": [
"Seven of these changes are clustered within the 51 bp upstream of the splice point ."
],
"offsets": [
[
0,
84
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28153
|
split_0_train_28153
|
[
{
"id": "split_0_train_28153_passage",
"type": "progene_text",
"text": [
"Only one sequence deviation was found in the downstream exon ."
],
"offsets": [
[
0,
62
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28154
|
split_0_train_28154
|
[
{
"id": "split_0_train_28154_passage",
"type": "progene_text",
"text": [
"The intron is capable of splicing despite the fact that both the EBS1 / IBS1 and the EBS2 / IBS2 sequence motifs , thought to be necessary for correct splicing , extend over 5 instead of 6 bp ."
],
"offsets": [
[
0,
193
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28155
|
split_0_train_28155
|
[
{
"id": "split_0_train_28155_passage",
"type": "progene_text",
"text": [
"The maturase , endonuclease and reverse transcriptase domains of the putative protein encoded by the newly described S. pombe group - II intron were not closer to those encoded by the other two , cobI and cox2I , S. pombe group - II introns than to the group-II intron - encoded proteins in Allomyces , Marchantia , Podospora and Saccharomyces ."
],
"offsets": [
[
0,
345
]
]
}
] |
[
{
"id": "split_0_train_45574_entity",
"type": "progene_text",
"text": [
"maturase"
],
"offsets": [
[
4,
12
]
],
"normalized": []
},
{
"id": "split_0_train_45575_entity",
"type": "progene_text",
"text": [
"endonuclease"
],
"offsets": [
[
15,
27
]
],
"normalized": []
},
{
"id": "split_0_train_45576_entity",
"type": "progene_text",
"text": [
"reverse transcriptase"
],
"offsets": [
[
32,
53
]
],
"normalized": []
},
{
"id": "split_0_train_45577_entity",
"type": "progene_text",
"text": [
"cobI"
],
"offsets": [
[
196,
200
]
],
"normalized": []
},
{
"id": "split_0_train_45578_entity",
"type": "progene_text",
"text": [
"cox2I"
],
"offsets": [
[
205,
210
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28156
|
split_0_train_28156
|
[
{
"id": "split_0_train_28156_passage",
"type": "progene_text",
"text": [
"Cytoskeletal reorganization leads to induction of the urokinase - type plasminogen activator gene by activating FAK and Src and subsequently the Ras / Erk signaling pathway ."
],
"offsets": [
[
0,
174
]
]
}
] |
[
{
"id": "split_0_train_45579_entity",
"type": "progene_text",
"text": [
"urokinase - type plasminogen activator"
],
"offsets": [
[
54,
92
]
],
"normalized": []
},
{
"id": "split_0_train_45580_entity",
"type": "progene_text",
"text": [
"FAK"
],
"offsets": [
[
112,
115
]
],
"normalized": []
},
{
"id": "split_0_train_45581_entity",
"type": "progene_text",
"text": [
"Src"
],
"offsets": [
[
120,
123
]
],
"normalized": []
},
{
"id": "split_0_train_45582_entity",
"type": "progene_text",
"text": [
"Ras"
],
"offsets": [
[
145,
148
]
],
"normalized": []
},
{
"id": "split_0_train_45583_entity",
"type": "progene_text",
"text": [
"Erk"
],
"offsets": [
[
151,
154
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28157
|
split_0_train_28157
|
[
{
"id": "split_0_train_28157_passage",
"type": "progene_text",
"text": [
"Previously , we showed that cytoskeletal reorganization ( CSR ) induced by colchicine or cyochalasins leads to activation of the urokinase - type plasminogen activator ( uPA ) gene in LLC - PK ( 1 ) cells via the Ras / Erk signaling pathway [ Irigoyen et al. ( 1997 ) J. Biol. Chem. 272 , 1904 ] ."
],
"offsets": [
[
0,
297
]
]
}
] |
[
{
"id": "split_0_train_45584_entity",
"type": "progene_text",
"text": [
"urokinase - type plasminogen activator"
],
"offsets": [
[
129,
167
]
],
"normalized": []
},
{
"id": "split_0_train_45585_entity",
"type": "progene_text",
"text": [
"uPA"
],
"offsets": [
[
170,
173
]
],
"normalized": []
},
{
"id": "split_0_train_45586_entity",
"type": "progene_text",
"text": [
"Ras"
],
"offsets": [
[
213,
216
]
],
"normalized": []
},
{
"id": "split_0_train_45587_entity",
"type": "progene_text",
"text": [
"Erk"
],
"offsets": [
[
219,
222
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28158
|
split_0_train_28158
|
[
{
"id": "split_0_train_28158_passage",
"type": "progene_text",
"text": [
"It remained to be seen how CSR activates Ras / Erk signaling ."
