hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
79421679e34c0f5d9eabc56c13f5e8ab8d890d33
2,869
py
Python
rdr_service/lib_fhir/fhirclient_1_0_6/models/flag_tests.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
39
2017-10-13T19:16:27.000Z
2021-09-24T16:58:21.000Z
rdr_service/lib_fhir/fhirclient_1_0_6/models/flag_tests.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
312
2017-09-08T15:42:13.000Z
2022-03-23T18:21:40.000Z
rdr_service/lib_fhir/fhirclient_1_0_6/models/flag_tests.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
19
2017-09-15T13:58:00.000Z
2022-02-07T18:33:20.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 1.0.2.7202 on 2016-06-23. # 2016, SMART Health IT. import io import json import os import unittest from . import flag class FlagTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or '' with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("Flag", js["resourceType"]) return flag.Flag(js) def testFlag1(self): inst = self.instantiate_from("flag-example-encounter.json") self.assertIsNotNone(inst, "Must have instantiated a Flag instance") self.implFlag1(inst) js = inst.as_json() self.assertEqual("Flag", js["resourceType"]) inst2 = flag.Flag(js) self.implFlag1(inst2) def implFlag1(self, inst): self.assertEqual(inst.category.coding[0].code, "infection") self.assertEqual(inst.category.coding[0].display, "Infection Control Level") self.assertEqual(inst.category.coding[0].system, "http://example.org/local") self.assertEqual(inst.code.coding[0].code, "l3") self.assertEqual(inst.code.coding[0].display, "Follow Level 3 Protocol") self.assertEqual(inst.code.coding[0].system, "http://example.org/local/if1") self.assertEqual(inst.id, "example-encounter") self.assertEqual(inst.status, "active") self.assertEqual(inst.text.div, "<div>Follow Infection Control Level 3 Protocol</div>") self.assertEqual(inst.text.status, "generated") def testFlag2(self): inst = self.instantiate_from("flag-example.json") self.assertIsNotNone(inst, "Must have instantiated a Flag instance") self.implFlag2(inst) js = inst.as_json() self.assertEqual("Flag", js["resourceType"]) inst2 = flag.Flag(js) self.implFlag2(inst2) def implFlag2(self, inst): self.assertEqual(inst.category.coding[0].code, "admin") self.assertEqual(inst.category.coding[0].display, "Admin") self.assertEqual(inst.category.coding[0].system, "http://example.org/local") self.assertEqual(inst.category.text, "admin") self.assertEqual(inst.code.coding[0].code, "bigdog") self.assertEqual(inst.code.coding[0].display, "Big dog") self.assertEqual(inst.code.coding[0].system, "http://example.org/local") self.assertEqual(inst.code.text, "Patient has a big dog at his home. Always always wear a suit of armor or take other active counter-measures") self.assertEqual(inst.id, "example") self.assertEqual(inst.status, "active") self.assertEqual(inst.text.div, "<div>Large Dog warning for Peter Patient</div>") self.assertEqual(inst.text.status, "generated")
40.985714
151
0.663646
7942168d8c00580f4079567f14d161150bad5402
3,542
py
Python
voipms/api/__init__.py
dtesfai/voipms-python
1369e0b88569c7009551798d79d16767b46107e0
[ "MIT" ]
12
2019-09-08T18:03:52.000Z
2021-01-30T09:52:41.000Z
voipms/api/__init__.py
dtesfai/voipms-python
1369e0b88569c7009551798d79d16767b46107e0
[ "MIT" ]
null
null
null
voipms/api/__init__.py
dtesfai/voipms-python
1369e0b88569c7009551798d79d16767b46107e0
[ "MIT" ]
1
2021-05-09T15:49:02.000Z
2021-05-09T15:49:02.000Z
import os import json import requests from voipms.base.exceptions import VoipException class Client(object): def __init__(self, username=None, password=None): self.username = username or os.environ.get('VOIPMS_ACCOUNT_USER') self.password = password or os.environ.get('VOIPMS_API_TOKEN') self.api_base = "https://voip.ms/api/v1/rest.php" if not self.username or not self.password: raise VoipException("Credentials are required to create a Client") self.auth = (self.username, self.password) self._accounts = None self._call_detail_records = None self._dids = None self._general = None self._voicemail = None def request(self, method, auth=None, params={}): auth = auth or self.auth params["api_username"] = auth[0] params["api_password"] = auth[1] params["method"] = method params["content_type"] = "json" response = requests.get(self.api_base, params=params) data = json.loads(response.text) if data['status'] and data['status'] != 'success': err_code = data['status'] raise VoipException(err_code) return data @property def accounts(self): if self._accounts is None: from voipms.api.accounts import Accounts self._accounts = Accounts(self) return self._accounts @property def call_detail_records(self): if self._call_detail_records is None: from voipms.api.call_detail_records import CallDetailRecords self._call_detail_records = CallDetailRecords(self) return self._call_detail_records @property def dids(self): if self._dids is None: from voipms.api.dids import DIDs self._dids = DIDs(self) return self._dids @property def general(self): if self._general is None: from voipms.api.general import General self._general = General(self) return self._general @property def voicemail(self): if self._voicemail is None: from voipms.api.voicemail import Voicemail self._voicemail = Voicemail(self) return self._voicemail @property def balance(self): return self.general.balance @property def ip(self): return self.general.ip @property def transaction_history(self): return self.general.transaction_history @property def countries(self): return self.general.countries @property def languages(self): return self.general.languages @property def subaccount(self): return self.accounts.subaccount @property def registration_status(self): return self.accounts.registration_status @property def billing(self): return self.call_detail_records.billing @property def records(self): return self.call_detail_records.records @property def rates(self): return self.call_detail_records.rates @property def termination_rates(self): return self.call_detail_records.termination_rates @property def search(self): return self.dids.search @property def sms(self): return self.dids.sms @property def messages(self): return self.voicemail.messages
26.833333
79
0.616601
794216ee6bb51f9ed78b3a4f3a3c931cc797c9e2
1,169
py
Python
paco/defer.py
lmicra/paco
1e5ef4df317e7cbbcefdf67d8dee28ce90538f3d
[ "MIT" ]
208
2016-10-24T13:17:08.000Z
2022-03-12T05:39:21.000Z
paco/defer.py
lmicra/paco
1e5ef4df317e7cbbcefdf67d8dee28ce90538f3d
[ "MIT" ]
39
2016-10-24T10:40:21.000Z
2020-04-22T16:17:51.000Z
paco/defer.py
lmicra/paco
1e5ef4df317e7cbbcefdf67d8dee28ce90538f3d
[ "MIT" ]
14
2016-11-29T11:37:34.000Z
2021-09-30T12:27:00.000Z
# -*- coding: utf-8 -*- import asyncio from .decorator import decorate from .assertions import assert_corofunction @decorate def defer(coro, delay=1): """ Returns a coroutine function wrapper that will defer the given coroutine execution for a certain amount of seconds in a non-blocking way. This function can be used as decorator. Arguments: coro (coroutinefunction): coroutine function to defer. delay (int/float): number of seconds to defer execution. Raises: TypeError: if coro argument is not a coroutine function. Returns: filtered values (list): ordered list of resultant values. Usage:: # Usage as function await paco.defer(coro, delay=1) await paco.defer(coro, delay=0.5) # Usage as decorator @paco.defer(delay=1) async def mul_2(num): return num * 2 await mul_2(2) # => 4 """ assert_corofunction(coro=coro) @asyncio.coroutine def wrapper(*args, **kw): # Wait until we're done yield from asyncio.sleep(delay) return (yield from coro(*args, **kw)) return wrapper
23.857143
76
0.634731
79421838f7eb44fb98b926210c175b7ecbd9564a
261
py
Python
pynames/orc/__init__.py
imposeren/pynames
6928af52d77ed51b57386fea2a6f9ec3e1a3ce80
[ "BSD-2-Clause-FreeBSD" ]
19
2015-03-28T08:57:04.000Z
2016-06-18T07:09:04.000Z
pynames/orc/__init__.py
imposeren/pynames
6928af52d77ed51b57386fea2a6f9ec3e1a3ce80
[ "BSD-2-Clause-FreeBSD" ]
10
2015-02-10T15:38:16.000Z
2016-06-28T04:55:20.000Z
pynames/orc/__init__.py
imposeren/pynames
6928af52d77ed51b57386fea2a6f9ec3e1a3ce80
[ "BSD-2-Clause-FreeBSD" ]
6
2015-02-09T17:41:40.000Z
2016-06-17T07:19:17.000Z
# coding: utf-8 import os from pynames.from_list_generator import FromListGenerator FIXTURES_DIR = os.path.join(os.path.dirname(__file__), 'fixtures') class OrcNamesGenerator(FromListGenerator): SOURCE = os.path.join(FIXTURES_DIR, 'orc_names_list.json')
26.1
66
0.793103
7942188b04bdee3b20e42931d4671d600c5f6ae6
2,383
py
Python
uaa_client/authentication.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
3
2016-11-27T05:02:52.000Z
2017-01-31T17:36:36.000Z
uaa_client/authentication.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
61
2016-11-05T00:27:34.000Z
2017-09-15T23:37:58.000Z
uaa_client/authentication.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
2
2017-07-14T06:21:26.000Z
2021-02-14T11:53:05.000Z
import logging import requests import jwt from django.core.urlresolvers import reverse from django.contrib.auth.models import User from django.contrib.auth.backends import ModelBackend from django.conf import settings logger = logging.getLogger('uaa_client') def get_auth_url(request): if settings.DEBUG and settings.UAA_AUTH_URL == 'fake:': return request.build_absolute_uri(reverse('fake_uaa_provider:auth')) return settings.UAA_AUTH_URL def get_token_url(request): if settings.DEBUG and settings.UAA_TOKEN_URL == 'fake:': return request.build_absolute_uri(reverse('fake_uaa_provider:token')) return settings.UAA_TOKEN_URL def exchange_code_for_access_token(request, code): redirect_uri = request.build_absolute_uri(reverse('uaa_client:callback')) payload = { 'grant_type': 'authorization_code', 'code': code, 'response_type': 'token', 'redirect_uri': redirect_uri, 'client_id': settings.UAA_CLIENT_ID, 'client_secret': settings.UAA_CLIENT_SECRET } token_url = get_token_url(request) token_req = requests.post(token_url, data=payload) if token_req.status_code != 200: logger.warn('POST %s returned %s ' 'w/ content %s' % ( token_url, token_req.status_code, repr(token_req.content) )) return None response = token_req.json() request.session.set_expiry(response['expires_in']) return response['access_token'] def get_user_by_email(email): try: return User.objects.get(email=email) except User.DoesNotExist: return None class UaaBackend(ModelBackend): ''' Custom auth backend for Cloud Foundry / cloud.gov User Account and Authentication (UAA) servers. This inherits from ModelBackend so that the superclass can provide all authorization methods (e.g. `has_perm()`). ''' def authenticate(self, uaa_oauth2_code=None, request=None, **kwargs): if uaa_oauth2_code is None or request is None: return None access_token = exchange_code_for_access_token(request, uaa_oauth2_code) if access_token is None: return None user_info = jwt.decode(access_token, verify=False) return get_user_by_email(user_info['email'])
30.164557
79
0.678137
794218faef24a145c9ca7d0bddbe722e8a391a90
2,279
py
Python
runtests.py
maccesch/django-moderation
7b2e5675ce9b308904aa58198e2c5d25097b0317
[ "BSD-3-Clause" ]
null
null
null
runtests.py
maccesch/django-moderation
7b2e5675ce9b308904aa58198e2c5d25097b0317
[ "BSD-3-Clause" ]
null
null
null
runtests.py
maccesch/django-moderation
7b2e5675ce9b308904aa58198e2c5d25097b0317
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import sys import os from os.path import dirname, abspath from optparse import OptionParser from django.conf import settings, global_settings import django # For convenience configure settings if they are not pre-configured or if we # haven't been provided settings to use by environment variable. if not settings.configured and not os.environ.get('DJANGO_SETTINGS_MODULE'): settings.configure( DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', } }, MIDDLEWARE_CLASSES=( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ), INSTALLED_APPS=[ 'django.contrib.auth', 'django.contrib.admin', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'moderation', 'tests', ], SERIALIZATION_MODULES = {}, MEDIA_URL = '/media/', STATIC_URL = '/static/', ROOT_URLCONF = 'tests.urls.default', DJANGO_MODERATION_MODERATORS = ( '[email protected]', ), DEBUG=True, SITE_ID=1, ) django.setup() from django.test.runner import DiscoverRunner def runtests(*test_args, **kwargs): if 'south' in settings.INSTALLED_APPS: from south.management.commands import patch_for_test_db_setup patch_for_test_db_setup() if not test_args: test_args = ['tests'] parent = dirname(abspath(__file__)) sys.path.insert(0, parent) test_runner = DiscoverRunner(pattern='*.py', verbosity=kwargs.get('verbosity', 1), interactive=kwargs.get('interactive', False), failfast=kwargs.get('failfast')) failures = test_runner.run_tests(test_args) sys.exit(failures) if __name__ == '__main__': parser = OptionParser() parser.add_option('--failfast', action='store_true', default=False, dest='failfast') (options, args) = parser.parse_args() runtests(failfast=options.failfast, *args)
31.219178
111
0.638438
79421c2822542da24a924913f86e3ebee7b9547b
39,957
py
Python
fmriprep/workflows/bold/base.py
pcamach2/fmriprep
c2c5d44498cfae0c2cebe223b00b5a9c95e3121e
[ "BSD-3-Clause" ]
null
null
null
fmriprep/workflows/bold/base.py
pcamach2/fmriprep
c2c5d44498cfae0c2cebe223b00b5a9c95e3121e
[ "BSD-3-Clause" ]
null
null
null
fmriprep/workflows/bold/base.py
pcamach2/fmriprep
c2c5d44498cfae0c2cebe223b00b5a9c95e3121e
[ "BSD-3-Clause" ]
null
null
null
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Orchestrating the BOLD-preprocessing workflow ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autofunction:: init_func_preproc_wf .. autofunction:: init_func_derivatives_wf """ import os import nibabel as nb from nipype.interfaces.fsl import Split as FSLSplit from nipype.pipeline import engine as pe from nipype.interfaces import utility as niu from niworkflows.engine.workflows import LiterateWorkflow as Workflow from niworkflows.interfaces.nibabel import ApplyMask from niworkflows.interfaces.utility import KeySelect from niworkflows.interfaces.utils import DictMerge from niworkflows.func.util import init_bold_reference_wf from ... import config from ...utils.meepi import combine_meepi_source from ...interfaces import DerivativesDataSink from ...interfaces.reports import FunctionalSummary # BOLD workflows from .confounds import init_bold_confs_wf, init_carpetplot_wf from .hmc import init_bold_hmc_wf from .stc import init_bold_stc_wf from .t2s import init_bold_t2s_wf from .registration import init_bold_t1_trans_wf, init_bold_reg_wf from .resampling import ( init_bold_surf_wf, init_bold_std_trans_wf, init_bold_preproc_trans_wf, ) from .outputs import init_func_derivatives_wf def init_func_preproc_wf(bold_file): """ This workflow controls the functional preprocessing stages of *fMRIPrep*. Workflow Graph .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.tests import mock_config from fmriprep import config from fmriprep.workflows.bold.base import init_func_preproc_wf with mock_config(): bold_file = config.execution.bids_dir / 'sub-01' / 'func' \ / 'sub-01_task-mixedgamblestask_run-01_bold.nii.gz' wf = init_func_preproc_wf(str(bold_file)) Parameters ---------- bold_file BOLD series NIfTI file Inputs ------ bold_file BOLD series NIfTI file t1w_preproc Bias-corrected structural template image t1w_mask Mask of the skull-stripped template image t1w_dseg Segmentation of preprocessed structural image, including gray-matter (GM), white-matter (WM) and cerebrospinal fluid (CSF) t1w_asec Segmentation of structural image, done with FreeSurfer. t1w_aparc Parcellation of structural image, done with FreeSurfer. t1w_tpms List of tissue probability maps in T1w space template List of templates to target anat2std_xfm List of transform files, collated with templates std2anat_xfm List of inverse transform files, collated with templates subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID t1w2fsnative_xfm LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space fsnative2t1w_xfm LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w Outputs ------- bold_t1 BOLD series, resampled to T1w space bold_mask_t1 BOLD series mask in T1w space bold_std BOLD series, resampled to template space bold_mask_std BOLD series mask in template space confounds TSV of confounds surfaces BOLD series, resampled to FreeSurfer surfaces aroma_noise_ics Noise components identified by ICA-AROMA melodic_mix FSL MELODIC mixing matrix bold_cifti BOLD CIFTI image cifti_variant combination of target spaces for `bold_cifti` See Also -------- * :py:func:`~niworkflows.func.util.init_bold_reference_wf` * :py:func:`~fmriprep.workflows.bold.stc.init_bold_stc_wf` * :py:func:`~fmriprep.workflows.bold.hmc.init_bold_hmc_wf` * :py:func:`~fmriprep.workflows.bold.t2s.init_bold_t2s_wf` * :py:func:`~fmriprep.workflows.bold.registration.init_bold_t1_trans_wf` * :py:func:`~fmriprep.workflows.bold.registration.init_bold_reg_wf` * :py:func:`~fmriprep.workflows.bold.confounds.init_bold_confounds_wf` * :py:func:`~fmriprep.workflows.bold.confounds.init_ica_aroma_wf` * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_std_trans_wf` * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_preproc_trans_wf` * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_surf_wf` * :py:func:`~sdcflows.workflows.fmap.init_fmap_wf` * :py:func:`~sdcflows.workflows.pepolar.init_pepolar_unwarp_wf` * :py:func:`~sdcflows.workflows.phdiff.init_phdiff_wf` * :py:func:`~sdcflows.workflows.syn.init_syn_sdc_wf` * :py:func:`~sdcflows.workflows.unwarp.init_sdc_unwarp_wf` """ from sdcflows.workflows.base import init_sdc_estimate_wf, fieldmap_wrangler ref_file = bold_file mem_gb = {'filesize': 1, 'resampled': 1, 'largemem': 1} bold_tlen = 10 multiecho = isinstance(bold_file, list) # Have some options handy layout = config.execution.layout omp_nthreads = config.nipype.omp_nthreads freesurfer = config.workflow.run_reconall spaces = config.workflow.spaces if multiecho: tes = [layout.get_metadata(echo)['EchoTime'] for echo in bold_file] ref_file = dict(zip(tes, bold_file))[min(tes)] if os.path.isfile(ref_file): bold_tlen, mem_gb = _create_mem_gb(ref_file) wf_name = _get_wf_name(ref_file) config.loggers.workflow.debug( 'Creating bold processing workflow for "%s" (%.2f GB / %d TRs). ' 'Memory resampled/largemem=%.2f/%.2f GB.', ref_file, mem_gb['filesize'], bold_tlen, mem_gb['resampled'], mem_gb['largemem']) sbref_file = None # Find associated sbref, if possible entities = layout.parse_file_entities(ref_file) entities['suffix'] = 'sbref' entities['extension'] = ['nii', 'nii.gz'] # Overwrite extensions files = layout.get(return_type='file', **entities) refbase = os.path.basename(ref_file) if 'sbref' in config.workflow.ignore: config.loggers.workflow.info("Single-band reference files ignored.") elif files and multiecho: config.loggers.workflow.warning( "Single-band reference found, but not supported in " "multi-echo workflows at this time. Ignoring.") elif files: sbref_file = files[0] sbbase = os.path.basename(sbref_file) if len(files) > 1: config.loggers.workflow.warning( "Multiple single-band reference files found for {}; using " "{}".format(refbase, sbbase)) else: config.loggers.workflow.info("Using single-band reference file %s.", sbbase) else: config.loggers.workflow.info("No single-band-reference found for %s.", refbase) metadata = layout.get_metadata(ref_file) # Find fieldmaps. Options: (phase1|phase2|phasediff|epi|fieldmap|syn) fmaps = None if 'fieldmaps' not in config.workflow.ignore: fmaps = fieldmap_wrangler(layout, ref_file, use_syn=config.workflow.use_syn, force_syn=config.workflow.force_syn) elif config.workflow.use_syn or config.workflow.force_syn: # If fieldmaps are not enabled, activate SyN-SDC in unforced (False) mode fmaps = {'syn': False} # Short circuits: (True and True and (False or 'TooShort')) == 'TooShort' run_stc = (bool(metadata.get("SliceTiming")) and 'slicetiming' not in config.workflow.ignore and (_get_series_len(ref_file) > 4 or "TooShort")) # Check if MEEPI for T2* coregistration target if config.workflow.t2s_coreg and not multiecho: config.loggers.workflow.warning( "No multiecho BOLD images found for T2* coregistration. " "Using standard EPI-T1 coregistration.") config.workflow.t2s_coreg = False # By default, force-bbr for t2s_coreg unless user specifies otherwise if config.workflow.t2s_coreg and config.workflow.use_bbr is None: config.workflow.use_bbr = True # Build workflow workflow = Workflow(name=wf_name) workflow.__postdesc__ = """\ All resamplings can be performed with *a single interpolation step* by composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed using `antsApplyTransforms` (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels [@lanczos]. Non-gridded (surface) resamplings were performed using `mri_vol2surf` (FreeSurfer). """ inputnode = pe.Node(niu.IdentityInterface( fields=['bold_file', 'subjects_dir', 'subject_id', 't1w_preproc', 't1w_mask', 't1w_dseg', 't1w_tpms', 't1w_aseg', 't1w_aparc', 'anat2std_xfm', 'std2anat_xfm', 'template', 't1w2fsnative_xfm', 'fsnative2t1w_xfm']), name='inputnode') inputnode.inputs.bold_file = bold_file if sbref_file is not None: from niworkflows.interfaces.images import ValidateImage val_sbref = pe.Node(ValidateImage(in_file=sbref_file), name='val_sbref') outputnode = pe.Node(niu.IdentityInterface( fields=['bold_t1', 'bold_t1_ref', 'bold_mask_t1', 'bold_aseg_t1', 'bold_aparc_t1', 'bold_std', 'bold_std_ref', 'bold_mask_std', 'bold_aseg_std', 'bold_aparc_std', 'bold_native', 'bold_cifti', 'cifti_variant', 'cifti_metadata', 'cifti_density', 'surfaces', 'confounds', 'aroma_noise_ics', 'melodic_mix', 'nonaggr_denoised_file', 'confounds_metadata']), name='outputnode') # Generate a brain-masked conversion of the t1w t1w_brain = pe.Node(ApplyMask(), name='t1w_brain') # BOLD buffer: an identity used as a pointer to either the original BOLD # or the STC'ed one for further use. boldbuffer = pe.Node(niu.IdentityInterface(fields=['bold_file']), name='boldbuffer') summary = pe.Node( FunctionalSummary( slice_timing=run_stc, registration=('FSL', 'FreeSurfer')[freesurfer], registration_dof=config.workflow.bold2t1w_dof, pe_direction=metadata.get("PhaseEncodingDirection"), tr=metadata.get("RepetitionTime")), name='summary', mem_gb=config.DEFAULT_MEMORY_MIN_GB, run_without_submitting=True) summary.inputs.dummy_scans = config.workflow.dummy_scans func_derivatives_wf = init_func_derivatives_wf( bids_root=layout.root, cifti_output=config.workflow.cifti_output, freesurfer=freesurfer, metadata=metadata, output_dir=str(config.execution.output_dir), spaces=spaces, use_aroma=config.workflow.use_aroma, ) workflow.connect([ (outputnode, func_derivatives_wf, [ ('bold_t1', 'inputnode.bold_t1'), ('bold_t1_ref', 'inputnode.bold_t1_ref'), ('bold_aseg_t1', 'inputnode.bold_aseg_t1'), ('bold_aparc_t1', 'inputnode.bold_aparc_t1'), ('bold_mask_t1', 'inputnode.bold_mask_t1'), ('bold_native', 'inputnode.bold_native'), ('confounds', 'inputnode.confounds'), ('surfaces', 'inputnode.surf_files'), ('aroma_noise_ics', 'inputnode.aroma_noise_ics'), ('melodic_mix', 'inputnode.melodic_mix'), ('nonaggr_denoised_file', 'inputnode.nonaggr_denoised_file'), ('bold_cifti', 'inputnode.bold_cifti'), ('cifti_variant', 'inputnode.cifti_variant'), ('cifti_metadata', 'inputnode.cifti_metadata'), ('cifti_density', 'inputnode.cifti_density'), ('confounds_metadata', 'inputnode.confounds_metadata'), ]), ]) # Generate a tentative boldref bold_reference_wf = init_bold_reference_wf(omp_nthreads=omp_nthreads) bold_reference_wf.inputs.inputnode.dummy_scans = config.workflow.dummy_scans if sbref_file is not None: workflow.connect([ (val_sbref, bold_reference_wf, [('out_file', 'inputnode.sbref_file')]), ]) # Top-level BOLD splitter bold_split = pe.Node(FSLSplit(dimension='t'), name='bold_split', mem_gb=mem_gb['filesize'] * 3) # HMC on the BOLD bold_hmc_wf = init_bold_hmc_wf(name='bold_hmc_wf', mem_gb=mem_gb['filesize'], omp_nthreads=omp_nthreads) # calculate BOLD registration to T1w bold_reg_wf = init_bold_reg_wf(name='bold_reg_wf', freesurfer=freesurfer, use_bbr=config.workflow.use_bbr, bold2t1w_dof=config.workflow.bold2t1w_dof, mem_gb=mem_gb['resampled'], omp_nthreads=omp_nthreads, use_compression=False) # apply BOLD registration to T1w bold_t1_trans_wf = init_bold_t1_trans_wf(name='bold_t1_trans_wf', freesurfer=freesurfer, use_fieldwarp=bool(fmaps), multiecho=multiecho, mem_gb=mem_gb['resampled'], omp_nthreads=omp_nthreads, use_compression=False) # get confounds bold_confounds_wf = init_bold_confs_wf( mem_gb=mem_gb['largemem'], metadata=metadata, regressors_all_comps=config.workflow.regressors_all_comps, regressors_fd_th=config.workflow.regressors_fd_th, regressors_dvars_th=config.workflow.regressors_dvars_th, name='bold_confounds_wf') bold_confounds_wf.get_node('inputnode').inputs.t1_transform_flags = [False] # Apply transforms in 1 shot # Only use uncompressed output if AROMA is to be run bold_bold_trans_wf = init_bold_preproc_trans_wf( mem_gb=mem_gb['resampled'], omp_nthreads=omp_nthreads, use_compression=not config.execution.low_mem, use_fieldwarp=bool(fmaps), name='bold_bold_trans_wf' ) bold_bold_trans_wf.inputs.inputnode.name_source = ref_file # SLICE-TIME CORRECTION (or bypass) ############################################# if run_stc is True: # bool('TooShort') == True, so check True explicitly bold_stc_wf = init_bold_stc_wf(name='bold_stc_wf', metadata=metadata) workflow.connect([ (bold_reference_wf, bold_stc_wf, [ ('outputnode.skip_vols', 'inputnode.skip_vols')]), (bold_stc_wf, boldbuffer, [('outputnode.stc_file', 'bold_file')]), ]) if not multiecho: workflow.connect([ (bold_reference_wf, bold_stc_wf, [ ('outputnode.bold_file', 'inputnode.bold_file')])]) else: # for meepi, iterate through stc_wf for all workflows meepi_echos = boldbuffer.clone(name='meepi_echos') meepi_echos.iterables = ('bold_file', bold_file) workflow.connect([ (meepi_echos, bold_stc_wf, [('bold_file', 'inputnode.bold_file')])]) elif not multiecho: # STC is too short or False # bypass STC from original BOLD to the splitter through boldbuffer workflow.connect([ (bold_reference_wf, boldbuffer, [('outputnode.bold_file', 'bold_file')])]) else: # for meepi, iterate over all meepi echos to boldbuffer boldbuffer.iterables = ('bold_file', bold_file) # SDC (SUSCEPTIBILITY DISTORTION CORRECTION) or bypass ########################## bold_sdc_wf = init_sdc_estimate_wf(fmaps, metadata, omp_nthreads=omp_nthreads, debug=config.execution.debug) # MULTI-ECHO EPI DATA ############################################# if multiecho: from niworkflows.func.util import init_skullstrip_bold_wf skullstrip_bold_wf = init_skullstrip_bold_wf(name='skullstrip_bold_wf') inputnode.inputs.bold_file = ref_file # Replace reference w first echo join_echos = pe.JoinNode(niu.IdentityInterface(fields=['bold_files']), joinsource=('meepi_echos' if run_stc is True else 'boldbuffer'), joinfield=['bold_files'], name='join_echos') # create optimal combination, adaptive T2* map bold_t2s_wf = init_bold_t2s_wf(echo_times=tes, mem_gb=mem_gb['resampled'], omp_nthreads=omp_nthreads, t2s_coreg=config.workflow.t2s_coreg, name='bold_t2smap_wf') workflow.connect([ (skullstrip_bold_wf, join_echos, [ ('outputnode.skull_stripped_file', 'bold_files')]), (join_echos, bold_t2s_wf, [ ('bold_files', 'inputnode.bold_file')]), ]) # MAIN WORKFLOW STRUCTURE ####################################################### workflow.connect([ (inputnode, t1w_brain, [('t1w_preproc', 'in_file'), ('t1w_mask', 'in_mask')]), # Generate early reference (inputnode, bold_reference_wf, [('bold_file', 'inputnode.bold_file')]), # BOLD buffer has slice-time corrected if it was run, original otherwise (boldbuffer, bold_split, [('bold_file', 'in_file')]), # HMC (bold_reference_wf, bold_hmc_wf, [ ('outputnode.raw_ref_image', 'inputnode.raw_ref_image'), ('outputnode.bold_file', 'inputnode.bold_file')]), (bold_reference_wf, summary, [ ('outputnode.algo_dummy_scans', 'algo_dummy_scans')]), # EPI-T1 registration workflow (inputnode, bold_reg_wf, [ ('t1w_dseg', 'inputnode.t1w_dseg'), # Undefined if --fs-no-reconall, but this is safe ('subjects_dir', 'inputnode.subjects_dir'), ('subject_id', 'inputnode.subject_id'), ('fsnative2t1w_xfm', 'inputnode.fsnative2t1w_xfm')]), (t1w_brain, bold_reg_wf, [ ('out_file', 'inputnode.t1w_brain')]), (inputnode, bold_t1_trans_wf, [ ('bold_file', 'inputnode.name_source'), ('t1w_mask', 'inputnode.t1w_mask'), ('t1w_aseg', 'inputnode.t1w_aseg'), ('t1w_aparc', 'inputnode.t1w_aparc')]), (t1w_brain, bold_t1_trans_wf, [ ('out_file', 'inputnode.t1w_brain')]), # unused if multiecho, but this is safe (bold_hmc_wf, bold_t1_trans_wf, [('outputnode.xforms', 'inputnode.hmc_xforms')]), (bold_reg_wf, bold_t1_trans_wf, [ ('outputnode.itk_bold_to_t1', 'inputnode.itk_bold_to_t1')]), (bold_t1_trans_wf, outputnode, [('outputnode.bold_t1', 'bold_t1'), ('outputnode.bold_t1_ref', 'bold_t1_ref'), ('outputnode.bold_aseg_t1', 'bold_aseg_t1'), ('outputnode.bold_aparc_t1', 'bold_aparc_t1')]), (bold_reg_wf, summary, [('outputnode.fallback', 'fallback')]), # SDC (or pass-through workflow) (t1w_brain, bold_sdc_wf, [ ('out_file', 'inputnode.t1w_brain')]), (bold_reference_wf, bold_sdc_wf, [ ('outputnode.ref_image', 'inputnode.epi_file'), ('outputnode.ref_image_brain', 'inputnode.epi_brain'), ('outputnode.bold_mask', 'inputnode.epi_mask')]), (bold_sdc_wf, bold_t1_trans_wf, [ ('outputnode.out_warp', 'inputnode.fieldwarp')]), (bold_sdc_wf, bold_bold_trans_wf, [ ('outputnode.out_warp', 'inputnode.fieldwarp'), ('outputnode.epi_mask', 'inputnode.bold_mask')]), (bold_sdc_wf, summary, [('outputnode.method', 'distortion_correction')]), # Connect bold_confounds_wf (inputnode, bold_confounds_wf, [('t1w_tpms', 'inputnode.t1w_tpms'), ('t1w_mask', 'inputnode.t1w_mask')]), (bold_hmc_wf, bold_confounds_wf, [ ('outputnode.movpar_file', 'inputnode.movpar_file')]), (bold_reg_wf, bold_confounds_wf, [ ('outputnode.itk_t1_to_bold', 'inputnode.t1_bold_xform')]), (bold_reference_wf, bold_confounds_wf, [ ('outputnode.skip_vols', 'inputnode.skip_vols')]), (bold_confounds_wf, outputnode, [ ('outputnode.confounds_file', 'confounds'), ]), (bold_confounds_wf, outputnode, [ ('outputnode.confounds_metadata', 'confounds_metadata'), ]), # Connect bold_bold_trans_wf (bold_split, bold_bold_trans_wf, [ ('out_files', 'inputnode.bold_file')]), (bold_hmc_wf, bold_bold_trans_wf, [ ('outputnode.xforms', 'inputnode.hmc_xforms')]), # Summary (outputnode, summary, [('confounds', 'confounds_file')]), ]) if not config.workflow.t2s_coreg: workflow.connect([ (bold_sdc_wf, bold_reg_wf, [ ('outputnode.epi_brain', 'inputnode.ref_bold_brain')]), (bold_sdc_wf, bold_t1_trans_wf, [ ('outputnode.epi_brain', 'inputnode.ref_bold_brain'), ('outputnode.epi_mask', 'inputnode.ref_bold_mask')]), ]) else: workflow.connect([ # For t2s_coreg, replace EPI-to-T1w registration inputs (bold_t2s_wf, bold_reg_wf, [ ('outputnode.bold_ref_brain', 'inputnode.ref_bold_brain')]), (bold_t2s_wf, bold_t1_trans_wf, [ ('outputnode.bold_ref_brain', 'inputnode.ref_bold_brain'), ('outputnode.bold_mask', 'inputnode.ref_bold_mask')]), ]) # for standard EPI data, pass along correct file if not multiecho: workflow.connect([ (inputnode, func_derivatives_wf, [ ('bold_file', 'inputnode.source_file')]), (bold_bold_trans_wf, bold_confounds_wf, [ ('outputnode.bold', 'inputnode.bold'), ('outputnode.bold_mask', 'inputnode.bold_mask')]), (bold_split, bold_t1_trans_wf, [ ('out_files', 'inputnode.bold_split')]), ]) else: # for meepi, create and use optimal combination workflow.connect([ # update name source for optimal combination (inputnode, func_derivatives_wf, [ (('bold_file', combine_meepi_source), 'inputnode.source_file')]), (bold_bold_trans_wf, skullstrip_bold_wf, [ ('outputnode.bold', 'inputnode.in_file')]), (bold_t2s_wf, bold_confounds_wf, [ ('outputnode.bold', 'inputnode.bold'), ('outputnode.bold_mask', 'inputnode.bold_mask')]), (bold_t2s_wf, bold_t1_trans_wf, [ ('outputnode.bold', 'inputnode.bold_split')]), ]) if fmaps: from sdcflows.workflows.outputs import init_sdc_unwarp_report_wf # Report on BOLD correction fmap_unwarp_report_wf = init_sdc_unwarp_report_wf() workflow.connect([ (inputnode, fmap_unwarp_report_wf, [ ('t1w_dseg', 'inputnode.in_seg')]), (bold_reference_wf, fmap_unwarp_report_wf, [ ('outputnode.ref_image', 'inputnode.in_pre')]), (bold_reg_wf, fmap_unwarp_report_wf, [ ('outputnode.itk_t1_to_bold', 'inputnode.in_xfm')]), (bold_sdc_wf, fmap_unwarp_report_wf, [ ('outputnode.epi_corrected', 'inputnode.in_post')]), ]) # Overwrite ``out_path_base`` of unwarping DataSinks for node in fmap_unwarp_report_wf.list_node_names(): if node.split('.')