sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A378801
G.f. A(x) satisfies A(x) = ( 1 + x/(1 - x*A(x)^(2/3)) )^3.
[ "1", "3", "6", "16", "48", "153", "511", "1761", "6219", "22383", "81804", "302766", "1132475", "4274166", "16256685", "62249167", "239772510", "928398831", "3611539758", "14107963848", "55318781982", "217652858539", "859027927911", "3400055112777", "13492710661658", "53673238384560", "213984657134418" ]
[ "nonn" ]
17
0
2
[ "A005554", "A161634", "A365118", "A378801", "A378858" ]
null
Seiichi Manyama, Dec 09 2024
2024-12-09T11:02:26
oeisdata/seq/A378/A378801.seq
0c32775fd977bc28d92844bf67b3fe3f
A378802
a(n) = n * binomial(4*n, n).
[ "0", "4", "56", "660", "7280", "77520", "807576", "8288280", "84146400", "847289520", "8476605280", "84362730452", "836022413616", "8255176274800", "81266247493200", "797911337890800", "7816430993273280", "76417576884236016", "745777615780501920", "7266758081613043600", "70706322844243486400", "687103929058903836480" ]
[ "nonn", "easy" ]
11
0
2
[ "A005810", "A225847", "A229703", "A374522", "A378802" ]
null
Amiram Eldar, Dec 07 2024
2024-12-08T02:35:24
oeisdata/seq/A378/A378802.seq
d5401f716996fc13553d45aeb3aaa02f
A378803
a(n) = n^2 * binomial(4*n, n).
[ "0", "4", "112", "1980", "29120", "387600", "4845456", "58017960", "673171200", "7625605680", "84766052800", "927990034972", "10032268963392", "107317291572400", "1137727464904800", "11968670068362000", "125062895892372480", "1299098807032012272", "13423997084049034560", "138068403550647828400", "1414126456884869728000" ]
[ "nonn", "easy" ]
7
0
2
[ "A005810", "A378802", "A378803" ]
null
Amiram Eldar, Dec 07 2024
2024-12-08T02:35:42
oeisdata/seq/A378/A378803.seq
1a8bd6c379e7267509b05b0111a9a41f
A378804
a(n) = n * 2^n * binomial(4*n, n).
[ "0", "8", "224", "5280", "116480", "2480640", "51684864", "1060899840", "21541478400", "433812234240", "8680043806720", "172774871965696", "3424347806171136", "67626404043161600", "1331466198928588800", "26145958720005734400", "512257621575157678080", "10016204637370583089152", "195501127311163895316480" ]
[ "nonn", "easy", "changed" ]
11
0
2
[ "A005810", "A036289", "A378802", "A378804" ]
null
Amiram Eldar, Dec 07 2024
2025-04-26T06:00:48
oeisdata/seq/A378/A378804.seq
a5735e785f3a457c5de2c7336397d1b3
A378805
a(n) = n^2 * 2^n * binomial(4*n, n).
[ "0", "8", "448", "15840", "465920", "12403200", "310109184", "7426298880", "172331827200", "3904310108160", "86800438067200", "1900523591622656", "41092173674053632", "879143252561100800", "18640526785000243200", "392189380800086016000", "8196121945202522849280", "170275478835299912515584", "3519020291600950115696640" ]
[ "nonn", "easy", "changed" ]
12
0
2
[ "A005810", "A007758", "A378803", "A378804", "A378805" ]
null
Amiram Eldar, Dec 07 2024
2025-04-26T06:00:41
oeisdata/seq/A378/A378805.seq
3caa45d86d54faec0fd9345dd6a048aa
A378806
Decimal expansion of Sum_{k>=1} 1/binomial(4*k, k).
[ "2", "9", "0", "8", "8", "2", "0", "7", "1", "5", "2", "1", "2", "8", "7", "2", "1", "2", "7", "6", "2", "5", "9", "7", "2", "5", "6", "6", "8", "6", "8", "1", "0", "3", "5", "7", "7", "3", "3", "6", "8", "1", "7", "6", "1", "6", "7", "6", "0", "9", "7", "9", "2", "7", "5", "8", "2", "3", "7", "9", "3", "5", "9", "2", "6", "2", "2", "8", "4", "8", "1", "2", "4", "6", "8", "0", "2", "5", "4", "2", "5", "5", "0", "5", "5", "9", "3", "3", "9", "1", "8", "9", "7", "1", "6", "4", "9", "5", "6", "0", "3", "0", "3", "3", "4" ]
[ "nonn", "cons" ]
5
0
1
[ "A005810", "A073016", "A229705", "A378806", "A378807" ]
null
Amiram Eldar, Dec 07 2024
2024-12-08T02:44:28
oeisdata/seq/A378/A378806.seq
e4105ba0ca83e2d6cb650613e568084b
A378807
Decimal expansion of Sum_{k>=1} (-1)^k/binomial(4*k, k) (negated).
[ "2", "1", "8", "3", "3", "9", "5", "4", "7", "1", "7", "7", "9", "3", "4", "4", "3", "6", "8", "7", "0", "9", "9", "8", "3", "2", "1", "0", "2", "7", "8", "8", "5", "3", "9", "1", "9", "8", "3", "0", "4", "8", "6", "4", "0", "2", "9", "2", "2", "6", "2", "2", "7", "0", "0", "1", "3", "2", "5", "6", "8", "5", "4", "9", "8", "0", "6", "6", "7", "9", "6", "6", "1", "3", "5", "9", "0", "4", "2", "7", "6", "1", "3", "1", "7", "0", "9", "3", "7", "4", "0", "2", "9", "0", "7", "9", "6", "3", "9", "3", "9", "6", "3", "3", "2" ]
[ "nonn", "cons" ]
5
0
1
[ "A005810", "A086465", "A229703", "A378806", "A378807" ]
null
Amiram Eldar, Dec 07 2024
2024-12-08T02:44:12
oeisdata/seq/A378/A378807.seq
b2d43ee550933aa037e062f70575dec5
A378808
Numbers with monotonically decreasing digits, decreasing by only 0 or 1.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "21", "22", "32", "33", "43", "44", "54", "55", "65", "66", "76", "77", "87", "88", "98", "99", "100", "110", "111", "210", "211", "221", "222", "321", "322", "332", "333", "432", "433", "443", "444", "543", "544", "554", "555", "654", "655", "665", "666", "765", "766", "776", "777", "876", "877", "887", "888", "987", "988", "998", "999" ]
[ "nonn", "base" ]
16
1
2
[ "A009996", "A064222", "A378775", "A378808" ]
null
Randy L. Ekl, Dec 07 2024
2024-12-18T15:07:19
oeisdata/seq/A378/A378808.seq
df83e8382c65bc118a56afda8db54d3b
A378809
Triangle read by rows: T(n,k) is the number of peak and valleyless Motzkin meanders of length n with k horizontal steps.
[ "1", "1", "1", "1", "2", "1", "1", "4", "3", "1", "1", "5", "9", "4", "1", "1", "7", "15", "16", "5", "1", "1", "8", "27", "34", "25", "6", "1", "1", "10", "37", "76", "65", "36", "7", "1", "1", "11", "55", "124", "175", "111", "49", "8", "1", "1", "13", "69", "216", "335", "351", "175", "64", "9", "1", "1", "14", "93", "309", "675", "776", "637", "260", "81", "10", "1" ]
[ "nonn", "easy", "tabl" ]
14
0
5
[ "A001651", "A005773", "A088855", "A247643", "A308435", "A378809", "A378810" ]
null
John Tyler Rascoe, Dec 08 2024
2025-03-31T04:47:16
oeisdata/seq/A378/A378809.seq
a0c6d55e2c980ca2d7fd387bf4ee85b8
A378810
Number of horizontal steps in all peak and valleyless Motzkin meanders of length n.
[ "0", "1", "4", "13", "39", "110", "300", "801", "2106", "5473", "14097", "36056", "91697", "232108", "585212", "1470557", "3684682", "9209417", "22967446", "57167993", "142051519", "352427720", "873157093", "2160579740", "5340150100", "13185150903", "32523933395", "80156852042", "197391001215", "485723767342" ]
[ "nonn", "easy" ]
10
0
3
[ "A005773", "A132894", "A308435", "A378809", "A378810" ]
null
John Tyler Rascoe, Dec 08 2024
2024-12-09T06:02:53
oeisdata/seq/A378/A378810.seq
aed8b4750482227ffd9d926a49885815
A378811
Number of minimum edge cuts in the n-Lucas cube graph.
[ "0", "2", "3", "12", "5", "3", "14", "8", "3" ]
[ "nonn", "more" ]
17
1
2
[ "A377653", "A378811" ]
null
Eric W. Weisstein, Dec 10 2024
2024-12-10T10:26:01
oeisdata/seq/A378/A378811.seq
771fc73e533f3a13ddddde601a9767af
A378812
Decimal expansion of (65 + 9*sqrt(3))/22.
[ "3", "6", "6", "3", "1", "1", "1", "6", "9", "4", "0", "0", "5", "4", "4", "9", "8", "0", "1", "8", "9", "7", "5", "9", "1", "6", "8", "5", "1", "6", "1", "4", "9", "3", "2", "4", "1", "0", "2", "2", "0", "5", "6", "6", "9", "4", "7", "4", "0", "6", "1", "0", "2", "5", "6", "9", "3", "1", "9", "2", "1", "0", "3", "7", "0", "4", "8", "5", "1", "8", "0", "5", "2", "3", "7", "1", "7", "8", "1", "8", "3", "3", "3", "5", "1", "3", "7", "7", "9", "8", "5", "4", "9", "1", "6", "0", "1", "6", "9", "0" ]
[ "nonn", "cons", "easy" ]
4
1
1
[ "A002194", "A378812" ]
null
Stefano Spezia, Dec 08 2024
2024-12-08T12:24:12
oeisdata/seq/A378/A378812.seq
9ede4cf9a1f0c4868b9e8b4af9044ddd
A378813
Decimal expansion of sqrt(480)/7.