],
"offsets": [
[
0,
62
]
]
}
] |
[
{
"id": "split_0_train_45588_entity",
"type": "progene_text",
"text": [
"Ras"
],
"offsets": [
[
41,
44
]
],
"normalized": []
},
{
"id": "split_0_train_45589_entity",
"type": "progene_text",
"text": [
"Erk"
],
"offsets": [
[
47,
50
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28159
|
split_0_train_28159
|
[
{
"id": "split_0_train_28159_passage",
"type": "progene_text",
"text": [
"Changes in cell morphology triggered by extracellular signals are often mediated by integrin - associated proteins , such as focal adhesion kinase ( FAK ) and Src ."
],
"offsets": [
[
0,
164
]
]
}
] |
[
{
"id": "split_0_train_45590_entity",
"type": "progene_text",
"text": [
"integrin"
],
"offsets": [
[
84,
92
]
],
"normalized": []
},
{
"id": "split_0_train_45591_entity",
"type": "progene_text",
"text": [
"focal adhesion kinase"
],
"offsets": [
[
125,
146
]
],
"normalized": []
},
{
"id": "split_0_train_45592_entity",
"type": "progene_text",
"text": [
"FAK"
],
"offsets": [
[
149,
152
]
],
"normalized": []
},
{
"id": "split_0_train_45593_entity",
"type": "progene_text",
"text": [
"Src"
],
"offsets": [
[
159,
162
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28160
|
split_0_train_28160
|
[
{
"id": "split_0_train_28160_passage",
"type": "progene_text",
"text": [
"We found that CSR induced the activation of FAK and Src and the association of FAK and Shc , a signaling molecule linking growth factor receptor tyrosine kinase and Grb2 ."
],
"offsets": [
[
0,
171
]
]
}
] |
[
{
"id": "split_0_train_45594_entity",
"type": "progene_text",
"text": [
"FAK"
],
"offsets": [
[
44,
47
]
],
"normalized": []
},
{
"id": "split_0_train_45595_entity",
"type": "progene_text",
"text": [
"Src"
],
"offsets": [
[
52,
55
]
],
"normalized": []
},
{
"id": "split_0_train_45596_entity",
"type": "progene_text",
"text": [
"FAK"
],
"offsets": [
[
79,
82
]
],
"normalized": []
},
{
"id": "split_0_train_45597_entity",
"type": "progene_text",
"text": [
"Shc"
],
"offsets": [
[
87,
90
]
],
"normalized": []
},
{
"id": "split_0_train_45598_entity",
"type": "progene_text",
"text": [
"growth factor receptor tyrosine kinase"
],
"offsets": [
[
122,
160
]
],
"normalized": []
},
{
"id": "split_0_train_45599_entity",
"type": "progene_text",
"text": [
"Grb2"
],
"offsets": [
[
165,
169
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28161
|
split_0_train_28161
|
[
{
"id": "split_0_train_28161_passage",
"type": "progene_text",
"text": [
"Furthermore , expression of either FRNK , a kinase - minus FAK - like molecule acting as a dominant negative FAK , or a dominant negative Src suppressed CSR - induced uPA gene promoter activation ."
],
"offsets": [
[
0,
197
]
]
}
] |
[
{
"id": "split_0_train_45600_entity",
"type": "progene_text",
"text": [
"FRNK"
],
"offsets": [
[
35,
39
]
],
"normalized": []
},
{
"id": "split_0_train_45601_entity",
"type": "progene_text",
"text": [
"kinase"
],
"offsets": [
[
44,
50
]
],
"normalized": []
},
{
"id": "split_0_train_45602_entity",
"type": "progene_text",
"text": [
"FAK"
],
"offsets": [
[
59,
62
]
],
"normalized": []
},
{
"id": "split_0_train_45603_entity",
"type": "progene_text",
"text": [
"FAK"
],
"offsets": [
[
109,
112
]
],
"normalized": []
},
{
"id": "split_0_train_45604_entity",
"type": "progene_text",
"text": [
"Src"
],
"offsets": [
[
138,
141
]
],
"normalized": []
},
{
"id": "split_0_train_45605_entity",
"type": "progene_text",
"text": [
"uPA"
],
"offsets": [
[
167,
170
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28162
|
split_0_train_28162
|
[
{
"id": "split_0_train_28162_passage",
"type": "progene_text",
"text": [
"These results suggest that cells respond to a morphology change , using the cytoskeleton as a sensor , by activating FAK and Src and subsequently the Ras / Erk signaling pathway ."