[-1].startswith('ds_'): fmap_unwarp_report_wf.get_node(node).interface.out_path_base = 'fmriprep' for node in bold_sdc_wf.list_node_names(): if node.split('.')[-1].startswith('ds_'): bold_sdc_wf.get_node(node).interface.out_path_base = 'fmriprep' if 'syn' in fmaps: sdc_select_std = pe.Node( KeySelect(fields=['std2anat_xfm']), name='sdc_select_std', run_without_submitting=True) sdc_select_std.inputs.key = 'MNI152NLin2009cAsym' workflow.connect([ (inputnode, sdc_select_std, [('std2anat_xfm', 'std2anat_xfm'), ('template', 'keys')]), (sdc_select_std, bold_sdc_wf, [('std2anat_xfm', 'inputnode.std2anat_xfm')]), ]) if fmaps.get('syn') is True: # SyN forced syn_unwarp_report_wf = init_sdc_unwarp_report_wf( name='syn_unwarp_report_wf', forcedsyn=True) workflow.connect([ (inputnode, syn_unwarp_report_wf, [ ('t1w_dseg', 'inputnode.in_seg')]), (bold_reference_wf, syn_unwarp_report_wf, [ ('outputnode.ref_image', 'inputnode.in_pre')]), (bold_reg_wf, syn_unwarp_report_wf, [ ('outputnode.itk_t1_to_bold', 'inputnode.in_xfm')]), (bold_sdc_wf, syn_unwarp_report_wf, [ ('outputnode.syn_ref', 'inputnode.in_post')]), ]) # Overwrite ``out_path_base`` of unwarping DataSinks for node in syn_unwarp_report_wf.list_node_names(): if node.split('.')[-1].startswith('ds_'): syn_unwarp_report_wf.get_node(node).interface.out_path_base = 'fmriprep' # Map final BOLD mask into T1w space (if required) nonstd_spaces = set(spaces.get_nonstandard()) if nonstd_spaces.intersection(('T1w', 'anat')): from niworkflows.interfaces.fixes import ( FixHeaderApplyTransforms as ApplyTransforms ) boldmask_to_t1w = pe.Node( ApplyTransforms(interpolation='MultiLabel', float=True), name='boldmask_to_t1w', mem_gb=0.1 ) workflow.connect([ (bold_reg_wf, boldmask_to_t1w, [ ('outputnode.itk_bold_to_t1', 'transforms')]), (bold_t1_trans_wf, boldmask_to_t1w, [ ('outputnode.bold_mask_t1', 'reference_image')]), (bold_bold_trans_wf if not multiecho else bold_t2s_wf, boldmask_to_t1w, [ ('outputnode.bold_mask', 'input_image')]), (boldmask_to_t1w, outputnode, [ ('output_image', 'bold_mask_t1')]), ]) if nonstd_spaces.intersection(('func', 'run', 'bold', 'boldref', 'sbref')): workflow.connect([ (bold_bold_trans_wf, outputnode, [ ('outputnode.bold', 'bold_native')]), (bold_bold_trans_wf, func_derivatives_wf, [ ('outputnode.bold_ref', 'inputnode.bold_native_ref'), ('outputnode.bold_mask', 'inputnode.bold_mask_native')]), ]) if spaces.get_spaces(nonstandard=False, dim=(3,)): # Apply transforms in 1 shot # Only use uncompressed output if AROMA is to be run bold_std_trans_wf = init_bold_std_trans_wf( freesurfer=freesurfer, mem_gb=mem_gb['resampled'], omp_nthreads=omp_nthreads, spaces=spaces, name='bold_std_trans_wf', use_compression=not config.execution.low_mem, use_fieldwarp=bool(fmaps), ) workflow.connect([ (inputnode, bold_std_trans_wf, [ ('template', 'inputnode.templates'), ('anat2std_xfm', 'inputnode.anat2std_xfm'), ('bold_file', 'inputnode.name_source'), ('t1w_aseg', 'inputnode.bold_aseg'), ('t1w_aparc', 'inputnode.bold_aparc')]), (bold_hmc_wf, bold_std_trans_wf, [ ('outputnode.xforms', 'inputnode.hmc_xforms')]), (bold_reg_wf, bold_std_trans_wf, [ ('outputnode.itk_bold_to_t1', 'inputnode.itk_bold_to_t1')]), (bold_bold_trans_wf if not multiecho else bold_t2s_wf, bold_std_trans_wf, [ ('outputnode.bold_mask', 'inputnode.bold_mask')]), (bold_sdc_wf, bold_std_trans_wf, [ ('outputnode.out_warp', 'inputnode.fieldwarp')]), (bold_std_trans_wf, outputnode, [('outputnode.bold_std', 'bold_std'), ('outputnode.bold_std_ref', 'bold_std_ref'), ('outputnode.bold_mask_std', 'bold_mask_std')]), ]) if freesurfer: workflow.connect([ (bold_std_trans_wf, func_derivatives_wf, [ ('outputnode.bold_aseg_std', 'inputnode.bold_aseg_std'), ('outputnode.bold_aparc_std', 'inputnode.bold_aparc_std'), ]), (bold_std_trans_wf, outputnode, [ ('outputnode.bold_aseg_std', 'bold_aseg_std'), ('outputnode.bold_aparc_std', 'bold_aparc_std')]), ]) # Xform to 'MNI152NLin2009cAsym' is always computed. carpetplot_select_std = pe.Node( KeySelect(fields=['std2anat_xfm'], key='MNI152NLin2009cAsym'), name='carpetplot_select_std', run_without_submitting=True) carpetplot_wf = init_carpetplot_wf( mem_gb=mem_gb['resampled'], metadata=metadata, name='carpetplot_wf') workflow.connect([ (inputnode, carpetplot_select_std, [ ('std2anat_xfm', 'std2anat_xfm'), ('template', 'keys')]), (carpetplot_select_std, carpetplot_wf, [ ('std2anat_xfm', 'inputnode.std2anat_xfm')]), (bold_bold_trans_wf if not multiecho else bold_t2s_wf, carpetplot_wf, [ ('outputnode.bold', 'inputnode.bold'), ('outputnode.bold_mask', 'inputnode.bold_mask')]), (bold_reg_wf, carpetplot_wf, [ ('outputnode.itk_t1_to_bold', 'inputnode.t1_bold_xform')]), (bold_confounds_wf, carpetplot_wf, [ ('outputnode.confounds_file', 'inputnode.confounds_file')]), ]) if not multiecho: workflow.connect([ (bold_split, bold_std_trans_wf, [ ('out_files', 'inputnode.bold_split')]) ]) else: split_opt_comb = bold_split.clone(name='split_opt_comb') workflow.connect([ (bold_t2s_wf, split_opt_comb, [ ('outputnode.bold', 'in_file')]), (split_opt_comb, bold_std_trans_wf, [ ('out_files', 'inputnode.bold_split') ]) ]) # func_derivatives_wf internally parametrizes over snapshotted spaces. workflow.connect([ (bold_std_trans_wf, func_derivatives_wf, [ ('outputnode.template', 'inputnode.template'), ('outputnode.spatial_reference', 'inputnode.spatial_reference'), ('outputnode.bold_std_ref', 'inputnode.bold_std_ref'), ('outputnode.bold_std', 'inputnode.bold_std'), ('outputnode.bold_mask_std', 'inputnode.bold_mask_std'), ]), ]) if config.workflow.use_aroma: # ICA-AROMA workflow from .confounds import init_ica_aroma_wf ica_aroma_wf = init_ica_aroma_wf( mem_gb=mem_gb['resampled'], metadata=metadata, omp_nthreads=omp_nthreads, use_fieldwarp=bool(fmaps), err_on_aroma_warn=config.workflow.aroma_err_on_warn, aroma_melodic_dim=config.workflow.aroma_melodic_dim, name='ica_aroma_wf') join = pe.Node(niu.Function(output_names=["out_file"], function=_to_join), name='aroma_confounds') mrg_conf_metadata = pe.Node(niu.Merge(2), name='merge_confound_metadata', run_without_submitting=True) mrg_conf_metadata2 = pe.Node(DictMerge(), name='merge_confound_metadata2', run_without_submitting=True) workflow.disconnect([ (bold_confounds_wf, outputnode, [ ('outputnode.confounds_file', 'confounds'), ]), (bold_confounds_wf, outputnode, [ ('outputnode.confounds_metadata', 'confounds_metadata'), ]), ]) workflow.connect([ (inputnode, ica_aroma_wf, [ ('bold_file', 'inputnode.name_source')]), (bold_hmc_wf, ica_aroma_wf, [ ('outputnode.movpar_file', 'inputnode.movpar_file')]), (bold_reference_wf, ica_aroma_wf, [ ('outputnode.skip_vols', 'inputnode.skip_vols')]), (bold_confounds_wf, join, [ ('outputnode.confounds_file', 'in_file')]), (bold_confounds_wf, mrg_conf_metadata, [('outputnode.confounds_metadata', 'in1')]), (ica_aroma_wf, join, [('outputnode.aroma_confounds', 'join_file')]), (ica_aroma_wf, mrg_conf_metadata, [('outputnode.aroma_metadata', 'in2')]), (mrg_conf_metadata, mrg_conf_metadata2, [('out', 'in_dicts')]), (ica_aroma_wf, outputnode, [('outputnode.aroma_noise_ics', 'aroma_noise_ics'), ('outputnode.melodic_mix', 'melodic_mix'), ('outputnode.nonaggr_denoised_file', 'nonaggr_denoised_file')]), (join, outputnode, [('out_file', 'confounds')]), (mrg_conf_metadata2, outputnode, [('out_dict', 'confounds_metadata')]), (bold_std_trans_wf, ica_aroma_wf, [ ('outputnode.bold_std', 'inputnode.bold_std'), ('outputnode.bold_mask_std', 'inputnode.bold_mask_std'), ('outputnode.spatial_reference', 'inputnode.spatial_reference')]), ]) # SURFACES ################################################################################## # Freesurfer freesurfer_spaces = spaces.get_fs_spaces() if freesurfer and freesurfer_spaces: config.loggers.workflow.debug('Creating BOLD surface-sampling workflow.') bold_surf_wf = init_bold_surf_wf( mem_gb=mem_gb['resampled'], surface_spaces=freesurfer_spaces, medial_surface_nan=config.workflow.medial_surface_nan, name='bold_surf_wf') workflow.connect([ (inputnode, bold_surf_wf, [ ('t1w_preproc', 'inputnode.t1w_preproc'), ('subjects_dir', 'inputnode.subjects_dir'), ('subject_id', 'inputnode.subject_id'), ('t1w2fsnative_xfm', 'inputnode.t1w2fsnative_xfm')]), (bold_t1_trans_wf, bold_surf_wf, [('outputnode.bold_t1', 'inputnode.source_file')]), (bold_surf_wf, outputnode, [('outputnode.surfaces', 'surfaces')]), (bold_surf_wf, func_derivatives_wf, [ ('outputnode.target', 'inputnode.surf_refs')]), ]) # CIFTI output if config.workflow.cifti_output: from .resampling import init_bold_grayords_wf bold_grayords_wf = init_bold_grayords_wf( grayord_density=config.workflow.cifti_output, mem_gb=mem_gb['resampled'], repetition_time=metadata['RepetitionTime']) workflow.connect([ (inputnode, bold_grayords_wf, [ ('subjects_dir', 'inputnode.subjects_dir')]), (bold_std_trans_wf, bold_grayords_wf, [ ('outputnode.bold_std', 'inputnode.bold_std'), ('outputnode.spatial_reference', 'inputnode.spatial_reference')]), (bold_surf_wf, bold_grayords_wf, [ ('outputnode.surfaces', 'inputnode.surf_files'), ('outputnode.target', 'inputnode.surf_refs'), ]), (bold_grayords_wf, outputnode, [ ('outputnode.cifti_bold', 'bold_cifti'), ('outputnode.cifti_variant', 'cifti_variant'), ('outputnode.cifti_metadata', 'cifti_metadata'), ('outputnode.cifti_density', 'cifti_density')]), ]) # REPORTING ############################################################ reportlets_dir = str(config.execution.work_dir / 'reportlets') ds_report_summary = pe.Node( DerivativesDataSink(desc='summary', keep_dtype=True), name='ds_report_summary', run_without_submitting=True, mem_gb=config.DEFAULT_MEMORY_MIN_GB) ds_report_validation = pe.Node( DerivativesDataSink(base_directory=reportlets_dir, desc='validation', keep_dtype=True), name='ds_report_validation', run_without_submitting=True, mem_gb=config.DEFAULT_MEMORY_MIN_GB) workflow.connect([ (summary, ds_report_summary, [('out_report', 'in_file')]), (bold_reference_wf, ds_report_validation, [ ('outputnode.validation_report', 'in_file')]), ]) # Fill-in datasinks of reportlets seen so far for node in workflow.list_node_names(): if node.split('.')[-1].startswith('ds_report'): workflow.get_node(node).inputs.base_directory = reportlets_dir workflow.get_node(node).inputs.source_file = ref_file return workflow def _get_series_len(bold_fname): from niworkflows.interfaces.registration import _get_vols_to_discard img = nb.load(bold_fname) if len(img.shape) < 4: return 1 skip_vols = _get_vols_to_discard(img) return img.shape[3] - skip_vols def _create_mem_gb(bold_fname): bold_size_gb = os.path.getsize(bold_fname) / (1024**3) bold_tlen = nb.load(bold_fname).shape[-1] mem_gb = { 'filesize': bold_size_gb, 'resampled': bold_size_gb * 4, 'largemem': bold_size_gb * (max(bold_tlen / 100, 1.0) + 4), } return bold_tlen, mem_gb def _get_wf_name(bold_fname): """ Derive the workflow name for supplied BOLD file. >>> _get_wf_name('/completely/made/up/path/sub-01_task-nback_bold.nii.gz') 'func_preproc_task_nback_wf' >>> _get_wf_name('/completely/made/up/path/sub-01_task-nback_run-01_echo-1_bold.nii.gz') 'func_preproc_task_nback_run_01_echo_1_wf' """ from nipype.utils.filemanip import split_filename fname = split_filename(bold_fname)[1] fname_nosub = '_'.join(fname.split("_")[1:]) # if 'echo' in fname_nosub: # fname_nosub = '_'.join(fname_nosub.split("_echo-")[:1]) + "_bold" name = "func_preproc_" + fname_nosub.replace( ".", "_").replace(" ", "").replace("-", "_").replace("_bold", "_wf") return name def _to_join(in_file, join_file): """Join two tsv files if the join_file is not ``None``.""" from niworkflows.interfaces.utils import JoinTSVColumns if join_file is None: return in_file res = JoinTSVColumns(in_file=in_file, join_file=join_file).run() return res.outputs.out_file
44.545151
99
0.6043
79421c7f6340dc1804ea3ea76d91db2b2eb8c3e8
4,466
py
Python
lib/googlecloudsdk/command_lib/dataproc/batches/batch_message_factory.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
lib/googlecloudsdk/command_lib/dataproc/batches/batch_message_factory.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/dataproc/batches/batch_message_factory.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
1
2020-07-25T01:40:19.000Z
2020-07-25T01:40:19.000Z
# -*- coding: utf-8 -*- # # Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory class for Batch message.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.command_lib.dataproc.shared_messages import ( environment_config_factory as ecf) from googlecloudsdk.command_lib.dataproc.shared_messages import ( runtime_config_factory as rcf) from googlecloudsdk.command_lib.util.args import labels_util class BatchMessageFactory(object): """Factory class for Batch message. Factory class for configuring argument parser and creating a Batch message from the parsed arguments. """ INVALID_BATCH_TYPE_ERR_MSG = 'Invalid batch job type: {}.' MISSING_BATCH_ERR_MSG = 'Missing batch job.' def __init__(self, dataproc, runtime_config_factory_override=None, environment_config_factory_override=None): """Builder class for Batch message. Batch message factory. Only the flags added in AddArguments are handled. User need to provide batch job type specific message during message creation. Args: dataproc: A api_lib.dataproc.Dataproc instance. runtime_config_factory_override: Override the default RuntimeConfigFactory instance. environment_config_factory_override: Override the default EnvironmentConfigFactory instance. """ self.dataproc = dataproc # Construct available batch type to keyword mapping. self._batch2key = { self.dataproc.messages.SparkBatch: 'sparkBatch', self.dataproc.messages.SparkRBatch: 'sparkRBatch', self.dataproc.messages.SparkSqlBatch: 'sparkSqlBatch', self.dataproc.messages.PySparkBatch: 'pysparkBatch' } self.runtime_config_factory = runtime_config_factory_override if not self.runtime_config_factory: self.runtime_config_factory = rcf.RuntimeConfigFactory(self.dataproc) self.environment_config_factory = environment_config_factory_override if not self.environment_config_factory: self.environment_config_factory = ( ecf.EnvironmentConfigFactory(self.dataproc)) def GetMessage(self, args, batch_job): """Creates a Batch message from given args. Create a Batch message from given arguments. Only the arguments added in AddAddArguments are handled. User need to provide bath job type specific message during message creation. Args: args: Parsed argument. batch_job: Batch type job instance. Returns: A Batch message instance. Raises: AttributeError: When batch_job is invalid. """ if not batch_job: raise AttributeError(BatchMessageFactory.MISSING_BATCH_ERR_MSG) if not isinstance(batch_job, tuple(self._batch2key.keys())): raise AttributeError( BatchMessageFactory.INVALID_BATCH_TYPE_ERR_MSG.format( type(batch_job))) kwargs = {} kwargs[self._batch2key[type(batch_job)]] = batch_job if args.labels: kwargs['labels'] = labels_util.ParseCreateArgs( args, self.dataproc.messages.Batch.LabelsValue) runtime_config = self.runtime_config_factory.GetMessage(args) if runtime_config: kwargs['runtimeConfig'] = runtime_config environment_config = self.environment_config_factory.GetMessage(args) if environment_config: kwargs['environmentConfig'] = environment_config if not kwargs: return None return self.dataproc.messages.Batch(**kwargs) def AddArguments(parser): """Adds arguments related to Batch message. Add Batch arguments to the given parser. Job specific arguments are not handled, and need to be set during factory instantiation. Args: parser: A argument parser. """ labels_util.AddCreateLabelsFlags(parser) _AddDependency(parser) def _AddDependency(parser): rcf.AddArguments(parser) ecf.AddArguments(parser)
32.59854
76
0.745858
79421e18fd3cf6ba18f27d26d86dd495776f7e86
318
py
Python
ExerciciosPYTHON/PythonCeV/018.py
Samuel-Melo890/Python-Desafios
2abc7734d6a6c1f5ab67421f792d6889d93bac94
[ "MIT" ]
null
null
null
ExerciciosPYTHON/PythonCeV/018.py
Samuel-Melo890/Python-Desafios
2abc7734d6a6c1f5ab67421f792d6889d93bac94
[ "MIT" ]
2
2022-03-18T16:06:07.000Z
2022-03-18T16:55:29.000Z
ExerciciosPYTHON/PythonCeV/018.py
Samuel-Melo890/Python-Desafios
2abc7734d6a6c1f5ab67421f792d6889d93bac94
[ "MIT" ]
null
null
null
print('='*8,'Seno, Cosseno e Tangente','='*8) a = float(input('Digite o seu angulo:')) from math import radians, sin, cos, tan s = sin(radians(a)) c = cos(radians(a)) t = tan(radians(a)) print('''Para o angulo analisado {}, temos: Seno igual a {:.2f} Cosseno igual a {:.2f} Tangente igual a {:.2f}'''.format(a,s,c,t))
28.909091
45
0.638365
79421e4821f94d9248c3bb25179f3b423535b8fd
739
py
Python
conversor_moeda.py
eduardobaltazarmarfim/PythonC
8e44b4f191582c73cca6df98120ab142145c4ba1
[ "MIT" ]
null
null
null
conversor_moeda.py
eduardobaltazarmarfim/PythonC
8e44b4f191582c73cca6df98120ab142145c4ba1
[ "MIT" ]
null
null
null
conversor_moeda.py
eduardobaltazarmarfim/PythonC
8e44b4f191582c73cca6df98120ab142145c4ba1
[ "MIT" ]
null
null
null
def retorno(): res=input('Deseja executar o programa novamente?[s/n] ') if(res=='s' or res=='S'): verificar() else: print('Processo finalizado!') pass def cabecalho(texto): print('-'*30) print(' '*10+texto+' '*15) print('-'*30) pass def verificar(): try: cabecalho('Conversor de Moeda') val=float(input('Digite um valor em R$ ')) dolar=float(input('Digite o valor em U$ ')) except: print('Dados inseridos são invalidos!') retorno() else: res=val/dolar print('O valor digitado: R$ {}.e o valor em U$ {:.2f}'.format(val,res)) retorno() pass verificar()
14.490196
79
0.507442
79421e9b1649e5c4727926e8fbef214b530c5ecb
452
py
Python
bblfsh_sonar_checks/checks/java/RSPEC-2235.py
juanjux/sonar-checks
65e45ca93bcc59bd20a28f169b00ac4de9b7e98f
[ "Apache-2.0" ]
3
2018-10-02T12:02:37.000Z
2019-04-04T09:18:37.000Z
bblfsh_sonar_checks/checks/java/RSPEC-2235.py
juanjux/sonar-checks
65e45ca93bcc59bd20a28f169b00ac4de9b7e98f
[ "Apache-2.0" ]
6
2018-08-17T14:43:57.000Z
2019-01-08T12:20:03.000Z
bblfsh_sonar_checks/checks/java/RSPEC-2235.py
juanjux/sonar-checks
65e45ca93bcc59bd20a28f169b00ac4de9b7e98f
[ "Apache-2.0" ]
3
2018-08-23T22:35:41.000Z
2020-04-18T11:29:45.000Z
import bblfsh_sonar_checks.utils as utils import bblfsh def check(uast): findings = [] catchs = bblfsh.filter(uast, "//CatchClause//SimpleType//Identifier[@Name='IllegalMonitorStateException']") for c in catchs: findings.append({"msg": "Don't catch IllegalMonitorStateException", "pos": c.start_position.line}) return findings if __name__ == '__main__': utils.run_default_fixture(__file__, check)
26.588235
111
0.688053
79421eef89e378213ffa8f58df01131a81f05f58
769
py
Python
python/tests/test_client.py
yndu13/darabonba-time
a5687a49920b2901252d6d9d2449dfe738888e98
[ "Apache-2.0" ]
1
2020-12-08T06:45:25.000Z
2020-12-08T06:45:25.000Z
python/tests/test_client.py
yndu13/darabonba-time
a5687a49920b2901252d6d9d2449dfe738888e98
[ "Apache-2.0" ]
2
2021-01-05T07:14:18.000Z
2022-02-07T09:32:12.000Z
python/tests/test_client.py
yndu13/darabonba-time
a5687a49920b2901252d6d9d2449dfe738888e98
[ "Apache-2.0" ]
3
2021-01-27T08:38:06.000Z
2021-11-23T03:01:53.000Z
import unittest import time from alibabacloud_darabonba_time.client import Client class TestClient(unittest.TestCase): def test_unix(self): self.assertEqual(10, len(Client.unix())) def test_utc(self): self.assertEqual(len('2020-11-24 09:44:45.426237'), len(Client.utc())) def test_sleep(self): t1 = time.time() Client.sleep(1500) self.assertTrue(1 < time.time() - t1 < 2) def test_format(self): self.assertEqual(len('20060102 15:04 PM'), len(Client.format('yyyyMMdd hh:mm a'))) week = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] self.assertIn(Client.format('EEEE'), week)
29.576923
94
0.581274
79421f9106f459b0560cfe78dd2cae2402547fc5
8,984
py
Python
upd/vcf_tools.py
bjhall/upd
180a25bcb22fa54c200c05dbc214d1f84be995a3
[ "MIT" ]
5
2019-06-20T17:02:41.000Z
2022-02-08T08:35:01.000Z
upd/vcf_tools.py
bjhall/upd
180a25bcb22fa54c200c05dbc214d1f84be995a3
[ "MIT" ]
6
2019-06-20T17:36:52.000Z
2021-02-04T19:07:06.000Z
upd/vcf_tools.py
bjhall/upd
180a25bcb22fa54c200c05dbc214d1f84be995a3
[ "MIT" ]
1
2021-12-24T07:16:05.000Z
2021-12-24T07:16:05.000Z
import logging import gzip import re from codecs import (open, getreader) from pprint import pprint as pp LOG = logging.getLogger(__name__) def open_file(filename): """Open a file and return a iterable with lines""" if filename.endswith('.gz'): LOG.info(f"{filename} is zipped") handle = getreader('utf-8')(gzip.open(filename), errors='replace') else: handle = open(filename, mode='r', encoding='utf-8', errors='replace') return handle class Variant(object): """Implements a Variant class for VCF variants gt_types: 0=HOM_REF, 1=HET, 3=HOM_ALT, 2=other """ def __init__(self, variant_line): super(Variant, self).__init__() self.variant_line = variant_line self.CHROM = None self.POS = None self.INFO = {} self.ALT = None self.is_snp = True self.gt_quals = [] self.gt_types = [] self._initialize() def _initialize(self): splitted_line = self.variant_line.split('\t') self.CHROM = splitted_line[0] self.POS = int(splitted_line[1]) self.ALT = splitted_line[4].split(',') if len(splitted_line[3]) != len(splitted_line[4]): self.is_snp = False self.INFO = self._build_info(splitted_line[7]) if not len(splitted_line) > 8: return self.gt_quals, self.gt_types = self._build_gt(splitted_line) def _build_gt(self, var_info): """Build the genotype information Collapse the FORMAT information from the 8th column with each individual genotype information. Then retrieve the genotype call and genotype quality Args: var_info (list): A splited variant line Returns: gt_quals, gt_types (list) """ gt_map = {'0/0':0, '0/1':1,'1/1':3} gt_types = [] gt_quals = [] form = var_info[8].split(':') for ind_info in var_info[9:]: gt_info = dict(zip(form, ind_info.split(':'))) gq = 0 try: gq = int(gt_info.get('GQ',0)) except Exception as err: pass gt_quals.append(gq) genotype = gt_info.get('GT','./.') if not genotype in gt_map: gt_types.append(2) continue gt_types.append(gt_map[genotype]) return gt_quals, gt_types def _build_info(self, info): """Build a info dictionary from a info str and set self.INFO Args: info (str): Raw vcf info string """ info_dict = {} if info == '.': return info_dict for value in info.split(';'): vals = value.split('=') if not len(vals) == 2: info_dict[vals[0]] = True continue info_dict[vals[0]] = vals[1] return info_dict def __str__(self): return self.variant_line def __repr__(self): return f"{self.CHROM}:{self.POS}:{self.gt_types}" class HREC(object): """VCF header record""" def __init__(self, hid, number=None, htype=None, description=None): super(HREC, self).__init__() self.id = hid self.number = number self.type = htype self.description = description def info(self): """Return the header info in a dictionary""" return { 'ID': self.id, 'Number': self.number, 'Type': self.type, 'Description': self.description } class Vcf(object): """Implements a simple vcf parser that mimics parts of cyvcf2.VCF""" def __init__(self, variant_file): super(Vcf, self).__init__() self.variant_file = iter(variant_file) self.raw_header = [] self.samples = [] self._current_variant = None self._header_keys = set() self._initialize() def _initialize(self): self._parse_header() def _parse_header(self): """docstring for _parse_header""" line = '#' while line.startswith('#'): line = next(self.variant_file) line = line.rstrip() if line.startswith('#'): self.raw_header.append(line) if not line.startswith('##'): splitted_line = line.split('\t') if not len(splitted_line) > 9: raise SyntaxError("No individuals in VCF") self.samples = splitted_line[9:] self._current_variant = line def contains(self, key): """Check if the header contains key""" if not self._header_keys: for rec in self.header_iter(): self._header_keys.add(rec.id) return key in self._header_keys def header_iter(self): """Iterates over the header lines Creates header records (HREC) for each of the INFO headers Yields: header_record (HREC) """ info_pattern = re.compile(r'''\#\#INFO=< ID=(?P<id>[^,]+), Number=(?P<number>-?\d+|\.|[AGR]), Type=(?P<type>Integer|Float|Flag|Character|String), Description="(?P<desc>[^"]*)" >''', re.VERBOSE ) for header in self.raw_header: if header.startswith('##INFO'): match = info_pattern.match(header) if not match: raise SyntaxError(f"One of the INFO lines is malformed:{header}") header_record = HREC(match.group('id'), match.group('number'), match.group('type'), match.group('desc')) yield header_record def __next__(self): current_variant = Variant(self._current_variant) self._current_variant = next(self.variant_file).rstrip() return current_variant def __iter__(self): return self def __repr__(self): return f"{self.__class__.__name__} ({self.samples})" def check_samples(sids, proband, mother, father): """Check if proband, mother and father exists in vcf Args: sids (list): List of sample ids in VCF proband (str): ID of proband in VCF mother (str): ID of mother in VCF father (str): ID of father in VCF Returns: bool: if all samples exists in VCF """ if not all(elem in sids for elem in [proband, mother, father]): return False return True def get_vcf(vcf_path, proband, mother, father): """Check and open a VCF Args: vcf_path (str) proband (str): ID of proband in VCF mother (str): ID of mother in VCF father (str): ID of father in VCF Returns: vcf_reader (Vcf) """ vcf_handle = open_file(vcf_path) vcf_reader = Vcf(vcf_handle) if not check_samples(vcf_reader.samples, proband, mother, father): raise SyntaxError("At least one of the given sample IDs do not exist in the VCF header") return vcf_reader def get_header_desc(reader, header_id): """Get description field of an header field ID Args: reader (cyvcf2.VCF) header_id (str) Returns: str: Information from a vcf header description """ for rec in reader.header_iter(): d = rec.info() if d.get('ID') == header_id: return d.get('Description') return None def parse_CSQ_header(reader): """Parse the order of VEP fields from the vcf header Args: reader (Vcf) Returns: csq_format (list(str)): A list with the VEP header """ csq_str = get_header_desc(reader, "CSQ") if not csq_str: raise ValueError("CSQ header field missing. The VCF need to be annotated with VEP") _, csq_format_str = csq_str.split('Format: ') csq_format_str = csq_format_str.rstrip('"') csq_format = csq_format_str.split('|') return csq_format def get_pop_AF(variant, vep_fields, af_tag): """Extract population frequency from VEP annotations. Args: variant (Variant) vep_fields (list): Description of VEP annotation af_tag (str): Name of AF field to parse Returns: freq (float): The annotated frequency, returns 0 if no data """ freq = 0 if vep_fields: vep_data = variant.INFO['CSQ'] first_vep_str = vep_data.split(',')[0] data = first_vep_str.split('|') for i in range(len(data)): if vep_fields[i] == af_tag: freq = data[i] else: freq = variant.INFO.get(af_tag) return float(freq or 0)
29.650165
96
0.551647
79421f9252f11f73f1bc94d309eb57b41fdae8b0
311
py
Python
data/multilingual/Tibt.DZO/Sun-ExtA_12/pdf_to_json_test_Tibt.DZO_Sun-ExtA_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
1
2021-09-19T19:47:35.000Z
2021-09-19T19:47:35.000Z
data/multilingual/Tibt.DZO/Sun-ExtA_12/pdf_to_json_test_Tibt.DZO_Sun-ExtA_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
data/multilingual/Tibt.DZO/Sun-ExtA_12/pdf_to_json_test_Tibt.DZO_Sun-ExtA_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
import pdf_to_json as p2j import json url = "file:data/multilingual/Tibt.DZO/Sun-ExtA_12/udhr_Tibt.DZO_Sun-ExtA_12.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
31.1
81
0.810289
79422042847793b99e8df17f8fa43fb4cb523d69
625
py
Python
python_modules/dagster/dagster_tests/core_tests/test_log_capture.py
bitdotioinc/dagster
4fe395a37b206b1a48b956fa5dd72bf698104cca
[ "Apache-2.0" ]
1
2021-04-27T19:49:59.000Z
2021-04-27T19:49:59.000Z
python_modules/dagster/dagster_tests/core_tests/test_log_capture.py
bitdotioinc/dagster
4fe395a37b206b1a48b956fa5dd72bf698104cca
[ "Apache-2.0" ]
7
2022-03-16T06:55:04.000Z
2022-03-18T07:03:25.000Z
python_modules/dagster/dagster_tests/core_tests/test_log_capture.py
bitdotioinc/dagster
4fe395a37b206b1a48b956fa5dd72bf698104cca
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import sys import pytest from dagster.core.execution.compute_logs import ( mirror_stream_to_file, should_disable_io_stream_redirect, ) from dagster.utils.test import get_temp_file_name @pytest.mark.skipif( should_disable_io_stream_redirect(), reason="compute logs disabled for win / py3.6+" ) def test_capture(): with get_temp_file_name() as capture_filepath: with mirror_stream_to_file(sys.stdout, capture_filepath): print("HELLO") with open(capture_filepath, "r") as capture_stream: assert "HELLO" in capture_stream.read()
26.041667
88
0.7456
7942211f9f06c445427327ae6e15eb95b7ae4584
1,604
py
Python
server/api/services/tasks.py
JBris/dolphin_segmentation
b1d22293720c15038d9c521aed8e7b258d8409aa
[ "MIT" ]
1
2021-05-09T05:40:53.000Z
2021-05-09T05:40:53.000Z
server/api/services/tasks.py
JBris/dolphin_segmentation
b1d22293720c15038d9c521aed8e7b258d8409aa
[ "MIT" ]
null
null
null
server/api/services/tasks.py
JBris/dolphin_segmentation
b1d22293720c15038d9c521aed8e7b258d8409aa
[ "MIT" ]
null
null
null
import os import json from pathlib import Path from decouple import config class Tasks: task_dir = config('TASK_DIR', default = '/home/app/system/tasks') def create_file(self, task_id, url, data): task_dict = { "id": task_id, "url": url, "status": "created" } for key in data: task_dict[key] = data[key] with open(f"{self.task_dir}/{data['name']}.json", 'w') as f: try: json.dump(task_dict, f) except: return False return task_dict def read_file(self, name): with open(f"{self.task_dir}/{name}.json", 'r') as f: try: return json.load(f) except ValueError: return False def write_file(self, data): with open(f"{self.task_dir}/{data['name']}.json", 'w') as f: try: json.dump(data, f) return data except: return False def process_directory(self, path): path = Path(path) files = path.glob('*') file_list = [] for file in files: classified_file = self.classify_file(str(file), file.stem, file.suffix.lower()[1:]) if classified_file: file_list.append(classified_file) return file_list def classify_file(self, path, name, ext): if not os.path.isfile(path): return False if ext != "json": return False with open(path, 'r') as f: try: data = json.load(f) except ValueError: return False return {"type": "json", "file": path, "name": name, "status": data.get("status").lower(), "id": data.get("id") }
34.12766
121
0.571696
794221ab76148f1fa88826d381702cb079686bbf
14,319
py
Python
model-optimizer/mo/middle/passes/infer_test.py
shinh/dldt
693ab4e79a428e0801f17f4511b129a3fa8f4a62
[ "Apache-2.0" ]
1
2021-02-20T21:48:36.000Z
2021-02-20T21:48:36.000Z
model-optimizer/mo/middle/passes/infer_test.py
erinpark33/dldt
edd86d090592f7779f4dbb2681546e1f4e81284f
[ "Apache-2.0" ]
null
null
null
model-optimizer/mo/middle/passes/infer_test.py
erinpark33/dldt
edd86d090592f7779f4dbb2681546e1f4e81284f
[ "Apache-2.0" ]
1
2021-02-19T01:06:12.000Z
2021-02-19T01:06:12.000Z