[ "3", "1", "2", "9", "8", "4", "3", "1", "8", "5", "7", "4", "3", "8", "0", "6", "3", "6", "2", "6", "1", "1", "2", "5", "5", "9", "0", "1", "7", "1", "8", "8", "6", "9", "3", "3", "6", "8", "7", "2", "8", "2", "6", "8", "2", "8", "5", "5", "9", "9", "0", "4", "3", "0", "9", "8", "6", "7", "9", "6", "8", "2", "8", "4", "1", "8", "5", "6", "7", "5", "8", "6", "9", "2", "7", "2", "7", "0", "1", "3", "3", "6", "0", "0", "4", "9", "0", "5", "3", "4", "9", "5", "0", "7", "8", "3", "2", "1", "4", "7" ]
[ "nonn", "cons", "easy" ]
4
1
1
[ "A010485", "A378813" ]
null
Stefano Spezia, Dec 08 2024
2024-12-08T12:24:34
oeisdata/seq/A378/A378813.seq
445c0e5f191d4b6224fc18b1ed320923
A378814
a(n) = round(n/(A000005(A071904(n))-2)).
[ "1", "1", "2", "4", "3", "3", "4", "4", "2", "10", "6", "6", "7", "4", "8", "8", "4", "9", "6", "10", "11", "11", "12", "12", "6", "4", "14", "14", "7", "15", "31", "16", "17", "17", "18", "6", "19", "19", "20", "10", "10", "21", "22", "22", "8", "46", "12", "12", "25", "25", "26", "26", "9", "9", "28", "28", "29", "15", "30", "30", "31", "31", "32", "32", "9", "11", "34", "34", "17", "18", "36" ]
[ "nonn" ]
22
1
3
[ "A000005", "A037040", "A071904", "A378814" ]
null
Bill McEachen, Dec 08 2024
2024-12-17T13:04:07
oeisdata/seq/A378/A378814.seq
ec1368faf9a76a139ed3fb35cca5f459
A378815
Numbers k such that 5^k + 64 is prime.
[ "2", "58", "170", "1402", "1774", "10802", "86342" ]
[ "nonn", "more" ]
19
1
1
[ "A089142", "A124621", "A217133", "A378815" ]
null
Robert Price, Dec 08 2024
2024-12-24T22:13:03
oeisdata/seq/A378/A378815.seq
9446b2f2ad2df22cd28be12d1609c7d3
A378816
Expansion of 2*(x - 1)^3/(3*x^3 - 5*x^2 + x + 1 + sqrt(-(x - 1)^3*(x + 1)^2*(3*x + 1)))
[ "-1", "4", "-11", "30", "-83", "232", "-654", "1856", "-5296", "15180", "-43675", "126062", "-364863", "1058552", "-3077533", "8963862", "-26151753", "76409052", "-223544241", "654790218", "-1920055017", "5635816776", "-16557539124", "48685404516", "-143264248974", "421879104836", "-1243160223829", "3665516301186" ]
[ "sign" ]
11
0
2
[ "A025566", "A057552", "A378783", "A378816" ]
null
Thomas Scheuerle, Dec 08 2024
2024-12-21T00:49:56
oeisdata/seq/A378/A378816.seq
2269b5a52ec752bbd3cfbb209443397b
A378817
Hankel sequence transform of A378816.
[ "-1", "-5", "6", "-10", "11", "-1", "1", "17", "-18", "22", "-23", "1", "-1", "-29", "30", "-34", "35", "-1", "1", "41", "-42", "46", "-47", "1", "-1", "-53", "54", "-58", "59", "-1", "1", "65", "-66", "70", "-71", "1", "-1", "-77", "78", "-82", "83", "-1", "1", "89", "-90", "94", "-95", "1", "-1", "-101", "102", "-106", "107", "-1", "1", "113", "-114", "118", "-119" ]
[ "sign", "easy" ]
15
0
2
[ "A378783", "A378816", "A378817" ]
null
Thomas Scheuerle, Dec 08 2024
2025-01-28T08:39:29
oeisdata/seq/A378/A378817.seq
08e61094bf65079294c046414ed7a631
A378818
Number of classes of locally equienergetic simple graphs with n vertices.
[ "0", "0", "0", "1", "2", "3", "5", "12", "38", "149" ]
[ "nonn", "more" ]
20
1
5
[ "A000088", "A378818" ]
null
Cahit Dede, Dec 08 2024
2025-01-05T10:00:16
oeisdata/seq/A378/A378818.seq
072b14dbfa63b6952a8273b728cff579
A378819
a(n) is the number of distinct nondegenerate triangles whose sides are prime factors of n.
[ "0", "1", "1", "1", "1", "4", "1", "1", "1", "3", "1", "4", "1", "3", "4", "1", "1", "4", "1", "3", "3", "3", "1", "4", "1", "3", "1", "3", "1", "8", "1", "1", "3", "3", "4", "4", "1", "3", "3", "3", "1", "7", "1", "3", "4", "3", "1", "4", "1", "3", "3", "3", "1", "4", "3", "3", "3", "3", "1", "8", "1", "3", "3", "1", "3", "7", "1", "3", "3", "7", "1", "4", "1", "3", "4", "3", "4", "7", "1", "3", "1", "3", "1", "7", "3", "3", "3", "3" ]
[ "nonn" ]
6
1
6
[ "A000040", "A000961", "A001221", "A007947", "A070088", "A306678", "A316841", "A316842", "A366398", "A378819", "A378820", "A379033" ]
null
Felix Huber, Dec 27 2024
2025-01-07T10:21:16
oeisdata/seq/A378/A378819.seq
94a0635e59f2c150c025546a10503c5c
A378820
a(n) is the number of distinct nondegenerate triangles whose sides are divisors of n.
[ "1", "3", "3", "6", "3", "11", "3", "10", "6", "10", "3", "26", "3", "10", "11", "15", "3", "23", "3", "23", "10", "10", "3", "46", "6", "10", "10", "22", "3", "45", "3", "21", "10", "10", "11", "57", "3", "10", "10", "43", "3", "41", "3", "21", "24", "10", "3", "70", "6", "21", "10", "21", "3", "39", "10", "42", "10", "10", "3", "114", "3", "10", "23", "28", "10", "39", "3", "21", "10", "42", "3", "108" ]
[ "nonn" ]
5
1
2
[ "A000005", "A316841", "A316842", "A378819", "A378820" ]
null
Felix Huber, Dec 27 2024
2025-01-07T10:21:25
oeisdata/seq/A378/A378820.seq
5c7e178f179679437cc736440230c4f9
A378821
Lexicographically earliest sequence of distinct positive integers such that the count of integers between a(n) and a(n-1), excluding values already in the sequence, is distinct from the same count for any other a(k) and a(k-1) at the time they occurred.
[ "1", "2", "4", "7", "11", "3", "10", "18", "5", "16", "26", "6", "22", "35", "8", "27", "42", "9", "32", "51", "12", "37", "58", "13", "41", "66", "14", "47", "74", "15", "53", "83", "17", "57", "90", "19", "62", "98", "20", "68", "106", "21", "73", "115", "23", "78", "122", "24", "84", "131", "25", "88", "138", "28", "94", "147", "29", "99", "154", "30", "103", "162", "31", "109", "170", "33" ]
[ "nonn" ]
23
1
2
[ "A081145", "A091263", "A378821", "A378822" ]
null
Neal Gersh Tolunsky, Dec 08 2024
2024-12-21T23:52:08
oeisdata/seq/A378/A378821.seq
5a014d04ca697ee06d4cc9890207c62d
A378822
Inverse permutation to A378821.
[ "1", "2", "6", "3", "9", "12", "4", "15", "18", "7", "5", "21", "24", "27", "30", "10", "33", "8", "36", "39", "42", "13", "45", "48", "51", "11", "16", "54", "57", "60", "63", "19", "66", "69", "14", "72", "22", "75", "78", "81", "25", "17", "84", "87", "90", "93", "28", "96", "99", "102", "20", "105", "31", "108", "111", "114", "34", "23", "117", "120", "123", "37", "126", "129", "132", "26" ]
[ "nonn" ]
11
1
2
[ "A081146", "A091023", "A378821", "A378822" ]
null
Neal Gersh Tolunsky, Dec 08 2024
2024-12-21T00:53:44
oeisdata/seq/A378/A378822.seq
6fe8e4a250e34740acf8f95b783c88e7
A378823
Decimal expansion of the surface area of a pentagonal icositetrahedron with unit shorter edge length.
[ "5", "4", "7", "9", "6", "5", "4", "9", "4", "3", "8", "6", "5", "9", "6", "9", "3", "3", "9", "7", "6", "3", "5", "0", "2", "3", "1", "5", "2", "5", "9", "0", "1", "9", "0", "9", "0", "8", "7", "0", "8", "6", "4", "4", "3", "9", "8", "5", "2", "3", "7", "0", "6", "8", "8", "8", "2", "1", "3", "8", "0", "5", "9", "7", "0", "3", "6", "8", "0", "1", "7", "8", "0", "1", "1", "5", "2", "1", "6", "8", "3", "8", "7", "4", "3", "0", "0", "5", "7", "8" ]
[ "nonn", "cons", "easy" ]
12
2
1
[ "A058265", "A377602", "A378823", "A378824", "A378825", "A378826", "A378827" ]
null
Paolo Xausa, Dec 09 2024
2024-12-10T05:46:47
oeisdata/seq/A378/A378823.seq
76a2eca204c2e2961c75782dad795ae8
A378824
Decimal expansion of the volume of a pentagonal icositetrahedron with unit shorter edge length.