],
"offsets": [
[
0,
179
]
]
}
] |
[
{
"id": "split_0_train_45606_entity",
"type": "progene_text",
"text": [
"FAK"
],
"offsets": [
[
117,
120
]
],
"normalized": []
},
{
"id": "split_0_train_45607_entity",
"type": "progene_text",
"text": [
"Src"
],
"offsets": [
[
125,
128
]
],
"normalized": []
},
{
"id": "split_0_train_45608_entity",
"type": "progene_text",
"text": [
"Ras"
],
"offsets": [
[
150,
153
]
],
"normalized": []
},
{
"id": "split_0_train_45609_entity",
"type": "progene_text",
"text": [
"Erk"
],
"offsets": [
[
156,
159
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28163
|
split_0_train_28163
|
[
{
"id": "split_0_train_28163_passage",
"type": "progene_text",
"text": [
"The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis ."
],
"offsets": [
[
0,
106
]
]
}
] |
[
{
"id": "split_0_train_45610_entity",
"type": "progene_text",
"text": [
"FAST-1"
],
"offsets": [
[
12,
18
]
],
"normalized": []
},
{
"id": "split_0_train_45611_entity",
"type": "progene_text",
"text": [
"Smads"
],
"offsets": [
[
23,
28
]
],
"normalized": []
},
{
"id": "split_0_train_45612_entity",
"type": "progene_text",
"text": [
"activin"
],
"offsets": [
[
62,
69
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28164
|
split_0_train_28164
|
[
{
"id": "split_0_train_28164_passage",
"type": "progene_text",
"text": [
"Smads are signal transducers for the transforming growth factor - beta superfamily of factors ."
],
"offsets": [
[
0,
95
]
]
}
] |
[
{
"id": "split_0_train_45613_entity",
"type": "progene_text",
"text": [
"Smads"
],
"offsets": [
[
0,
5
]
],
"normalized": []
},
{
"id": "split_0_train_45614_entity",
"type": "progene_text",
"text": [
"transforming growth factor - beta superfamily"
],
"offsets": [
[
37,
82
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28165
|
split_0_train_28165
|
[
{
"id": "split_0_train_28165_passage",
"type": "progene_text",
"text": [
"In early Xenopus embryos , the transforming growth factor - beta member activin induces the gene Mix.2 by stimulating the formation of a multiprotein complex , activin - responsive factor ( ARF ) ."
],
"offsets": [
[
0,
197
]
]
}
] |
[
{
"id": "split_0_train_45615_entity",
"type": "progene_text",
"text": [
"transforming growth factor - beta"
],
"offsets": [
[
31,
64
]
],
"normalized": []
},
{
"id": "split_0_train_45616_entity",
"type": "progene_text",
"text": [
"activin"
],
"offsets": [
[
72,
79
]
],
"normalized": []
},
{
"id": "split_0_train_45617_entity",
"type": "progene_text",
"text": [
"Mix.2"
],
"offsets": [
[
97,
102
]
],
"normalized": []
},
{
"id": "split_0_train_45618_entity",
"type": "progene_text",
"text": [
"activin - responsive factor"
],
"offsets": [
[
160,
187
]
],
"normalized": []
},
{
"id": "split_0_train_45619_entity",
"type": "progene_text",
"text": [
"ARF"
],
"offsets": [
[
190,
193
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28166
|
split_0_train_28166
|
[
{
"id": "split_0_train_28166_passage",
"type": "progene_text",
"text": [
"This complex contains Smad2 or Smad3 , Smad4 , and a novel forkhead transcription factor , FAST-1 , and binds to an enhancer ( activin - responsive element ; ARE ) that confers activin regulation of Mix.2 transcription ."
],
"offsets": [
[
0,
220
]
]
}
] |
[
{
"id": "split_0_train_45620_entity",
"type": "progene_text",
"text": [
"Smad2"
],
"offsets": [
[
22,
27
]
],
"normalized": []
},
{
"id": "split_0_train_45621_entity",
"type": "progene_text",
"text": [
"Smad3"
],
"offsets": [
[
31,
36
]
],
"normalized": []
},
{
"id": "split_0_train_45622_entity",
"type": "progene_text",
"text": [
"Smad4"
],
"offsets": [
[
39,
44
]
],
"normalized": []
},
{
"id": "split_0_train_45623_entity",
"type": "progene_text",
"text": [
"transcription factor"
],
"offsets": [
[
68,
88
]
],
"normalized": []
},
{
"id": "split_0_train_45624_entity",
"type": "progene_text",
"text": [
"FAST-1"
],
"offsets": [
[
91,
97
]
],
"normalized": []
},
{
"id": "split_0_train_45625_entity",
"type": "progene_text",
"text": [
"activin"
],
"offsets": [
[
127,
134
]
],
"normalized": []
},
{
"id": "split_0_train_45626_entity",
"type": "progene_text",
"text": [
"activin"
],
"offsets": [
[
177,
184
]
],
"normalized": []
},
{
"id": "split_0_train_45627_entity",
"type": "progene_text",
"text": [
"Mix.2"
],
"offsets": [
[
199,
204
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28167
|
split_0_train_28167
|
[
{
"id": "split_0_train_28167_passage",
"type": "progene_text",
"text": [
"Both FAST-1 and Smads can bind directly to the ARE ; we have investigated 1 ) the role of FAST-1 and Smad DNA binding sites in ARF recognition of the ARE , 2 ) the contributions of FAST-1 and Smad binding to ARF binding in vitro and to ARE regulation in early Xenopus embryos , 3 ) the extent to which different Smads can replace Smad4 in regulation of the ARE ."