""" Copyright (c) 2018-2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import numpy as np from mo.front.common.partial_infer.concat import concat_infer from mo.graph.graph import Node from mo.middle.passes.infer import override_placeholder_shapes, partial_infer from mo.utils.error import Error from mo.utils.unittest.graph import build_graph nodes_attributes = {'node_1': {'type': 'Identity', 'value': None, 'kind': 'op'}, 'node_1_data': {'value': None, 'kind': 'data', 'data_type': None}, 'node_2': {'type': 'Identity', 'value': None, 'kind': 'op'}, 'concat': {'type': 'Concat', 'value': None, 'kind': 'op'}, 'node_3': {'type': 'Identity', 'value': None, 'kind': 'op'}, 'node_3_data': {'value': None, 'kind': 'data', 'data_type': None}, # Placeholders 'placeholder_1': {'shape': None, 'type': 'Input', 'kind': 'op', 'op': 'Placeholder'}, 'placeholder_1_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, 'placeholder_2': {'shape': None, 'type': 'Input', 'kind': 'op', 'op': 'Placeholder'}, 'pl_1': {'type': 'Placeholder', 'kind': 'op', 'op': 'Placeholder'}, 'pl_1_data': {'value': None, 'kind': 'data', 'data_type': None}, 'pl_2': {'type': 'Placeholder', 'kind': 'op', 'op': 'Placeholder'}, 'pl_2_data': {'value': None, 'kind': 'data', 'data_type': None}, 'placeholder_2_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, # ScaleShift layer 'scaleshift_1': {'type': 'ScaleShift', 'kind': 'op', 'op': 'ScaleShift'}, 'scaleshift_1_w': {'value': None, 'shape': None, 'kind': 'data'}, 'scaleshift_1_b': {'value': None, 'shape': None, 'kind': 'data'}, 'scaleshift_1_data': {'value': None, 'shape': None, 'kind': 'data'}, # Mul op 'mul_1': {'type': None, 'kind': 'op', 'op': 'Mul'}, 'mul_1_w': {'value': None, 'shape': None, 'kind': 'data'}, 'mul_1_data': {'value': None, 'shape': None, 'kind': 'data'}, 'op_output': { 'kind': 'op', 'op': 'OpOutput', 'infer': lambda x: None} } class TestInferPass(unittest.TestCase): def test_override_placeholder_shapes(self): """ Test for overriding shape in placeholder by shape from user_shapes. """ graph = build_graph(nodes_attributes, [('node_1', 'node_2'), ('node_2', 'op_output') ], {'node_2': {'shape': None}, 'node_1': {'shape': np.array([1, 3, 227, 227]), 'op': 'Placeholder'} }, nodes_with_edges_only=True) ph_shape = np.array([1, 3, 224, 224]) user_dict = {'node_1': [{'shape': ph_shape}]} override_placeholder_shapes(graph, user_dict) res_shape = graph.node['node_1']['shape'] self.assertTrue(np.array_equal(ph_shape, res_shape)) def test_override_placeholder_no_shape(self): """ Test for case when user_shapes is not defined. """ graph = build_graph(nodes_attributes, [('node_1', 'node_2'), ('node_2', 'op_output') ], {'node_2': {'shape': None, 'op': 'Placeholder'}, 'node_1': {'shape': np.array([1, 3, 227, 227]), 'op': 'Placeholder'} }, nodes_with_edges_only=True) out = override_placeholder_shapes(graph, None) res_shape = graph.node['node_1']['shape'] placeholder_shape = np.array([1, 3, 227, 227]) self.assertIsNone(out) self.assertTrue(np.array_equal(placeholder_shape, res_shape)) def test_override_placeholder_shapes(self): """ Test for case when user_shapes is not None, but it shouldn't rewrite shapes. """ graph = build_graph(nodes_attributes, [('node_1', 'node_2'), ('node_2', 'op_output') ], {'node_2': {'shape': None}, 'node_1': {'shape': np.array([1, 3, 227, 227]), 'op': 'Placeholder'} }, nodes_with_edges_only=True) node_1_shape = np.array([1, 3, 227, 227]) user_dict = {'some_node': [{'shape': np.zeros((3))}]} override_placeholder_shapes(graph, user_dict) res_shape = graph.node['node_1']['shape'] self.assertTrue(np.array_equal(node_1_shape, res_shape)) def test_override_placeholder_shapes_dict(self): graph = build_graph(nodes_attributes, [('node_1', 'node_2'), ('node_2', 'op_output') ], {'node_2': {'shape': None, 'op': 'Placeholder'}, 'node_1': {'shape': np.array([1, 3, 227, 227]), 'op': 'Placeholder'} }, nodes_with_edges_only=True) placeholder_shape = np.array([1, 3, 224, 224]) user_shapes = { 'node_1': [{'shape': placeholder_shape}], 'node_2': [{'shape': placeholder_shape}], } override_placeholder_shapes(graph, user_shapes) res_shape = graph.node['node_1']['shape'] res_shape2 = graph.node['node_2']['shape'] self.assertTrue(np.array_equal(placeholder_shape, res_shape)) self.assertTrue(np.array_equal(placeholder_shape, res_shape2)) nodes = { 'placeholder_1': {'name': 'placeholder_1', 'shape': [1, 2, 3, 4], 'type': 'Placeholder', 'value': None, 'kind': 'op', 'op': 'Placeholder'}, 'placeholder_2': {'name': 'placeholder_2', 'shape': [5, 6, 7, 8], 'type': 'Placeholder', 'value': None, 'kind': 'op', 'op': 'Placeholder'}, '1': {'name': 'node_1', 'type': 'Identity', 'value': None, 'kind': 'op'}, '2': {'name': 'node_2', 'type': 'Identity', 'value': None, 'kind': 'op'}, '3': {'name': 'concat', 'type': 'Identity', 'value': None, 'kind': 'op'}, '4': {'name': 'output', 'type': 'SoftMax', 'value': None, 'kind': 'op'} } edges = [ ('placeholder_1', '1'), ('1', '3'), ('placeholder_2', '2'), ('2', '3'), ('3', '4') ] def test_override_placeholder_shapes_batch_is_not_set(self): """ Test case when batch is not set. (shapes shouldn't change) """ graph = build_graph(self.nodes, self.edges) shapes = {} batch = None override_placeholder_shapes(graph, shapes, batch) res_shape_1 = graph.node['placeholder_1']['shape'] res_shape_2 = graph.node['placeholder_2']['shape'] self.assertTrue(np.array_equal(self.nodes['placeholder_1']['shape'], res_shape_1)) self.assertTrue(np.array_equal(self.nodes['placeholder_2']['shape'], res_shape_2)) def test_override_placeholder_shapes_real_inputs_and_batch(self): """ Test case when batch is set and shapes should overwrite by user shapes. """ graph = build_graph(self.nodes, self.edges) shapes = {'placeholder_1': [{'shape': np.array([1, 2, 3, 4])}], 'placeholder_2': [{'shape': np.array([1, 5, 6, 7])}]} batch = 4 override_placeholder_shapes(graph, shapes, batch) res_shape_1 = graph.node['placeholder_1']['shape'] res_shape_2 = graph.node['placeholder_2']['shape'] self.assertTrue(np.array_equal(res_shape_1, np.array([4, 2, 3, 4]))) self.assertTrue(np.array_equal(res_shape_2, np.array([4, 5, 6, 7]))) def test_override_placeholder_shapes_real_inputs_and_batch_2(self): """ Test case when batch is set, but shapes in user_shapes is None. """ graph = build_graph(self.nodes, self.edges) shapes = {'placeholder_1': [{'shape': None}], 'placeholder_2': [{'shape': None}]} batch = 4 graph.node['placeholder_2']['shape'] = np.array([1, 2, 3, 4]) graph.node['placeholder_2']['shape'] = np.array([1, 5, 6, 7]) override_placeholder_shapes(graph, shapes, batch) np.testing.assert_array_equal(graph.node['placeholder_1']['shape'], np.array([4, 2, 3, 4])) np.testing.assert_array_equal(graph.node['placeholder_2']['shape'], np.array([4, 5, 6, 7])) def test_partial_infer(self): graph = build_graph(nodes_attributes, [('node_1', 'concat'), ('node_2', 'concat'), ('concat', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'kind': 'data', 'shape': None, 'infer': None}, 'node_1': {'kind': 'data', 'shape': np.array([1, 3, 227, 227]), 'infer': None}, 'node_2': {'kind': 'data', 'shape': np.array([1, 3, 227, 227]), 'infer': None}, 'concat': {'kind': 'op', 'axis': 2, 'infer': concat_infer} }, nodes_with_edges_only=True) start_node = 'concat' partial_infer(graph, start_node) node = Node(graph, start_node) self.assertTrue(node.is_partial_inferred) self.assertTrue(node.out_node().is_partial_inferred) # check if previous nodes are not inferred node = Node(graph, start_node) while True: # collect nodes in a list if isinstance(node.in_nodes(), list): in_nodes = node.in_nodes() else: in_nodes = [y for x, y in node.in_nodes().items()] # check parents and find next parent for n in in_nodes: if 'embedded_input_' not in n.id: node = n self.assertFalse(n.has('is_partial_inferred')) if not len(in_nodes): break def test_partial_infer_no_shape(self): graph = build_graph(nodes_attributes, [('node_1', 'node_2'), ('node_2', 'op_output') ], {'node_2': {'shape': None, 'infer': None}, 'node_1': {'shape': None, 'infer': None} }, nodes_with_edges_only=True) self.assertRaises(Error, partial_infer, graph, 'node_1') def test_partial_infer_cycle(self): graph = build_graph(nodes_attributes, [('node_1', 'concat'), ('node_2', 'concat'), ('concat', 'node_3'), ('node_3', 'concat'), ('node_3', 'op_output') ], {'node_3': {'kind': 'data', 'shape': None, 'infer': None}, 'node_1': {'kind': 'data', 'shape': np.array([1, 3, 227, 227]), 'infer': None}, 'node_2': {'kind': 'data', 'shape': np.array([1, 3, 227, 227]), 'infer': None}, 'concat': {'kind': 'op', 'axis': 2, 'infer': concat_infer} }, nodes_with_edges_only=True) start_node = 'concat' self.assertRaises(Error, partial_infer, graph, start_node) class CycleTest(unittest.TestCase): def test_is_not_fully_inferred_param(self): # Node that have is_not_fully_inferred=True graph = build_graph(nodes_attributes, [('node_1', 'concat'), ('node_2', 'concat'), ('concat', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'kind': 'data', 'shape': None, 'infer': None}, 'node_1': {'kind': 'data', 'shape': np.array([1, 3, 227, 227]), 'infer': None}, 'node_2': {'kind': 'data', 'shape': np.array([1, 3, 227, 227]), 'infer': None}, 'concat': {'kind': 'op', 'axis': 2, 'infer': concat_infer, 'is_not_fully_inferred': True} }, nodes_with_edges_only=True) start_node = 'concat' try: partial_infer(graph, start_node) except Error: self.fail("Unexpected Error raised") node = Node(graph, start_node) self.assertTrue(node.is_partial_inferred) self.assertTrue(node.out_node().is_partial_inferred) def test_for_is_cyclic1(self): # Test for case of cyclic graph without is_cyclic attrs graph = build_graph(nodes_attributes, [('node_1', 'node_1_data'), ('node_1_data', 'node_3'), ('node_3', 'node_3_data'), ('node_3_data', 'node_1')], nodes_with_edges_only=True) with self.assertRaisesRegex(Error, 'Graph contains a cycle. Can not proceed.*'): partial_infer(graph)
48.704082
118
0.502898
794221af10a6b547bc96b4b0d0757e70beadaf5b
5,418
py
Python
Demo/scripts/eqfix.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
Demo/scripts/eqfix.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
Demo/scripts/eqfix.py
AtjonTV/Python-1.4
2a80562c5a163490f444181cb75ca1b3089759ec
[ "Unlicense", "TCL", "DOC", "AAL", "X11" ]
null
null
null
#! /usr/local/bin/python # Fix Python source files to use the new equality test operator, i.e., # if x = y: ... # is changed to # if x == y: ... # The script correctly tokenizes the Python program to reliably # distinguish between assignments and equality tests. # # Command line arguments are files or directories to be processed. # Directories are searched recursively for files whose name looks # like a python module. # Symbolic links are always ignored (except as explicit directory # arguments). Of course, the original file is kept as a back-up # (with a "~" attached to its name). # It complains about binaries (files containing null bytes) # and about files that are ostensibly not Python files: if the first # line starts with '#!' and does not contain the string 'python'. # # Changes made are reported to stdout in a diff-like format. # # Undoubtedly you can do this using find and sed or perl, but this is # a nice example of Python code that recurses down a directory tree # and uses regular expressions. Also note several subtleties like # preserving the file's mode and avoiding to even write a temp file # when no changes are needed for a file. # # NB: by changing only the function fixline() you can turn this # into a program for a different change to Python programs... import sys import regex import os from stat import * import string err = sys.stderr.write dbg = err rep = sys.stdout.write def main(): bad = 0 if not sys.argv[1:]: # No arguments err('usage: ' + sys.argv[0] + ' file-or-directory ...\n') sys.exit(2) for arg in sys.argv[1:]: if os.path.isdir(arg): if recursedown(arg): bad = 1 elif os.path.islink(arg): err(arg + ': will not process symbolic links\n') bad = 1 else: if fix(arg): bad = 1 sys.exit(bad) ispythonprog = regex.compile('^[a-zA-Z0-9_]+\.py$') def ispython(name): return ispythonprog.match(name) >= 0 def recursedown(dirname): dbg('recursedown(' + `dirname` + ')\n') bad = 0 try: names = os.listdir(dirname) except os.error, msg: err(dirname + ': cannot list directory: ' + `msg` + '\n') return 1 names.sort() subdirs = [] for name in names: if name in (os.curdir, os.pardir): continue fullname = os.path.join(dirname, name) if os.path.islink(fullname): pass elif os.path.isdir(fullname): subdirs.append(fullname) elif ispython(name): if fix(fullname): bad = 1 for fullname in subdirs: if recursedown(fullname): bad = 1 return bad def fix(filename): ## dbg('fix(' + `filename` + ')\n') try: f = open(filename, 'r') except IOError, msg: err(filename + ': cannot open: ' + `msg` + '\n') return 1 head, tail = os.path.split(filename) tempname = os.path.join(head, '@' + tail) g = None # If we find a match, we rewind the file and start over but # now copy everything to a temp file. lineno = 0 while 1: line = f.readline() if not line: break lineno = lineno + 1 if g is None and '\0' in line: # Check for binary files err(filename + ': contains null bytes; not fixed\n') f.close() return 1 if lineno == 1 and g is None and line[:2] == '#!': # Check for non-Python scripts words = string.split(line[2:]) if words and regex.search('[pP]ython', words[0]) < 0: msg = filename + ': ' + words[0] msg = msg + ' script; not fixed\n' err(msg) f.close() return 1 while line[-2:] == '\\\n': nextline = f.readline() if not nextline: break line = line + nextline lineno = lineno + 1 newline = fixline(line) if newline != line: if g is None: try: g = open(tempname, 'w') except IOError, msg: f.close() err(tempname+': cannot create: '+\ `msg`+'\n') return 1 f.seek(0) lineno = 0 rep(filename + ':\n') continue # restart from the beginning rep(`lineno` + '\n') rep('< ' + line) rep('> ' + newline) if g is not None: g.write(newline) # End of file f.close() if not g: return 0 # No changes # Finishing touch -- move files # First copy the file's mode to the temp file try: statbuf = os.stat(filename) os.chmod(tempname, statbuf[ST_MODE] & 07777) except os.error, msg: err(tempname + ': warning: chmod failed (' + `msg` + ')\n') # Then make a backup of the original file as filename~ try: os.rename(filename, filename + '~') except os.error, msg: err(filename + ': warning: backup failed (' + `msg` + ')\n') # Now move the temp file to the original file try: os.rename(tempname, filename) except os.error, msg: err(filename + ': rename failed (' + `msg` + ')\n') return 1 # Return succes return 0 from tokenize import tokenprog match = {'if':':', 'elif':':', 'while':':', 'return':'\n', \ '(':')', '[':']', '{':'}', '`':'`'} def fixline(line): # Quick check for easy case if '=' not in line: return line i, n = 0, len(line) stack = [] while i < n: j = tokenprog.match(line, i) if j < 0: # A bad token; forget about the rest of this line print '(Syntax error:)' print line, return line a, b = tokenprog.regs[3] # Location of the token proper token = line[a:b] i = i+j if stack and token == stack[-1]: del stack[-1] elif match.has_key(token): stack.append(match[token]) elif token == '=' and stack: line = line[:a] + '==' + line[b:] i, n = a + len('=='), len(line) elif token == '==' and not stack: print '(Warning: \'==\' at top level:)' print line, return line main()
27.09
70
0.638612
794221c1f04a453aebf4e5c8139d0e642e66248f
1,545
py
Python
conftest.py
eric-bonfadini/dask
c2278fece0d4fb4af1e63b6ca26e6a90f63b0fc3
[ "BSD-3-Clause" ]
null
null
null
conftest.py
eric-bonfadini/dask
c2278fece0d4fb4af1e63b6ca26e6a90f63b0fc3
[ "BSD-3-Clause" ]
null
null
null
conftest.py
eric-bonfadini/dask
c2278fece0d4fb4af1e63b6ca26e6a90f63b0fc3
[ "BSD-3-Clause" ]
null
null
null
import pytest # The doctests in these files fail due to either: # - Non-required dependencies not being installed # - Imported doctests due to pulling the docstrings from other packages # (e.g. `numpy`). No need to run these doctests. collect_ignore = [ "dask/bytes/hdfs3.py", "dask/bytes/pyarrow.py", "dask/bytes/s3.py", "dask/array/ghost.py", "dask/array/fft.py", "dask/dataframe/io/io.py", "dask/dataframe/io/parquet/arrow.py", "dask/dot.py", ] collect_ignore_glob = [] try: import numpy # noqa: F401 except ImportError: collect_ignore_glob.append("dask/array/*") try: import pandas # noqa: F401 except ImportError: collect_ignore_glob.append("dask/dataframe/*") try: import scipy # noqa: F401 except ImportError: collect_ignore.append("dask/array/stats.py") try: import pyarrow # noqa: F401 except ImportError: collect_ignore.append("dask/dataframe/io/orc/arrow.py") try: import tiledb # noqa: F401 except ImportError: collect_ignore.append("dask/array/tiledb_io.py") try: import sqlalchemy # noqa: F401 except ImportError: collect_ignore.append("dask/dataframe/io/sql.py") def pytest_addoption(parser): parser.addoption("--runslow", action="store_true", help="run slow tests") def pytest_runtest_setup(item): if "slow" in item.keywords and not item.config.getoption("--runslow"): pytest.skip("need --runslow option to run") pytest.register_assert_rewrite( "dask.array.utils", "dask.dataframe.utils", "dask.bag.utils" )
24.919355
77
0.702265
794221c8987fd441f8e5e4242a3f1e09c2a96911
17,469
py
Python
coremltools/converters/mil/mil/ops/defs/elementwise_binary.py
tonybove-apple/coremltools
22a8877beec7bad136ba5612d5aacd8e323ecdfc
[ "BSD-3-Clause" ]
2,740
2017-10-03T23:19:01.000Z
2022-03-30T15:16:39.000Z
coremltools/converters/mil/mil/ops/defs/elementwise_binary.py
tonybove-apple/coremltools
22a8877beec7bad136ba5612d5aacd8e323ecdfc
[ "BSD-3-Clause" ]
1,057
2017-10-05T22:47:01.000Z
2022-03-31T23:51:15.000Z
coremltools/converters/mil/mil/ops/defs/elementwise_binary.py
tonybove-apple/coremltools
22a8877beec7bad136ba5612d5aacd8e323ecdfc
[ "BSD-3-Clause" ]
510
2017-10-04T19:22:28.000Z
2022-03-31T12:16:52.000Z
# Copyright (c) 2020, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause import numpy as np import operator from ._op_reqs import * from ._utils import promoted_primitive_type, broadcast_shapes class elementwise_binary(Operation): """ Elementwise Binary Op Superclass """ input_spec = InputSpec(x=ScalarOrTensorInputType(), y=ScalarOrTensorInputType(),) def __init__(self, **kwargs): super(elementwise_binary, self).__init__(**kwargs) def type_inference(self): typea = self.x.sym_type typeb = self.y.sym_type primitive_type = promoted_primitive_type(typea, typeb) if primitive_type is None: raise ValueError("Incompatible primitive types in broadcast operation") primitive_type = self.get_dtype(primitive_type) # broadcast if not types.is_tensor(typea) and not types.is_tensor(typeb): # both typea and typeb are not tensors return primitive_type if types.is_tensor(typea) and not types.is_tensor(typeb): # a is tensor, b is not return types.tensor(primitive_type, typea.get_shape()) if not types.is_tensor(typea) and types.is_tensor(typeb): # a is not tensor, b is return types.tensor(primitive_type, typeb.get_shape()) # both a, b are tensors shapea = list(typea.get_shape()) shapeb = list(typeb.get_shape()) ret_shape = broadcast_shapes(shapea, shapeb) return types.tensor(primitive_type, ret_shape) @precondition(allow=VALUE) def value_inference(self): return self._cast_check_value_inferene(self.x.val, self.y.val) def get_operator(self): """ All subclasses have to implement this. """ raise NotImplementedError() def get_dtype(self, promoted_dtype): """ Override if output primitive type is different from input types (e.g., less, greater) """ return promoted_dtype def _cast_check_value_inferene(self, a, b): """ If one of the input is tensor, cast the result to tensor. """ to_cast = any([isinstance(x, np.ndarray) for x in [a, b]]) result = self.get_operator()(a, b) return result if not to_cast else np.array(result) """ Elementwise Binary Op Implementation(s) """ @register_op(doc_str="") class add(elementwise_binary): """ Return ``x + y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_. Parameters ---------- x: <\*,T> (Required) * Shape must be compatible with ``y`` in broadcast. y: <\*,T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- <\*,T> Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(add, self).__init__(**kwargs) def get_operator(self): return operator.add @register_op(doc_str="") class equal(elementwise_binary): """ Return the truth value of ``x == y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). Parameters ---------- x: <\*,T> (Required) * Shape must be compatible with ``y`` in broadcast. y: <\*,T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- <\*, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(equal, self).__init__(**kwargs) def get_operator(self): return np.equal def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class floor_div(elementwise_binary): """ Return ``x / y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_, rounded towards negative infinity. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*, T> * A tensor of the same type and shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(floor_div, self).__init__(**kwargs) def get_operator(self): return operator.floordiv @register_op(doc_str="") class greater(elementwise_binary): """ Return the truth value of ``x > y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(greater, self).__init__(**kwargs) def get_operator(self): return operator.gt def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class greater_equal(elementwise_binary): """ Return the truth value of ``x >= y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(greater_equal, self).__init__(**kwargs) def get_operator(self): return operator.ge def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class less(elementwise_binary): """ Return the truth value of ``x < y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(less, self).__init__(**kwargs) def get_operator(self): return operator.lt def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class less_equal(elementwise_binary): """ Return the truth value of ``x <= y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(less_equal, self).__init__(**kwargs) def get_operator(self): return operator.le def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class logical_and(elementwise_binary): """ Return the truth value of ``x AND y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). A numeric value ``t`` is evaluated to true if ``t != 0``. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(logical_and, self).__init__(**kwargs) def get_operator(self): return np.logical_and def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class logical_or(elementwise_binary): """ Return the truth value of ``x OR y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). A numeric value ``t`` is evaluated to true if ``t != 0``. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(logical_or, self).__init__(**kwargs) def get_operator(self): return np.logical_or def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class logical_xor(elementwise_binary): """ Return the truth value of ``x XOR y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). A numeric value ``t`` is evaluated to true if ``t != 0``. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(logical_xor, self).__init__(**kwargs) def get_operator(self): return np.logical_xor def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class maximum(elementwise_binary): """ Return ``x > y ? x : y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(maximum, self).__init__(**kwargs) def get_operator(self): return np.maximum @register_op(doc_str="") class minimum(elementwise_binary): """ Return ``x > y ? y : x`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(minimum, self).__init__(**kwargs) def get_operator(self): return np.minimum @register_op(doc_str="") class mod(elementwise_binary): """ Return ``x % y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(mod, self).__init__(**kwargs) def get_operator(self): return operator.mod @register_op(doc_str="") class mul(elementwise_binary): """ Return ``x * y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(mul, self).__init__(**kwargs) def get_operator(self): return operator.mul @register_op(doc_str="") class not_equal(elementwise_binary): """ Return the truth value of ``x != y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ (``1`` for true, ``0`` for false in numeric domain). Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(not_equal, self).__init__(**kwargs) def get_operator(self): return operator.ne def get_dtype(self, promoted_dtype): return types.bool @register_op(doc_str="") class real_div(elementwise_binary): """ Return ``x / y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, T> * A tensor with the same type and shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): # TODO(rdar://79925291): Allow int32 input to floor_div from coremltools.converters.mil.mil import Builder as mb from coremltools.converters.mil.mil import types accepted_types = [types.fp32, types.fp16] for input_name in ["x", "y"]: if kwargs[input_name].dtype not in accepted_types: kwargs[input_name] = mb.cast(x=kwargs[input_name], dtype="fp32") super(real_div, self).__init__(**kwargs) def get_operator(self): return operator.truediv @register_op(doc_str="") class pow(elementwise_binary): """ Return ``x ^ y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(pow, self).__init__(**kwargs) def get_operator(self): return operator.pow @register_op(doc_str="") class sub(elementwise_binary): """ Return ``x - y`` element-wise with `broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_. Parameters ---------- x: tensor<\*, T> (Required) * Shape must be compatible with ``y`` in broadcast. y: tensor<\*, T> (Required) * Shape must be compatible with ``x`` in broadcast. Returns ------- tensor<\*?, bool> * A boolean tensor with the same shape as the inputs. Attributes ---------- T: fp32 """ def __init__(self, **kwargs): super(sub, self).__init__(**kwargs) def get_operator(self): return operator.sub
25.61437
85
0.584063
794221f0a13e475705f428fb5e577ff5049dc297
11,779
py
Python
deriva/config/annotation_config.py
emirdad/deriva-py
3d5302af0ff15be53df3b71a671c529a2ce10050
[ "Apache-2.0" ]
3
2018-11-18T19:33:53.000Z
2019-10-03T18:27:49.000Z
deriva/config/annotation_config.py
emirdad/deriva-py
3d5302af0ff15be53df3b71a671c529a2ce10050
[ "Apache-2.0" ]
81
2017-06-13T18:46:47.000Z
2022-01-13T01:16:33.000Z
Lib/site-packages/deriva/config/annotation_config.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
4
2018-06-25T18:23:33.000Z
2021-01-15T19:38:52.000Z
import sys import json import re from deriva.core import ErmrestCatalog, AttrDict, ermrest_model, get_credential from deriva.config.base_config import BaseSpec, BaseSpecList, ConfigUtil, ConfigBaseCLI if sys.version_info > (3,): unicode = str MY_VERSION = 0.99 class NoForeignKeyError(ValueError): pass class AttrSpecList(BaseSpecList): SPEC_TYPES = ["catalog_annotations", "schema_annotations", "table_annotations", "column_annotations", "foreign_key_annotations"] def __init__(self, known_attrs, specdict, strict=False): self.ignore_unmanaged = False self.managed_annotations = self.annotation_list(known_attrs.get(u'managed')) if self.managed_annotations is None: raise ValueError("No 'managed' attribute list") if known_attrs.get(u'ignore_all_unmanaged'): self.ignore_unmanaged = True self.ignored_annotations = self.annotation_list(known_attrs.get(u'ignored')) if self.ignored_annotations is None: self.ignored_annotations = [] # dictlist = dictlist + [{"managed_annotations": self.managed_annotations}, {"ignored_annotations": self.ignored_annotations}, {"ignore_all_unmanaged": self.ignore_unmanaged}] BaseSpecList.__init__(self, AttrSpec, specdict, strict) def annotation_list(self, orig_list): if orig_list is None: return None new = [] for item in orig_list: new.append(unicode(item)) return new def add_list(self, dictlist): for d in dictlist: if len(d) > 0: s = AttrSpec(d, self.managed_annotations, self.ignore_unmanaged, self.ignored_annotations) self.add_spec(s) class AttrSpec(BaseSpec): def __init__(self, specdict, managed_annotations, ignore_unmanaged, ignored_annotations): BaseSpec.__init__(self, specdict, ["uri", "value"], "attributes", ignore_unmanaged) self.ignore_unmanaged = ignore_unmanaged self.managed_annotations = managed_annotations self.ignored_annotations = ignored_annotations self.known_annotations = self.managed_annotations + self.ignored_annotations self.validate_annotation() def validate_annotation(self): return self.specdict.get("uri") in self.managed_annotations class AttrConfig: def __init__(self, server, catalog_id, config_file, credentials, verbose=False, schema_name=None, table_name=None): self.config = json.load(open(config_file)) self.ignored_schema_patterns = [] ip = self.config.get("ignored_schema_patterns") if ip is not None: for p in ip: self.ignored_schema_patterns.append(re.compile(p)) self.known_attrs = self.config.get(u'known_attributes') self.managed_annotations = self.known_attrs.get(u'managed') self.known_annotations = self.managed_annotations self.all_annotations = self.known_annotations self.ignored_annotations = self.known_attrs.get(u'ignored') if self.ignored_annotations is not None: self.all_annotations = self.all_annotations + self.ignored_annotations self.ignore_unmanaged = self.known_attrs.get(u'ignore_all_unmanaged') self.annotation_specs = dict() for key in AttrSpecList.SPEC_TYPES: self.annotation_specs[key] = self.make_speclist(key) self.server = server self.catalog_id = catalog_id self.verbose = verbose old_catalog = ErmrestCatalog('https', self.server, self.catalog_id, credentials) self.saved_toplevel_config = ConfigUtil.find_toplevel_node(old_catalog.getCatalogModel(), schema_name, table_name) self.catalog = ErmrestCatalog('https', self.server, self.catalog_id, credentials) self.toplevel_config = ConfigUtil.find_toplevel_node(self.catalog.getCatalogModel(), schema_name, table_name) def make_speclist(self, name): d = self.config.get(unicode(name)) if d is None: d = [dict()] return AttrSpecList(self.known_attrs, d) def find_best_schema_specs(self, schema_name): specs = dict() for key in self.managed_annotations: specs[key] = self.annotation_specs["schema_annotations"].find_best_schema_spec(schema_name, key=key) return specs def find_best_table_specs(self, schema_name, table_name): specs = dict() for key in self.managed_annotations: specs[key] = self.annotation_specs["table_annotations"].find_best_table_spec(schema_name, table_name, key=key) return specs def find_best_fkey_specs(self, fkey): specs = dict() for key in self.managed_annotations: specs[key] = self.annotation_specs["foreign_key_annotations"].find_best_foreign_key_spec(fkey.table.schema.name, fkey.table.name, fkey.names, key=key) return specs def find_best_column_specs(self, schema_name, table_name, column_name): specs = dict() for key in self.managed_annotations: specs[key] = self.annotation_specs["column_annotations"].find_best_column_spec(schema_name, table_name, column_name, key=key) return specs def node_name(self, node): if isinstance(node, ermrest_model.Schema): return "schema {s}".format(s=str(node.name)) if isinstance(node, ermrest_model.Table): return "table {s}.{t}".format(s=str(node.schema.name), t=str(node.name)) if isinstance(node, ermrest_model.Column): return "column {s}.{t}.{c}".format(s=str(node.table.schema.name), t=str(node.table.name), c=str(node.name)) if isinstance(node, ermrest_model.ForeignKey): return "foreign key {n}".format(n=str(node.names)) return str("unknown node type {t}".format(t=type(node))) def set_node_annotations(self, node, specs, saved_node): if specs is None: if not self.ignore_unmanaged: if self.verbose: print("{n}: clearing annotations".format(n=self.node_name(node))) node.annotations.clear() return for k in self.managed_annotations: s = specs.get(k) if s is not None and u'value' in s: if self.verbose: print("{n}: setting {k} to {v}".format(n=self.node_name(node), k=k, v=s[u'value'])) node.annotations[k] = s[u'value'] elif k in node.annotations: if self.verbose: print("{n}: clearing {k}".format(n=self.node_name(node), k=k)) node.annotations.pop(k) if not self.ignore_unmanaged: for k in node.annotations.keys(): if k not in self.all_annotations: raise ValueError("annotation key {k} is neither managed nor ignored".format(k=k)) def set_table_annotations(self, table, saved_table): self.set_node_annotations(table, self.find_best_table_specs(table.schema.name, table.name), saved_table) for column in table.column_definitions: self.set_column_annotations(column, self.find_named_column(saved_table, column.name)) for fkey in table.foreign_keys: self.set_fkey_annotations(fkey, self.find_corresponding_fkey(saved_table, fkey)) def find_corresponding_fkey(self, table, base_fkey): if table is None: return None if base_fkey.names is None or len(base_fkey.names) == 0: return None names = base_fkey.names[0] if len(names) != 2: return None for fkey in table.foreign_keys: if fkey is not None and fkey.names is not None and len(fkey.names) > 0: for n in fkey.names: if len(n) == 2 and n[0] == names[0] and n[1] == names[1]: return fkey return None def find_named_column(self, table, column_name): if table is None: return None for column in table.column_definitions: if column.name == column_name: return column return None def find_named_schema(self, catalog, schema_name): if catalog is None or catalog.schemas is None: return None return catalog.schemas.get(schema_name) def find_named_table(self, schema, table_name): if schema is None: return None if schema.tables is None: return None return schema.tables.get(table_name) def set_fkey_annotations(self, fkey, saved_fkey): self.set_node_annotations(fkey, self.find_best_fkey_specs(fkey), saved_fkey) def set_column_annotations(self, column, saved_column): self.set_node_annotations(column, self.find_best_column_specs(column.table.schema.name, column.table.name, column.name), saved_column) def set_schema_annotations(self, schema, saved_schema): for pat in self.ignored_schema_patterns: if pat.match(schema.name) is not None: print("ignoring schema {s}".format(s=schema.name)) return specs = self.find_best_schema_specs(schema.name) self.set_node_annotations(schema, specs, saved_schema) for table in schema.tables.values(): self.set_table_annotations(table, self.find_named_table(saved_schema, table.name)) def set_catalog_annotations(self): specs = dict() for key in self.managed_annotations: specs[key] = self.annotation_specs["catalog_annotations"].find_catalog_spec(key) self.set_node_annotations(self.toplevel_config, specs, self.saved_toplevel_config) for schema in self.toplevel_config.schemas.values(): self.set_schema_annotations(schema, self.find_named_schema(self.saved_toplevel_config, schema.name)) def set_attributes(self): if isinstance(self.toplevel_config, ermrest_model.Model): self.set_catalog_annotations() elif isinstance(self.toplevel_config, ermrest_model.Schema): self.set_schema_annotations(self.toplevel_config, self.saved_toplevel_config) elif isinstance(self.toplevel_config, ermrest_model.Table): self.set_table_annotations(self.toplevel_config, self.saved_toplevel_config) else: raise ValueError("toplevel config is a {t}".format(t=str(type(self.toplevel_config)))) def apply_annotations(self): self.toplevel_config.apply(self.saved_toplevel_config) def main(): cli = ConfigBaseCLI("annotation config tool", None, version=MY_VERSION) args = cli.parse_cli() table_name = cli.get_table_arg(args) schema_names = cli.get_schema_arg_list(args) credentials = get_credential(args.host, args.credential_file) for schema in schema_names: attr_config = AttrConfig(args.host, args.catalog, args.config_file, credentials, args.verbose or args.debug, schema, table_name) attr_config.set_attributes() if not args.dryrun: attr_config.apply_annotations() if __name__ == '__main__': sys.exit(main())