[ "3", "5", "6", "3", "0", "2", "0", "2", "0", "1", "2", "0", "7", "1", "2", "8", "3", "2", "2", "3", "9", "6", "7", "7", "4", "1", "6", "3", "5", "1", "9", "6", "3", "6", "9", "0", "3", "5", "3", "8", "6", "6", "9", "1", "5", "2", "1", "8", "6", "4", "6", "1", "7", "7", "5", "8", "4", "3", "8", "4", "6", "6", "6", "0", "6", "6", "9", "5", "8", "4", "6", "7", "4", "7", "4", "0", "6", "1", "5", "3", "0", "1", "0", "9", "8", "8", "4", "0", "5", "6" ]
[ "nonn", "cons", "easy" ]
9
2
1
[ "A058265", "A377603", "A378823", "A378824", "A378825", "A378826", "A378827" ]
null
Paolo Xausa, Dec 09 2024
2024-12-10T05:48:04
oeisdata/seq/A378/A378824.seq
3d87bedc7a20b3fc6669282243d06c49
A378825
Decimal expansion of the inradius of a pentagonal icositetrahedron with unit shorter edge length.
[ "1", "9", "5", "0", "6", "8", "1", "3", "3", "1", "7", "8", "4", "7", "5", "4", "8", "1", "6", "4", "8", "8", "7", "5", "9", "5", "1", "1", "0", "5", "6", "1", "0", "8", "1", "6", "3", "1", "7", "0", "9", "8", "9", "6", "4", "2", "1", "1", "9", "3", "0", "4", "9", "1", "2", "4", "9", "1", "3", "0", "8", "5", "8", "1", "0", "4", "4", "7", "9", "6", "5", "4", "2", "1", "8", "4", "0", "7", "4", "9", "7", "7", "1", "5", "7", "0", "0", "5", "1", "3" ]
[ "nonn", "cons", "easy" ]
8
1
2
[ "A058265", "A378823", "A378824", "A378825", "A378826", "A378827" ]
null
Paolo Xausa, Dec 10 2024
2024-12-10T05:49:06
oeisdata/seq/A378/A378825.seq
a285b97841a84209bbb8e826020a165a
A378826
Decimal expansion of the midradius of a pentagonal icositetrahedron with unit shorter edge length.
[ "2", "1", "0", "1", "5", "9", "3", "8", "9", "3", "2", "9", "6", "2", "9", "9", "7", "5", "7", "3", "0", "9", "5", "1", "7", "2", "8", "6", "3", "7", "5", "5", "4", "6", "6", "8", "7", "9", "7", "1", "2", "7", "6", "3", "4", "5", "2", "1", "6", "1", "5", "3", "5", "5", "0", "6", "6", "8", "0", "7", "8", "6", "3", "3", "6", "1", "6", "3", "0", "0", "3", "1", "7", "9", "9", "1", "9", "9", "3", "8", "9", "0", "9", "1", "4", "5", "3", "5", "8", "4" ]
[ "nonn", "cons", "easy" ]
7
1
1
[ "A058265", "A377605", "A378823", "A378824", "A378825", "A378826", "A378827" ]
null
Paolo Xausa, Dec 10 2024
2024-12-10T05:49:54
oeisdata/seq/A378/A378826.seq
5102fa9fba6c968eb9fcb638b367ecad
A378827
Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentagonal icositetrahedron.
[ "2", "3", "7", "9", "0", "4", "4", "9", "1", "4", "8", "3", "8", "8", "1", "0", "6", "8", "1", "7", "1", "9", "5", "3", "7", "2", "9", "1", "1", "6", "4", "6", "2", "0", "0", "6", "6", "1", "2", "8", "0", "3", "0", "2", "3", "5", "6", "8", "8", "5", "5", "3", "5", "2", "6", "9", "1", "8", "3", "3", "0", "5", "2", "5", "7", "5", "1", "9", "5", "2", "5", "8", "7", "6", "9", "1", "9", "6", "5", "8", "6", "9", "2", "1", "0", "0", "1", "0", "3", "3" ]
[ "nonn", "cons", "easy" ]
6
1
1
[ "A377969", "A377970", "A378823", "A378824", "A378825", "A378826", "A378827" ]
null
Paolo Xausa, Dec 10 2024
2024-12-10T05:50:54
oeisdata/seq/A378/A378827.seq
2bca0be59e5018a6b2a47c8c8a35b49e
A378828
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(2/3)/(1 - x*A(x)^(4/3)) )^3.
[ "1", "3", "12", "61", "354", "2220", "14649", "100218", "704373", "5055383", "36895221", "272975652", "2042782905", "15434838759", "117588475377", "902259691317", "6966487019220", "54086849181609", "421986564474946", "3306818224272945", "26015737668878523", "205405810986995869", "1627042895593132485" ]
[ "nonn" ]
40
0
2
[ "A349017", "A364739", "A378801", "A378828", "A378882", "A378889" ]
null
Seiichi Manyama, Dec 09 2024
2024-12-10T05:53:37
oeisdata/seq/A378/A378828.seq
639da4ccbcdde88bcc176db1ec35fec4
A378829
G.f. A(x) satisfies 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n.
[ "1", "-2", "5", "-13", "30", "-74", "202", "-616", "2126", "-7828", "29366", "-110398", "414214", "-1556848", "5892713", "-22524354", "86954484", "-338421674", "1324660464", "-5204326208", "20498580511", "-80907096678", "320002290542", "-1268500509496", "5040195484362", "-20073242195580", "80120884387322", "-320442284717582", "1283939790460139" ]
[ "sign" ]
11
1
2
[ "A355868", "A359673", "A378829" ]
null
Paul D. Hanna, Dec 13 2024
2024-12-14T07:16:38
oeisdata/seq/A378/A378829.seq
1b97fb6ed41330cd35b2164248af0a14
A378830
G.f. A(x) satisfies 1/x = Sum_{n=-oo..+oo} A(x)^n * (1 + A(x)^(2*n+1))^(n+1).
[ "1", "1", "4", "11", "42", "153", "610", "2459", "10252", "43409", "187057", "816018", "3600270", "16030706", "71959064", "325263050", "1479270802", "6764056992", "31078467690", "143411844050", "664352697921", "3088451702294", "14403683874057", "67371591912847", "315969606711112", "1485546933158293", "7000321009422438", "33057274408834760" ]
[ "nonn" ]
10
1
3
[ "A378264", "A378830" ]
null
Paul D. Hanna, Dec 08 2024
2024-12-09T05:25:22
oeisdata/seq/A378/A378830.seq
dcdcb6366f7c3305668915799f39293d
A378831
The minimum number of diagonal lines required to cover all vertices created when the n outer vertices of a regular n-gon are connected by diagonal lines.
[ "1", "2", "2", "4", "5", "10", "11", "21" ]
[ "nonn", "more" ]
19
2
2
[ "A007569", "A373811", "A373813", "A378831" ]
null
Scott R. Shannon, Dec 08 2024
2024-12-18T09:21:44
oeisdata/seq/A378/A378831.seq
814bf6d225bd769eefa45a875d5e458b
A378832
Numbers k such that 5^k + 68 is prime.
[ "1", "3", "7", "133", "331", "453", "10365" ]
[ "nonn", "hard", "more" ]
19
1
2
[ "A089142", "A124621", "A217133", "A378832" ]
null
Robert Price, Dec 08 2024
2025-03-28T18:21:47
oeisdata/seq/A378/A378832.seq
af3d9e5539ff30d09765421fd0b9ca1d
A378833
Number of tripling steps in the 3x-1 trajectory from n to the minimum of its cycle, or -1 if n never reaches a cycle.
[ "0", "0", "1", "0", "0", "1", "1", "0", "4", "0", "1", "1", "3", "1", "2", "0", "0", "4", "2", "0", "3", "1", "1", "1", "6", "3", "1", "1", "2", "2", "2", "0", "7", "0", "4", "4", "5", "2", "3", "0", "3", "3", "1", "1", "8", "1", "5", "1", "6", "6", "3", "3", "4", "1", "4", "1", "9", "2", "2", "2", "2", "2", "6", "0", "12", "7", "7", "0", "5", "4", "5", "4", "5", "5", "2", "2", "3", "3", "3", "0", "7", "3", "3", "3", "8", "1", "13" ]
[ "nonn", "easy" ]
8
1
9
[ "A001281", "A135730", "A377524", "A378833" ]
null
Kevin Ryde, Dec 08 2024
2024-12-12T18:23:44
oeisdata/seq/A378/A378833.seq
94625a7f7f1836ced0e6b7c16c8d1152
A378834
Number of ways to reverse a permutation of n elements by the minimum number of steps of rotate left or right 1 place (L,R), or exchange first two elements (E).
[ "1", "3", "2", "2", "2", "6", "6", "32", "32", "240", "240", "2304", "2304" ]
[ "nonn", "more" ]
8
1
2
[ "A061545", "A186752", "A378834" ]
null
Kevin Ryde, Dec 09 2024
2024-12-12T09:30:53
oeisdata/seq/A378/A378834.seq
8a2b90e8acb89d78058a30f3e0f838f3
A378835
Numbers with the median of the digits equal to the digital root.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "99", "109", "118", "128", "138", "148", "158", "168", "178", "181", "182", "183", "184", "185", "186", "187", "188", "190", "209", "218", "227", "237", "247", "257", "267", "272", "273", "274", "275", "276", "277", "281", "290", "309", "318", "327", "336", "346", "356", "363", "364", "365", "366", "372", "381", "390", "409", "418", "427", "436", "445" ]
[ "nonn", "base", "easy" ]
9
1
3
[ "A010888", "A378560", "A378564", "A378835", "A378836", "A378837", "A378838" ]
null
Stefano Spezia, Dec 09 2024
2024-12-12T09:26:52
oeisdata/seq/A378/A378835.seq
0f17e48b970ba2079e5d9c1616e5e76e
A378836
a(n) is the number of n-digit nonnegative integers with the median of the digits equal to the digital root.