],
"offsets": [
[
0,
362
]
]
}
] |
[
{
"id": "split_0_train_45628_entity",
"type": "progene_text",
"text": [
"FAST-1"
],
"offsets": [
[
5,
11
]
],
"normalized": []
},
{
"id": "split_0_train_45629_entity",
"type": "progene_text",
"text": [
"Smads"
],
"offsets": [
[
16,
21
]
],
"normalized": []
},
{
"id": "split_0_train_45630_entity",
"type": "progene_text",
"text": [
"FAST-1"
],
"offsets": [
[
90,
96
]
],
"normalized": []
},
{
"id": "split_0_train_45631_entity",
"type": "progene_text",
"text": [
"Smad"
],
"offsets": [
[
101,
105
]
],
"normalized": []
},
{
"id": "split_0_train_45632_entity",
"type": "progene_text",
"text": [
"ARF"
],
"offsets": [
[
127,
130
]
],
"normalized": []
},
{
"id": "split_0_train_45633_entity",
"type": "progene_text",
"text": [
"FAST-1"
],
"offsets": [
[
181,
187
]
],
"normalized": []
},
{
"id": "split_0_train_45634_entity",
"type": "progene_text",
"text": [
"ARF"
],
"offsets": [
[
208,
211
]
],
"normalized": []
},
{
"id": "split_0_train_45635_entity",
"type": "progene_text",
"text": [
"Smads"
],
"offsets": [
[
312,
317
]
],
"normalized": []
},
{
"id": "split_0_train_45636_entity",
"type": "progene_text",
"text": [
"Smad4"
],
"offsets": [
[
330,
335
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28168
|
split_0_train_28168
|
[
{
"id": "split_0_train_28168_passage",
"type": "progene_text",
"text": [
"We find that ARF binds to ARE through both FAST-1 and Smad binding sites ."
],
"offsets": [
[
0,
74
]
]
}
] |
[
{
"id": "split_0_train_45637_entity",
"type": "progene_text",
"text": [
"ARF"
],
"offsets": [
[
13,
16
]
],
"normalized": []
},
{
"id": "split_0_train_45638_entity",
"type": "progene_text",
"text": [
"FAST-1"
],
"offsets": [
[
43,
49
]
],
"normalized": []
},
{
"id": "split_0_train_45639_entity",
"type": "progene_text",
"text": [
"Smad"
],
"offsets": [
[
54,
58
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28169
|
split_0_train_28169
|
[
{
"id": "split_0_train_28169_passage",
"type": "progene_text",
"text": [
"FAST-1 recognition of the ARE is essential both for ARF binding in vitro and activin regulation in vivo ."
],
"offsets": [
[
0,
105
]
]
}
] |
[
{
"id": "split_0_train_45640_entity",
"type": "progene_text",
"text": [
"FAST-1"
],
"offsets": [
[
0,
6
]
],
"normalized": []
},
{
"id": "split_0_train_45641_entity",
"type": "progene_text",
"text": [
"ARF"
],
"offsets": [
[
52,
55
]
],
"normalized": []
},
{
"id": "split_0_train_45642_entity",
"type": "progene_text",
"text": [
"activin"
],
"offsets": [
[
77,
84
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28170
|
split_0_train_28170
|
[
{
"id": "split_0_train_28170_passage",
"type": "progene_text",
"text": [
"In contrast , Smad binding of ARE is unnecessary for ARF binding or activin regulation but does enhance the binding and regulatory activity of ARF ."
],
"offsets": [
[
0,
148
]
]
}
] |
[
{
"id": "split_0_train_45643_entity",
"type": "progene_text",
"text": [
"Smad"
],
"offsets": [
[
14,
18
]
],
"normalized": []
},
{
"id": "split_0_train_45644_entity",
"type": "progene_text",
"text": [
"ARF"
],
"offsets": [
[
53,
56
]
],
"normalized": []
},
{
"id": "split_0_train_45645_entity",
"type": "progene_text",
"text": [
"activin"
],
"offsets": [
[
68,
75
]
],
"normalized": []
},
{
"id": "split_0_train_45646_entity",
"type": "progene_text",
"text": [
"ARF"
],
"offsets": [
[
143,
146
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28171
|
split_0_train_28171
|
[
{
"id": "split_0_train_28171_passage",
"type": "progene_text",
"text": [
"Also , Smad3 can partially substitute for Smad4 in the regulation of the ARE ."