46.011719
183
0.635623
7942220f52a92bf1eb3d618be1b46cd5111663c6
15,198
py
Python
main.py
sarah-antillia/EfficientDet-VegeFruits
32fdf5598064f88d2d6599273fb913d891a435f3
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
main.py
sarah-antillia/EfficientDet-VegeFruits
32fdf5598064f88d2d6599273fb913d891a435f3
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
main.py
sarah-antillia/EfficientDet-VegeFruits
32fdf5598064f88d2d6599273fb913d891a435f3
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2020 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The main training script.""" import multiprocessing import os # <added date="2021/0810"> arai os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' # </added> from absl import app from absl import flags from absl import logging import numpy as np import tensorflow.compat.v1 as tf import dataloader import det_model_fn import hparams_config import utils import pprint flags.DEFINE_string( 'tpu', default=None, help='The Cloud TPU to use for training. This should be either the name ' 'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 ' 'url.') flags.DEFINE_string( 'gcp_project', default=None, help='Project name for the Cloud TPU-enabled project. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') flags.DEFINE_string( 'tpu_zone', default=None, help='GCE zone where the Cloud TPU is located in. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') flags.DEFINE_string('eval_name', default=None, help='Eval job name') flags.DEFINE_enum('strategy', None, ['tpu', 'gpus', ''], 'Training: gpus for multi-gpu, if None, use TF default.') flags.DEFINE_bool('use_fake_data', False, 'Use fake input.') flags.DEFINE_bool( 'use_xla', False, 'Use XLA even if strategy is not tpu. If strategy is tpu, always use XLA, ' 'and this flag has no effect.') flags.DEFINE_string('model_dir', None, 'Location of model_dir') flags.DEFINE_string( 'backbone_ckpt', '', 'Location of the ResNet50 checkpoint to use for model ' 'initialization.') flags.DEFINE_string('ckpt', None, 'Start training from this EfficientDet checkpoint.') flags.DEFINE_string( 'hparams', '', 'Comma separated k=v pairs of hyperparameters or a module' ' containing attributes to use as hyperparameters.') flags.DEFINE_integer( 'num_cores', default=8, help='Number of TPU cores for training') flags.DEFINE_bool('use_spatial_partition', False, 'Use spatial partition.') flags.DEFINE_integer( 'num_cores_per_replica', default=2, help='Number of TPU cores per replica when using spatial partition.') flags.DEFINE_multi_integer( 'input_partition_dims', [1, 2, 1, 1], 'A list that describes the partition dims for all the tensors.') flags.DEFINE_integer('train_batch_size', 64, 'global training batch size') flags.DEFINE_integer('eval_batch_size', 1, 'global evaluation batch size') flags.DEFINE_integer('eval_samples', 5000, 'Number of samples for eval.') flags.DEFINE_integer('iterations_per_loop', 1000, 'Number of iterations per TPU training loop') flags.DEFINE_integer('save_checkpoints_steps', 1000, 'Number of iterations per checkpoint save') flags.DEFINE_string( 'train_file_pattern', None, 'Glob for training data files (e.g., COCO train - minival set)') flags.DEFINE_string('val_file_pattern', None, 'Glob for evaluation tfrecords (e.g., COCO val2017 set)') flags.DEFINE_string( 'val_json_file', None, 'COCO validation JSON containing golden bounding boxes. If None, use the ' 'ground truth from the dataloader. Ignored if testdev_dir is not None.') flags.DEFINE_string('testdev_dir', None, 'COCO testdev dir. If not None, ignorer val_json_file.') flags.DEFINE_integer('num_examples_per_epoch', 120000, 'Number of examples in one epoch') flags.DEFINE_integer('num_epochs', None, 'Number of epochs for training') flags.DEFINE_string('mode', 'train', 'Mode to run: train or eval (default: train)') flags.DEFINE_string('model_name', 'efficientdet-d1', 'Model name.') flags.DEFINE_bool('eval_after_train', False, 'Run one eval after the ' 'training finishes.') flags.DEFINE_bool('profile', False, 'Profile training performance.') flags.DEFINE_integer( 'tf_random_seed', None, 'Sets the TF graph seed for deterministic execution' ' across runs (for debugging).') # For Eval mode flags.DEFINE_integer('min_eval_interval', 180, 'Minimum seconds between evaluations.') flags.DEFINE_integer( 'eval_timeout', None, 'Maximum seconds between checkpoints before evaluation terminates.') # for train_and_eval mode flags.DEFINE_bool( 'run_epoch_in_child_process', False, 'This option helps to rectify CPU memory leak. If True, every epoch is ' 'run in a separate process for train and eval and memory will be cleared.' 'Drawback: need to kill 2 processes if trainining needs to be interrupted.') FLAGS = flags.FLAGS def main(_): if FLAGS.strategy == 'tpu': tf.disable_eager_execution() tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) tpu_grpc_url = tpu_cluster_resolver.get_master() tf.Session.reset(tpu_grpc_url) else: tpu_cluster_resolver = None # Check data path if FLAGS.mode in ('train', 'train_and_eval'): if FLAGS.train_file_pattern is None: raise RuntimeError('Must specify --train_file_pattern for train.') if FLAGS.mode in ('eval', 'train_and_eval'): if FLAGS.val_file_pattern is None: raise RuntimeError('Must specify --val_file_pattern for eval.') # Parse and override hparams config = hparams_config.get_detection_config(FLAGS.model_name) config.override(FLAGS.hparams) if FLAGS.num_epochs: # NOTE: remove this flag after updating all docs. config.num_epochs = FLAGS.num_epochs # Parse image size in case it is in string format. config.image_size = utils.parse_image_size(config.image_size) # The following is for spatial partitioning. `features` has one tensor while # `labels` had 4 + (`max_level` - `min_level` + 1) * 2 tensors. The input # partition is performed on `features` and all partitionable tensors of # `labels`, see the partition logic below. # In the TPUEstimator context, the meaning of `shard` and `replica` is the # same; follwing the API, here has mixed use of both. if FLAGS.use_spatial_partition: # Checks input_partition_dims agrees with num_cores_per_replica. if FLAGS.num_cores_per_replica != np.prod(FLAGS.input_partition_dims): raise RuntimeError('--num_cores_per_replica must be a product of array' 'elements in --input_partition_dims.') labels_partition_dims = { 'mean_num_positives': None, 'source_ids': None, 'groundtruth_data': None, 'image_scales': None, 'image_masks': None, } # The Input Partition Logic: We partition only the partition-able tensors. feat_sizes = utils.get_feat_sizes( config.get('image_size'), config.get('max_level')) for level in range(config.get('min_level'), config.get('max_level') + 1): def _can_partition(spatial_dim): partitionable_index = np.where( spatial_dim % np.array(FLAGS.input_partition_dims) == 0) return len(partitionable_index[0]) == len(FLAGS.input_partition_dims) spatial_dim = feat_sizes[level] if _can_partition(spatial_dim['height']) and _can_partition( spatial_dim['width']): labels_partition_dims['box_targets_%d' % level] = FLAGS.input_partition_dims labels_partition_dims['cls_targets_%d' % level] = FLAGS.input_partition_dims else: labels_partition_dims['box_targets_%d' % level] = None labels_partition_dims['cls_targets_%d' % level] = None num_cores_per_replica = FLAGS.num_cores_per_replica input_partition_dims = [FLAGS.input_partition_dims, labels_partition_dims] num_shards = FLAGS.num_cores // num_cores_per_replica else: num_cores_per_replica = None input_partition_dims = None num_shards = FLAGS.num_cores params = dict( config.as_dict(), model_name=FLAGS.model_name, iterations_per_loop=FLAGS.iterations_per_loop, model_dir=FLAGS.model_dir, num_shards=num_shards, num_examples_per_epoch=FLAGS.num_examples_per_epoch, strategy=FLAGS.strategy, backbone_ckpt=FLAGS.backbone_ckpt, ckpt=FLAGS.ckpt, val_json_file=FLAGS.val_json_file, testdev_dir=FLAGS.testdev_dir, profile=FLAGS.profile, mode=FLAGS.mode) config_proto = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False) if FLAGS.strategy != 'tpu': if FLAGS.use_xla: config_proto.graph_options.optimizer_options.global_jit_level = ( tf.OptimizerOptions.ON_1) config_proto.gpu_options.allow_growth = True model_dir = FLAGS.model_dir model_fn_instance = det_model_fn.get_model_fn(FLAGS.model_name) max_instances_per_image = config.max_instances_per_image if FLAGS.eval_samples: eval_steps = int((FLAGS.eval_samples + FLAGS.eval_batch_size - 1) // FLAGS.eval_batch_size) else: eval_steps = None total_examples = int(config.num_epochs * FLAGS.num_examples_per_epoch) train_steps = total_examples // FLAGS.train_batch_size #logging.info(params) pprint.pprint(params) if not tf.io.gfile.exists(model_dir): tf.io.gfile.makedirs(model_dir) config_file = os.path.join(model_dir, 'config.yaml') if not tf.io.gfile.exists(config_file): tf.io.gfile.GFile(config_file, 'w').write(str(config)) train_input_fn = dataloader.InputReader( FLAGS.train_file_pattern, is_training=True, use_fake_data=FLAGS.use_fake_data, max_instances_per_image=max_instances_per_image) eval_input_fn = dataloader.InputReader( FLAGS.val_file_pattern, is_training=False, use_fake_data=FLAGS.use_fake_data, max_instances_per_image=max_instances_per_image) if FLAGS.strategy == 'tpu': tpu_config = tf.estimator.tpu.TPUConfig( FLAGS.iterations_per_loop if FLAGS.strategy == 'tpu' else 1, num_cores_per_replica=num_cores_per_replica, input_partition_dims=input_partition_dims, per_host_input_for_training=tf.estimator.tpu.InputPipelineConfig .PER_HOST_V2) run_config = tf.estimator.tpu.RunConfig( cluster=tpu_cluster_resolver, model_dir=model_dir, log_step_count_steps=FLAGS.iterations_per_loop, session_config=config_proto, tpu_config=tpu_config, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tf_random_seed=FLAGS.tf_random_seed, ) # TPUEstimator can do both train and eval. train_est = tf.estimator.tpu.TPUEstimator( model_fn=model_fn_instance, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, config=run_config, params=params) eval_est = train_est else: strategy = None if FLAGS.strategy == 'gpus': strategy = tf.distribute.MirroredStrategy() run_config = tf.estimator.RunConfig( model_dir=model_dir, train_distribute=strategy, log_step_count_steps=FLAGS.iterations_per_loop, session_config=config_proto, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tf_random_seed=FLAGS.tf_random_seed, ) def get_estimator(global_batch_size): params['num_shards'] = getattr(strategy, 'num_replicas_in_sync', 1) params['batch_size'] = global_batch_size // params['num_shards'] return tf.estimator.Estimator( model_fn=model_fn_instance, config=run_config, params=params) # train and eval need different estimator due to different batch size. train_est = get_estimator(FLAGS.train_batch_size) eval_est = get_estimator(FLAGS.eval_batch_size) # start train/eval flow. if FLAGS.mode == 'train': train_est.train(input_fn=train_input_fn, max_steps=train_steps) if FLAGS.eval_after_train: eval_est.evaluate(input_fn=eval_input_fn, steps=eval_steps) elif FLAGS.mode == 'eval': # Run evaluation when there's a new checkpoint for ckpt in tf.train.checkpoints_iterator( FLAGS.model_dir, min_interval_secs=FLAGS.min_eval_interval, timeout=FLAGS.eval_timeout): logging.info('Starting to evaluate.') try: eval_results = eval_est.evaluate( eval_input_fn, steps=eval_steps, name=FLAGS.eval_name) # Terminate eval job when final checkpoint is reached. try: current_step = int(os.path.basename(ckpt).split('-')[1]) except IndexError: logging.info('%s has no global step info: stop!', ckpt) break utils.archive_ckpt(eval_results, eval_results['AP'], ckpt) if current_step >= train_steps: logging.info('Eval finished step %d/%d', current_step, train_steps) break except tf.errors.NotFoundError: # Checkpoint might be not already deleted by the time eval finished. # We simply skip ssuch case. logging.info('Checkpoint %s no longer exists, skipping.', ckpt) elif FLAGS.mode == 'train_and_eval': ckpt = tf.train.latest_checkpoint(FLAGS.model_dir) try: step = int(os.path.basename(ckpt).split('-')[1]) current_epoch = ( step * FLAGS.train_batch_size // FLAGS.num_examples_per_epoch) logging.info('found ckpt at step %d (epoch %d)', step, current_epoch) except (IndexError, TypeError): logging.info('Folder %s has no ckpt with valid step.', FLAGS.model_dir) current_epoch = 0 def run_train_and_eval(e): print('\n =====> Starting training, epoch: %d.' % e) train_est.train( input_fn=train_input_fn, max_steps=e * FLAGS.num_examples_per_epoch // FLAGS.train_batch_size) print('\n =====> Starting evaluation, epoch: %d.' % e) eval_results = eval_est.evaluate(input_fn=eval_input_fn, steps=eval_steps) ckpt = tf.train.latest_checkpoint(FLAGS.model_dir) utils.archive_ckpt(eval_results, eval_results['AP'], ckpt) epochs_per_cycle = 1 # higher number has less graph construction overhead. for e in range(current_epoch + 1, config.num_epochs + 1, epochs_per_cycle): if FLAGS.run_epoch_in_child_process: p = multiprocessing.Process(target=run_train_and_eval, args=(e,)) p.start() p.join() if p.exitcode != 0: return p.exitcode else: tf.compat.v1.reset_default_graph() run_train_and_eval(e) else: logging.info('Invalid mode: %s', FLAGS.mode) if __name__ == '__main__': app.run(main)
40.745308
80
0.702527
7942235e19c568723d60f85d2e64156e249b90d2
1,605
py
Python
ppline/cli/__main__.py
5x12/ppline
a4f7bd9aae0752a8abe7c4580c808792bb044ff6
[ "MIT" ]
9
2021-08-11T13:38:22.000Z
2022-01-14T15:32:45.000Z
ppline/cli/__main__.py
5x12/ppline
a4f7bd9aae0752a8abe7c4580c808792bb044ff6
[ "MIT" ]
null
null
null
ppline/cli/__main__.py
5x12/ppline
a4f7bd9aae0752a8abe7c4580c808792bb044ff6
[ "MIT" ]
null
null
null
import argparse import os import pathlib from typing import Optional from ppline.easy.command import Run def _arg_project_dir(arg): expanded = os.path.expanduser(arg) if os.path.isdir(expanded): return os.path.abspath(os.path.normpath(expanded)) else: raise Exception(f'Argument {arg} must be an existing directory.') return arg def _arg_config_file(arg): if pathlib.Path(arg).suffix not in ['.yml', '.yaml']: raise Exception(f'Argument {arg} must be a .yml/.yaml file.') if os.path.exists(arg)==False: raise Exception(f'Cannot find {arg} at your directory') return arg parser = argparse.ArgumentParser() parser.add_argument('--trigger_class', '-tc', default=None, help='Path to class to trigger (in the form of "to/the/file.py:TestClass. TestClass should have a __call__ method")') parser.add_argument('--project_dir', '-p', type=_arg_project_dir, default=None, help="Path to project's root where configuration .yml/.yaml file is stored") parser.add_argument('--config_file', '-f', type=_arg_config_file, default=None, help='Name of pipeline configuration .yml/.yaml file') parser.add_argument('-gitlab', action='store_true', help='Specify if you want to generate .gitlab-ci file.yaml') # req_grp = parser.add_argument_group(title='Required') # req_grp.add_argument('--config_file', type=_arg_config_file, help='Name of pipeline config .yml file.', required=True) # args = parser.parse_args() args = parser.parse_args() Run(config_file=args.config_file, project_dir=args.project_dir, trigger_class=args.trigger_class, gitlab=args.gitlab)
45.857143
177
0.738941
794223f06b5eaf3832eeeeaac9acc8c4c2a6e067
178,083
py
Python
ckan/tests/logic/action/test_get.py
devansh-srivastav/ckan-1
44a29cf85bcf14b24ff97f147b8a1e6cf6c51a93
[ "BSD-3-Clause" ]
null
null
null
ckan/tests/logic/action/test_get.py
devansh-srivastav/ckan-1
44a29cf85bcf14b24ff97f147b8a1e6cf6c51a93
[ "BSD-3-Clause" ]
null
null
null
ckan/tests/logic/action/test_get.py
devansh-srivastav/ckan-1
44a29cf85bcf14b24ff97f147b8a1e6cf6c51a93
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import datetime import re import copy import pytest from ckan import model import ckan.logic as logic import ckan.logic.schema as schema import ckan.tests.factories as factories import ckan.tests.helpers as helpers from ckan import __version__ from ckan.lib.search.common import SearchError @pytest.mark.usefixtures("non_clean_db") class TestPackageShow(object): def test_package_show(self): # simple dataset, simple checks dataset1 = factories.Dataset() dataset2 = helpers.call_action("package_show", id=dataset1["id"]) assert dataset2["name"] == dataset1["name"] missing_keys = set(("title", "groups")) - set(dataset2.keys()) assert not missing_keys, missing_keys def test_package_show_with_full_dataset(self): # an full dataset org = factories.Organization() group = factories.Group() dataset1 = factories.Dataset( resources=[ { "url": "http://example.com/image.png", "format": "png", "name": "Image 1", } ], tags=[{"name": factories.Tag.stub().name}], extras=[{"key": "subject", "value": "science"}], groups=[{"id": group["id"]}], owner_org=org["id"], ) dataset2 = helpers.call_action("package_show", id=dataset1["id"]) # checking the whole dataset is a bit brittle as a test, but it # documents what the package_dict is clearly and tracks how it changes # as CKAN changes over time. # fix values which change every time you run this test def replace_uuid(dict_, key): assert key in dict_ dict_[key] = "<SOME-UUID>" def replace_datetime(dict_, key): assert key in dict_ dict_[key] = "2019-05-24T15:52:30.123456" def replace_number_suffix(dict_, key): # e.g. "Test Dataset 23" -> "Test Dataset " assert key in dict_ dict_[key] = re.sub(r"\d+$", "num", dict_[key]) replace_uuid(dataset2, "id") replace_uuid(dataset2, "creator_user_id") replace_uuid(dataset2, "owner_org") replace_number_suffix(dataset2, "name") replace_datetime(dataset2, "metadata_created") replace_datetime(dataset2, "metadata_modified") replace_datetime(dataset2["resources"][0], "metadata_modified") replace_uuid(dataset2["groups"][0], "id") replace_number_suffix(dataset2["groups"][0], "name") replace_number_suffix(dataset2["groups"][0], "title") replace_number_suffix(dataset2["groups"][0], "display_name") replace_uuid(dataset2["organization"], "id") replace_number_suffix(dataset2["organization"], "name") replace_number_suffix(dataset2["organization"], "title") replace_datetime(dataset2["organization"], "created") replace_uuid(dataset2["resources"][0], "id") replace_uuid(dataset2["resources"][0], "package_id") replace_number_suffix(dataset2["resources"][0], "name") replace_datetime(dataset2["resources"][0], "created") replace_uuid(dataset2["tags"][0], "id") assert dataset2 == { "author": dataset1["author"], "author_email": dataset1["author_email"], "creator_user_id": "<SOME-UUID>", "extras": dataset1["extras"], "groups": [ { "description": group["description"], "display_name": group["display_name"], "id": "<SOME-UUID>", "image_display_url": group["image_display_url"], "name": group["name"], "title": group["title"], } ], "id": "<SOME-UUID>", "isopen": dataset1["isopen"], "license_id": dataset1["license_id"], "license_title": dataset1["license_title"], "maintainer": dataset1["maintainer"], "maintainer_email": dataset1["maintainer_email"], "metadata_created": "2019-05-24T15:52:30.123456", "metadata_modified": "2019-05-24T15:52:30.123456", "name": dataset1["name"], "notes": dataset1["notes"], "num_resources": dataset1["num_resources"], "num_tags": dataset1["num_tags"], "organization": { "approval_status": org["approval_status"], "created": "2019-05-24T15:52:30.123456", "description": org["description"], "id": "<SOME-UUID>", "image_url": org["image_url"], "is_organization": org["is_organization"], "name": org["name"], "state": org["state"], "title": org["title"], "type": org["type"], }, "owner_org": "<SOME-UUID>", "private": dataset1["private"], "relationships_as_object": dataset1["relationships_as_object"], "relationships_as_subject": dataset1["relationships_as_subject"], "resources": [ { "cache_last_updated": None, "cache_url": dataset1["resources"][0]["cache_url"], "created": "2019-05-24T15:52:30.123456", "description": dataset1["resources"][0]["description"], "format": dataset1["resources"][0]["format"], "hash": "", "id": "<SOME-UUID>", "last_modified": dataset1["resources"][0]["last_modified"], "metadata_modified": "2019-05-24T15:52:30.123456", "mimetype": dataset1["resources"][0]["mimetype"], "mimetype_inner": None, "name": "Image num", "package_id": "<SOME-UUID>", "position": dataset1["resources"][0]["position"], "resource_type": dataset1["resources"][0]["resource_type"], "size": dataset1["resources"][0]["size"], "state": dataset1["resources"][0]["state"], "url": dataset1["resources"][0]["url"], "url_type": dataset1["resources"][0]["url_type"], } ], "state": dataset1["state"], "tags": [ { "display_name": dataset1["tags"][0]["display_name"], "id": "<SOME-UUID>", "name": dataset1["tags"][0]["name"], "state": dataset1["tags"][0]["state"], "vocabulary_id": dataset1["tags"][0]["vocabulary_id"], } ], "title": dataset1["title"], "type": dataset1["type"], "url": dataset1["url"], "version": dataset1["version"], } def test_package_show_with_custom_schema(self): dataset1 = factories.Dataset() from ckan.logic.schema import default_show_package_schema custom_schema = default_show_package_schema() def foo(key, data, errors, context): # noqa data[key] = "foo" custom_schema["new_field"] = [foo] dataset2 = helpers.call_action( "package_show", id=dataset1["id"], context={"schema": custom_schema}, ) assert dataset2["new_field"] == "foo" def test_package_show_with_custom_schema_return_default_schema(self): dataset1 = factories.Dataset() from ckan.logic.schema import default_show_package_schema custom_schema = default_show_package_schema() def foo(key, data, errors, context): # noqa data[key] = "foo" custom_schema["new_field"] = [foo] dataset2 = helpers.call_action( "package_show", id=dataset1["id"], use_default_schema=True, context={"schema": custom_schema}, ) assert "new_field" not in dataset2 @pytest.mark.usefixtures("clean_db") class TestGroupList(object): def test_group_list(self): group1 = factories.Group() group2 = factories.Group() group_list = helpers.call_action("group_list") assert sorted(group_list) == sorted( [g["name"] for g in [group1, group2]] ) def test_group_list_in_presence_of_organizations(self): """ Getting the group_list should only return groups of type 'group' (not organizations). """ group1 = factories.Group() group2 = factories.Group() factories.Organization() factories.Organization() group_list = helpers.call_action("group_list") assert sorted(group_list) == sorted( [g["name"] for g in [group1, group2]] ) def test_group_list_in_presence_of_custom_group_types(self): """Getting the group_list shouldn't return custom group types.""" group1 = factories.Group() group2 = factories.Group() factories.Group(type="custom") group_list = helpers.call_action("group_list") assert sorted(group_list) == sorted( [g["name"] for g in [group1, group2]] ) def test_group_list_return_custom_group(self): """ Getting the group_list with a type defined should only return groups of that type. """ group1 = factories.Group(type="custom") group2 = factories.Group(type="custom") factories.Group() factories.Group() group_list = helpers.call_action("group_list", type="custom") assert sorted(group_list) == sorted( [g["name"] for g in [group1, group2]] ) def test_group_list_sort_by_package_count(self): factories.Group(name="aa") factories.Group(name="bb") factories.Dataset(groups=[{"name": "aa"}, {"name": "bb"}]) factories.Dataset(groups=[{"name": "bb"}]) group_list = helpers.call_action("group_list", sort="package_count") assert sorted(group_list) == sorted(["bb", "aa"]) def test_group_list_sort_by_package_count_ascending(self): factories.Group(name="aa") factories.Group(name="bb") factories.Dataset(groups=[{"name": "aa"}, {"name": "bb"}]) factories.Dataset(groups=[{"name": "aa"}]) group_list = helpers.call_action( "group_list", sort="package_count asc" ) assert group_list == ["bb", "aa"] def test_group_list_sort_default(self): factories.Group(name="zz", title="aa") factories.Group(name="yy", title="bb") group_list = helpers.call_action("group_list") assert group_list == ["zz", "yy"] @pytest.mark.ckan_config("ckan.default_group_sort", "name") def test_group_list_sort_from_config(self): factories.Group(name="zz", title="aa") factories.Group(name="yy", title="bb") group_list = helpers.call_action("group_list") assert group_list == ["yy", "zz"] def eq_expected(self, expected_dict, result_dict): superfluous_keys = set(result_dict) - set(expected_dict) assert not superfluous_keys, "Did not expect key: %s" % " ".join( ("%s=%s" % (k, result_dict[k]) for k in superfluous_keys) ) for key in expected_dict: assert ( expected_dict[key] == result_dict[key] ), "%s=%s should be %s" % ( key, result_dict[key], expected_dict[key], ) def test_group_list_all_fields(self): group = factories.Group() group_list = helpers.call_action("group_list", all_fields=True) expected_group = dict(group) for field in ("users", "tags", "extras", "groups"): del expected_group[field] assert group_list[0] == expected_group assert "extras" not in group_list[0] assert "tags" not in group_list[0] assert "groups" not in group_list[0] assert "users" not in group_list[0] assert "datasets" not in group_list[0] def _create_bulk_groups(self, name, count): groups = [ model.Group(name="{}_{}".format(name, i)) for i in range(count) ] model.Session.add_all(groups) model.repo.commit_and_remove() def test_limit_default(self): self._create_bulk_groups("group_default", 1010) results = helpers.call_action("group_list") assert len(results) == 1000 # i.e. default value @pytest.mark.ckan_config("ckan.group_and_organization_list_max", "5") def test_limit_configured(self): self._create_bulk_groups("group_default", 7) results = helpers.call_action("group_list") assert len(results) == 5 # i.e. configured limit def test_all_fields_limit_default(self): self._create_bulk_groups("org_all_fields_default", 30) results = helpers.call_action("group_list", all_fields=True) assert len(results) == 25 # i.e. default value @pytest.mark.ckan_config( "ckan.group_and_organization_list_all_fields_max", "5" ) def test_all_fields_limit_configured(self): self._create_bulk_groups("org_all_fields_default", 30) results = helpers.call_action("group_list", all_fields=True) assert len(results) == 5 # i.e. configured limit def test_group_list_extras_returned(self): group = factories.Group(extras=[{"key": "key1", "value": "val1"}]) group_list = helpers.call_action( "group_list", all_fields=True, include_extras=True ) assert group_list[0]["extras"] == group["extras"] assert group_list[0]["extras"][0]["key"] == "key1" def test_group_list_users_returned(self): user = factories.User() group = factories.Group( users=[{"name": user["name"], "capacity": "admin"}] ) group_list = helpers.call_action( "group_list", all_fields=True, include_users=True ) assert group_list[0]["users"] == group["users"] assert group_list[0]["users"][0]["name"] == group["users"][0]["name"] # NB there is no test_group_list_tags_returned because tags are not in the # group_create schema (yet) def test_group_list_groups_returned(self): parent_group = factories.Group(tags=[{"name": "river"}]) child_group = factories.Group( groups=[{"name": parent_group["name"]}], tags=[{"name": "river"}] ) group_list = helpers.call_action( "group_list", all_fields=True, include_groups=True ) child_group_returned = group_list[0] if group_list[0]["name"] == child_group["name"]: child_group_returned, _ = group_list else: child_group_returned, _ = group_list[::-1] expected_parent_group = dict(parent_group) assert [g["name"] for g in child_group_returned["groups"]] == [ expected_parent_group["name"] ] def test_group_list_limit(self): group1 = factories.Group(title="aa") group2 = factories.Group(title="bb") group3 = factories.Group(title="cc") group_names = [g["name"] for g in [group1, group2, group3]] group_list = helpers.call_action("group_list", limit=1) assert len(group_list) == 1 assert group_list[0] == group_names[0] def test_group_list_offset(self): group1 = factories.Group(title="aa") group2 = factories.Group(title="bb") group3 = factories.Group(title="cc") group_names = [g["name"] for g in [group1, group2, group3]] group_list = helpers.call_action("group_list", offset=2) assert len(group_list) == 1 # group list returns sorted result. This is not necessarily # order of creation assert group_list[0] == group_names[2] def test_group_list_limit_and_offset(self): factories.Group(title="aa") group2 = factories.Group(title="bb") factories.Group(title="cc") group_list = helpers.call_action("group_list", offset=1, limit=1) assert len(group_list) == 1 assert group_list[0] == group2["name"] def test_group_list_limit_as_string(self): factories.Group(name="aa") factories.Group(name="bb") group_list = helpers.call_action("group_list", limit="1") assert len(group_list) == 1 def test_group_list_wrong_limit(self): with pytest.raises(logic.ValidationError): helpers.call_action("group_list", limit="a") def test_group_list_wrong_offset(self): with pytest.raises(logic.ValidationError): helpers.call_action("group_list", offset="-2") @pytest.mark.usefixtures("clean_db", "clean_index") class TestGroupShow(object): def test_group_show(self): group = factories.Group(user=factories.User()) group_dict = helpers.call_action( "group_show", id=group["id"], include_datasets=True ) group_dict.pop("packages", None) assert group_dict == group def test_group_show_error_not_found(self): with pytest.raises(logic.NotFound): helpers.call_action("group_show", id="does_not_exist") def