[ "10", "1", "131", "474", "10233", "50844", "1001250", "5225775", "99980565", "536333508", "9998984322", "55188464010", "999994914558", "5683515922236", "100001648752524", "585428890525092", "10000105972653645", "60302140270087340", "1000004027662440330", "6207976859006478708", "100000111315410065850" ]
[ "nonn", "base" ]
23
1
1
[ "A010888", "A378560", "A378564", "A378835", "A378836", "A378837", "A378838" ]
null
Stefano Spezia, Dec 09 2024
2024-12-16T02:07:04
oeisdata/seq/A378/A378836.seq
02ea832cab9a78d603c9c44ea446426e
A378837
Numbers with the arithmetic mean of the digits equal to the digital root.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "99", "999", "1029", "1038", "1047", "1056", "1065", "1074", "1083", "1092", "1119", "1128", "1137", "1146", "1155", "1164", "1173", "1182", "1191", "1209", "1218", "1227", "1236", "1245", "1254", "1263", "1272", "1281", "1290", "1308", "1317", "1326", "1335", "1344", "1353", "1362", "1371", "1380", "1407", "1416", "1425", "1434", "1443" ]
[ "nonn", "base", "easy" ]
8
1
3
[ "A010888", "A378560", "A378564", "A378835", "A378836", "A378837", "A378838" ]
null
Stefano Spezia, Dec 09 2024
2024-12-12T09:27:04
oeisdata/seq/A378/A378837.seq
ba80b7698a9114d6594596fb38064781
A378838
a(n) is the number of n-digit nonnegative integers with the mean of the digits equal to the digital root.
[ "10", "1", "1", "748", "1", "1", "373327", "1", "1", "900000000", "1", "1", "118641180477", "1", "1", "70265700376176", "1", "1", "473609016175792282", "1", "1", "25843609164809475416", "1", "1", "15917111940073972644247", "1", "1", "319908753084273214311674685", "1", "1", "6159986083122001233681300544", "1", "1", "3860982462614939076156553701616", "1", "1" ]
[ "nonn", "base" ]
40
1
1
[ "A007494", "A010888", "A378560", "A378564", "A378835", "A378836", "A378837", "A378838" ]
null
Stefano Spezia, Dec 09 2024
2024-12-16T02:07:17
oeisdata/seq/A378/A378838.seq
c804f48a2443ad4c3a9e1cf4617fa48d
A378839
a(n) is the least prime p such that p + 8*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.
[ "2", "3", "151", "181", "13", "811", "23671", "92221", "45417481", "5078503", "4861", "20379346831", "12180447943", "31", "10347699089473" ]
[ "nonn", "more" ]
13
1
1
[ "A164926", "A370387", "A371024", "A376675", "A378839" ]
null
J.W.L. (Jan) Eerland, Dec 09 2024
2024-12-18T16:41:36
oeisdata/seq/A378/A378839.seq
60a74ad9de0cc61603038f41ec75c16f
A378840
G.f. A(x) satisfies A(x) = ( 1 + x * A(x)^(4/3) * (1 + A(x)^(1/3)) )^3.
[ "1", "6", "66", "902", "13794", "225990", "3878946", "68854278", "1253647938", "23283474310", "439394508162", "8401507608966", "162413310158626", "3169029168475206", "62330703549363810", "1234503404283308038", "24599422679682518658", "492824963618477891334", "9920626149798702401730" ]
[ "nonn" ]
12
0
2
[ "A006320", "A033296", "A260332", "A365843", "A365847", "A371676", "A378840" ]
null
Seiichi Manyama, Dec 09 2024
2024-12-09T08:34:26
oeisdata/seq/A378/A378840.seq
41a675473535dfb3f78383e79bc1b4d2
A378841
a(n) is the least prime p such that p + 9*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.
[ "2", "11", "13", "5", "19", "173", "3163", "83", "21013", "878359", "3676219", "239", "43", "5201390418463", "86927887467919" ]
[ "nonn", "more" ]
17
1
1
[ "A164926", "A370387", "A371024", "A376675", "A378839", "A378841" ]
null
J.W.L. (Jan) Eerland, Dec 09 2024
2024-12-22T21:32:09
oeisdata/seq/A378/A378841.seq
16777bfe0d527a0eb607b4877b113004
A378842
Number of compositions (ordered partitions) of n into reciprocals of positive integers <= n.
[ "1", "1", "5", "154", "127459", "1218599617", "2319241469466200", "32824171395278825785183", "115384552858168166552304749413033", "22529589324775724210737089575811718669447945", "1255772217551224641521320538899160332818484462756697922572", "885355014578065534254256068634855343582928219947780981811219956595305584" ]
[ "nonn" ]
17
0
3
[ "A020473", "A038034", "A208480", "A378842" ]
null
Ilya Gutkovskiy, Dec 09 2024
2024-12-22T13:08:51
oeisdata/seq/A378/A378842.seq
16c587521ebfbf2e0ab6e992e9712c83
A378843
Number of compositions (ordered partitions) of n into distinct squarefree divisors of n.
[ "1", "1", "1", "1", "0", "1", "7", "1", "0", "0", "1", "1", "24", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "0", "1", "0", "0", "1", "151", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "31", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "864", "1", "1", "0", "0", "1", "127", "1", "0", "1", "1", "1", "0", "1", "1", "0", "0", "1", "7", "1", "0" ]
[ "nonn" ]
15
0
7
[ "A005117", "A087188", "A225244", "A225245", "A284464", "A331846", "A331927", "A378843" ]
null
Ilya Gutkovskiy, Dec 09 2024
2024-12-16T02:15:11
oeisdata/seq/A378/A378843.seq
b006840b73c2a2d10938fe127dff5a5a
A378844
Number of subsets of {1..n} whose arithmetic and harmonic means are both integers.
[ "1", "2", "3", "4", "5", "8", "9", "10", "11", "13", "14", "18", "19", "21", "27", "28", "29", "48", "49", "71", "75", "78", "79", "103", "104", "105", "106", "203", "204", "325", "326", "327", "530", "533", "795", "1198", "1199", "1204" ]
[ "nonn", "more" ]
23
1
2
[ "A051293", "A326643", "A339453", "A378844" ]
null
Ilya Gutkovskiy, Dec 09 2024
2024-12-14T05:28:32
oeisdata/seq/A378/A378844.seq
18fb45ec89739120c158daa5c0c2c3a9
A378845
Smallest starting x which takes n steps to reach the minimum of a cycle in the 3x-1 iteration.
[ "1", "2", "4", "7", "3", "6", "11", "19", "21", "13", "26", "9", "18", "35", "37", "73", "25", "49", "98", "33", "66", "131", "45", "90", "175", "127", "117", "85", "149", "57", "113", "199", "209", "133", "265", "89", "177", "65", "119", "237", "87", "159", "165", "329", "231", "225", "439", "309", "293", "585", "377", "391", "273", "261", "521", "1042", "671", "695", "485" ]
[ "nonn" ]
15
0
2
[ "A001281", "A033491", "A135730", "A378845", "A378846", "A378847" ]
null
Kevin Ryde, Dec 09 2024
2024-12-27T00:43:52
oeisdata/seq/A378/A378845.seq
c2ba27bc0fcdde62a65ac20c12d5df63
A378846
Smallest starting x which takes n halving steps to reach the minimum of a cycle in the 3x-1 iteration.
[ "1", "2", "4", "3", "6", "11", "13", "9", "18", "35", "25", "47", "33", "63", "45", "81", "95", "117", "127", "85", "57", "113", "133", "89", "97", "65", "129", "87", "173", "225", "231", "293", "309", "377", "261", "273", "545", "671", "465", "485", "597", "647", "741", "529", "353", "705", "471", "941", "1029", "1241", "837", "577", "385", "257", "513", "343", "229", "153" ]
[ "nonn" ]
11
0
2
[ "A001281", "A377524", "A378845", "A378846", "A378847" ]
null
Kevin Ryde, Dec 15 2024
2024-12-27T01:45:59
oeisdata/seq/A378/A378846.seq
648d0baaa9dfa5a7dcd449e648127a0c
A378847
Smallest starting x which takes n tripling steps to reach the minimum of a cycle in the 3x-1 iteration.
[ "1", "3", "15", "13", "9", "37", "25", "33", "45", "57", "145", "97", "65", "87", "159", "165", "225", "273", "391", "261", "647", "465", "741", "529", "353", "471", "921", "837", "865", "577", "385", "257", "343", "229", "153", "407", "543", "721", "481", "321", "855", "1141", "761", "1015", "677", "903", "1209", "1605", "2149", "1433", "1911", "2529", "3397", "2265" ]
[ "nonn" ]
21
0
2
[ "A001281", "A378833", "A378845", "A378846", "A378847" ]
null
Kevin Ryde, Dec 15 2024
2025-01-18T03:08:20
oeisdata/seq/A378/A378847.seq
a4028c61b7bc9bf70d13c3be4d4c80ec
A378848
Number of edge covers in the n-Plummer-Toft graph.
[ "26", "263", "2187", "17304", "133369", "1015455", "7687086", "58033771", "437563871", "3297146264", "24837633069", "187078211139", "1408991309974", "10611584316423", "79918238982579", "601878225366808", "4532835546280529", "34137415194318455", "257093438977730622", "1936204411856546547", "14581807054477379095" ]
[ "nonn", "easy" ]
12
0
1
[ "A377769", "A378701", "A378848" ]
null
Eric W. Weisstein, Dec 09 2024
2024-12-09T23:24:01
oeisdata/seq/A378/A378848.seq
f723becf1c14549a94edd2aa8b0e5610
A378849
a(n) is the total number of paths starting at (0,0), ending at (n,0), consisting of steps (1,1), (1,0), (1,-2), and staying on or above y = -1.
[ "1", "1", "1", "3", "9", "21", "48", "120", "309", "787", "2011", "5215", "13652", "35894", "94823", "251889", "672285", "1801185", "4842757", "13064059", "35349463", "95912989", "260896318", "711338596", "1943690464", "5321704006", "14597781706", "40112702176", "110404515703", "304338523999", "840140172621", "2322386563353" ]
[ "nonn" ]
18
0
4
[ "A071879", "A116411", "A378849", "A378850" ]
null
Emely Hanna Li Lobnig, Dec 09 2024
2024-12-18T22:37:16
oeisdata/seq/A378/A378849.seq
0adc752e3e046d6c4c7624280446c4b3
A378850
a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -2.