],
"offsets": [
[
0,
78
]
]
}
] |
[
{
"id": "split_0_train_45647_entity",
"type": "progene_text",
"text": [
"Smad3"
],
"offsets": [
[
7,
12
]
],
"normalized": []
},
{
"id": "split_0_train_45648_entity",
"type": "progene_text",
"text": [
"Smad4"
],
"offsets": [
[
42,
47
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28172
|
split_0_train_28172
|
[
{
"id": "split_0_train_28172_passage",
"type": "progene_text",
"text": [
"These observations elucidate how broadly expressed signal transducers ( Smads ) regulate a developmentally specific transcriptional response in conjunction with a temporally restricted transcription factor , FAST-1 ."
],
"offsets": [
[
0,
216
]
]
}
] |
[
{
"id": "split_0_train_45649_entity",
"type": "progene_text",
"text": [
"Smads"
],
"offsets": [
[
72,
77
]
],
"normalized": []
},
{
"id": "split_0_train_45650_entity",
"type": "progene_text",
"text": [
"transcription factor"
],
"offsets": [
[
185,
205
]
],
"normalized": []
},
{
"id": "split_0_train_45651_entity",
"type": "progene_text",
"text": [
"FAST-1"
],
"offsets": [
[
208,
214
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28173
|
split_0_train_28173
|
[
{
"id": "split_0_train_28173_passage",
"type": "progene_text",
"text": [
"Curcumin blocks cytokine - mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity ."
],
"offsets": [
[
0,
153
]
]
}
] |
[
{
"id": "split_0_train_45652_entity",
"type": "progene_text",
"text": [
"cytokine"
],
"offsets": [
[
16,
24
]
],
"normalized": []
},
{
"id": "split_0_train_45653_entity",
"type": "progene_text",
"text": [
"NF-kappa B"
],
"offsets": [
[
36,
46
]
],
"normalized": []
},
{
"id": "split_0_train_45654_entity",
"type": "progene_text",
"text": [
"I-kappa B kinase"
],
"offsets": [
[
126,
142
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28174
|
split_0_train_28174
|
[
{
"id": "split_0_train_28174_passage",
"type": "progene_text",
"text": [
"NF-kappa B plays a critical role in the transcriptional regulation of proinflammatory gene expression in various cells ."
],
"offsets": [
[
0,
120
]
]
}
] |
[
{
"id": "split_0_train_45655_entity",
"type": "progene_text",
"text": [
"NF-kappa B"
],
"offsets": [
[
0,
10
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28175
|
split_0_train_28175
|
[
{
"id": "split_0_train_28175_passage",
"type": "progene_text",
"text": [
"Cytokine - mediated activation of NF-kappa B requires activation of various kinases , which ultimately leads to the phosphorylation and degradation of I kappa B , the NF-kappa B cytoplasmic inhibitor ."
],
"offsets": [
[
0,
201
]
]
}
] |
[
{
"id": "split_0_train_45656_entity",
"type": "progene_text",
"text": [
"Cytokine"
],
"offsets": [
[
0,
8
]
],
"normalized": []
},
{
"id": "split_0_train_45657_entity",
"type": "progene_text",
"text": [
"NF-kappa B"
],
"offsets": [
[
34,
44
]
],
"normalized": []
},
{
"id": "split_0_train_45658_entity",
"type": "progene_text",
"text": [
"kinases"
],
"offsets": [
[
76,
83
]
],
"normalized": []
},
{
"id": "split_0_train_45659_entity",
"type": "progene_text",
"text": [
"I kappa B"
],
"offsets": [
[
151,
160
]
],
"normalized": []
},
{
"id": "split_0_train_45660_entity",
"type": "progene_text",
"text": [
"NF-kappa B"
],
"offsets": [
[
167,
177
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28176
|
split_0_train_28176
|
[
{
"id": "split_0_train_28176_passage",
"type": "progene_text",
"text": [
"The food derivative curcumin has been shown to inhibit NF-kappa B activity in some cell types ."
],
"offsets": [
[
0,
95
]
]
}
] |
[
{
"id": "split_0_train_45661_entity",
"type": "progene_text",
"text": [
"NF-kappa B"
],
"offsets": [
[
55,
65
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28177
|
split_0_train_28177
|
[
{
"id": "split_0_train_28177_passage",
"type": "progene_text",
"text": [
"In this report we investigate the mechanism of action of curcumin on cytokine - induced proinflammatory gene expression using intestinal epithelial cells ( IEC ) ."