test_group_show_error_for_organization(self): org = factories.Organization() with pytest.raises(logic.NotFound): helpers.call_action("group_show", id=org["id"]) def test_group_show_packages_returned(self): user_name = helpers.call_action("get_site_user")["name"] group = factories.Group(user=factories.User()) datasets = [ {"name": "dataset_1", "groups": [{"name": group["name"]}]}, {"name": "dataset_2", "groups": [{"name": group["name"]}]}, ] for dataset in datasets: helpers.call_action( "package_create", context={"user": user_name}, **dataset ) group_dict = helpers.call_action( "group_show", id=group["id"], include_datasets=True ) assert len(group_dict["packages"]) == 2 assert group_dict["package_count"] == 2 def test_group_show_packages_returned_for_view(self): user_name = helpers.call_action("get_site_user")["name"] group = factories.Group(user=factories.User()) datasets = [ {"name": "dataset_1", "groups": [{"name": group["name"]}]}, {"name": "dataset_2", "groups": [{"name": group["name"]}]}, ] for dataset in datasets: helpers.call_action( "package_create", context={"user": user_name}, **dataset ) group_dict = helpers.call_action( "group_show", id=group["id"], include_datasets=True, context={"for_view": True}, ) assert len(group_dict["packages"]) == 2 assert group_dict["package_count"] == 2 def test_group_show_no_packages_returned(self): user_name = helpers.call_action("get_site_user")["name"] group = factories.Group(user=factories.User()) datasets = [ {"name": "dataset_1", "groups": [{"name": group["name"]}]}, {"name": "dataset_2", "groups": [{"name": group["name"]}]}, ] for dataset in datasets: helpers.call_action( "package_create", context={"user": user_name}, **dataset ) group_dict = helpers.call_action( "group_show", id=group["id"], include_datasets=False ) assert "packages" not in group_dict assert group_dict["package_count"] == 2 def test_group_show_does_not_show_private_datasets(self): """group_show() should never show private datasets. If a dataset is a private member of an organization and also happens to be a member of a group, group_show() should not return the dataset as part of the group dict, even if the user calling group_show() is a member or admin of the group or the organization or is a sysadmin. """ org_member = factories.User() org = factories.Organization(user=org_member) private_dataset = factories.Dataset( user=org_member, owner_org=org["name"], private=True ) group = factories.Group() # Add the private dataset to the group. helpers.call_action( "member_create", id=group["id"], object=private_dataset["id"], object_type="package", capacity="public", ) # Create a member user and an admin user of the group. group_member = factories.User() helpers.call_action( "member_create", id=group["id"], object=group_member["id"], object_type="user", capacity="member", ) group_admin = factories.User() helpers.call_action( "member_create", id=group["id"], object=group_admin["id"], object_type="user", capacity="admin", ) # Create a user who isn't a member of any group or organization. non_member = factories.User() sysadmin = factories.Sysadmin() # None of the users should see the dataset when they call group_show(). for user in ( org_member, group_member, group_admin, non_member, sysadmin, None, ): if user is None: context = None # No user logged-in. else: context = {"user": user["name"]} group = helpers.call_action( "group_show", id=group["id"], include_datasets=True, context=context, ) assert private_dataset["id"] not in [ dataset["id"] for dataset in group["packages"] ], "group_show() should never show private datasets" @pytest.mark.ckan_config("ckan.search.rows_max", "2") def test_package_limit_configured(self): group = factories.Group() for _ in range(3): factories.Dataset(groups=[{"id": group["id"]}]) id = group["id"] results = helpers.call_action("group_show", id=id, include_datasets=1) assert len(results["packages"]) == 2 # i.e. ckan.search.rows_max @pytest.mark.usefixtures("clean_db") class TestOrganizationList(object): def test_organization_list(self): org1 = factories.Organization() org2 = factories.Organization() org_list = helpers.call_action("organization_list") assert sorted(org_list) == sorted([g["name"] for g in [org1, org2]]) def test_organization_list_in_presence_of_groups(self): """ Getting the organization_list only returns organization group types. """ org1 = factories.Organization() org2 = factories.Organization() factories.Group() factories.Group() org_list = helpers.call_action("organization_list") assert sorted(org_list) == sorted([g["name"] for g in [org1, org2]]) def test_organization_list_in_presence_of_custom_group_types(self): """ Getting the organization_list only returns organization group types. """ org1 = factories.Organization() org2 = factories.Organization() factories.Group(type="custom") factories.Group(type="custom") org_list = helpers.call_action("organization_list") assert sorted(org_list) == sorted([g["name"] for g in [org1, org2]]) def test_organization_list_return_custom_organization_type(self): """ Getting the org_list with a type defined should only return orgs of that type. """ factories.Organization() org2 = factories.Organization(type="custom_org") factories.Group(type="custom") factories.Group(type="custom") org_list = helpers.call_action("organization_list", type="custom_org") assert sorted(org_list) == sorted( [g["name"] for g in [org2]] ), "{}".format(org_list) def _create_bulk_orgs(self, name, count): from ckan import model orgs = [ model.Group( name="{}_{}".format(name, i), is_organization=True, type="organization", ) for i in range(count) ] model.Session.add_all(orgs) model.repo.commit_and_remove() def test_limit_default(self): self._create_bulk_orgs("org_default", 1010) results = helpers.call_action("organization_list") assert len(results) == 1000 # i.e. default value @pytest.mark.ckan_config("ckan.group_and_organization_list_max", "5") def test_limit_configured(self): self._create_bulk_orgs("org_default", 7) results = helpers.call_action("organization_list") assert len(results) == 5 # i.e. configured limit @pytest.mark.ckan_config("ckan.group_and_organization_list_max", "5") def test_limit_with_custom_max_limit(self): self._create_bulk_orgs("org_default", 5) results = helpers.call_action("organization_list", limit=2) assert len(results) == 2 def test_all_fields_limit_default(self): self._create_bulk_orgs("org_all_fields_default", 30) results = helpers.call_action("organization_list", all_fields=True) assert len(results) == 25 # i.e. default value @pytest.mark.ckan_config( "ckan.group_and_organization_list_all_fields_max", "5" ) def test_all_fields_limit_with_custom_max_limit(self): self._create_bulk_orgs("org_all_fields_default", 5) results = helpers.call_action( "organization_list", all_fields=True, limit=2 ) assert len(results) == 2 @pytest.mark.ckan_config( "ckan.group_and_organization_list_all_fields_max", "5" ) def test_all_fields_limit_configured(self): self._create_bulk_orgs("org_all_fields_default", 30) results = helpers.call_action("organization_list", all_fields=True) assert len(results) == 5 # i.e. configured limit @pytest.mark.usefixtures("non_clean_db") class TestOrganizationShow(object): def test_organization_show(self): org = factories.Organization() org_dict = helpers.call_action( "organization_show", id=org["id"], include_datasets=True ) org_dict.pop("packages", None) assert org_dict == org def test_organization_show_error_not_found(self): with pytest.raises(logic.NotFound): helpers.call_action("organization_show", id="does_not_exist") def test_organization_show_error_for_group(self): group = factories.Group() with pytest.raises(logic.NotFound): helpers.call_action("organization_show", id=group["id"]) def test_organization_show_packages_returned(self): user_name = helpers.call_action("get_site_user")["name"] org = factories.Organization() datasets = [ {"name": factories.Dataset.stub().name, "owner_org": org["name"]}, {"name": factories.Dataset.stub().name, "owner_org": org["name"]}, ] for dataset in datasets: helpers.call_action( "package_create", context={"user": user_name}, **dataset ) org_dict = helpers.call_action( "organization_show", id=org["id"], include_datasets=True ) assert len(org_dict["packages"]) == 2 assert org_dict["package_count"] == 2 def test_organization_show_private_packages_not_returned(self): user_name = helpers.call_action("get_site_user")["name"] org = factories.Organization() dataset1 = factories.Dataset.stub().name datasets = [ {"name": dataset1, "owner_org": org["name"]}, { "name": factories.Dataset.stub().name, "owner_org": org["name"], "private": True, }, ] for dataset in datasets: helpers.call_action( "package_create", context={"user": user_name}, **dataset ) org_dict = helpers.call_action( "organization_show", id=org["id"], include_datasets=True ) assert len(org_dict["packages"]) == 1 assert org_dict["packages"][0]["name"] == dataset1 assert org_dict["package_count"] == 1 @pytest.mark.ckan_config("ckan.search.rows_max", "2") def test_package_limit_configured(self): org = factories.Organization() for _ in range(3): factories.Dataset(owner_org=org["id"]) id = org["id"] results = helpers.call_action( "organization_show", id=id, include_datasets=1 ) assert len(results["packages"]) == 2 # i.e. ckan.search.rows_max @pytest.mark.usefixtures("clean_db") class TestUserList(object): def test_user_list_default_values(self): # we need to set fullname because user_list by default sorts by # display_name user = factories.User(fullname="Guido") got_users = helpers.call_action("user_list") # There is one default user assert len(got_users) == 2 got_user = got_users[0] assert got_user["id"] == user["id"] assert got_user["name"] == user["name"] assert got_user["fullname"] == user["fullname"] assert got_user["display_name"] == user["display_name"] assert got_user["created"] == user["created"] assert got_user["about"] == user["about"] assert got_user["sysadmin"] == user["sysadmin"] assert got_user["number_created_packages"] == 0 assert "password" not in got_user assert "reset_key" not in got_user assert "apikey" not in got_user assert "email" not in got_user assert "datasets" not in got_user def test_user_list_edits(self): # we need to set fullname because user_list by default sorts by # display_name user = factories.User(fullname="Guido") dataset = factories.Dataset(user=user) dataset["title"] = "Edited title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) got_users = helpers.call_action("user_list") # There is one default user assert len(got_users) == 2 got_user = got_users[0] assert got_user["number_created_packages"] == 1 def test_user_list_excludes_deleted_users(self): # we need to set fullname because user_list by default sorts by # display_name user = factories.User(fullname="Guido") factories.User(state="deleted") got_users = helpers.call_action("user_list") # There is one default user assert len(got_users) == 2 assert got_users[0]["name"] == user["name"] def test_user_list_not_all_fields(self): # we need to set fullname because user_list by default sorts by # display_name user = factories.User(fullname="Guido") got_users = helpers.call_action("user_list", all_fields=False) # There is one default user assert len(got_users) == 2 got_user = got_users[0] assert got_user == user["name"] def test_user_list_return_query(self): user_a = factories.User(email="[email protected]") query = helpers.call_action( "user_list", {"return_query": True}, email="[email protected]" ) user = query.one() expected = ["name", "fullname", "about", "email"] for prop in expected: assert user_a[prop] == getattr(user, prop), prop def test_user_list_filtered_by_email(self): user_a = factories.User(email="[email protected]") factories.User(email="[email protected]") got_users = helpers.call_action( "user_list", email="[email protected]", all_fields=False ) assert len(got_users) == 1 got_user = got_users[0] assert got_user == user_a["name"] def test_user_list_order_by_default(self): default_user = helpers.call_action("get_site_user", ignore_auth=True) users = [ factories.User(fullname="Xander Bird", name="bird_x"), factories.User(fullname="Max Hankins", name="hankins_m"), factories.User(fullname="", name="morgan_w"), factories.User(fullname="Kathy Tillman", name="tillman_k"), ] expected_names = [ u["name"] for u in [ users[3], # Kathy Tillman users[1], # Max Hankins users[2], # morgan_w users[0], # Xander Bird ] ] got_users = helpers.call_action("user_list") got_names = [ u["name"] for u in got_users if u["name"] != default_user["name"] ] assert got_names == expected_names def test_user_list_order_by_fullname_only(self): default_user = helpers.call_action("get_site_user", ignore_auth=True) users = [ factories.User(fullname="Xander Bird", name="bird_x"), factories.User(fullname="Max Hankins", name="hankins_m"), factories.User(fullname="", name="morgan_w"), factories.User(fullname="Kathy Tillman", name="tillman_k"), ] expected_fullnames = sorted([u["fullname"] for u in users]) got_users = helpers.call_action("user_list", order_by="fullname") got_fullnames = [ u["fullname"] for u in got_users if u["name"] != default_user["name"] ] assert got_fullnames == expected_fullnames def test_user_list_order_by_created_datasets(self): default_user = helpers.call_action("get_site_user", ignore_auth=True) users = [ factories.User(fullname="Xander Bird", name="bird_x"), factories.User(fullname="Max Hankins", name="hankins_m"), factories.User(fullname="Kathy Tillman", name="tillman_k"), ] datasets = [ factories.Dataset(user=users[1]), factories.Dataset(user=users[1]), ] for dataset in datasets: dataset["title"] = "Edited title" helpers.call_action( "package_update", context={"user": users[1]["name"]}, **dataset ) expected_names = [ u["name"] for u in [ users[0], # 0 packages created users[2], # 0 packages created users[1], # 2 packages created ] ] got_users = helpers.call_action( "user_list", order_by="number_created_packages" ) got_names = [ u["name"] for u in got_users if u["name"] != default_user["name"] ] assert got_names == expected_names def test_user_list_order_by_edits(self): with pytest.raises(logic.ValidationError): helpers.call_action("user_list", order_by="edits") @pytest.mark.usefixtures("non_clean_db") class TestUserShow(object): def test_user_show_default_values(self): user = factories.User() got_user = helpers.call_action("user_show", id=user["id"]) assert got_user["id"] == user["id"] assert got_user["name"] == user["name"] assert got_user["fullname"] == user["fullname"] assert got_user["display_name"] == user["display_name"] assert got_user["created"] == user["created"] assert got_user["about"] == user["about"] assert got_user["sysadmin"] == user["sysadmin"] assert got_user["number_created_packages"] == 0 assert "password" not in got_user assert "reset_key" not in got_user assert "apikey" not in got_user assert "email" not in got_user assert "datasets" not in got_user assert "password_hash" not in got_user def test_user_show_keep_email(self): user = factories.User() got_user = helpers.call_action( "user_show", context={"keep_email": True}, id=user["id"] ) assert got_user["email"] == user["email"] assert "apikey" not in got_user assert "password" not in got_user assert "reset_key" not in got_user def test_user_show_keep_apikey(self): user = factories.User() got_user = helpers.call_action( "user_show", context={"keep_apikey": True}, id=user["id"] ) assert "email" not in got_user assert got_user["apikey"] == user["apikey"] assert "password" not in got_user assert "reset_key" not in got_user def test_user_show_normal_user_no_password_hash(self): user = factories.User() got_user = helpers.call_action( "user_show", id=user["id"], include_password_hash=True ) assert "password_hash" not in got_user def test_user_show_for_myself(self): user = factories.User() got_user = helpers.call_action( "user_show", context={"user": user["name"]}, id=user["id"] ) assert got_user["email"] == user["email"] assert got_user["apikey"] == user["apikey"] assert "password" not in got_user assert "reset_key" not in got_user def test_user_show_sysadmin_values(self): user = factories.User() sysadmin = factories.User(sysadmin=True) got_user = helpers.call_action( "user_show", context={"user": sysadmin["name"]}, id=user["id"] ) assert got_user["email"] == user["email"] assert got_user["apikey"] == user["apikey"] assert "password" not in got_user assert "reset_key" not in got_user def test_user_show_sysadmin_password_hash(self): user = factories.User(password="TestPassword1") sysadmin = factories.User(sysadmin=True) got_user = helpers.call_action( "user_show", context={"user": sysadmin["name"]}, id=user["id"], include_password_hash=True, ) assert got_user["email"] == user["email"] assert got_user["apikey"] == user["apikey"] assert "password_hash" in got_user assert "password" not in got_user assert "reset_key" not in got_user def test_user_show_include_datasets(self): user = factories.User() dataset = factories.Dataset(user=user) got_user = helpers.call_action( "user_show", include_datasets=True, id=user["id"] ) assert len(got_user["datasets"]) == 1 assert got_user["datasets"][0]["name"] == dataset["name"] def test_user_show_include_datasets_excludes_draft_and_private(self): user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(user=user) factories.Dataset(user=user, state="deleted") factories.Dataset(user=user, state="draft") factories.Dataset(user=user, private=True, owner_org=org["name"]) got_user = helpers.call_action( "user_show", include_datasets=True, id=user["id"] ) assert len(got_user["datasets"]) == 1 assert got_user["datasets"][0]["name"] == dataset["name"] assert got_user["number_created_packages"] == 1 def test_user_show_include_datasets_includes_draft_myself(self): # a user viewing his own user should see the draft and private datasets user = factories.User() org = factories.Organization(user=user) factories.Dataset(user=user) dataset_deleted = factories.Dataset(user=user, state="deleted") factories.Dataset(user=user, state="draft") factories.Dataset(user=user, private=True, owner_org=org["name"]) got_user = helpers.call_action( "user_show", context={"user": user["name"]}, include_datasets=True, id=user["id"], ) assert len(got_user["datasets"]) == 3 datasets_got = set([user_["name"] for user_ in got_user["datasets"]]) assert dataset_deleted["name"] not in datasets_got assert got_user["number_created_packages"] == 3 def test_user_show_include_datasets_includes_draft_sysadmin(self): # sysadmin should see the draft and private datasets user = factories.User() sysadmin = factories.Sysadmin() org = factories.Organization(user=user) factories.Dataset(user=user) dataset_deleted = factories.Dataset(user=user, state="deleted") factories.Dataset(user=user, state="draft") factories.Dataset(user=user, private=True, owner_org=org["name"]) got_user = helpers.call_action( "user_show", context={"user": sysadmin["name"]}, include_datasets=True, id=user["id"], ) assert len(got_user["datasets"]) == 3 datasets_got = set([user_["name"] for user_ in got_user["datasets"]]) assert dataset_deleted["name"] not in datasets_got assert got_user["number_created_packages"] == 3 def test_user_show_for_myself_without_passing_id(self): user = factories.User() got_user = helpers.call_action( "user_show", context={"user": user["name"]} ) assert got_user["name"] == user["name"] assert got_user["email"] == user["email"] assert got_user["apikey"] == user["apikey"] assert "password" not in got_user assert "reset_key" not in got_user @pytest.mark.usefixtures("clean_db", "clean_index") class TestCurrentPackageList(object): def test_current_package_list(self): """ Test current_package_list_with_resources with no parameters """ user = factories.User() factories.Dataset(user=user) factories.Dataset(user=user) current_package_list = helpers.call_action( "current_package_list_with_resources" ) assert len(current_package_list) == 2 def test_current_package_list_limit_param(self): """ Test current_package_list_with_resources with limit parameter """ user = factories.User() factories.Dataset(user=user) dataset2 = factories.Dataset(user=user) current_package_list = helpers.call_action( "current_package_list_with_resources", limit=1 ) assert len(current_package_list) == 1 assert current_package_list[0]["name"] == dataset2["name"] def test_current_package_list_offset_param(self): """ Test current_package_list_with_resources with offset parameter """ user = factories.User() dataset1 = factories.Dataset(user=user) factories.Dataset(user=user) current_package_list = helpers.call_action( "current_package_list_with_resources", offset=1 ) assert len(current_package_list) == 1 assert current_package_list[0]["name"] == dataset1["name"] def test_current_package_list_private_datasets_anonoymous_user(self): """ Test current_package_list_with_resources with an anonymous user and a private dataset """ user = factories.User() org = factories.Organization(user=user) factories.Dataset( user=user, owner_org=org["name"], private=True ) factories.Dataset(user=user) current_package_list = helpers.call_action( "current_package_list_with_resources", context={} ) assert len(current_package_list) == 1 def test_current_package_list_private_datasets_sysadmin_user(self): """ Test current_package_list_with_resources with a sysadmin user and a private dataset """ user = factories.User() org = factories.Organization(user=user) factories.Dataset( user=user, owner_org=org["name"], private=True ) factories.Dataset(user=user) sysadmin = factories.Sysadmin() current_package_list = helpers.call_action( "current_package_list_with_resources", context={"user": sysadmin["name"]}, ) assert len(current_package_list) == 2 @pytest.mark.usefixtures("clean_db", "clean_index") class TestPackageAutocomplete(object): def test_package_autocomplete_match_name(self): pkg = factories.Dataset(name="warandpeace") result = helpers.call_action("package_autocomplete", q="war") assert result[0]["name"] == pkg["name"] assert result[0]["title"] == pkg["title"] assert result[0]["match_field"] == "name" assert result[0]["match_displayed"] == pkg["name"] def test_package_autocomplete_match_title(self): pkg = factories.Dataset(title="A Wonderful Story") result = helpers.call_action("package_autocomplete", q="won") assert result[0]["name"] == pkg["name"] assert result[0]["title"] == pkg["title"] assert result[0]["match_field"] == "title" assert ( result[0]["match_displayed"] == f"A Wonderful Story ({pkg['name']})" ) def test_package_autocomplete_does_not_return_private_datasets(self): user = factories.User() org = factories.Organization(user=user) factories.Dataset( user=user, owner_org=org["name"], title="Some public stuff" ) factories.Dataset( user=user, owner_org=org["name"], private=True, title="Some private stuff", ) package_list = helpers.call_action( "package_autocomplete", context={"ignore_auth": False}, q="some" ) assert len(package_list) == 1 def test_package_autocomplete_does_return_private_datasets_from_my_org( self, ): user = factories.User() org = factories.Organization( users=[{"name": user["name"], "capacity": "member"}] ) factories.Dataset( user=user, owner_org=org["id"], title="Some public stuff" ) factories.Dataset( user=user, owner_org=org["id"], private=True, title="Some private stuff", ) package_list = helpers.call_action( "package_autocomplete", context={"user": user["name"], "ignore_auth": False}, q="some", ) assert len(package_list) == 2 def test_package_autocomplete_works_for_the_middle_part_of_title(self): factories.Dataset(title="Some public stuff") factories.Dataset(title="Some random stuff") package_list = helpers.call_action("package_autocomplete", q="bli") assert len(package_list) == 1 package_list = helpers.call_action("package_autocomplete", q="tuf") assert len(package_list) == 2 @pytest.mark.usefixtures("clean_db", "clean_index") class TestPackageSearch(object): def test_search(self): factories.Dataset(title="Rivers") factories.Dataset(title="Lakes") # decoy search_result = helpers.call_action("package_search", q="rivers") assert search_result["results"][0]["title"] == "Rivers" assert search_result["count"] == 1 def test_search_fl(self): d1 = factories.Dataset(title="Rivers", name="test_ri") factories.Dataset(title="Lakes") search_result = helpers.call_action( "package_search", q="rivers", fl=["title", "name"] ) assert search_result["results"] == [ {"title": "Rivers", "name": "test_ri"} ] search_result = helpers.call_action( "package_search", q="rivers", fl="title,name" ) assert search_result["results"] == [ {"title": "Rivers", "name": "test_ri"} ] search_result = helpers.call_action( "package_search", q="rivers", fl=["id"] ) assert search_result["results"] == [{"id": d1["id"]}] def test_search_all(self): factories.Dataset(title="Rivers") factories.Dataset(title="Lakes") search_result = helpers.call_action("package_search") # no q assert search_result["count"] == 2 def test_bad_action_parameter(self): with pytest.raises(SearchError): helpers.call_action("package_search", weird_param=1) def test_bad_solr_parameter(self): with pytest.raises(SearchError): helpers.call_action("package_search", sort="metadata_modified") # SOLR doesn't like that we didn't specify 'asc' or 'desc' # SOLR error is 'Missing sort order' or 'Missing_sort_order', # depending on the solr version. def _create_bulk_datasets(self, name, count): from ckan import model pkgs = [ model.Package(name="{}_{}".format(name, i)) for i in range(count) ] model.Session.add_all(pkgs) model.repo.commit_and_remove() def test_rows_returned_default(self): self._create_bulk_datasets("rows_default", 11) results = logic.get_action("package_search")({}, {}) assert len(results["results"]) == 10 # i.e. 'rows' default value @pytest.mark.ckan_config("ckan.search.rows_max", "3") def test_rows_returned_limited(self): self._create_bulk_datasets("rows_limited", 5) results = logic.get_action("package_search")({}, {"rows": "15"}) assert len(results["results"]) == 3 # i.e. ckan.search.rows_max def test_facets(self): org = factories.Organization(name="test-org-facet", title="Test Org") factories.Dataset(owner_org=org["id"]) factories.Dataset(owner_org=org["id"]) data_dict = {"facet.field": ["organization"]} search_result = helpers.call_action("package_search", **data_dict) assert search_result["count"] == 2 assert search_result["search_facets"] == { "organization": { "items": [ { "count": 2, "display_name": "Test Org", "name": "test-org-facet", } ], "title": "organization", } } def test_facet_limit(self): group1 = factories.Group(name="test-group-fl1", title="Test Group 1") group2 = factories.Group(name="test-group-fl2", title="Test Group 2") factories.Dataset( groups=[{"name": group1["name"]}, {"name": group2["name"]}] ) factories.Dataset(groups=[{"name": group1["name"]}]) factories.Dataset() data_dict = {"facet.field": ["groups"], "facet.limit": 1} search_result = helpers.call_action("package_search", **data_dict) assert len(search_result["search_facets"]["groups"]["items"]) == 1 assert search_result["search_facets"] == { "groups": { "items": [ { "count": 2, "display_name": "Test Group 1", "name": "test-group-fl1", } ], "title": "groups", } } def test_facet_no_limit(self): group1 = factories.Group() group2 = factories.Group() factories.Dataset( groups=[{"name": group1["name"]}, {"name": group2["name"]}] ) factories.Dataset(groups=[{"name": group1["name"]}]) factories.Dataset() data_dict = {"facet.field": ["groups"], "facet.limit": -1} # no limit search_result = helpers.call_action("package_search", **data_dict) assert len(search_result["search_facets"]["groups"]["items"]) == 2 def test_sort(self): factories.Dataset(name="test0") factories.Dataset(name="test1") factories.Dataset(name="test2") search_result = helpers.call_action( "package_search", sort="metadata_created desc" ) result_names = [result["name"] for result in search_result["results"]] assert result_names == ["test2", "test1", "test0"] @pytest.mark.ckan_config( "ckan.search.default_package_sort", "metadata_created asc" ) def test_sort_default_from_config(self): factories.Dataset(name="test0") factories.Dataset(name="test1") factories.Dataset(name="test2") search_result = helpers.call_action("package_search") result_names = [result["name"] for result in search_result["results"]] assert result_names == ["test0", "test1", "test2"] def test_package_search_on_resource_name(self): """ package_search() should allow searching on resource name field. """ resource_name = "resource_abc" factories.Resource(name=resource_name) search_result = helpers.call_action("package_search", q="resource_abc") assert ( search_result["results"][0]["resources"][0]["name"] == resource_name ) def test_package_search_excludes_private_and_drafts(self): """ package_search() with no options should not return private and draft datasets. """ user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(user=user) factories.Dataset(user=user, state="deleted") factories.Dataset(user=user, state="draft") factories.Dataset(user=user, private=True, owner_org=org["name"]) results = helpers.call_action("package_search")["results"] assert len(results) == 1 assert results[0]["name"] == dataset["name"] def test_package_search_with_fq_excludes_private(self): """ package_search() with fq capacity:private should not return private and draft datasets. """ user = factories.User() org = factories.Organization(user=user) factories.Dataset(user=user) factories.Dataset(user=user, state="deleted") factories.Dataset(user=user, state="draft") factories.Dataset(user=user, private=True, owner_org=org["name"]) fq = "capacity:private" results = helpers.call_action("package_search", fq=fq)["results"] assert len(results) == 0 def test_package_search_with_fq_excludes_drafts(self): """ A sysadmin user can't use fq drafts to get draft datasets. Nothing is returned. """ user = factories.User() other_user = factories.User() org = factories.Organization(user=user) factories.Dataset(user=user, name="dataset") factories.Dataset(user=other_user, name="other-dataset") factories.Dataset(user=user, state="deleted", name="deleted-dataset") factories.Dataset(user=user, state="draft", name="draft-dataset") factories.Dataset( user=other_user, state="draft", name="other-draft-dataset" ) factories.Dataset( user=user, private=True, owner_org=org["name"], name="private-dataset", ) fq = "state:draft" results = helpers.call_action("package_search", fq=fq)["results"] assert len(results) == 0 def test_package_search_with_include_drafts_option_excludes_drafts_for_anon_user( self, ): """ An anon user can't user include_drafts to get draft datasets. """ user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(user=user) factories.Dataset(user=user, state="deleted") draft_dataset = factories.Dataset(user=user, state="draft") factories.Dataset(user=user, private=True, owner_org=org["name"]) results = logic.get_action("package_search")( {"user": ""}, {"include_drafts": True} )["results"] assert len(results) == 1 assert results[0]["name"] != draft_dataset["name"] assert results[0]["name"] == dataset["name"] def test_package_search_with_include_drafts_option_includes_drafts_for_sysadmin( self, ): """ A sysadmin can use the include_drafts option to get draft datasets for all users. """ user = factories.User() other_user = factories.User() sysadmin = factories.Sysadmin() org = factories.Organization(user=user) dataset = factories.Dataset(user=user) factories.Dataset(user=user, state="deleted") draft_dataset = factories.Dataset(user=user, state="draft") other_draft_dataset = factories.Dataset(user=other_user, state="draft") factories.Dataset(user=user, private=True, owner_org=org["name"]) results = logic.get_action("package_search")( {"user": sysadmin["name"]}, {"include_drafts": True} )["results"] assert len(results) == 3 names = [r["name"] for r in results] assert draft_dataset["name"] in names assert other_draft_dataset["name"] in names assert dataset["name"] in names def test_package_search_with_include_drafts_false_option_doesnot_include_drafts_for_sysadmin( self, ): """ A sysadmin with include_drafts option set to `False` will not get drafts returned in results. """ user = factories.User() other_user = factories.User() sysadmin = factories.Sysadmin() org = factories.Organization(user=user) dataset = factories.Dataset(user=user) factories.Dataset(user=user, state="deleted") draft_dataset = factories.Dataset(user=user, state="draft") other_draft_dataset = factories.Dataset(user=other_user, state="draft") factories.Dataset(user=user, private=True, owner_org=org["name"]) results = logic.get_action("package_search")( {"user": sysadmin["name"]}, {"include_drafts": False} )["results"] assert len(results) == 1 names = [r["name"] for r in results] assert draft_dataset["name"] not in names assert other_draft_dataset["name"] not in names assert dataset["name"] in names def test_package_search_with_include_drafts_option_includes_drafts_for_user( self, ): """ The include_drafts option will include draft datasets for the authorized user, but not drafts for other users. """ user = factories.User() other_user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(user=user, name="dataset") other_dataset = factories.Dataset( user=other_user, name="other-dataset" ) factories.Dataset(user=user, state="deleted", name="deleted-dataset") draft_dataset = factories.Dataset( user=user, state="draft", name="draft-dataset" ) other_draft_dataset = factories.Dataset( user=other_user, state="draft", name="other-draft-dataset" ) factories.Dataset( user=user, private=True, owner_org=org["name"], name="private-dataset", ) results = logic.get_action("package_search")( {"user": user["name"]}, {"include_drafts": True} )["results"] assert len(results) == 3 names = [r["name"] for r in results] assert draft_dataset["name"] in names assert other_draft_dataset["name"] not in names assert dataset["name"] in names assert other_dataset["name"] in names def test_package_search_with_fq_for_create_user_id_will_include_datasets_for_other_users( self, ): """ A normal user can use the fq creator_user_id to get active datasets (but not draft) for another user. """ user = factories.User() other_user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(user=user, name="dataset") other_dataset = factories.Dataset( user=other_user, name="other-dataset" ) factories.Dataset(user=user, state="deleted", name="deleted-dataset") draft_dataset = factories.Dataset( user=user, state="draft", name="draft-dataset" ) other_draft_dataset = factories.Dataset( user=other_user, state="draft", name="other-draft-dataset" ) factories.Dataset( user=user, private=True, owner_org=org["name"], name="private-dataset", ) fq = "creator_user_id:{0}".format(other_user["id"]) results = logic.get_action("package_search")( {"user": user["name"]}, {"fq": fq} )["results"] assert len(results) == 1 names = [r["name"] for r in results] assert draft_dataset["name"] not in names assert other_draft_dataset["name"] not in names assert dataset["name"] not in names assert other_dataset["name"] in names def test_package_search_with_fq_for_create_user_id_will_not_include_drafts_for_other_users( self, ): """ A normal user can't use fq creator_user_id and drafts to get draft datasets for another user. """ user = factories.User() other_user = factories.User() org = factories.Organization(user=user) factories.Dataset(user=user, name="dataset") factories.Dataset(user=other_user, name="other-dataset") factories.Dataset(user=user, state="deleted", name="deleted-dataset") factories.Dataset(user=user, state="draft", name="draft-dataset") factories.Dataset( user=other_user, state="draft", name="other-draft-dataset" ) factories.Dataset( user=user, private=True, owner_org=org["name"], name="private-dataset", ) fq = "(creator_user_id:{0} AND +state:draft)".format(other_user["id"]) results = logic.get_action("package_search")( {"user": user["name"]}, {"fq": fq, "include_drafts": True} )["results"] assert len(results) == 0 def test_package_search_with_fq_for_creator_user_id_and_drafts_and_include_drafts_option_will_not_include_drafts_for_other_user( self, ): """ A normal user can't use fq creator_user_id and drafts and the include_drafts option to get draft datasets for another user. """ user = factories.User() other_user = factories.User() org = factories.Organization(user=user) factories.Dataset(user=user, name="dataset") factories.Dataset(user=other_user, name="other-dataset") factories.Dataset(user=user, state="deleted", name="deleted-dataset") factories.Dataset(user=user, state="draft", name="draft-dataset") factories.Dataset( user=other_user, state="draft", name="other-draft-dataset" ) factories.Dataset( user=user, private=True, owner_org=org["name"], name="private-dataset", ) fq = "(creator_user_id:{0} AND +state:draft)".format(other_user["id"]) results = logic.get_action("package_search")( {"user": user["name"]}, {"fq": fq, "include_drafts": True} )["results"] assert len(results) == 0 def test_package_search_with_fq_for_creator_user_id_and_include_drafts_option_will_not_include_drafts_for_other_user( self, ): """ A normal user can't use fq creator_user_id and the include_drafts option to get draft datasets for another user. """ user = factories.User() other_user = factories.User() org = factories.Organization(user=user) factories.Dataset(user=user, name="dataset") other_dataset = factories.Dataset( user=other_user, name="other-dataset" ) factories.Dataset(user=user, state="deleted", name="deleted-dataset") factories.Dataset(user=user, state="draft", name="draft-dataset") other_draft_dataset = factories.Dataset( user=other_user, state="draft", name="other-draft-dataset" ) factories.Dataset( user=user, private=True, owner_org=org["name"], name="private-dataset", ) fq = "creator_user_id:{0}".format(other_user["id"]) results = logic.get_action("package_search")( {"user": user["name"]}, {"fq": fq, "include_drafts": True} )["results"] names = [r["name"] for r in results] assert len(results) == 1 assert other_dataset["name"] in names assert other_draft_dataset["name"] not in names def test_package_search_with_fq_for_create_user_id_will_include_drafts_for_other_users_for_sysadmin( self, ): """ Sysadmins can use fq to get draft datasets for another user. """ user = factories.User() sysadmin = factories.Sysadmin() other_user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(user=user, name="dataset") factories.Dataset(user=other_user, name="other-dataset") factories.Dataset(user=user, state="deleted", name="deleted-dataset") draft_dataset = factories.Dataset( user=user, state="draft", name="draft-dataset" ) factories.Dataset( user=other_user, state="draft", name="other-draft-dataset" ) factories.Dataset( user=user, private=True, owner_org=org["name"], name="private-dataset", ) fq = "(creator_user_id:{0} AND +state:draft)".format(user["id"]) results = logic.get_action("package_search")( {"user": sysadmin["name"]}, {"fq": fq} )["results"] names = [r["name"] for r in results] assert len(results) == 1 assert dataset["name"] not in names assert draft_dataset["name"] in names def test_package_search_private_with_include_private(self): """ package_search() can return private datasets when `include_private=True` """ user = factories.User() org = factories.Organization(user=user) factories.Dataset(user=user, state="deleted") factories.Dataset(user=user, state="draft") private_dataset = factories.Dataset( user=user, private=True, owner_org=org["name"] ) results = logic.get_action("package_search")( {"user": user["name"]}, {"include_private": True} )["results"] assert [r["name"] for r in results] == [private_dataset["name"]] @pytest.mark.parametrize("remove_deleted_setting", [True, False]) def test_package_search_private_with_include_private_wont_show_other_orgs_private( self, remove_deleted_setting ): with helpers.changed_config("ckan.search.remove_deleted_packages", remove_deleted_setting): user = factories.User() user2 = factories.User() factories.Organization(user=user) org2 = factories.Organization(user=user2) # create a deleted dataset if we expect them to be indexed factories.Dataset( user=user2, private=True, owner_org=org2["name"], state="active" if remove_deleted_setting else "deleted", ) # include deleted datasets if we expect them to be indexed results = logic.get_action("package_search")( {"user": user["name"]}, {"include_private": True, "include_deleted": not remove_deleted_setting}, )["results"] assert [r["name"] for r in results] == [] @pytest.mark.parametrize("remove_deleted_setting", [True, False]) def test_package_search_private_with_include_private_syadmin(self, remove_deleted_setting): with helpers.changed_config("ckan.search.remove_deleted_packages", remove_deleted_setting): user = factories.User() sysadmin = factories.Sysadmin() org = factories.Organization(user=user) # create a deleted dataset if we expect them to be indexed private_dataset = factories.Dataset( user=user, private=True, owner_org=org["name"], state="active" if remove_deleted_setting else "deleted", ) # include deleted datasets if we expect them to be indexed results = logic.get_action("package_search")( {"user": sysadmin["name"]}, {"include_private": True, "include_deleted": not remove_deleted_setting} )["results"] assert [r["name"] for r in results] == [private_dataset["name"]] def test_package_works_without_user_in_context(self): """ package_search() should work even if user isn't in the context (e.g. ckanext-showcase tests. """ logic.get_action("package_search")({}, dict(q="anything")) def test_local_parameters_not_supported(self): with pytest.raises(SearchError): helpers.call_action( "package_search", q='{!child of="content_type:parentDoc"}' ) @pytest.mark.ckan_config("ckan.plugins", "example_idatasetform") @pytest.mark.usefixtures("clean_db", "with_plugins") class TestPackageAutocompleteWithDatasetForm(object): def test_custom_schema_returned(self): dataset1 = factories.Dataset(custom_text="foo") query = helpers.call_action( "package_search", q="id:{0}".format(dataset1["id"]) ) assert query["results"][0]["id"] == dataset1["id"] assert query["results"][0]["custom_text"] == "foo" def test_custom_schema_not_returned(self): dataset1 = factories.Dataset(custom_text="foo") query = helpers.call_action( "package_search", q="id:{0}".format(dataset1["id"]), use_default_schema=True, ) assert query["results"][0]["id"] == dataset1["id"] assert "custom_text" not in query["results"][0] assert query["results"][0]["extras"][0]["key"] == "custom_text" assert query["results"][0]["extras"][0]["value"] == "foo" @pytest.mark.usefixtures("clean_db", "clean_index") class TestUserAutocomplete(object): def test_autocomplete(self): factories.Sysadmin(name="autocompletesysadmin") factories.User(name="autocompleteuser") result = helpers.call_action("user_autocomplete", q="sysadmin") assert len(result) == 1 user = result.pop() assert set(user.keys()) == set(["id", "name", "fullname"]) assert user["name"] == "autocompletesysadmin" def test_autocomplete_multiple(self): factories.Sysadmin(name="autocompletesysadmin") factories.User(name="autocompleteuser") result = helpers.call_action("user_autocomplete", q="compl") assert len(result) == 2 def test_autocomplete_limit(self): factories.Sysadmin(name="autocompletesysadmin") factories.User(name="autocompleteuser") result = helpers.call_action("user_autocomplete", q="compl", limit=1) assert len(result) == 1 @pytest.mark.usefixtures("clean_db", "clean_index") class TestFormatAutocomplete: def test_missing_param(self): with pytest.raises(logic.ValidationError): helpers.call_action("format_autocomplete") def test_autocomplete(self): result = helpers.call_action("format_autocomplete", q="cs") assert result == [] factories.Resource(format="CSV") result = helpers.call_action("format_autocomplete", q="cs") assert result == ["csv"] @pytest.mark.usefixtures("clean_db") class TestBadLimitQueryParameters(object): """test class for #1258 non-int query parameters cause 500 errors Test that validation errors are raised when calling actions with bad parameters. """ def test_activity_list_actions(self): actions = [ "user_activity_list", "package_activity_list", "group_activity_list", "organization_activity_list", "recently_changed_packages_activity_list", "current_package_list_with_resources", ] for action in actions: with pytest.raises(logic.ValidationError): helpers.call_action( action, id="test_user", limit="not_an_int", offset="not_an_int", ) with pytest.raises(logic.ValidationError): helpers.call_action( action, id="test_user", limit=-1, offset=-1 ) def test_package_search_facet_field_is_json(self): kwargs = {"facet.field": "notjson"} with pytest.raises(logic.ValidationError): helpers.call_action("package_search", **kwargs) @pytest.mark.usefixtures("clean_db") class TestOrganizationListForUser(object): """Functional tests for the organization_list_for_user() action function.""" def test_when_user_is_not_a_member_of_any_organizations(self): """ When the user isn't a member of any organizations (in any capacity) organization_list_for_user() should return an empty list. """ user = factories.User() context = {"user": user["name"]} # Create an organization so we can test that it does not get returned. factories.Organization() organizations = helpers.call_action( "organization_list_for_user", context=context ) assert organizations == [] def test_when_user_is_an_admin_of_one_organization(self): """ When the user is an admin of one organization organization_list_for_user() should return a list of just that one organization. """ user = factories.User() context = {"user": user["name"]} organization = factories.Organization() # Create a second organization just so we can test that it does not get # returned. factories.Organization() helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="admin", ) organizations = helpers.call_action( "organization_list_for_user", context=context ) assert len(organizations) == 1 assert organizations[0]["id"] == organization["id"] def test_when_user_is_an_admin_of_three_organizations(self): """ When the user is an admin of three organizations organization_list_for_user() should return a list of all three organizations. """ user = factories.User() context = {"user": user["name"]} organization_1 = factories.Organization() organization_2 = factories.Organization() organization_3 = factories.Organization() # Create a second organization just so we can test that it does not get # returned. factories.Organization() # Make the user an admin of all three organizations: for organization in (organization_1, organization_2, organization_3): helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="admin", ) organizations = helpers.call_action( "organization_list_for_user", context=context ) assert len(organizations) == 3 ids = [organization["id"] for organization in organizations] for organization in (organization_1, organization_2, organization_3): assert organization["id"] in ids def test_when_permissions_extend_to_sub_organizations(self): """ When the user is an admin of one organization organization_list_for_user() should return a list of just that one organization. """ user = factories.User() context = {"user": user["name"]} user["capacity"] = "admin" top_organization = factories.Organization(users=[user]) middle_organization = factories.Organization(users=[user]) bottom_organization = factories.Organization() # Create another organization just so we can test that it does not get # returned. factories.Organization() helpers.call_action( "member_create", id=bottom_organization["id"], object=middle_organization["id"], object_type="group", capacity="parent", ) helpers.call_action( "member_create", id=middle_organization["id"], object=top_organization["id"], object_type="group", capacity="parent", ) organizations = helpers.call_action( "organization_list_for_user", context=context ) assert len(organizations) == 3 org_ids = set(org["id"] for org in organizations) assert bottom_organization["id"] in org_ids def test_does_return_members(self): """ By default organization_list_for_user() should return organizations that the user is just a member (not an admin) of. """ user = factories.User() context = {"user": user["name"]} organization = factories.Organization() helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="member", ) organizations = helpers.call_action( "organization_list_for_user", context=context ) assert [org["id"] for org in organizations] == [organization["id"]] def test_does_return_editors(self): """ By default organization_list_for_user() should return organizations that the user is just an editor (not an admin) of. """ user = factories.User() context = {"user": user["name"]} organization = factories.Organization() helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="editor", ) organizations = helpers.call_action( "organization_list_for_user", context=context ) assert [org["id"] for org in organizations] == [organization["id"]] def test_editor_permission(self): """ organization_list_for_user() should return organizations that the user is an editor of if passed a permission that belongs to the editor role. """ user = factories.User() context = {"user": user["name"]} organization = factories.Organization() helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="editor", ) organizations = helpers.call_action( "organization_list_for_user", permission="create_dataset", context=context, ) assert [org["id"] for org in organizations] == [organization["id"]] def test_member_permission(self): """ organization_list_for_user() should return organizations that the user is a member of if passed a permission that belongs to the member role. """ user = factories.User() context = {"user": user["name"]} organization = factories.Organization() helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="member", ) organizations = helpers.call_action( "organization_list_for_user", permission="read", context=context ) assert [org["id"] for org in organizations] == [organization["id"]] def test_invalid_permission(self): """ organization_list_for_user() should return an empty list if passed a non-existent or invalid permission. Note that we test this with a user who is an editor of one organization. If the user was an admin of the organization then it would return that organization - admins have all permissions, including permissions that don't exist. """ user = factories.User() context = {"user": user["name"]} organization = factories.Organization() factories.Organization() helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="editor", ) for permission in ("", " ", "foo", 27.3, 5, True, False, None): organizations = helpers.call_action( "organization_list_for_user", permission=permission, context=context, ) assert organizations == [] def test_that_it_does_not_return_groups(self): """ organization_list_for_user() should not return groups that the user is a member, editor or admin of. """ user = factories.User() context = {"user": user["name"]} group_1 = factories.Group() group_2 = factories.Group() group_3 = factories.Group() helpers.call_action( "member_create", id=group_1["id"], object=user["id"], object_type="user", capacity="member", ) helpers.call_action( "member_create", id=group_2["id"], object=user["id"], object_type="user", capacity="editor", ) helpers.call_action( "member_create", id=group_3["id"], object=user["id"], object_type="user", capacity="admin", ) organizations = helpers.call_action( "organization_list_for_user", context=context ) assert organizations == [] def test_that_it_does_not_return_previous_memberships(self): """ organization_list_for_user() should return organizations that the user was previously an admin of. """ user = factories.User() context = {"user": user["name"]} organization = factories.Organization() # Make the user an admin of the organization. helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="admin", ) # Remove the user from the organization. helpers.call_action( "member_delete", id=organization["id"], object=user["id"], object_type="user", ) organizations = helpers.call_action( "organization_list_for_user", context=context ) assert organizations == [] def test_when_user_is_sysadmin(self): """ When the user is a sysadmin organization_list_for_user() should just return all organizations, even if the user is not a member of them. """ user = factories.Sysadmin() context = {"user": user["name"]} organization = factories.Organization() organizations = helpers.call_action( "organization_list_for_user", context=context ) assert [org["id"] for org in organizations] == [organization["id"]] def test_that_it_does_not_return_deleted_organizations(self): """ organization_list_for_user() should not return deleted organizations that the user was an admin of. """ user = factories.User() context = {"user": user["name"]} organization = factories.Organization() # Make the user an admin of the organization. helpers.call_action( "member_create", id=organization["id"], object=user["id"], object_type="user", capacity="admin", ) # Delete the organization. helpers.call_action( "organization_delete", id=organization["id"], context=context ) organizations = helpers.call_action( "organization_list_for_user", context=context ) assert organizations == [] def test_with_no_authorized_user(self): """ organization_list_for_user() should return an empty list if there's no authorized user. Users who aren't logged-in don't have any permissions. """ # Create an organization so we can test that it doesn't get returned. factories.Organization() organizations = helpers.call_action("organization_list_for_user") assert organizations == [] def test_organization_list_for_user_returns_all_roles(self): user1 = factories.User() user2 = factories.User() user3 = factories.User() org1 = factories.Organization( users=[ {"name": user1["name"], "capacity": "admin"}, {"name": user2["name"], "capacity": "editor"}, ] ) org2 = factories.Organization( users=[ {"name": user1["name"], "capacity": "member"}, {"name": user2["name"], "capacity": "member"}, ] ) org3 = factories.Organization( users=[{"name": user1["name"], "capacity": "editor"}] ) org_list_for_user1 = helpers.call_action( "organization_list_for_user", id=user1["id"] ) assert sorted([org["id"] for org in org_list_for_user1]) == sorted( [org1["id"], org2["id"], org3["id"]] ) org_list_for_user2 = helpers.call_action( "organization_list_for_user", id=user2["id"] ) assert sorted([org["id"] for org in org_list_for_user2]) == sorted( [org1["id"], org2["id"]] ) org_list_for_user3 = helpers.call_action( "organization_list_for_user", id=user3["id"] ) assert org_list_for_user3 == [] @pytest.mark.ckan_config("ckan.plugins", "image_view") @pytest.mark.usefixtures("non_clean_db", "with_plugins") class TestShowResourceView(object): def test_resource_view_show(self): resource = factories.Resource() resource_view = { "resource_id": resource["id"], "view_type": "image_view", "title": "View", "description": "A nice view", "image_url": "url", } new_view = helpers.call_action("resource_view_create", **resource_view) result = helpers.call_action("resource_view_show", id=new_view["id"]) result.pop("id") result.pop("package_id") assert result == resource_view def test_resource_view_show_id_missing(self): with pytest.raises(logic.ValidationError): helpers.call_action("resource_view_show") def test_resource_view_show_id_not_found(self): with pytest.raises(logic.NotFound): helpers.call_action("resource_view_show", id="does_not_exist") class TestGetHelpShow(object): def test_help_show_basic(self): function_name = "package_search" result = helpers.call_action("help_show", name=function_name) function = logic.get_action(function_name) assert result == function.__doc__ def test_help_show_no_docstring(self): function_name = "package_search" function = logic.get_action(function_name) actual_docstring = function.__doc__ function.__doc__ = None result = helpers.call_action("help_show", name=function_name) function.__doc__ = actual_docstring assert result is None def test_help_show_not_found(self): function_name = "unknown_action" with pytest.raises(logic.NotFound): helpers.call_action("help_show", name=function_name) @pytest.mark.usefixtures("non_clean_db") class TestConfigOptionShow(object): @pytest.mark.ckan_config("ckan.site_title", "My Test CKAN") def test_config_option_show_in_config_not_in_db(self): """config_option_show returns value from config when value on in system_info table.""" title = helpers.call_action( "config_option_show", key="ckan.site_title" ) assert title == "My Test CKAN" @pytest.mark.ckan_config("ckan.site_title", "My Test CKAN") def test_config_option_show_in_config_and_in_db(self): """config_option_show returns value from db when value is in both config and system_info table.""" params = {"ckan.site_title": "Test site title"} helpers.call_action("config_option_update", **params) title = helpers.call_action( "config_option_show", key="ckan.site_title" ) assert title == "Test site title" @pytest.mark.ckan_config("ckan.not.editable", "My non editable option") def test_config_option_show_not_whitelisted_key(self): """config_option_show raises exception if key is not a whitelisted config option.""" with pytest.raises(logic.ValidationError): helpers.call_action("config_option_show", key="ckan.not.editable") class TestConfigOptionList(object): def test_config_option_list(self): """config_option_list returns whitelisted config option keys""" keys = helpers.call_action("config_option_list") schema_keys = list(schema.update_configuration_schema().keys()) assert keys == schema_keys def remove_pseudo_users(user_list): pseudo_users = set(("logged_in", "visitor")) user_list[:] = [ user for user in user_list if user["name"] not in pseudo_users ] @pytest.mark.usefixtures("non_clean_db") class TestTagShow(object): def test_tag_show_for_free_tag(self): tag = factories.Tag.stub().name dataset = factories.Dataset(tags=[{"name": tag}]) tag_in_dataset = dataset["tags"][0] tag_shown = helpers.call_action("tag_show", id=tag) assert tag_shown["name"] == tag assert tag_shown["display_name"] == tag assert tag_shown["id"] == tag_in_dataset["id"] assert tag_shown["vocabulary_id"] is None assert "packages" not in tag_shown @pytest.mark.usefixtures("clean_index") def test_tag_show_with_datasets(self): tag = factories.Tag.stub().name dataset = factories.Dataset(tags=[{"name": tag}]) tag_shown = helpers.call_action( "tag_show", id=tag, include_datasets=True ) assert [d["name"] for d in tag_shown["packages"]] == [dataset["name"]] def test_tag_show_not_found(self): with pytest.raises(logic.NotFound): helpers.call_action("tag_show", id=factories.Tag.stub().name) @pytest.mark.usefixtures("clean_db") def test_tag_show_for_flexible_tag(self): # A 'flexible' tag is one with spaces, some punctuation # and foreign characters in its name dataset = factories.Dataset(tags=[{"name": "Flexible. \u30a1"}]) tag_shown = helpers.call_action( "tag_show", id="Flexible. \u30a1", include_datasets=True ) assert tag_shown["name"] == "Flexible. \u30a1" assert tag_shown["display_name"] == "Flexible. \u30a1" assert [d["name"] for d in tag_shown["packages"]] == [dataset["name"]] def test_tag_show_for_vocab_tag(self): tag = factories.Tag.stub().name vocab = factories.Vocabulary(tags=[dict(name=tag)]) dataset = factories.Dataset(tags=vocab["tags"]) tag_in_dataset = dataset["tags"][0] tag_shown = helpers.call_action( "tag_show", id=tag, vocabulary_id=vocab["id"], include_datasets=True, ) assert tag_shown["name"] == tag assert tag_shown["display_name"] == tag assert tag_shown["id"] == tag_in_dataset["id"] assert tag_shown["vocabulary_id"] == vocab["id"] assert [d["name"] for d in tag_shown["packages"]] == [dataset["name"]] @pytest.mark.usefixtures("clean_db") class TestTagList(object): def test_tag_list(self): tag = factories.Tag.stub().name tag2 = factories.Tag.stub().name factories.Dataset(tags=[{"name": tag}, {"name": tag2}]) factories.Dataset(tags=[{"name": tag2}]) tag_list = helpers.call_action("tag_list") assert set(tag_list) == set((tag, tag2)) def test_tag_list_all_fields(self): factories.Dataset(tags=[{"name": "acid-rain"}]) tag_list = helpers.call_action("tag_list", all_fields=True) assert tag_list[0]["name"] == "acid-rain" assert tag_list[0]["display_name"] == "acid-rain" assert "packages" not in tag_list def test_tag_list_with_flexible_tag(self): # A 'flexible' tag is one with spaces, punctuation (apart from commas) # and foreign characters in its name flexible_tag = "Flexible. \u30a1" factories.Dataset(tags=[{"name": flexible_tag}]) tag_list = helpers.call_action("tag_list", all_fields=True) assert tag_list[0]["name"] == flexible_tag def test_tag_list_with_vocab(self): vocab = factories.Vocabulary( tags=[dict(name="acid-rain"), dict(name="pollution")] ) tag_list = helpers.call_action("tag_list", vocabulary_id=vocab["id"]) assert set(tag_list) == set(("acid-rain", "pollution")) def test_tag_list_vocab_not_found(self): with pytest.raises(logic.NotFound): helpers.call_action("tag_list", vocabulary_id="does-not-exist") @pytest.mark.usefixtures("clean_db") class TestMembersList(object): def test_dataset_delete_marks_membership_of_group_as_deleted(self): sysadmin = factories.Sysadmin() group = factories.Group() dataset = factories.Dataset(groups=[{"name": group["name"]}]) context = {"user": sysadmin["name"]} group_members = helpers.call_action( "member_list", context, id=group["id"], object_type="package" ) assert len(group_members) == 1 assert group_members[0][0] == dataset["id"] assert group_members[0][1] == "package" helpers.call_action("package_delete", context, id=dataset["id"]) group_members = helpers.call_action( "member_list", context, id=group["id"], object_type="package" ) assert len(group_members) == 0 def test_dataset_delete_marks_membership_of_org_as_deleted(self): sysadmin = factories.Sysadmin() org = factories.Organization() dataset = factories.Dataset(owner_org=org["id"]) context = {"user": sysadmin["name"]} org_members = helpers.call_action( "member_list", context, id=org["id"], object_type="package" ) assert len(org_members) == 1 assert org_members[0][0] == dataset["id"] assert org_members[0][1] == "package" helpers.call_action("package_delete", context, id=dataset["id"]) org_members = helpers.call_action( "member_list", context, id=org["id"], object_type="package" ) assert len(org_members) == 0 def test_user_delete_marks_membership_of_group_as_deleted(self): sysadmin = factories.Sysadmin() group = factories.Group() user = factories.User() context = {"user": sysadmin["name"]} member_dict = { "username": user["id"], "id": group["id"], "role": "member", } helpers.call_action("group_member_create", context, **member_dict) group_members = helpers.call_action( "member_list", context, id=group["id"], object_type="user", capacity="member", ) assert len(group_members) == 1 assert group_members[0][0] == user["id"] assert group_members[0][1] == "user" helpers.call_action("user_delete", context, id=user["id"]) group_members = helpers.call_action( "member_list", context, id=group["id"], object_type="user", capacity="member", ) assert len(group_members) == 0 def test_user_delete_marks_membership_of_org_as_deleted(self): sysadmin = factories.Sysadmin() org = factories.Organization() user = factories.User() context = {"user": sysadmin["name"]} member_dict = { "username": user["id"], "id": org["id"], "role": "member", } helpers.call_action( "organization_member_create", context, **member_dict ) org_members = helpers.call_action( "member_list", context, id=org["id"], object_type="user", capacity="member", ) assert len(org_members) == 1 assert org_members[0][0] == user["id"] assert org_members[0][1] == "user" helpers.call_action("user_delete", context, id=user["id"]) org_members = helpers.call_action( "member_list", context, id=org["id"], object_type="user", capacity="member", ) assert len(org_members) == 0 @pytest.mark.usefixtures("non_clean_db") class TestFollow(object): def test_followee_list(self): group1 = factories.Group(title="Finance") group2 = factories.Group(title="Environment") factories.Group(title="Education") user = factories.User() context = {"user": user["name"]} helpers.call_action("follow_group", context, id=group1["id"]) helpers.call_action("follow_group", context, id=group2["id"]) followee_list = helpers.call_action( "followee_list", context, id=user["name"] ) assert len(followee_list) == 2 assert sorted([f["display_name"] for f in followee_list]) == [ "Environment", "Finance", ] def test_followee_list_with_q(self): group1 = factories.Group(title="Finance") group2 = factories.Group(title="Environment") factories.Group(title="Education") user = factories.User() context = {"user": user["name"]} helpers.call_action("follow_group", context, id=group1["id"]) helpers.call_action("follow_group", context, id=group2["id"]) followee_list = helpers.call_action( "followee_list", context, id=user["name"], q="E" ) assert len(followee_list) == 1 assert followee_list[0]["display_name"] == "Environment" class TestStatusShow(object): @pytest.mark.ckan_config("ckan.plugins", "stats") @pytest.mark.usefixtures("clean_db", "with_plugins") def test_status_show(self): status = helpers.call_action("status_show") assert status["ckan_version"] == __version__ assert status["site_url"] == "http://test.ckan.net" assert status["site_title"] == "CKAN" assert status["site_description"] == "" assert status["locale_default"] == "en" assert type(status["extensions"]) == list assert status["extensions"] == ["stats"] class TestJobList(helpers.FunctionalRQTestBase): def test_all_queues(self): """ Test getting jobs from all queues. """ job1 = self.enqueue() job2 = self.enqueue() job3 = self.enqueue(queue="my_queue") jobs = helpers.call_action("job_list") assert len(jobs) == 3 assert {job["id"] for job in jobs} == {job1.id, job2.id, job3.id} def test_specific_queues(self): """ Test getting jobs from specific queues. """ self.enqueue() job2 = self.enqueue(queue="q2") job3 = self.enqueue(queue="q3") job4 = self.enqueue(queue="q3") jobs = helpers.call_action("job_list", queues=["q2"]) assert len(jobs) == 1 assert jobs[0]["id"] == job2.id jobs = helpers.call_action("job_list", queues=["q2", "q3"]) assert len(jobs) == 3 assert {job["id"] for job in jobs} == {job2.id, job3.id, job4.id} class TestJobShow(helpers.FunctionalRQTestBase): def test_existing_job(self): """ Test showing an existing job. """ job = self.enqueue(queue="my_queue", title="Title") d = helpers.call_action("job_show", id=job.id) assert d["id"] == job.id assert d["title"] == "Title" assert d["queue"] == "my_queue" assert _seconds_since_timestamp(d["created"], "%Y-%m-%dT%H:%M:%S") < 10 def test_not_existing_job(self): """ Test showing a not existing job. """ with pytest.raises(logic.NotFound): helpers.call_action("job_show", id="does-not-exist") def _seconds_since_timestamp(timestamp, format_): dt = datetime.datetime.strptime(timestamp, format_) now = datetime.datetime.utcnow() assert now > dt # we assume timestamp is not in the future return (now - dt).total_seconds() @pytest.mark.usefixtures("non_clean_db") class TestActivityShow(object): def test_simple_without_data(self): dataset = factories.Dataset() user = factories.User() activity = factories.Activity( user_id=user["id"], object_id=dataset["id"], activity_type="new package", data={"package": copy.deepcopy(dataset), "actor": "Mr Someone"}, ) activity_shown = helpers.call_action( "activity_show", id=activity["id"], include_data=False ) assert activity_shown["user_id"] == user["id"] assert ( _seconds_since_timestamp( activity_shown["timestamp"], "%Y-%m-%dT%H:%M:%S.