[ "1", "1", "1", "4", "13", "31", "73", "190", "505", "1316", "3431", "9065", "24122", "64325", "172082", "462344", "1246685", "3371135", "9140289", "24847422", "67708743", "184906614", "505986933", "1387240401", "3810083424", "10481797131", "28880894706", "79692785251", "220203155689", "609242057143", "1687666776031" ]
[ "nonn" ]
16
0
4
[ "A026325", "A071879", "A116411", "A378849", "A378850" ]
null
Emely Hanna Li Lobnig, Dec 09 2024
2024-12-18T22:36:56
oeisdata/seq/A378/A378850.seq
b7da057dacdf2983a7303f78cba08f63
A378851
Values of p for which x_p = s_p/p in the modified Göbel sequence is nonintegral.
[ "43", "61", "67", "83", "103", "107", "109", "157", "163", "167", "311", "317", "349", "353", "367", "389", "409", "457", "521", "523", "593", "661", "683", "739", "821", "827", "877", "881", "887", "967", "1051", "1249", "1277", "1319", "1321", "1433", "1439", "1447", "1481", "1483", "1499", "1667", "1693", "1709", "1747", "1867", "1877", "1931", "1933", "2063" ]
[ "nonn" ]
17
1
1
[ "A003504", "A108394", "A378851" ]
null
Eric W. Weisstein, Dec 09 2024
2024-12-15T07:25:17
oeisdata/seq/A378/A378851.seq
dcc93c9e61b1637e9c64ae3e128450c5
A378852
a(1) = 1. For n > 1 a(n) is the number of terms a(i); 1 <= i <= n-1 such that d(a(i)) >= d(a(n-1)), where d is the decimal digital sum function A007953.
[ "1", "1", "2", "1", "4", "1", "6", "1", "8", "1", "10", "11", "5", "3", "5", "4", "6", "3", "9", "1", "20", "13", "9", "2", "16", "4", "12", "15", "7", "5", "11", "23", "12", "20", "26", "4", "18", "3", "24", "11", "32", "16", "8", "6", "14", "20", "38", "1", "48", "1", "50", "23", "24", "17", "9", "6", "20", "47", "3", "40", "35", "12", "43", "16", "17", "13", "40", "41", "34", "19", "4", "45", "9", "10", "74", "4", "49", "1", "78", "1", "80" ]
[ "nonn", "base", "look" ]
20
1
3
[ "A007953", "A356348", "A378293", "A378782", "A378852" ]
null
David James Sycamore, Dec 09 2024
2025-02-09T19:14:24
oeisdata/seq/A378/A378852.seq
04bbe5a5953de7680335091b60bf7f37
A378853
Define f(x) = abs(1-1/x) and sequence {b(m)} such that b(m+1) = f(b(m)). a(n) is the number of initial values b(1) such that {b(m)}'s period has length n.
[ "1", "2", "0", "4", "10", "12", "28", "40", "72", "110", "198", "300", "520", "812", "1350", "2160", "3570", "5688", "9348", "15000", "24444", "39402", "64078", "103320", "167750", "270920", "439128", "709800", "1149850", "1859010", "3010348", "4868640", "7880994", "12748470", "20633200", "33379200", "54018520", "87394452", "141421800" ]
[ "nonn" ]
26
1
2
[ "A000032", "A008683", "A378853" ]
null
Yifan Xie, Dec 09 2024
2025-03-30T09:52:29
oeisdata/seq/A378/A378853.seq
af04dc8cf73003fb06d8629fb00c1404
A378854
a(n) is the number of solid (3D) partitions of n with 2 layers and second layer a plane partition of 2.
[ "3", "9", "24", "51", "111", "213", "414", "756", "1374", "2409", "4206", "7152", "12096", "20109", "33198", "54111", "87648", "140520", "223953", "354006", "556419", "868584", "1348857", "2082225", "3198927", "4888944", "7438548", "11265141", "16990077", "25516401", "38175240", "56894490", "84490935", "125028489", "184400952" ]
[ "nonn" ]
21
4
1
[ "A000041", "A000219", "A094504", "A097391", "A378854" ]
null
Wouter Meeussen, Feb 10 2025
2025-02-21T07:20:10
oeisdata/seq/A378/A378854.seq
8752fe775b6c025726990da14b34b947
A378855
Triangle read by rows: T(n,k) is the number of sequences in which the games of a single-elimination tournament with n teams can be played if arbitrarily many arenas are available, the tournament bracket is chosen to the bracket with the largest such number of sequences, and the number of distinct times at which games are played is k, log_2(n) <= k <= n-1.
[ "1", "0", "1", "0", "1", "2", "0", "0", "2", "3", "0", "0", "2", "9", "8", "0", "0", "1", "12", "30", "20", "0", "0", "1", "22", "102", "160", "80", "0", "0", "0", "10", "114", "380", "485", "210", "0", "0", "0", "10", "198", "1100", "2495", "2478", "896", "0", "0", "0", "5", "204", "1930", "7260", "12810", "10640", "3360", "0", "0", "0", "5", "344", "4890", "27110", "72702" ]
[ "nonn", "tabl" ]
22
2
6
[ "A056971", "A378855", "A380166", "A380767" ]
null
Noah A Rosenberg, Feb 10 2025
2025-03-07T14:13:31
oeisdata/seq/A378/A378855.seq
e58561f6e96c7e1eca986fc177594d04
A378856
Minimum over groups of order n of the maximum order of an element of the group.
[ "1", "2", "3", "2", "5", "3", "7", "2", "3", "5", "11", "3", "13", "7", "15", "2", "17", "3", "19", "5", "7", "11", "23", "4", "5", "13", "3", "14", "29", "15", "31", "2", "33", "17", "35", "4", "37", "19", "13", "10", "41", "7", "43", "22", "15", "23", "47", "3", "7", "5", "51", "13", "53", "3", "11", "7", "19", "29", "59", "5", "61", "31", "21", "2", "65", "33", "67", "17", "69", "35", "71", "4", "73", "37", "5", "38", "77", "13", "79", "5", "3", "41", "83", "14", "85", "43", "87", "22", "89", "15", "91", "46", "31", "47", "95", "4", "97", "7", "33", "5" ]
[ "nonn" ]
13
1
2
[ "A006530", "A007947", "A378856" ]
null
Ian Wanless, Feb 10 2025
2025-02-12T12:45:54
oeisdata/seq/A378/A378856.seq
7e80933ba13049788b08d0f7fd3afcfe
A378857
a(n) is the smallest k > 1 such that n^k starts and ends with n, or -1 if there is no such k.
[ "2", "21", "41", "11", "24", "10", "33", "73", "153", "-1", "171", "241", "361", "-1", "-1", "6", "461", "-1", "471", "-1", "12086", "-1", "1281", "51", "94", "-1", "1181", "701", "1091", "-1", "231", "197", "5781", "-1", "-1", "161", "221", "-1", "1231", "-1", "236", "-1", "61", "1451", "-1", "-1", "861", "13381", "143", "-1", "107", "501", "2761", "-1", "-1", "136" ]
[ "sign", "base" ]
14
1
1
[ "A051248", "A074250", "A374026", "A378857" ]
null
Gonzalo Martínez, Feb 10 2025
2025-03-02T23:47:17
oeisdata/seq/A378/A378857.seq
8077a494e2568e39e0136b7301972fce
A378858
G.f. A(x) satisfies A(x) = ( 1 + x/(1 - x*A(x)^(3/4)) )^4.
[ "1", "4", "10", "32", "119", "468", "1934", "8256", "36135", "161276", "731158", "3357748", "15587004", "73021200", "344786056", "1639145180", "7839483967", "37692820908", "182087119582", "883358016328", "4301799946048", "21021519618724", "103049029114618", "506608410994868", "2497162797380145", "12338908560964968" ]
[ "nonn" ]
9
0
2
[ "A005554", "A364742", "A365119", "A378730", "A378801", "A378858" ]
null
Seiichi Manyama, Dec 09 2024
2024-12-09T10:58:43
oeisdata/seq/A378/A378858.seq
09b8abde0c24c553660383d388d96af0
A378859
Achilles numbers that are abundant.
[ "72", "108", "200", "288", "392", "432", "500", "648", "800", "864", "968", "972", "1152", "1352", "1372", "1568", "1800", "1944", "2000", "2592", "2700", "3200", "3456", "3528", "3872", "3888", "4000", "4500", "4608", "5000", "5292", "5400", "5408", "5488", "6272", "6912", "7200", "8712", "8748", "9000", "9248", "9800", "10368", "10584", "10800", "10976", "11552", "12168", "12348", "12500", "12800", "13068", "13500", "14112", "15488" ]
[ "nonn" ]
17
1
1
[ "A005101", "A052486", "A378859" ]
null
Massimo Kofler, Dec 09 2024
2025-01-29T22:13:14
oeisdata/seq/A378/A378859.seq
fb8a37ca5b1a8c2e39795cf5763433ca
A378860
Number of minimal edge covers in the n-Sierpinski gasket graph.
[ "3", "17", "9463", "1822981173460" ]
[ "nonn", "more" ]
8
1
1
[ "A356214", "A378860" ]
null
Eric W. Weisstein, Dec 09 2024
2024-12-09T15:16:19
oeisdata/seq/A378/A378860.seq
f7f7efdcade9fdc28f5ac94e0df5d675
A378861
Number of minimum edge covers in the n-Lucas cube graph.
[ "0", "1", "1", "8", "30", "2142", "61670", "146077312" ]
[ "nonn", "more" ]
10
1
4
[ "A364745", "A378861" ]
null
Eric W. Weisstein, Dec 09 2024
2024-12-10T10:25:56
oeisdata/seq/A378/A378861.seq
f8e4202c55ea05f99d599f6d43288970
A378862
Number of minimum edge covers in the n-cycle complement graph.
[ "0", "1", "5", "4", "70", "31", "972", "293", "14476", "3326", "237575", "44189", "4305960", "673471", "85836485", "11588884", "1871150248", "222304897" ]
[ "nonn", "more" ]
17
3
3
[ "A003436", "A278990", "A351587", "A356212", "A378862" ]
null
Eric W. Weisstein, Dec 09 2024
2024-12-12T15:15:24
oeisdata/seq/A378/A378862.seq
fd9878d97d751ecd0fb66bfe7d478d55
A378863
Prime numbers that yield a sphenic number when any digit is removed.