],
"offsets": [
[
0,
163
]
]
}
] |
[
{
"id": "split_0_train_45662_entity",
"type": "progene_text",
"text": [
"cytokine"
],
"offsets": [
[
69,
77
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28178
|
split_0_train_28178
|
[
{
"id": "split_0_train_28178_passage",
"type": "progene_text",
"text": [
"Curcumin inhibited IL-1 beta - mediated ICAM-1 and IL-8 gene expression in IEC-6 , HT-29 , and Caco-2 cells ."
],
"offsets": [
[
0,
109
]
]
}
] |
[
{
"id": "split_0_train_45663_entity",
"type": "progene_text",
"text": [
"IL-1 beta"
],
"offsets": [
[
19,
28
]
],
"normalized": []
},
{
"id": "split_0_train_45664_entity",
"type": "progene_text",
"text": [
"ICAM-1"
],
"offsets": [
[
40,
46
]
],
"normalized": []
},
{
"id": "split_0_train_45665_entity",
"type": "progene_text",
"text": [
"IL-8"
],
"offsets": [
[
51,
55
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28179
|
split_0_train_28179
|
[
{
"id": "split_0_train_28179_passage",
"type": "progene_text",
"text": [
"Cytokine - induced NF-kappa B DNA binding activity , RelA nuclear translocation , I kappa B alpha degradation , I kappa B serine 32 phosphorylation , and I kappa B kinase ( IKK ) activity were blocked by curcumin treatment ."
],
"offsets": [
[
0,
224
]
]
}
] |
[
{
"id": "split_0_train_45666_entity",
"type": "progene_text",
"text": [
"Cytokine"
],
"offsets": [
[
0,
8
]
],
"normalized": []
},
{
"id": "split_0_train_45667_entity",
"type": "progene_text",
"text": [
"NF-kappa B"
],
"offsets": [
[
19,
29
]
],
"normalized": []
},
{
"id": "split_0_train_45668_entity",
"type": "progene_text",
"text": [
"RelA"
],
"offsets": [
[
53,
57
]
],
"normalized": []
},
{
"id": "split_0_train_45669_entity",
"type": "progene_text",
"text": [
"I kappa B alpha"
],
"offsets": [
[
82,
97
]
],
"normalized": []
},
{
"id": "split_0_train_45670_entity",
"type": "progene_text",
"text": [
"I kappa B"
],
"offsets": [
[
112,
121
]
],
"normalized": []
},
{
"id": "split_0_train_45671_entity",
"type": "progene_text",
"text": [
"I kappa B kinase"
],
"offsets": [
[
154,
170
]
],
"normalized": []
},
{
"id": "split_0_train_45672_entity",
"type": "progene_text",
"text": [
"IKK"
],
"offsets": [
[
173,
176
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28180
|
split_0_train_28180
|
[
{
"id": "split_0_train_28180_passage",
"type": "progene_text",
"text": [
"Wound - induced p38 phosphorylation was not inhibited by curcumin treatment ."
],
"offsets": [
[
0,
77
]
]
}
] |
[
{
"id": "split_0_train_45673_entity",
"type": "progene_text",
"text": [
"p38"
],
"offsets": [
[
16,
19
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28181
|
split_0_train_28181
|
[
{
"id": "split_0_train_28181_passage",
"type": "progene_text",
"text": [
"In addition , mitogen - activated protein kinase / ERK kinase kinase-1 - induced IL-8 gene expression and 12-O-tetraphorbol 12-myristate 13-acetate - responsive element - driven luciferase expression were inhibited by curcumin ."
],
"offsets": [
[
0,
228
]
]
}
] |
[
{
"id": "split_0_train_45674_entity",
"type": "progene_text",
"text": [
"mitogen - activated protein kinase"
],
"offsets": [
[
14,
48
]
],
"normalized": []
},
{
"id": "split_0_train_45675_entity",
"type": "progene_text",
"text": [
"ERK kinase kinase-1"
],
"offsets": [
[
51,
70
]
],
"normalized": []
},
{
"id": "split_0_train_45676_entity",
"type": "progene_text",
"text": [
"IL-8"
],
"offsets": [
[
81,
85
]
],
"normalized": []
},
{
"id": "split_0_train_45677_entity",
"type": "progene_text",
"text": [
"luciferase"
],
"offsets": [
[
178,
188
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28182
|
split_0_train_28182
|
[
{
"id": "split_0_train_28182_passage",
"type": "progene_text",
"text": [
"However , I kappa B alpha degradation induced by ectopically expressed NF-kappa B-inducing kinase or IKK was not inhibited by curcumin treatment ."
],
"offsets": [
[
0,
146
]
]
}
] |
[
{
"id": "split_0_train_45678_entity",
"type": "progene_text",
"text": [
"I kappa B alpha"
],
"offsets": [
[
10,
25
]
],
"normalized": []
},
{
"id": "split_0_train_45679_entity",
"type": "progene_text",
"text": [
"NF-kappa B-inducing kinase"
],
"offsets": [
[
71,
97
]
],
"normalized": []
},
{
"id": "split_0_train_45680_entity",
"type": "progene_text",
"text": [
"IKK"
],
"offsets": [
[
101,
104
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28183
|
split_0_train_28183
|
[
{
"id": "split_0_train_28183_passage",
"type": "progene_text",
"text": [
"Therefore , curcumin blocks a signal upstream of NF-kappa B-inducing kinase and IKK ."
],
"offsets": [
[
0,
85
]
]
}
] |
[
{
"id": "split_0_train_45681_entity",
"type": "progene_text",
"text": [
"NF-kappa B-inducing kinase"
],
"offsets": [
[
49,
75
]
],
"normalized": []
},
{
"id": "split_0_train_45682_entity",
"type": "progene_text",
"text": [
"IKK"
],
"offsets": [
[
80,
83
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28184
|
split_0_train_28184
|
[
{
"id": "split_0_train_28184_passage",
"type": "progene_text",
"text": [
"We conclude that curcumin potently inhibits cytokine - mediated NF-kappa B activation by blocking a signal leading to IKK activity ."
],
"offsets": [
[
0,
132
]
]
}
] |
[
{
"id": "split_0_train_45683_entity",
"type": "progene_text",
"text": [
"cytokine"
],
"offsets": [
[
44,
52
]
],
"normalized": []
},
{
"id": "split_0_train_45684_entity",
"type": "progene_text",
"text": [
"NF-kappa B"
],
"offsets": [
[
64,
74
]
],
"normalized": []
},
{
"id": "split_0_train_45685_entity",
"type": "progene_text",
"text": [
"IKK"
],
"offsets": [
[
118,
121
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28185
|
split_0_train_28185
|
[
{
"id": "split_0_train_28185_passage",
"type": "progene_text",
"text": [
"Cxc chemokine receptor expression on human endothelial cells ."
],
"offsets": [
[
0,
62
]
]
}
] |
[
{
"id": "split_0_train_45686_entity",
"type": "progene_text",
"text": [
"Cxc chemokine receptor"
],
"offsets": [
[
0,
22
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28186
|
split_0_train_28186
|
[
{
"id": "split_0_train_28186_passage",
"type": "progene_text",
"text": [
"CXC chemokines play a important role in the process of leukocyte recruitment and activation at sites of inflammation ."
],
"offsets": [
[
0,
118
]
]
}
] |
[
{
"id": "split_0_train_45687_entity",
"type": "progene_text",
"text": [
"CXC chemokines"
],
"offsets": [
[
0,
14
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28187
|
split_0_train_28187
|
[
{
"id": "split_0_train_28187_passage",
"type": "progene_text",
"text": [
"However , recent evidence suggests that these molecules can also regulate endothelial cell functions such as migration , angiogenesis and proliferation ."
],
"offsets": [
[
0,
153
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28188
|
split_0_train_28188
|
[
{
"id": "split_0_train_28188_passage",
"type": "progene_text",
"text": [
"In this study we have investigated CXC chemokine receptor expression in both primary cultures of human umbilical vein endothelial cells ( HUVEC ) and the spontaneously transformed HUVEC cell line , ECV304 ."
],
"offsets": [
[
0,
206
]
]
}
] |
[
{
"id": "split_0_train_45688_entity",
"type": "progene_text",
"text": [
"CXC chemokine receptor"
],
"offsets": [
[
35,
57
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28189
|
split_0_train_28189
|
[
{
"id": "split_0_train_28189_passage",
"type": "progene_text",
"text": [
"We found that both cell types express mRNA for chemokine receptors CXCR1 , CXCR2 and CXCR4 , but not CXCR3 ."
],
"offsets": [
[
0,
108
]
]
}
] |
[
{
"id": "split_0_train_45689_entity",
"type": "progene_text",
"text": [
"CXCR1"
],
"offsets": [
[
67,
72
]
],
"normalized": []
},
{
"id": "split_0_train_45690_entity",
"type": "progene_text",
"text": [
"CXCR2"
],
"offsets": [
[
75,
80
]
],
"normalized": []
},
{
"id": "split_0_train_45691_entity",
"type": "progene_text",
"text": [
"CXCR4"
],
"offsets": [
[
85,
90
]
],
"normalized": []
},
{
"id": "split_0_train_45692_entity",
"type": "progene_text",
"text": [
"CXCR3"
],
"offsets": [
[
101,
106
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28190
|
split_0_train_28190
|
[
{
"id": "split_0_train_28190_passage",
"type": "progene_text",
"text": [
"Flow cytometric analysis revealed low levels of CXCR1 but higher levels of CXCR4 cell surface expression ."