[ "55511", "333337", "333383", "558533", "558587", "575651", "581557", "660557", "669937", "727777", "782861", "811037", "822389", "874477", "905551", "961663", "997699", "1116943", "1222271", "1302277", "1748189", "1766137", "1866677", "1999111", "2222333", "2289943", "2441111", "2444437", "2542229", "2575277", "2744699" ]
[ "nonn", "base" ]
11
1
1
[ "A007304", "A371879", "A378863" ]
null
Gonzalo Martínez, Dec 09 2024
2024-12-09T20:24:28
oeisdata/seq/A378/A378863.seq
c6a1fedc7bd48c5bb07ff1511f81ca79
A378864
Decimal expansion of 11*Pi/360.
[ "0", "9", "5", "9", "9", "3", "1", "0", "8", "8", "5", "9", "6", "8", "8", "1", "2", "6", "7", "3", "0", "8", "0", "2", "9", "9", "2", "2", "6", "6", "8", "7", "3", "6", "9", "9", "2", "3", "9", "3", "5", "7", "9", "5", "3", "8", "6", "9", "7", "9", "4", "9", "0", "0", "0", "8", "5", "3", "4", "5", "5", "2", "9", "2", "0", "9", "4", "0", "5", "5", "0", "1", "3", "0", "3", "1", "8", "9", "7", "1", "9", "4", "0", "2", "5", "2", "3", "2", "8", "6", "3", "2", "9", "8", "9", "8", "0", "2", "1", "5", "2", "1", "6", "7", "6", "7", "4", "7" ]
[ "nonn", "cons" ]
13
0
2
[ "A019685", "A120500", "A348758", "A378864" ]
null
Gonzalo Martínez, Dec 09 2024
2024-12-21T00:55:51
oeisdata/seq/A378/A378864.seq
f778a6954167b600ca6406251e496b58
A378865
a(n) is the smallest positive integer k such that n*k uses none of the digits of n, or 0 if no such k exists.
[ "2", "2", "2", "2", "2", "2", "2", "2", "2", "0", "2", "3", "2", "2", "2", "2", "2", "2", "2", "0", "3", "2", "2", "4", "4", "3", "2", "2", "2", "0", "2", "2", "2", "2", "2", "2", "3", "2", "2", "0", "2", "4", "2", "2", "2", "2", "4", "2", "12", "0", "4", "2", "2", "2", "2", "2", "2", "2", "2", "0", "4", "5", "3", "2", "2", "2", "2", "3", "2", "0", "4", "2", "2", "3", "4", "2", "2", "2", "2", "0", "3", "2", "2", "3" ]
[ "nonn", "base" ]
13
1
1
[ "A002283", "A010785", "A047855", "A074157", "A378865" ]
null
Gonzalo Martínez, Dec 09 2024
2025-02-16T22:39:28
oeisdata/seq/A378/A378865.seq
a46cfbe3a5771c1266d0b0bedd3328ad
A378866
Numbers k such that 5^k + 72 is prime.
[ "0", "2", "3", "118", "498", "1023", "4262", "6094", "6382", "26334", "56062" ]
[ "nonn", "more" ]
13
1
2
[ "A089142", "A124621", "A217133", "A378866" ]
null
Robert Price, Dec 09 2024
2024-12-20T12:36:33
oeisdata/seq/A378/A378866.seq
494758426fdfaf1fba25132c2ff3b112
A378867
Numbers k such that 5^k + 86 is prime.
[ "3", "27", "179", "507", "4671", "4923", "5871", "7571", "19551", "19955" ]
[ "nonn", "more" ]
16
1
1
[ "A089142", "A124621", "A217133", "A378867" ]
null
Robert Price, Dec 09 2024
2024-12-22T12:31:50
oeisdata/seq/A378/A378867.seq
c9a8fa1afe500d377f7be4218119506d
A378868
Numbers k such that 5^k - 22 is prime.
[ "2", "3", "31", "79", "491", "3019", "3623", "4175", "9957", "21963", "71637", "80551", "80831" ]
[ "nonn", "more" ]
20
1
1
[ "A059613", "A109080", "A165701", "A217134", "A378868" ]
null
Robert Price, Dec 09 2024
2024-12-24T22:13:08
oeisdata/seq/A378/A378868.seq
b81112f039ebf62a1ebdf4f3df5ff38e
A378869
a(n) = number of constantive transformation monoids on n elements.
[ "1", "2", "342", "1252551505" ]
[ "hard", "nonn", "more" ]
6
1
2
[ "A343140", "A378869", "A378870", "A378871" ]
null
Max Alekseyev, Dec 09 2024
2024-12-10T09:03:01
oeisdata/seq/A378/A378869.seq
5014a73f2ef02fcdc8c2b961547d2f7d
A378870
a(n) = number of non-constantive transformation monoids on n elements.
[ "0", "4", "357", "328865421" ]
[ "hard", "nonn", "more" ]
5
1
2
[ "A343140", "A378869", "A378870", "A378871" ]
null
Max Alekseyev, Dec 09 2024
2024-12-10T09:02:53
oeisdata/seq/A378/A378870.seq
9bad6d8d71140ee07b12be0e201045b2
A378871
a(n) = number of constant-free transformation monoids on n elements.
[ "0", "2", "39", "30741" ]
[ "hard", "nonn", "more" ]
7
1
2
[ "A343140", "A378869", "A378870", "A378871" ]
null
Max Alekseyev, Dec 09 2024
2024-12-10T09:02:57
oeisdata/seq/A378/A378871.seq
8ace60e8e0c38240a9c934a0287882a8
A378872
Discriminant of the minimal polynomial of a number whose continued fraction expansion has periodic part given by the n-th composition (in standard order).
[ "5", "8", "5", "13", "12", "12", "5", "20", "21", "8", "40", "21", "40", "40", "5", "29", "32", "60", "17", "60", "85", "85", "96", "32", "17", "85", "96", "17", "96", "96", "5", "40", "45", "24", "104", "13", "148", "148", "165", "24", "148", "8", "221", "148", "12", "221", "260", "45", "104", "148", "165", "148", "221", "12", "260", "104", "165", "221", "260", "165", "260", "260" ]
[ "nonn" ]
7
1
1
[ "A059893", "A066099", "A139706", "A246903", "A246921", "A305311", "A378872", "A378873", "A378874" ]
null
Pontus von Brömssen, Dec 10 2024
2024-12-12T09:25:19
oeisdata/seq/A378/A378872.seq
92a03c3a7128d002d0d0f4354e2d9ad8
A378873
Squarefree part of A378872(n) (the discriminant of the minimal polynomial of a number whose continued fraction expansion has periodic part given by the n-th composition (in standard order)).
[ "5", "2", "5", "13", "3", "3", "5", "5", "21", "2", "10", "21", "10", "10", "5", "29", "2", "15", "17", "15", "85", "85", "6", "2", "17", "85", "6", "17", "6", "6", "5", "10", "5", "6", "26", "13", "37", "37", "165", "6", "37", "2", "221", "37", "3", "221", "65", "5", "26", "37", "165", "37", "221", "3", "65", "26", "165", "221", "65", "165", "65", "65", "5", "53", "15", "35", "37", "3", "229" ]
[ "nonn" ]
8
1
1
[ "A007913", "A066099", "A246904", "A246922", "A259911", "A259912", "A305311", "A378872", "A378873", "A378874" ]
null
Pontus von Brömssen, Dec 10 2024
2024-12-12T09:25:15
oeisdata/seq/A378/A378873.seq
283df32f9928e18ab64220195fce7f40
A378874
a(n) = sqrt(A378872(n)/A378873(n)).
[ "1", "2", "1", "1", "2", "2", "1", "2", "1", "2", "2", "1", "2", "2", "1", "1", "4", "2", "1", "2", "1", "1", "4", "4", "1", "1", "4", "1", "4", "4", "1", "2", "3", "2", "2", "1", "2", "2", "1", "2", "2", "2", "1", "2", "2", "1", "2", "3", "2", "2", "1", "2", "1", "2", "2", "2", "1", "1", "2", "1", "2", "2", "1", "1", "2", "2", "1", "8", "1", "1", "2", "8", "1", "1", "6", "1", "8", "6", "1", "2", "1", "1", "6", "1", "4", "4", "1" ]
[ "nonn" ]
6
1
2
[ "A000188", "A378872", "A378873", "A378874" ]
null
Pontus von Brömssen, Dec 10 2024
2024-12-12T09:25:10
oeisdata/seq/A378/A378874.seq
5731acdc7ebbfdcec387367626951a76
A378875
Number of Achilles numbers k between consecutive perfect powers.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "2", "0", "0", "1", "1", "0", "2", "0", "0", "2", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "2", "1", "0", "1", "0", "3", "0", "0" ]
[ "nonn", "easy" ]
6
1
34
[ "A001597", "A001694", "A052486", "A378875" ]
null
Michael De Vlieger, Dec 09 2024
2024-12-09T23:25:20
oeisdata/seq/A378/A378875.seq
557b46a0d56acbd9acc4594443e635ad
A378876
a(1)=1; thereafter a(n) is the smallest k for which the subsequence a(n-k..n-1) has a distinct multiset from that of any other subsequence of the sequence thus far.
[ "1", "1", "2", "1", "4", "1", "3", "1", "3", "3", "2", "2", "2", "3", "6", "1", "2", "3", "3", "6", "3", "4", "2", "2", "3", "5", "1", "2", "3", "5", "5", "2", "2", "3", "6", "5", "2", "3", "5", "5", "5", "3", "5", "5", "6", "3", "5", "9", "1", "2", "3", "4", "4", "2", "3", "5", "4", "2", "3", "5", "5", "6", "6", "2", "2", "3", "5", "8", "1", "2", "3", "4", "5", "5", "3", "5", "5", "6", "7", "1", "2", "3", "4", "5", "6", "3", "5", "5" ]
[ "nonn" ]
25
1
3
[ "A375207", "A376937", "A377079", "A378876" ]
null
Neal Gersh Tolunsky, Jan 17 2025
2025-01-18T09:36:25
oeisdata/seq/A378/A378876.seq
8f674bd28a20eecc288863c7792c3ab8
A378877
Let k = A379336(n). Then a(n) = sum of divisors d | k such that d neither divides nor is coprime to k/d, and k/d does not divide d.