],
"offsets": [
[
0,
106
]
]
}
] |
[
{
"id": "split_0_train_45693_entity",
"type": "progene_text",
"text": [
"CXCR1"
],
"offsets": [
[
48,
53
]
],
"normalized": []
},
{
"id": "split_0_train_45694_entity",
"type": "progene_text",
"text": [
"CXCR4"
],
"offsets": [
[
75,
80
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28191
|
split_0_train_28191
|
[
{
"id": "split_0_train_28191_passage",
"type": "progene_text",
"text": [
"HUVECs responded to SDF-1alpha with a rapid and robust calcium flux , however no calcium flux was seen with either IL-8 or Gro-alpha ."
],
"offsets": [
[
0,
134
]
]
}
] |
[
{
"id": "split_0_train_45695_entity",
"type": "progene_text",
"text": [
"SDF-1alpha"
],
"offsets": [
[
20,
30
]
],
"normalized": []
},
{
"id": "split_0_train_45696_entity",
"type": "progene_text",
"text": [
"IL-8"
],
"offsets": [
[
115,
119
]
],
"normalized": []
},
{
"id": "split_0_train_45697_entity",
"type": "progene_text",
"text": [
"Gro-alpha"
],
"offsets": [
[
123,
132
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28192
|
split_0_train_28192
|
[
{
"id": "split_0_train_28192_passage",
"type": "progene_text",
"text": [
"HUVECs and ECV304 cells did not proliferate in response to CXC chemokines , although ECV304 cells did migrate towards SDF-1alpha and IL-8 ."
],
"offsets": [
[
0,
139
]
]
}
] |
[
{
"id": "split_0_train_45698_entity",
"type": "progene_text",
"text": [
"CXC chemokines"
],
"offsets": [
[
59,
73
]
],
"normalized": []
},
{
"id": "split_0_train_45699_entity",
"type": "progene_text",
"text": [
"SDF-1alpha"
],
"offsets": [
[
118,
128
]
],
"normalized": []
},
{
"id": "split_0_train_45700_entity",
"type": "progene_text",
"text": [
"IL-8"
],
"offsets": [
[
133,
137
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28193
|
split_0_train_28193
|
[
{
"id": "split_0_train_28193_passage",
"type": "progene_text",
"text": [
"These data demonstrate that HUVECs and the endothelial cell line , ECV304 express functional CXC chemokine receptors ."
],
"offsets": [
[
0,
118
]
]
}
] |
[
{
"id": "split_0_train_45701_entity",
"type": "progene_text",
"text": [
"CXC chemokine receptors"
],
"offsets": [
[
93,
116
]
],
"normalized": []
}
] |
[] |
[] |
[] |
split_0_train_28194
|
split_0_train_28194
|
[
{
"id": "split_0_train_28194_passage",
"type": "progene_text",
"text": [
"Use of the North American Adult Reading Test to estimate premorbid intellectual function in patients with multiple sclerosis ."
],
"offsets": [
[
0,
126
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28195
|
split_0_train_28195
|
[
{
"id": "split_0_train_28195_passage",
"type": "progene_text",
"text": [
"The North American Adult Reading Test ( NART-R ) has proven to be a valid means of estimating premorbid intellectual function in a variety of neurologic patient samples ."
],
"offsets": [
[
0,
170
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28196
|
split_0_train_28196
|
[
{
"id": "split_0_train_28196_passage",
"type": "progene_text",
"text": [
"The NART-R was administered to a group of patients with multiple sclerosis ( MS ) varying in course and degree of physical disability and healthy controls as part of an extensive neuropsychological battery examining numerous verbal cognitive functions , particularly language ."
],
"offsets": [
[
0,
277
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28197
|
split_0_train_28197
|
[
{
"id": "split_0_train_28197_passage",
"type": "progene_text",
"text": [
"The MS sample demonstrated significantly worse NART-R performance than did controls which could not be explained by differences in estimated premorbid intellectual function ."
],
"offsets": [
[
0,
174
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28198
|
split_0_train_28198
|
[
{
"id": "split_0_train_28198_passage",
"type": "progene_text",
"text": [
"Patients with a chronic - progressive course specifically obtained significantly lower scores than did controls , whereas there were no differences in the scores obtained by patients with chronic - progressive and relapsing - remitting courses or by patients with a relapsing - remitting course and controls ."
],
"offsets": [
[
0,
309
]
]
}
] |
[] |
[] |
[] |
[] |
split_0_train_28199
|
split_0_train_28199
|
[
{
"id": "split_0_train_28199_passage",
"type": "progene_text",
"text": [
"Thus , NART-R performance may not be a valid estimate of baseline IQ for patients with neurologic disorders with suspected language impairment ."
],
"offsets": [
[
0,
144
]
]
}
] |
[] |
[] |
[] |
[] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.