[ "10", "14", "14", "15", "18", "16", "22", "18", "20", "26", "21", "42", "30", "21", "22", "82", "27", "28", "24", "38", "24", "26", "25", "42", "32", "54", "33", "106", "30", "55", "50", "30", "66", "39", "54", "40", "34", "121", "32", "66", "44", "62", "45", "150", "66", "35", "65", "36", "154", "123", "42", "52", "146", "78", "35", "78", "42", "91", "46", "57", "36", "178", "36", "78" ]
[ "nonn" ]
26
1
1
[ "A376281", "A378877", "A379336" ]
null
Michael De Vlieger, Jan 27 2025
2025-02-05T21:56:58
oeisdata/seq/A378/A378877.seq
1f976921ea9b141b89d229cd9ce53dac
A378878
Products m*k such that k is composite and squarefree and m is composite such that rad(m) | k, where rad = A007947.
[ "24", "36", "40", "48", "54", "56", "72", "80", "88", "96", "100", "104", "108", "112", "120", "135", "136", "144", "152", "160", "162", "168", "176", "180", "184", "189", "192", "196", "200", "208", "216", "224", "225", "232", "240", "248", "250", "252", "264", "270", "272", "280", "288", "296", "297", "300", "304", "312", "320", "324", "328", "336", "344", "351", "352" ]
[ "nonn", "easy" ]
22
1
1
[ "A007947", "A072357", "A120944", "A126706", "A378878" ]
null
Michael De Vlieger, Feb 05 2025
2025-02-09T12:28:53
oeisdata/seq/A378/A378878.seq
cdf38585b2e1c982d7615de3513bab87
A378879
a(n) = number of non-Pythagorean primes in the prime factorization of n (including multiplicities).
[ "0", "1", "1", "2", "0", "2", "1", "3", "2", "1", "1", "3", "0", "2", "1", "4", "0", "3", "1", "2", "2", "2", "1", "4", "0", "1", "3", "3", "0", "2", "1", "5", "2", "1", "1", "4", "0", "2", "1", "3", "0", "3", "1", "3", "2", "2", "1", "5", "2", "1", "1", "2", "0", "4", "1", "4", "2", "1", "1", "3", "0", "2", "3", "6", "0", "3", "1", "2", "2", "2", "1", "5", "0", "1", "1", "3", "2", "2", "1", "4", "4", "1", "1", "4", "0", "2" ]
[ "nonn" ]
8
1
4
[ "A002144", "A002145", "A083025", "A378879", "A378880" ]
null
Clark Kimberling, Jan 14 2025
2025-01-28T08:33:18
oeisdata/seq/A378/A378879.seq
347819c64f7d17b236f5ef8f205df31e
A378880
a(n) = A378879(n) - A083025(n).
[ "0", "1", "1", "2", "-1", "2", "1", "3", "2", "0", "1", "3", "-1", "2", "0", "4", "-1", "3", "1", "1", "2", "2", "1", "4", "-2", "0", "3", "3", "-1", "1", "1", "5", "2", "0", "0", "4", "-1", "2", "0", "2", "-1", "3", "1", "3", "1", "2", "1", "5", "2", "-1", "0", "1", "-1", "4", "0", "4", "2", "0", "1", "2", "-1", "2", "3", "6", "-2", "3", "1", "1", "2", "1", "1", "5", "-1", "0", "-1", "3", "2", "1", "1", "3", "4", "0" ]
[ "sign" ]
7
1
4
[ "A000040", "A002144", "A002145", "A083025", "A378879", "A378880" ]
null
Clark Kimberling, Jan 14 2025
2025-01-15T08:35:15
oeisdata/seq/A378/A378880.seq
8d5824cc9d05662aae2dcbf9f7061eae
A378881
Irregular triangle listing permutations of {1,...,m} which are at maximum distance from the identity permutation under steps rotate left (L) or exchange first two elements (E).
[ "1", "2", "1", "1", "3", "2", "3", "1", "2", "3", "2", "1", "2", "1", "4", "3", "2", "3", "1", "4", "2", "4", "3", "1", "1", "2", "5", "3", "4", "2", "1", "5", "3", "4", "3", "1", "6", "5", "4", "2", "2", "1", "7", "6", "3", "5", "4", "2", "1", "7", "6", "4", "3", "5", "3", "1", "8", "7", "6", "5", "4", "2", "2", "1", "9", "8", "7", "3", "6", "5", "4", "2", "1", "9", "8", "7", "5", "4", "3", "6", "3", "1", "10", "9", "8", "7", "6", "5", "4", "2" ]
[ "nonn", "tabf" ]
15
1
2
[ "A039745", "A186144", "A378881" ]
null
Kevin Ryde, Dec 09 2024
2024-12-12T15:20:00
oeisdata/seq/A378/A378881.seq
faf6867a07a7b9d9267d9edfc93fb269
A378882
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)/(1 - x*A(x)^(5/3)) )^3.
[ "1", "3", "15", "97", "717", "5736", "48340", "422688", "3799080", "34881159", "325750143", "3084634305", "29548452297", "285825135183", "2787990695931", "27391816756281", "270828413410413", "2692692976016352", "26904718314949776", "270017389769189136", "2720718671661444780", "27513054621821846074" ]
[ "nonn" ]
12
0
2
[ "A349017", "A378801", "A378828", "A378882", "A378883" ]
null
Seiichi Manyama, Dec 09 2024
2024-12-10T05:56:32
oeisdata/seq/A378/A378882.seq
545d2109212fc1e822efb46d997b595f
A378883
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3/(1 - x*A(x)^5).
[ "1", "1", "4", "24", "171", "1338", "11109", "96100", "856762", "7816616", "72627241", "684859147", "6537520290", "63050669143", "613441446154", "6013687144000", "59343220508344", "589004488233064", "5876204912724812", "58893312496308755", "592682966496901253", "5986771171677305889", "60677419447552591497" ]
[ "nonn" ]
9
0
3
[ "A378882", "A378883" ]
null
Seiichi Manyama, Dec 09 2024
2024-12-10T05:57:30
oeisdata/seq/A378/A378883.seq
968dac2db8ec23ca02c27353f46a767c
A378884
Numbers that are not powers of primes and whose two smallest prime divisors are consecutive primes.
[ "6", "12", "15", "18", "24", "30", "35", "36", "42", "45", "48", "54", "60", "66", "72", "75", "77", "78", "84", "90", "96", "102", "105", "108", "114", "120", "126", "132", "135", "138", "143", "144", "150", "156", "162", "165", "168", "174", "175", "180", "186", "192", "195", "198", "204", "210", "216", "221", "222", "225", "228", "234", "240", "245", "246", "252", "255", "258" ]
[ "nonn", "easy" ]
8
1
1
[ "A006094", "A008588", "A020639", "A024619", "A104210", "A151800", "A256617", "A378884", "A378885" ]
null
Amiram Eldar, Dec 09 2024
2024-12-10T09:58:55
oeisdata/seq/A378/A378884.seq
68c61557208573e2bb5c9cd62a088c8b
A378885
Numbers that are divisible by at least three different primes and the smallest three of them are consecutive primes.
[ "30", "60", "90", "105", "120", "150", "180", "210", "240", "270", "300", "315", "330", "360", "385", "390", "420", "450", "480", "510", "525", "540", "570", "600", "630", "660", "690", "720", "735", "750", "780", "810", "840", "870", "900", "930", "945", "960", "990", "1001", "1020", "1050", "1080", "1110", "1140", "1155", "1170", "1200", "1230", "1260", "1290" ]
[ "nonn", "easy" ]
8
1
1
[ "A000977", "A020639", "A046301", "A101300", "A151800", "A249674", "A378884", "A378885" ]
null
Amiram Eldar, Dec 09 2024
2024-12-10T09:59:02
oeisdata/seq/A378/A378885.seq
937e5daff4848a31e6996c4059390c04
A378886
The number of consecutive primes in the prime factorization of n starting from the smallest prime dividing n; a(1) = 0.
[ "0", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "3" ]
[ "nonn", "easy" ]
12
1
6
[ "A001221", "A020639", "A073491", "A276084", "A300820", "A378884", "A378885", "A378886" ]
null
Amiram Eldar, Dec 10 2024
2024-12-10T09:59:09
oeisdata/seq/A378/A378886.seq
dbe317a1126aa1f950746e7711ed9c9c
A378887
a(n) = gcd(n, A001511(n)).
[ "1", "2", "1", "1", "1", "2", "1", "4", "1", "2", "1", "3", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "4", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "1", "3", "1", "2", "1", "4", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "4", "1", "2", "1", "3", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "4", "1", "2", "1", "1", "1", "2", "1", "5", "1", "2", "1", "3", "1", "2", "1" ]
[ "nonn", "easy" ]
7
1
2
[ "A000010", "A000265", "A001511", "A007814", "A378887", "A378888" ]
null
Amiram Eldar, Dec 10 2024
2024-12-10T09:59:20
oeisdata/seq/A378/A378887.seq
ae36166013c40006d68418c8489886f0
A378888
a(n) = gcd(n, A007814(n)).
[ "1", "1", "3", "2", "5", "1", "7", "1", "9", "1", "11", "2", "13", "1", "15", "4", "17", "1", "19", "2", "21", "1", "23", "3", "25", "1", "27", "2", "29", "1", "31", "1", "33", "1", "35", "2", "37", "1", "39", "1", "41", "1", "43", "2", "45", "1", "47", "4", "49", "1", "51", "2", "53", "1", "55", "1", "57", "1", "59", "2", "61", "1", "63", "2", "65", "1", "67", "2", "69", "1", "71", "3", "73", "1", "75", "2" ]
[ "nonn", "easy", "changed" ]
10
1
3
[ "A007814", "A378887", "A378888" ]
null
Amiram Eldar, Dec 10 2024
2025-04-26T05:31:38
oeisdata/seq/A378/A378888.seq
3681c1793854328e2ce5adc777dd7afd
A378889
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(4/3)/(1 + x*A(x)^(1/3)) )^3.
[ "1", "3", "12", "61", "348", "2127", "13617", "90132", "611802", "4235405", "29788821", "212255520", "1528928674", "11115361491", "81452537253", "601004875689", "4461440570523", "33295962947925", "249673885001674", "1880204670772221", "14213624028779964", "107823953314047139", "820541644515512502" ]
[ "nonn" ]
12
0
2
[ "A364758", "A371542", "A378889", "A378890", "A378891" ]
null
Seiichi Manyama, Dec 10 2024
2024-12-10T05:52:15
oeisdata/seq/A378/A378889.seq
4ebde8e8356efe7bc0503768270f64c4
A378890
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/3)/(1 + x*A(x)^(2/3)) )^3.
[ "1", "3", "15", "97", "711", "5613", "46552", "399918", "3527553", "31761600", "290721387", "2697131541", "25304974597", "239684681523", "2288849098119", "22012319667437", "213011739042714", "2072597720747352", "20264567643461700", "198998140737895692", "1961831436443431818", "19409477239837165874" ]
[ "nonn" ]
11
0
2
[ "A365225", "A371542", "A378889", "A378890", "A378891" ]
null
Seiichi Manyama, Dec 10 2024
2024-12-10T06:14:02
oeisdata/seq/A378/A378890.seq
29d5182fe137ad06973b73f614d1ff1c
A378891
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^2/(1 + x*A(x)) )^3.
[ "1", "3", "18", "142", "1278", "12429", "127223", "1350456", "14729628", "164079982", "1858781652", "21348787587", "248021665720", "2909439099543", "34413536180688", "409984974779725", "4915119769384221", "59252402698999209", "717819918438472134", "8734481867945979183", "106703642464149880248" ]
[ "nonn" ]
11
0
2
[ "A371542", "A378889", "A378890", "A378891", "A378892" ]
null
Seiichi Manyama, Dec 10 2024
2024-12-10T06:15:19
oeisdata/seq/A378/A378891.seq
358b16324d804aeeb92fe434b28d9a0d
A378892
G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^3).
[ "1", "1", "5", "37", "322", "3067", "30951", "325171", "3519038", "38959997", "439177850", "5023590609", "58163050071", "680308820750", "8026782091957", "95419476630100", "1141762194395927", "13740910664096101", "166216043531507231", "2019807368837970964", "24644779751103948475", "301818330734940817283" ]
[ "nonn" ]
14
0
3
[ "A001764", "A271469", "A363982", "A364736", "A364864", "A378891", "A378892" ]
null
Seiichi Manyama, Dec 10 2024
2024-12-10T09:03:14
oeisdata/seq/A378/A378892.seq
aa8848087ef0c8be88990e041c363ad0
A378893
Numbers that are a proper substring of the concatenation (with repetition) in increasing order of their prime factors.
[ "333", "22564", "113113", "210526", "252310", "1143241", "3331233", "3710027", "31373137", "217893044", "433100023", "2263178956" ]
[ "nonn", "base", "more" ]
15
1
1
[ "A027746", "A371641", "A371696", "A371958", "A372046", "A372309", "A376078", "A378893", "A378894" ]
null
Scott R. Shannon, Dec 10 2024
2024-12-11T23:20:36
oeisdata/seq/A378/A378893.seq
d81ce46c27aa09292132990284c02c00
A378894
Numbers, when written in binary, that are a proper substring of the concatenation (with repetition) in increasing order of their prime factors, when written in binary.
[ "10", "57", "63", "355", "737", "921", "1526", "13803", "22008", "43364", "44016", "48895", "65151", "88032", "130545", "235929", "255987", "563207", "702460", "1456355", "2799617", "3020897", "3137557", "3774873", "4163463", "5697350", "5995862", "14176747", "42172441", "55933611", "87559273", "93206755", "108530173", "126474397", "180677710", "193337441", "249550095", "259779663", "533713761", "536378647", "715881440", "940339099", "1000732491" ]
[ "nonn", "base" ]
14
1
1
[ "A027746", "A371641", "A371696", "A371958", "A372046", "A372309", "A376078", "A378893", "A378894" ]
null
Scott R. Shannon, Dec 10 2024
2024-12-12T04:44:58
oeisdata/seq/A378/A378894.seq
bf32a273b8148bec58841271c76ff16f
A378895
a(n) is n times the number of missing distinct digits, k, of the terms of the sequence so far, counted from start and thereafter from every term that immediately follows any term with a value of 0.
[ "10", "16", "21", "24", "25", "24", "28", "24", "27", "20", "22", "24", "26", "28", "30", "16", "17", "18", "19", "0", "210", "154", "115", "120", "125", "130", "108", "84", "87", "60", "31", "32", "33", "34", "35", "36", "37", "38", "39", "0", "410", "294", "215", "176", "90", "92", "94", "96", "98", "50", "51", "52", "53", "0", "550", "448", "342", "232", "236", "180", "122" ]
[ "nonn", "base" ]
14
1
1
null
null
Tamas Sandor Nagy, Dec 10 2024
2024-12-21T00:57:03
oeisdata/seq/A378/A378895.seq
355c076c762e6975d2e72566e4edd654
A378896
Numbers k such that k - p^2 is squarefree for every prime p < sqrt(k).
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "14", "15", "19", "23", "26", "30", "35", "38", "39", "42", "46", "47", "51", "55", "62", "66", "71", "78", "82", "83", "86", "87", "91", "95", "110", "111", "114", "118", "119", "122", "127", "131", "138", "143", "155", "158", "163", "167", "182", "183", "186", "190", "191", "195", "203", "206", "210", "215", "222", "226", "227", "230", "231", "235", "239", "255", "258", "262" ]
[ "nonn" ]
41
1
2
[ "A005117", "A331802", "A378896", "A379018" ]
null
Robert Israel, Dec 14 2024
2025-03-24T11:57:41
oeisdata/seq/A378/A378896.seq
4ff278c90bf881fffffe41b54d2f69b4
A378897
Number of integers that are neither squarefree nor prime powers between consecutive powerful numbers, exclusive of powerful numbers themselves.
[ "0", "0", "0", "1", "3", "0", "1", "0", "4", "6", "1", "3", "7", "1", "4", "1", "1", "4", "10", "9", "1", "4", "2", "6", "5", "11", "0", "12", "8", "7", "12", "1", "11", "2", "14", "6", "3", "7", "18", "18", "8", "9", "0", "20", "21", "3", "16", "10", "13", "23", "2", "0", "10", "7", "28", "11", "10", "0", "26", "26", "8", "3", "7", "5", "0", "26", "30", "17", "11", "32", "20", "13", "12", "20", "36", "1", "20" ]
[ "nonn" ]
12
1
5
[ "A001694", "A013929", "A076446", "A126706", "A378593", "A378897" ]
null
Michael De Vlieger, Dec 10 2024
2024-12-12T15:24:44
oeisdata/seq/A378/A378897.seq
75acd42908cd1bf8e84bb4eb5637cd21
A378898
a(n) is the least k > 0 such that (n+k)^2 + n^2 is prime.
[ "1", "1", "5", "1", "1", "5", "1", "5", "1", "3", "3", "1", "7", "1", "7", "3", "1", "5", "1", "3", "5", "1", "7", "1", "1", "5", "5", "5", "1", "1", "13", "1", "7", "1", "1", "13", "3", "7", "1", "3", "3", "1", "5", "5", "7", "3", "1", "5", "25", "1", "5", "5", "5", "5", "3", "5", "11", "5", "5", "1", "3", "3", "17", "7", "1", "5", "13", "27", "1", "1", "13", "1", "27", "5", "19", "9", "3", "5", "1", "9", "19", "1", "5", "1", "1", "9", "1", "15", "7", "1", "3", "3", "5", "5", "7" ]
[ "nonn" ]
24
1
3
[ "A027861", "A089489", "A378898", "A378945", "A378946" ]
null
Robert Israel, Dec 11 2024
2024-12-12T09:28:08
oeisdata/seq/A378/A378898.seq
9ba981ed961c7c20c0f7d10ae80effc0
A378899
Number of primes between successive powerful numbers k that are not prime powers (i.e., k in A286708).
[ "11", "9", "5", "3", "6", "10", "2", "1", "1", "13", "5", "11", "1", "5", "2", "7", "3", "10", "13", "4", "0", "15", "2", "11", "4", "9", "1", "4", "13", "7", "2", "1", "9", "10", "6", "1", "2", "9", "12", "7", "4", "18", "5", "4", "17", "0", "8", "3", "13", "23", "2", "23", "10", "1", "15", "0", "7", "18", "3", "13", "7", "4", "7", "5", "4", "13", "2", "6", "10", "11", "29", "4", "2", "11", "1", "28", "2", "14" ]
[ "nonn", "easy" ]
6
0
1
[ "A000040", "A000720", "A240590", "A286708", "A378699", "A378899" ]
null
Michael De Vlieger, Dec 10 2024
2024-12-12T15:24:54
oeisdata/seq/A378/A378899.seq
a4bead2e2b1f23002910112a5fb4ee5d
A378900
Squares of numbers divisible by the squares of two distinct primes.
[ "1296", "5184", "10000", "11664", "20736", "32400", "38416", "40000", "46656", "50625", "63504", "82944", "90000", "104976", "129600", "153664", "156816", "160000", "186624", "194481", "202500", "219024", "234256", "250000", "254016", "291600", "331776", "345744", "360000", "374544", "419904", "455625", "456976", "467856", "490000" ]
[ "nonn", "easy" ]
17
1
1
[ "A000290", "A001694", "A007947", "A013661", "A024619", "A036785", "A082020", "A126706", "A286708", "A320966", "A376936", "A378768", "A378900" ]
null
Michael De Vlieger, Dec 12 2024
2024-12-21T11:09:16
oeisdata/seq/A378/A378900.seq
999ed023b4c5d4c4b074a317c8397c9e