%f" ) < 10 ) assert activity_shown["object_id"] == dataset["id"] assert activity_shown["data"] == {"package": {"title": dataset["title"]}} assert activity_shown["activity_type"] == "new package" def test_simple_with_data(self): dataset = factories.Dataset() user = factories.User() activity = factories.Activity( user_id=user["id"], object_id=dataset["id"], activity_type="new package", data={"package": copy.deepcopy(dataset), "actor": "Mr Someone"}, ) activity_shown = helpers.call_action( "activity_show", id=activity["id"], include_data=True ) assert activity_shown["user_id"] == user["id"] assert ( _seconds_since_timestamp( activity_shown["timestamp"], "%Y-%m-%dT%H:%M:%S.%f" ) < 10 ) assert activity_shown["object_id"] == dataset["id"] assert activity_shown["data"] == { "package": dataset, "actor": "Mr Someone", } assert activity_shown["activity_type"] == "new package" def _clear_activities(): from ckan import model model.Session.query(model.ActivityDetail).delete() model.Session.query(model.Activity).delete() model.Session.flush() @pytest.mark.usefixtures("clean_db") class TestPackageActivityList(object): def test_create_dataset(self): user = factories.User() dataset = factories.Dataset(user=user) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "new package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] assert "extras" not in activities[0]["data"]["package"] def test_change_dataset(self): user = factories.User() _clear_activities() dataset = factories.Dataset(user=user) original_title = dataset["title"] dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package", "new package", ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] assert ( activities[0]["data"]["package"]["title"] == "Dataset with changed title" ) # the old dataset still has the old title assert activities[1]["activity_type"] == "new package" assert activities[1]["data"]["package"]["title"] == original_title def test_change_dataset_add_extra(self): user = factories.User() dataset = factories.Dataset(user=user) _clear_activities() dataset["extras"].append(dict(key="rating", value="great")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] assert "extras" not in activities[0]["data"]["package"] def test_change_dataset_change_extra(self): user = factories.User() dataset = factories.Dataset( user=user, extras=[dict(key="rating", value="great")] ) _clear_activities() dataset["extras"][0] = dict(key="rating", value="ok") helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] assert "extras" not in activities[0]["data"]["package"] def test_change_dataset_delete_extra(self): user = factories.User() dataset = factories.Dataset( user=user, extras=[dict(key="rating", value="great")] ) _clear_activities() dataset["extras"] = [] helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] assert "extras" not in activities[0]["data"]["package"] def test_change_dataset_add_resource(self): user = factories.User() dataset = factories.Dataset(user=user) _clear_activities() factories.Resource(package_id=dataset["id"], user=user) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] # NB the detail is not included - that is only added in by # activity_list_to_html() def test_change_dataset_change_resource(self): user = factories.User() dataset = factories.Dataset( user=user, resources=[dict(url="https://example.com/foo.csv", format="csv")], ) _clear_activities() dataset["resources"][0]["format"] = "pdf" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset_delete_resource(self): user = factories.User() dataset = factories.Dataset( user=user, resources=[dict(url="https://example.com/foo.csv", format="csv")], ) _clear_activities() dataset["resources"] = [] helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset_add_tag(self): user = factories.User() dataset = factories.Dataset(user=user) _clear_activities() dataset["tags"].append(dict(name="checked")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_delete_tag_from_dataset(self): user = factories.User() dataset = factories.Dataset(user=user, tags=[dict(name="checked")]) _clear_activities() dataset["tags"] = [] helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_delete_dataset(self): user = factories.User() dataset = factories.Dataset(user=user) _clear_activities() helpers.call_action( "package_delete", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [ "deleted package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_private_dataset_has_no_activity(self): user = factories.User() org = factories.Organization(user=user) _clear_activities() dataset = factories.Dataset( private=True, owner_org=org["id"], user=user ) dataset["tags"] = [] helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [] def test_private_dataset_delete_has_no_activity(self): user = factories.User() org = factories.Organization(user=user) _clear_activities() dataset = factories.Dataset( private=True, owner_org=org["id"], user=user ) helpers.call_action( "package_delete", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [] def _create_bulk_types_activities(self, types): dataset = factories.Dataset() from ckan import model user = factories.User() objs = [ model.Activity( user_id=user["id"], object_id=dataset["id"], activity_type=activity_type, data=None, ) for activity_type in types ] model.Session.add_all(objs) model.repo.commit_and_remove() return dataset["id"] def test_error_bad_search(self): with pytest.raises(logic.ValidationError): helpers.call_action( "package_activity_list", id=id, activity_types=["new package"], exclude_activity_types=["deleted package"], ) def test_activity_types_filter(self): types = [ "new package", "changed package", "deleted package", "changed package", "new package", ] id = self._create_bulk_types_activities(types) activities_new = helpers.call_action( "package_activity_list", id=id, activity_types=["new package"] ) assert len(activities_new) == 2 activities_not_new = helpers.call_action( "package_activity_list", id=id, exclude_activity_types=["new package"], ) assert len(activities_not_new) == 3 activities_delete = helpers.call_action( "package_activity_list", id=id, activity_types=["deleted package"] ) assert len(activities_delete) == 1 activities_not_deleted = helpers.call_action( "package_activity_list", id=id, exclude_activity_types=["deleted package"], ) assert len(activities_not_deleted) == 4 def _create_bulk_package_activities(self, count): dataset = factories.Dataset() from ckan import model user = factories.User() objs = [ model.Activity( user_id=user["id"], object_id=dataset["id"], activity_type=None, data=None, ) for _ in range(count) ] model.Session.add_all(objs) model.repo.commit_and_remove() return dataset["id"] def test_limit_default(self): id = self._create_bulk_package_activities(35) results = helpers.call_action("package_activity_list", id=id) assert len(results) == 31 # i.e. default value @pytest.mark.ckan_config("ckan.activity_list_limit", "5") def test_limit_configured(self): id = self._create_bulk_package_activities(7) results = helpers.call_action("package_activity_list", id=id) assert len(results) == 5 # i.e. ckan.activity_list_limit @pytest.mark.ckan_config("ckan.activity_list_limit", "5") @pytest.mark.ckan_config("ckan.activity_list_limit_max", "7") def test_limit_hits_max(self): id = self._create_bulk_package_activities(9) results = helpers.call_action( "package_activity_list", id=id, limit="9" ) assert len(results) == 7 # i.e. ckan.activity_list_limit_max def test_normal_user_doesnt_see_hidden_activities(self): # activity is 'hidden' because dataset is created by site_user dataset = factories.Dataset() activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [] def test_sysadmin_user_doesnt_see_hidden_activities_by_default(self): # activity is 'hidden' because dataset is created by site_user dataset = factories.Dataset() activities = helpers.call_action( "package_activity_list", id=dataset["id"] ) assert [activity["activity_type"] for activity in activities] == [] def test_sysadmin_user_can_include_hidden_activities(self): # activity is 'hidden' because dataset is created by site_user dataset = factories.Dataset() activities = helpers.call_action( "package_activity_list", include_hidden_activity=True, id=dataset["id"], ) assert [activity["activity_type"] for activity in activities] == [ "new package" ] @pytest.mark.usefixtures("clean_db") class TestUserActivityList(object): def test_create_user(self): user = factories.User() activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "new user" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == user["id"] def test_create_dataset(self): user = factories.User() _clear_activities() dataset = factories.Dataset(user=user) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "new package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_dataset_changed_by_another_user(self): user = factories.User() another_user = factories.Sysadmin() dataset = factories.Dataset(user=user) _clear_activities() dataset["extras"].append(dict(key="rating", value="great")) helpers.call_action( "package_update", context={"user": another_user["name"]}, **dataset ) # the user might have created the dataset, but a change by another # user does not show on the user's activity stream activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [] def test_change_dataset_add_extra(self): user = factories.User() dataset = factories.Dataset(user=user) _clear_activities() dataset["extras"].append(dict(key="rating", value="great")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset_add_tag(self): user = factories.User() dataset = factories.Dataset(user=user) _clear_activities() dataset["tags"].append(dict(name="checked")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_create_group(self): user = factories.User() _clear_activities() group = factories.Group(user=user) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "new group" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == group["id"] assert activities[0]["data"]["group"]["title"] == group["title"] def test_delete_group_using_group_delete(self): user = factories.User() group = factories.Group(user=user) _clear_activities() helpers.call_action( "group_delete", context={"user": user["name"]}, **group ) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "deleted group" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == group["id"] assert activities[0]["data"]["group"]["title"] == group["title"] def test_delete_group_by_updating_state(self): user = factories.User() group = factories.Group(user=user) _clear_activities() group["state"] = "deleted" helpers.call_action( "group_update", context={"user": user["name"]}, **group ) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "deleted group" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == group["id"] assert activities[0]["data"]["group"]["title"] == group["title"] def test_create_organization(self): user = factories.User() _clear_activities() org = factories.Organization(user=user) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "new organization" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == org["id"] assert activities[0]["data"]["group"]["title"] == org["title"] def test_delete_org_using_organization_delete(self): user = factories.User() org = factories.Organization(user=user) _clear_activities() helpers.call_action( "organization_delete", context={"user": user["name"]}, **org ) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "deleted organization" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == org["id"] assert activities[0]["data"]["group"]["title"] == org["title"] def test_delete_org_by_updating_state(self): user = factories.User() org = factories.Organization(user=user) _clear_activities() org["state"] = "deleted" helpers.call_action( "organization_update", context={"user": user["name"]}, **org ) activities = helpers.call_action("user_activity_list", id=user["id"]) assert [activity["activity_type"] for activity in activities] == [ "deleted organization" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == org["id"] assert activities[0]["data"]["group"]["title"] == org["title"] def _create_bulk_user_activities(self, count): from ckan import model user = factories.User() objs = [ model.Activity( user_id=user["id"], object_id=None, activity_type=None, data=None, ) for _ in range(count) ] model.Session.add_all(objs) model.repo.commit_and_remove() return user["id"] def test_limit_default(self): id = self._create_bulk_user_activities(35) results = helpers.call_action("user_activity_list", id=id) assert len(results) == 31 # i.e. default value @pytest.mark.ckan_config("ckan.activity_list_limit", "5") def test_limit_configured(self): id = self._create_bulk_user_activities(7) results = helpers.call_action("user_activity_list", id=id) assert len(results) == 5 # i.e. ckan.activity_list_limit @pytest.mark.ckan_config("ckan.activity_list_limit", "5") @pytest.mark.ckan_config("ckan.activity_list_limit_max", "7") def test_limit_hits_max(self): id = self._create_bulk_user_activities(9) results = helpers.call_action("user_activity_list", id=id, limit="9") assert len(results) == 7 # i.e. ckan.activity_list_limit_max @pytest.mark.usefixtures("clean_db") class TestGroupActivityList(object): def test_create_group(self): user = factories.User() group = factories.Group(user=user) activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [ "new group" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == group["id"] assert activities[0]["data"]["group"]["title"] == group["title"] def test_change_group(self): user = factories.User() _clear_activities() group = factories.Group(user=user) original_title = group["title"] group["title"] = "Group with changed title" helpers.call_action( "group_update", context={"user": user["name"]}, **group ) activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [ "changed group", "new group", ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == group["id"] assert ( activities[0]["data"]["group"]["title"] == "Group with changed title" ) # the old group still has the old title assert activities[1]["activity_type"] == "new group" assert activities[1]["data"]["group"]["title"] == original_title def test_create_dataset(self): user = factories.User() group = factories.Group(user=user) _clear_activities() dataset = factories.Dataset(groups=[{"id": group["id"]}], user=user) activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [ "new package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset(self): user = factories.User() group = factories.Group(user=user) _clear_activities() dataset = factories.Dataset(groups=[{"id": group["id"]}], user=user) original_title = dataset["title"] dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [ "changed package", "new package", ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] # the old dataset still has the old title assert activities[1]["activity_type"] == "new package" assert activities[1]["data"]["package"]["title"] == original_title def test_change_dataset_add_extra(self): user = factories.User() group = factories.Group(user=user) dataset = factories.Dataset(groups=[{"id": group["id"]}], user=user) _clear_activities() dataset["extras"].append(dict(key="rating", value="great")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset_add_tag(self): user = factories.User() group = factories.Group(user=user) dataset = factories.Dataset(groups=[{"id": group["id"]}], user=user) _clear_activities() dataset["tags"].append(dict(name="checked")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_delete_dataset(self): user = factories.User() group = factories.Group(user=user) dataset = factories.Dataset(groups=[{"id": group["id"]}], user=user) _clear_activities() helpers.call_action( "package_delete", context={"user": user["name"]}, **dataset ) activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [ "deleted package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset_that_used_to_be_in_the_group(self): user = factories.User() group = factories.Group(user=user) dataset = factories.Dataset(groups=[{"id": group["id"]}], user=user) # remove the dataset from the group dataset["groups"] = [] helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) _clear_activities() # edit the dataset dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) # dataset change should not show up in its former group activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [] def test_delete_dataset_that_used_to_be_in_the_group(self): user = factories.User() group = factories.Group(user=user) dataset = factories.Dataset(groups=[{"id": group["id"]}], user=user) # remove the dataset from the group dataset["groups"] = [] dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) _clear_activities() helpers.call_action( "package_delete", context={"user": user["name"]}, **dataset ) # NOTE: # ideally the dataset's deletion would not show up in its old group # but it can't be helped without _group_activity_query getting very # complicated activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [ "deleted package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def _create_bulk_group_activities(self, count): group = factories.Group() from ckan import model user = factories.User() objs = [ model.Activity( user_id=user["id"], object_id=group["id"], activity_type=None, data=None, ) for _ in range(count) ] model.Session.add_all(objs) model.repo.commit_and_remove() return group["id"] def test_limit_default(self): id = self._create_bulk_group_activities(35) results = helpers.call_action("group_activity_list", id=id) assert len(results) == 31 # i.e. default value @pytest.mark.ckan_config("ckan.activity_list_limit", "5") def test_limit_configured(self): id = self._create_bulk_group_activities(7) results = helpers.call_action("group_activity_list", id=id) assert len(results) == 5 # i.e. ckan.activity_list_limit @pytest.mark.ckan_config("ckan.activity_list_limit", "5") @pytest.mark.ckan_config("ckan.activity_list_limit_max", "7") def test_limit_hits_max(self): id = self._create_bulk_group_activities(9) results = helpers.call_action("group_activity_list", id=id, limit="9") assert len(results) == 7 # i.e. ckan.activity_list_limit_max def test_normal_user_doesnt_see_hidden_activities(self): # activity is 'hidden' because group is created by site_user group = factories.Group() activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [] def test_sysadmin_user_doesnt_see_hidden_activities_by_default(self): # activity is 'hidden' because group is created by site_user group = factories.Group() activities = helpers.call_action("group_activity_list", id=group["id"]) assert [activity["activity_type"] for activity in activities] == [] def test_sysadmin_user_can_include_hidden_activities(self): # activity is 'hidden' because group is created by site_user group = factories.Group() activities = helpers.call_action( "group_activity_list", include_hidden_activity=True, id=group["id"] ) assert [activity["activity_type"] for activity in activities] == [ "new group" ] @pytest.mark.usefixtures("clean_db") class TestOrganizationActivityList(object): def test_create_organization(self): user = factories.User() org = factories.Organization(user=user) activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "new organization" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == org["id"] assert activities[0]["data"]["group"]["title"] == org["title"] def test_change_organization(self): user = factories.User() _clear_activities() org = factories.Organization(user=user) original_title = org["title"] org["title"] = "Organization with changed title" helpers.call_action( "organization_update", context={"user": user["name"]}, **org ) activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed organization", "new organization", ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == org["id"] assert ( activities[0]["data"]["group"]["title"] == "Organization with changed title" ) # the old org still has the old title assert activities[1]["activity_type"] == "new organization" assert activities[1]["data"]["group"]["title"] == original_title def test_create_dataset(self): user = factories.User() org = factories.Organization(user=user) _clear_activities() dataset = factories.Dataset(owner_org=org["id"], user=user) activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "new package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset(self): user = factories.User() org = factories.Organization(user=user) _clear_activities() dataset = factories.Dataset(owner_org=org["id"], user=user) original_title = dataset["title"] dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package", "new package", ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] # the old dataset still has the old title assert activities[1]["activity_type"] == "new package" assert activities[1]["data"]["package"]["title"] == original_title def test_change_dataset_add_tag(self): user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(owner_org=org["id"], user=user) _clear_activities() dataset["tags"].append(dict(name="checked")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_delete_dataset(self): user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(owner_org=org["id"], user=user) _clear_activities() helpers.call_action( "package_delete", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "deleted package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset_that_used_to_be_in_the_org(self): user = factories.User() org = factories.Organization(user=user) org2 = factories.Organization(user=user) dataset = factories.Dataset(owner_org=org["id"], user=user) # remove the dataset from the org dataset["owner_org"] = org2["id"] helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) _clear_activities() # edit the dataset dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) # dataset change should not show up in its former group activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [] def test_delete_dataset_that_used_to_be_in_the_org(self): user = factories.User() org = factories.Organization(user=user) org2 = factories.Organization(user=user) dataset = factories.Dataset(owner_org=org["id"], user=user) # remove the dataset from the group dataset["owner_org"] = org2["id"] helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) _clear_activities() dataset["title"] = "Dataset with changed title" helpers.call_action( "package_delete", context={"user": user["name"]}, **dataset ) # dataset deletion should not show up in its former org activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [] def _create_bulk_org_activities(self, count): org = factories.Organization() from ckan import model user = factories.User() objs = [ model.Activity( user_id=user["id"], object_id=org["id"], activity_type=None, data=None, ) for _ in range(count) ] model.Session.add_all(objs) model.repo.commit_and_remove() return org["id"] def test_limit_default(self): id = self._create_bulk_org_activities(35) results = helpers.call_action("organization_activity_list", id=id) assert len(results) == 31 # i.e. default value @pytest.mark.ckan_config("ckan.activity_list_limit", "5") def test_limit_configured(self): id = self._create_bulk_org_activities(7) results = helpers.call_action("organization_activity_list", id=id) assert len(results) == 5 # i.e. ckan.activity_list_limit @pytest.mark.ckan_config("ckan.activity_list_limit", "5") @pytest.mark.ckan_config("ckan.activity_list_limit_max", "7") def test_limit_hits_max(self): id = self._create_bulk_org_activities(9) results = helpers.call_action( "organization_activity_list", id=id, limit="9" ) assert len(results) == 7 # i.e. ckan.activity_list_limit_max def test_normal_user_doesnt_see_hidden_activities(self): # activity is 'hidden' because org is created by site_user org = factories.Organization() activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [] def test_sysadmin_user_doesnt_see_hidden_activities_by_default(self): # activity is 'hidden' because org is created by site_user org = factories.Organization() activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [] def test_sysadmin_user_can_include_hidden_activities(self): # activity is 'hidden' because org is created by site_user org = factories.Organization() activities = helpers.call_action( "organization_activity_list", include_hidden_activity=True, id=org["id"], ) assert [activity["activity_type"] for activity in activities] == [ "new organization" ] @pytest.mark.usefixtures("clean_db") class TestRecentlyChangedPackagesActivityList(object): def test_create_dataset(self): user = factories.User() org = factories.Dataset(user=user) activities = helpers.call_action( "recently_changed_packages_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "new package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == org["id"] assert activities[0]["data"]["package"]["title"] == org["title"] def test_change_dataset(self): user = factories.User() org = factories.Organization(user=user) _clear_activities() dataset = factories.Dataset(owner_org=org["id"], user=user) original_title = dataset["title"] dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "recently_changed_packages_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package", "new package", ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] # the old dataset still has the old title assert activities[1]["activity_type"] == "new package" assert activities[1]["data"]["package"]["title"] == original_title def test_change_dataset_add_extra(self): user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(owner_org=org["id"], user=user) _clear_activities() dataset["extras"].append(dict(key="rating", value="great")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "recently_changed_packages_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_change_dataset_add_tag(self): user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(owner_org=org["id"], user=user) _clear_activities() dataset["tags"].append(dict(name="checked")) helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "recently_changed_packages_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "changed package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def test_delete_dataset(self): user = factories.User() org = factories.Organization(user=user) dataset = factories.Dataset(owner_org=org["id"], user=user) _clear_activities() helpers.call_action( "package_delete", context={"user": user["name"]}, **dataset ) activities = helpers.call_action( "organization_activity_list", id=org["id"] ) assert [activity["activity_type"] for activity in activities] == [ "deleted package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] def _create_bulk_package_activities(self, count): from ckan import model user = factories.User() objs = [ model.Activity( user_id=user["id"], object_id=None, activity_type="new_package", data=None, ) for _ in range(count) ] model.Session.add_all(objs) model.repo.commit_and_remove() def test_limit_default(self): self._create_bulk_package_activities(35) results = helpers.call_action( "recently_changed_packages_activity_list" ) assert len(results) == 31 # i.e. default value @pytest.mark.ckan_config("ckan.activity_list_limit", "5") def test_limit_configured(self): self._create_bulk_package_activities(7) results = helpers.call_action( "recently_changed_packages_activity_list" ) assert len(results) == 5 # i.e. ckan.activity_list_limit @pytest.mark.ckan_config("ckan.activity_list_limit", "5") @pytest.mark.ckan_config("ckan.activity_list_limit_max", "7") def test_limit_hits_max(self): self._create_bulk_package_activities(9) results = helpers.call_action( "recently_changed_packages_activity_list", limit="9" ) assert len(results) == 7 # i.e. ckan.activity_list_limit_max @pytest.mark.usefixtures("clean_db") class TestDashboardActivityList(object): def test_create_user(self): user = factories.User() activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [activity["activity_type"] for activity in activities] == [ "new user" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == user["id"] # user's own activities are always marked ``'is_new': False`` assert not activities[0]["is_new"] def test_create_dataset(self): user = factories.User() _clear_activities() dataset = factories.Dataset(user=user) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [activity["activity_type"] for activity in activities] == [ "new package" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == dataset["id"] assert activities[0]["data"]["package"]["title"] == dataset["title"] # user's own activities are always marked ``'is_new': False`` assert not activities[0]["is_new"] def test_create_group(self): user = factories.User() _clear_activities() group = factories.Group(user=user) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [activity["activity_type"] for activity in activities] == [ "new group" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == group["id"] assert activities[0]["data"]["group"]["title"] == group["title"] # user's own activities are always marked ``'is_new': False`` assert not activities[0]["is_new"] def test_create_organization(self): user = factories.User() _clear_activities() org = factories.Organization(user=user) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [activity["activity_type"] for activity in activities] == [ "new organization" ] assert activities[0]["user_id"] == user["id"] assert activities[0]["object_id"] == org["id"] assert activities[0]["data"]["group"]["title"] == org["title"] # user's own activities are always marked ``'is_new': False`` assert not activities[0]["is_new"] def _create_bulk_package_activities(self, count): user = factories.User() from ckan import model objs = [ model.Activity( user_id=user["id"], object_id=None, activity_type=None, data=None, ) for _ in range(count) ] model.Session.add_all(objs) model.repo.commit_and_remove() return user["id"] def test_limit_default(self): id = self._create_bulk_package_activities(35) results = helpers.call_action( "dashboard_activity_list", context={"user": id} ) assert len(results) == 31 # i.e. default value @pytest.mark.ckan_config("ckan.activity_list_limit", "5") def test_limit_configured(self): id = self._create_bulk_package_activities(7) results = helpers.call_action( "dashboard_activity_list", context={"user": id} ) assert len(results) == 5 # i.e. ckan.activity_list_limit @pytest.mark.ckan_config("ckan.activity_list_limit", "5") @pytest.mark.ckan_config("ckan.activity_list_limit_max", "7") def test_limit_hits_max(self): id = self._create_bulk_package_activities(9) results = helpers.call_action( "dashboard_activity_list", limit="9", context={"user": id} ) assert len(results) == 7 # i.e. ckan.activity_list_limit_max @pytest.mark.usefixtures("clean_db") class TestDashboardNewActivities(object): def test_users_own_activities(self): # a user's own activities are not shown as "new" user = factories.User() dataset = factories.Dataset(user=user) dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": user["name"]}, **dataset ) helpers.call_action( "package_delete", context={"user": user["name"]}, **dataset ) group = factories.Group(user=user) group["title"] = "Group with changed title" helpers.call_action( "group_update", context={"user": user["name"]}, **group ) helpers.call_action( "group_delete", context={"user": user["name"]}, **group ) new_activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [activity["is_new"] for activity in new_activities] == [ False ] * 7 new_activities_count = helpers.call_action( "dashboard_new_activities_count", context={"user": user["id"]} ) assert new_activities_count == 0 def test_activities_by_a_followed_user(self): user = factories.User() followed_user = factories.User() helpers.call_action( "follow_user", context={"user": user["name"]}, **followed_user ) _clear_activities() dataset = factories.Dataset(user=followed_user) dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": followed_user["name"]}, **dataset, ) helpers.call_action( "package_delete", context={"user": followed_user["name"]}, **dataset, ) group = factories.Group(user=followed_user) group["title"] = "Group with changed title" helpers.call_action( "group_update", context={"user": followed_user["name"]}, **group ) helpers.call_action( "group_delete", context={"user": followed_user["name"]}, **group ) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [ activity["activity_type"] for activity in activities[::-1] ] == [ "new package", "changed package", "deleted package", "new group", "changed group", "deleted group", ] assert [activity["is_new"] for activity in activities] == [True] * 6 assert ( helpers.call_action( "dashboard_new_activities_count", context={"user": user["id"]} ) == 6 ) def test_activities_on_a_followed_dataset(self): user = factories.User() another_user = factories.Sysadmin() _clear_activities() dataset = factories.Dataset(user=another_user) helpers.call_action( "follow_dataset", context={"user": user["name"]}, **dataset ) dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": another_user["name"]}, **dataset ) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [ (activity["activity_type"], activity["is_new"]) for activity in activities[::-1] ] == [ ("new package", True), # NB The 'new package' activity is in our activity stream and shows # as "new" even though it occurred before we followed it. This is # known & intended design. ("changed package", True), ] assert ( helpers.call_action( "dashboard_new_activities_count", context={"user": user["id"]} ) == 2 ) def test_activities_on_a_followed_group(self): user = factories.User() another_user = factories.Sysadmin() _clear_activities() group = factories.Group(user=user) helpers.call_action( "follow_group", context={"user": user["name"]}, **group ) group["title"] = "Group with changed title" helpers.call_action( "group_update", context={"user": another_user["name"]}, **group ) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [ (activity["activity_type"], activity["is_new"]) for activity in activities[::-1] ] == [ ("new group", False), # False because user did this one herself ("changed group", True), ] assert ( helpers.call_action( "dashboard_new_activities_count", context={"user": user["id"]} ) == 1 ) def test_activities_on_a_dataset_in_a_followed_group(self): user = factories.User() another_user = factories.Sysadmin() group = factories.Group(user=user) helpers.call_action( "follow_group", context={"user": user["name"]}, **group ) _clear_activities() dataset = factories.Dataset( groups=[{"name": group["name"]}], user=another_user ) dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": another_user["name"]}, **dataset ) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [ (activity["activity_type"], activity["is_new"]) for activity in activities[::-1] ] == [("new package", True), ("changed package", True)] assert ( helpers.call_action( "dashboard_new_activities_count", context={"user": user["id"]} ) == 2 ) def test_activities_on_a_dataset_in_a_followed_org(self): user = factories.User() another_user = factories.Sysadmin() org = factories.Organization(user=user) helpers.call_action( "follow_group", context={"user": user["name"]}, **org ) _clear_activities() dataset = factories.Dataset(owner_org=org["id"], user=another_user) dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": another_user["name"]}, **dataset ) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [ (activity["activity_type"], activity["is_new"]) for activity in activities[::-1] ] == [("new package", True), ("changed package", True)] assert ( helpers.call_action( "dashboard_new_activities_count", context={"user": user["id"]} ) == 2 ) def test_activities_that_should_not_show(self): user = factories.User() _clear_activities() # another_user does some activity unconnected with user another_user = factories.Sysadmin() group = factories.Group(user=another_user) dataset = factories.Dataset( groups=[{"name": group["name"]}], user=another_user ) dataset["title"] = "Dataset with changed title" helpers.call_action( "package_update", context={"user": another_user["name"]}, **dataset ) activities = helpers.call_action( "dashboard_activity_list", context={"user": user["id"]} ) assert [ (activity["activity_type"], activity["is_new"]) for activity in activities[::-1] ] == [] assert ( helpers.call_action( "dashboard_new_activities_count", context={"user": user["id"]} ) == 0 ) @pytest.mark.ckan_config("ckan.activity_list_limit", "5") def test_maximum_number_of_new_activities(self): """Test that the new activities count does not go higher than 5, even if there are more than 5 new activities from the user's followers.""" user = factories.User() another_user = factories.Sysadmin() dataset = factories.Dataset() helpers.call_action( "follow_dataset", context={"user": user["name"]}, **dataset ) for n in range(0, 7): dataset["notes"] = "Updated {n} times".format(n=n) helpers.call_action( "package_update", context={"user": another_user["name"]}, **dataset, ) assert ( helpers.call_action( "dashboard_new_activities_count", context={"user": user["id"]} ) == 5 ) @pytest.mark.usefixtures("non_clean_db") class TestApiToken(object): @pytest.mark.parametrize("num_tokens", [0, 1, 2, 5]) def test_token_list(self, num_tokens): from ckan.lib.api_token import decode user = factories.User() ids = [] for _ in range(num_tokens): data = helpers.call_action( "api_token_create", context={"model": model, "user": user["name"]}, user=user["name"], name="token-name", ) token = data["token"] ids.append(decode(token)["jti"]) tokens = helpers.call_action( "api_token_list", context={"model": model, "user": user["name"]}, user=user["name"], ) assert sorted([t["id"] for t in tokens]) == sorted(ids) @pytest.mark.usefixtures("non_clean_db") @pytest.mark.ckan_config("ckan.auth.allow_dataset_collaborators", False) def test_package_collaborator_list_when_config_disabled(): dataset = factories.Dataset() with pytest.raises(logic.ValidationError): helpers.call_action("package_collaborator_list", id=dataset["id"]) @pytest.mark.usefixtures("clean_db") @pytest.mark.ckan_config("ckan.auth.allow_dataset_collaborators", True) class TestPackageMemberList(object): def test_list(self): dataset = factories.Dataset() user1 = factories.User() capacity1 = "editor" user2 = factories.User() capacity2 = "member" helpers.call_action( "package_collaborator_create", id=dataset["id"], user_id=user1["id"], capacity=capacity1, ) helpers.call_action( "package_collaborator_create", id=dataset["id"], user_id=user2["id"], capacity=capacity2, ) members = helpers.call_action( "package_collaborator_list", id=dataset["id"] ) assert len(members) == 2 assert members[0]["package_id"] == dataset["id"] assert members[0]["user_id"] == user1["id"] assert members[0]["capacity"] == capacity1 assert members[1]["package_id"] == dataset["id"] assert members[1]["user_id"] == user2["id"] assert members[1]["capacity"] == capacity2 def test_list_with_capacity(self): dataset = factories.Dataset() user1 = factories.User() capacity1 = "editor" user2 = factories.User() capacity2 = "member" helpers.call_action( "package_collaborator_create", id=dataset["id"], user_id=user1["id"], capacity=capacity1, ) helpers.call_action( "package_collaborator_create", id=dataset["id"], user_id=user2["id"], capacity=capacity2, ) members = helpers.call_action( "package_collaborator_list", id=dataset["id"], capacity="member" ) assert len(members) == 1 assert members[0]["package_id"] == dataset["id"] assert members[0]["user_id"] == user2["id"] assert members[0]["capacity"] == capacity2 def test_list_dataset_not_found(self): with pytest.raises(logic.NotFound): helpers.call_action("package_collaborator_list", id="xxx") def test_list_wrong_capacity(self): dataset = factories.Dataset() user = factories.User() capacity = "unknown" with pytest.raises(logic.ValidationError): helpers.call_action( "package_collaborator_list", id=dataset["id"], user_id=user["id"], capacity=capacity, ) def test_list_for_user(self): dataset1 = factories.Dataset() dataset2 = factories.Dataset() user = factories.User() capacity1 = "editor" capacity2 = "member" helpers.call_action( "package_collaborator_create", id=dataset1["id"], user_id=user["id"], capacity=capacity1, ) helpers.call_action( "package_collaborator_create", id=dataset2["id"], user_id=user["id"], capacity=capacity2, ) datasets = helpers.call_action( "package_collaborator_list_for_user", id=user["id"] ) assert len(datasets) == 2 assert datasets[0]["package_id"] == dataset1["id"] assert datasets[0]["capacity"] == capacity1 assert datasets[1]["package_id"] == dataset2["id"] assert datasets[1]["capacity"] == capacity2 def test_list_for_user_with_capacity(self): dataset1 = factories.Dataset() dataset2 = factories.Dataset() user = factories.User() capacity1 = "editor" capacity2 = "member" helpers.call_action( "package_collaborator_create", id=dataset1["id"], user_id=user["id"], capacity=capacity1, ) helpers.call_action( "package_collaborator_create", id=dataset2["id"], user_id=user["id"], capacity=capacity2, ) datasets = helpers.call_action( "package_collaborator_list_for_user", id=user["id"], capacity="editor", ) assert len(datasets) == 1 assert datasets[0]["package_id"] == dataset1["id"] assert datasets[0]["capacity"] == capacity1 def test_list_for_user_user_not_found(self): with pytest.raises(logic.NotAuthorized): helpers.call_action("package_collaborator_list_for_user", id="xxx") def test_list_for_user_wrong_capacity(self): user = factories.User() capacity = "unknown" with pytest.raises(logic.ValidationError): helpers.call_action( "package_collaborator_list_for_user", id=user["id"], capacity=capacity, ) @pytest.mark.usefixtures("clean_db", "clean_index") @pytest.mark.ckan_config("ckan.auth.allow_dataset_collaborators", True) class TestCollaboratorsSearch(object): def test_search_results_editor(self): org = factories.Organization() dataset1 = factories.Dataset( name="test1", private=True, owner_org=org["id"] ) dataset2 = factories.Dataset(name="test2") user = factories.User() context = {"user": user["name"], "ignore_auth": False} results = helpers.call_action( "package_search", context=context, q="*:*", include_private=True ) assert results["count"] == 1 assert results["results"][0]["id"] == dataset2["id"] helpers.call_action( "package_collaborator_create", id=dataset1["id"], user_id=user["id"], capacity="editor", ) results = helpers.call_action( "package_search", context=context, q="*:*", include_private=True, sort="name asc", ) assert results["count"] == 2 assert results["results"][0]["id"] == dataset1["id"] assert results["results"][1]["id"] == dataset2["id"] def test_search_results_member(self): org = factories.Organization() dataset1 = factories.Dataset( name="test1", private=True, owner_org=org["id"] ) dataset2 = factories.Dataset(name="test2") user = factories.User() context = {"user": user["name"], "ignore_auth": False} results = helpers.call_action( "package_search", context=context, q="*:*", include_private=True ) assert results["count"] == 1 assert results["results"][0]["id"] == dataset2["id"] helpers.call_action( "package_collaborator_create", id=dataset1["id"], user_id=user["id"], capacity="member", ) results = helpers.call_action( "package_search", context=context, q="*:*", include_private=True, sort="name asc", ) assert results["count"] == 2 assert results["results"][0]["id"] == dataset1["id"] assert results["results"][1]["id"] == dataset2["id"] @pytest.mark.usefixtures("clean_db") class TestResourceSearch(object): def test_required_fields(self): with pytest.raises(logic.ValidationError): helpers.call_action("resource_search") helpers.call_action("resource_search", query="name:*") def test_base_search(self): factories.Resource(name="one") factories.Resource(name="two") result = helpers.call_action("resource_search", query="name:three") assert not result["count"] result = helpers.call_action("resource_search", query="name:one") assert result["count"] == 1 result = helpers.call_action("resource_search", query="name:") assert result["count"] == 2 def test_date_search(self): res = factories.Resource() result = helpers.call_action( "resource_search", query="created:" + res["created"] ) assert result["count"] == 1 def test_number_search(self): factories.Resource(size=10) result = helpers.call_action("resource_search", query="size:10") assert result["count"] == 1 def test_resource_search_across_multiple_fields(self): factories.Resource(description="indexed resource", format="json") result = helpers.call_action( "resource_search", query=["description:index", "format:json"] ) assert result["count"] == 1 resource = result["results"][0] assert "index" in resource["description"].lower() assert "json" in resource["format"].lower() def test_resource_search_test_percentage_is_escaped(self): factories.Resource(description="indexed resource", format="json") result = helpers.call_action( "resource_search", query="description:index%" ) assert result == {"count": 0, "results": []} @pytest.mark.usefixtures("non_clean_db") class TestUserPluginExtras(object): def test_returned_if_sysadmin_and_include_plugin_extras_only(self): sysadmin = factories.Sysadmin() user = factories.User(plugin_extras={"plugin1": {"key1": "value1"}}) context = {"user": sysadmin["name"], "ignore_auth": False} user = helpers.call_action( "user_show", context=context, id=user["id"], include_plugin_extras=True, ) assert user["plugin_extras"] == {"plugin1": {"key1": "value1"}} context = {"user": sysadmin["name"], "ignore_auth": False} user = helpers.call_action("user_show", context=context, id=user["id"]) assert "plugin_extras" not in user context = {"user": user["name"], "ignore_auth": False} user = helpers.call_action( "user_show", context=context, id=user["id"], include_plugin_extras=True, ) assert "plugin_extras" not in user @pytest.mark.usefixtures("non_clean_db") class TestGroupPackageShow: def test_group_package_show(self): group = factories.Group() factories.Dataset() pkg = factories.Dataset(groups=[{"id": group["id"]}]) group_packages = helpers.call_action( "group_package_show", id=group["id"] ) assert len(group_packages) == 1 assert group_packages[0]["name"] == pkg["name"] @pytest.mark.usefixtures("non_clean_db") class TestGetSiteUser: def test_get_site_user_not_authorized(self, ckan_config): with pytest.raises(logic.NotAuthorized): helpers.call_auth("get_site_user", {"model": model, "user": ""}) assert helpers.call_auth( "get_site_user", {"model": model, "user": "", "ignore_auth": True} ) @pytest.mark.usefixtures("clean_db", "clean_index") class TestPackageList: @pytest.mark.usefixtures("app") def test_package_list(self): pkg1 = factories.Dataset() pkg2 = factories.Dataset() packages = helpers.call_action("package_list") assert len(packages) == 2 assert set(packages) == {pkg1["name"], pkg2["name"]} def test_package_list_private(self): org = factories.Organization() pkg1 = factories.Dataset() factories.Dataset(private=True, owner_org=org["id"]) packages = helpers.call_action("package_list") assert packages == [pkg1["name"]]
35.369017
132
0.595441
7942244ee6750fcfaa6511d8ffb37d49cd85d18d
12,905
py
Python
pyramid_webassets/__init__.py
Deimos/pyramid_webassets
6ef5febbdda4b8fd9f9055e973cf6daf07f32268
[ "MIT" ]
18
2015-08-15T09:23:00.000Z
2021-01-23T15:23:56.000Z
pyramid_webassets/__init__.py
Deimos/pyramid_webassets
6ef5febbdda4b8fd9f9055e973cf6daf07f32268
[ "MIT" ]
9
2015-01-14T19:18:01.000Z
2018-11-03T20:40:50.000Z
pyramid_webassets/__init__.py
Deimos/pyramid_webassets
6ef5febbdda4b8fd9f9055e973cf6daf07f32268
[ "MIT" ]
10
2015-02-13T19:58:12.000Z
2021-05-10T13:26:50.000Z
from contextlib import closing from os import path, makedirs import fileinput import json import six from pyramid.path import AssetResolver from pyramid.settings import asbool, truthy from pyramid.threadlocal import get_current_request from webassets import Bundle from webassets import __version__ as webassets_version from webassets.env import Environment, Resolver from webassets.exceptions import BundleError from webassets.loaders import YAMLLoader from zope.interface import Interface USING_WEBASSETS_CONTEXT = webassets_version > (0, 9) falsy = frozenset(('f', 'false', 'n', 'no', 'off', '0')) booly = frozenset(list(truthy) + list(falsy)) auto_booly = frozenset(('true', 'false')) def maybebool(value): ''' If `value` is a string type, attempts to convert it to a boolean if it looks like it might be one, otherwise returns the value unchanged. The difference between this and :func:`pyramid.settings.asbool` is how non-bools are handled: this returns the original value, whereas `asbool` returns False. ''' if isinstance(value, six.string_types) and value.lower() in booly: return asbool(value) # pragma: no cover return value def text(value): if type(value) is six.binary_type: return value.decode('utf-8') else: return value class PyramidResolver(Resolver): def __init__(self): super(PyramidResolver, self).__init__() self.resolver = AssetResolver(None) def _split_spec(self, item): if ':' in item: package, subpath = item.split(':', 1) return (package, subpath) else: return (None, item) def _resolve_spec(self, spec): package, subpath = self._split_spec(spec) try: pkgpath = self.resolver.resolve(package + ':').abspath() except ImportError as e: raise BundleError(e) else: return path.join(pkgpath, subpath) def search_for_source(self, ctx, item): package, subpath = self._split_spec(item) if package is None: if USING_WEBASSETS_CONTEXT: return super(PyramidResolver, self).search_for_source( ctx, item ) else: # pragma: no cover return super(PyramidResolver, self).search_for_source( item ) else: pkgpath = self._resolve_spec(package + ':') return self.consider_single_directory(pkgpath, subpath) def resolve_source_to_url(self, ctx, filepath, item): request = get_current_request() # Use the filepath to reconstruct the item without globs package, _ = self._split_spec(item) if package is not None: pkgdir = self._resolve_spec(package + ':') if filepath.startswith(pkgdir): item = '{}:{}'.format(package, filepath[len(pkgdir):]) # Attempt to resolve the filepath as passed (but after versioning). # If this fails, it may be because the static route was registered # with an asset spec. In this case, the original item may also be # an asset spec contained therein, so try to resolve that. if request is not None: for attempt in (filepath, item): try: return request.static_url(attempt) except ValueError: pass if USING_WEBASSETS_CONTEXT: return super(PyramidResolver, self).resolve_source_to_url( ctx, filepath, item ) else: # pragma: no cover return super(PyramidResolver, self).resolve_source_to_url( filepath, item ) def resolve_output_to_path(self, ctx, target, bundle): package, filepath = self._split_spec(target) if package is not None: pkgpath = self._resolve_spec(package + ':') target = path.join(pkgpath, filepath) if USING_WEBASSETS_CONTEXT: return super(PyramidResolver, self).resolve_output_to_path( ctx, target, bundle ) else: # pragma: no cover return super(PyramidResolver, self).resolve_output_to_path( target, bundle ) def resolve_output_to_url(self, ctx, item): request = get_current_request() if not path.isabs(item): if ':' not in item: if 'asset_base' in ctx.config: if ctx.config['asset_base'].endswith(':'): item = ctx.config['asset_base'] + item else: item = path.join(ctx.config['asset_base'], item) else: item = path.join(ctx.directory, item) if ':' in item: filepath = self._resolve_spec(item) else: filepath = item if request is not None: for attempt in (filepath, item): try: return request.static_url(item) except ValueError: pass if USING_WEBASSETS_CONTEXT: return super(PyramidResolver, self).resolve_output_to_url( ctx, filepath ) else: # pragma: no cover return super(PyramidResolver, self).resolve_output_to_url(filepath) class LegacyPyramidResolver(PyramidResolver): # pragma: no cover def __init__(self, env): Resolver.__init__(self, env) self.resolver = AssetResolver(None) def search_for_source(self, *args): return PyramidResolver.search_for_source(self, self.env, *args) def resolve_source_to_url(self, *args): return PyramidResolver.resolve_source_to_url(self, self.env, *args) def resolve_output_to_path(self, *args): return PyramidResolver.resolve_output_to_path(self, self.env, *args) def resolve_output_to_url(self, *args): return PyramidResolver.resolve_output_to_url(self, self.env, *args) class Environment(Environment): @property def resolver_class(self): if USING_WEBASSETS_CONTEXT: return PyramidResolver else: # pragma: no cover return LegacyPyramidResolver class IWebAssetsEnvironment(Interface): pass def add_webasset(config, name, bundle): asset_env = get_webassets_env(config) asset_env.register(name, bundle) def get_webassets_env(config): return config.registry.queryUtility(IWebAssetsEnvironment) def get_webassets_env_from_settings(settings, prefix='webassets'): """This function will take all webassets.* parameters, and call the ``Environment()`` constructor with kwargs passed in. The only two parameters that are not passed as keywords are: * base_dir * base_url which are passed in positionally. Read the ``WebAssets`` docs for ``Environment`` for more details. """ # Make a dictionary of the webassets.* elements... kwargs = {} # assets settings cut_prefix = len(prefix) + 1 for k in settings: if k.startswith(prefix): val = settings[k] if isinstance(val, six.string_types): if val.lower() in auto_booly: val = asbool(val) elif val.lower().startswith('json:') and k[cut_prefix:] != 'manifest': val = json.loads(val[5:]) kwargs[k[cut_prefix:]] = val if 'base_dir' not in kwargs: raise Exception("You need to provide webassets.base_dir in your configuration") if 'base_url' not in kwargs: raise Exception("You need to provide webassets.base_url in your configuration") asset_dir = kwargs.pop('base_dir') asset_url = kwargs.pop('base_url') if ':' in asset_dir: try: resolved_dir = AssetResolver(None).resolve(asset_dir).abspath() except ImportError: pass else: # Store the original asset spec to use later kwargs['asset_base'] = asset_dir asset_dir = resolved_dir if not asset_url.startswith('/'): if six.moves.urllib.parse.urlparse(asset_url).scheme == '': asset_url = '/' + asset_url if 'debug' in kwargs: kwargs['debug'] = maybebool(kwargs['debug']) if 'cache' in kwargs: cache = kwargs['cache'] = maybebool(kwargs['cache']) if cache and isinstance(cache, six.string_types) and not path.isdir(cache): makedirs(cache) # 'updater' is just passed in... if 'auto_build' in kwargs: kwargs['auto_build'] = maybebool(kwargs['auto_build']) if 'jst_compiler' in kwargs: kwargs['JST_COMPILER'] = kwargs.pop('jst_compiler') if 'jst_namespace' in kwargs: kwargs['JST_NAMESPACE'] = kwargs.pop('jst_namespace') if 'manifest' in kwargs: kwargs['manifest'] = maybebool(kwargs['manifest']) if 'url_expire' in kwargs: kwargs['url_expire'] = maybebool(kwargs['url_expire']) if 'static_view' in kwargs: kwargs['static_view'] = asbool(kwargs['static_view']) else: kwargs['static_view'] = False if 'cache_max_age' in kwargs: kwargs['cache_max_age'] = int(kwargs.pop('cache_max_age')) else: kwargs['cache_max_age'] = None if 'load_path' in kwargs: # force load_path to be an array and split on whitespace if not isinstance(kwargs['load_path'], list): kwargs['load_path'] = kwargs['load_path'].split() paths = kwargs.pop('paths', None) if 'bundles' in kwargs: if isinstance(kwargs['bundles'], six.string_types): kwargs['bundles'] = kwargs['bundles'].split() bundles = kwargs.pop('bundles', None) assets_env = Environment(asset_dir, asset_url, **kwargs) if paths is not None: for map_path, map_url in json.loads(paths).items(): assets_env.append_path(map_path, map_url) def yaml_stream(fname, mode): if path.exists(fname): return open(fname, mode) else: return assets_env.resolver.resolver.resolve(fname).stream() if isinstance(bundles, list): fnames = reversed(bundles) fin = fileinput.input(fnames, openhook=yaml_stream) with closing(fin): lines = [text(line).rstrip() for line in fin] yamlin = six.StringIO('\n'.join(lines)) loader = YAMLLoader(yamlin) result = loader.load_bundles() assets_env.register(result) elif isinstance(bundles, dict): assets_env.register(bundles) return assets_env def get_webassets_env_from_request(request): """ Get the webassets environment in the registry from the request. """ return request.registry.queryUtility(IWebAssetsEnvironment) def add_setting(config, key, value): env = config.registry.queryUtility(IWebAssetsEnvironment) env.config[key] = value def add_path(config, path, url): env = config.registry.queryUtility(IWebAssetsEnvironment) env.append_path(path, url) def assets(request, *args, **kwargs): env = get_webassets_env_from_request(request) result = [] for f in args: try: result.append(env[f]) except KeyError: result.append(f) bundle = Bundle(*result, **kwargs) if USING_WEBASSETS_CONTEXT: with bundle.bind(env): urls = bundle.urls() else: # pragma: no cover urls = bundle.urls(env=env) return urls def add_assets_global(event): event['webassets'] = assets def includeme(config): config.add_subscriber(add_assets_global, 'pyramid.events.BeforeRender') settings = config.registry.settings assets_env = get_webassets_env_from_settings(settings) config.registry.registerUtility(assets_env, IWebAssetsEnvironment) config.add_directive('add_webasset', add_webasset) config.add_directive('get_webassets_env', get_webassets_env) config.add_directive('add_webassets_setting', add_setting) config.add_directive('add_webassets_path', add_path) if assets_env.config['static_view']: config.add_static_view( settings['webassets.base_url'], settings['webassets.base_dir'], cache_max_age=assets_env.config['cache_max_age'] ) config.add_static_view( path.join(assets_env.url, 'webassets-external'), path.join(assets_env.directory, 'webassets-external'), cache_max_age=assets_env.config['cache_max_age'] ) config.add_request_method(get_webassets_env_from_request, 'webassets_env', reify=True) config.add_request_method(assets, 'webassets', reify=True)
32.343358
87
0.624952
794225d18205bb037c15a253b0ea1b1f600abcba
5,754
py
Python
rl_sandbox/examples/pybullet/hopper/sac_fr_lstm_experiment.py
chanb/rl_sandbox_public
e55f954a29880f83a5b0c3358badda4d900f1564
[ "MIT" ]
14
2020-11-09T22:05:37.000Z
2022-02-11T12:41:33.000Z
rl_sandbox/examples/pybullet/hopper/sac_fr_lstm_experiment.py
chanb/rl_sandbox_public
e55f954a29880f83a5b0c3358badda4d900f1564
[ "MIT" ]
null
null
null
rl_sandbox/examples/pybullet/hopper/sac_fr_lstm_experiment.py
chanb/rl_sandbox_public
e55f954a29880f83a5b0c3358badda4d900f1564
[ "MIT" ]
null
null
null
import argparse import numpy as np import torch import rl_sandbox.constants as c import rl_sandbox.transforms.general_transforms as gt from rl_sandbox.agents.random_agents import UniformContinuousAgent from rl_sandbox.buffers.wrappers.torch_buffer import TorchBuffer from rl_sandbox.envs.wrappers.action_repeat import ActionRepeatWrapper from rl_sandbox.envs.wrappers.augment_action import AugmentActionWrapper from rl_sandbox.envs.wrappers.frame_stack import FrameStackWrapper from rl_sandbox.envs.wrappers.renderer import GymRenderer from rl_sandbox.train.train_sac import train_sac from rl_sandbox.model_architectures.actor_critics.fully_connected_soft_actor_critic import LSTMSquashedGaussianSAC from rl_sandbox.model_architectures.layers_definition import VALUE_BASED_LINEAR_LAYERS # This is for script run parser = argparse.ArgumentParser() parser.add_argument('--seed', type=int, required=True, help="Random seed") args = parser.parse_args() seed = args.seed obs_dim = 15 action_dim = 3 min_action = -np.ones(action_dim) max_action = np.ones(action_dim) device = torch.device("cuda:0") # device = torch.device(c.CPU) action_repeat = 1 num_frames = 1 hidden_state_dim = 128 memory_size = 1000000 max_total_steps = 1000000 experiment_setting = { # Auxiliary Tasks c.AUXILIARY_TASKS: {}, # Buffer c.BUFFER_PREPROCESSING: gt.AsType(), c.BUFFER_SETTING: { c.KWARGS: { c.MEMORY_SIZE: memory_size, c.OBS_DIM: (obs_dim,), c.H_STATE_DIM: (hidden_state_dim * 2,), c.ACTION_DIM: (action_dim,), c.REWARD_DIM: (1,), c.INFOS: {c.MEAN: ((action_dim,), np.float32), c.VARIANCE: ((action_dim,), np.float32), c.ENTROPY: ((action_dim,), np.float32), c.LOG_PROB: ((1,), np.float32), c.VALUE: ((1,), np.float32), c.DISCOUNTING: ((1,), np.float32)}, c.BURN_IN_WINDOW: 19, c.PADDING_FIRST: True, c.CHECKPOINT_INTERVAL: 0, c.CHECKPOINT_PATH: None, }, c.STORAGE_TYPE: c.RAM, c.BUFFER_WRAPPERS: [ { c.WRAPPER: TorchBuffer, c.KWARGS: {}, }, ], }, # Environment c.ACTION_DIM: action_dim, c.CLIP_ACTION: True, c.ENV_SETTING: { c.ENV_BASE: { # c.ENV_NAME: "Hopper-v2" c.ENV_NAME: "HopperBulletEnv-v0" }, c.ENV_TYPE: c.GYM, c.ENV_WRAPPERS: [ { c.WRAPPER: GymRenderer, c.KWARGS: {}, }, # { # c.WRAPPER: AugmentActionWrapper, # c.KWARGS: { # c.ACTION_DIM: action_dim, # } # }, { c.WRAPPER: ActionRepeatWrapper, c.KWARGS: { c.ACTION_REPEAT: action_repeat, c.DISCOUNT_FACTOR: 1., c.ENABLE_DISCOUNTING: False, } }, { c.WRAPPER: FrameStackWrapper, c.KWARGS: { c.NUM_FRAMES: num_frames, } } ] }, c.MIN_ACTION: min_action, c.MAX_ACTION: max_action, c.OBS_DIM: obs_dim, # Evaluation c.EVALUATION_FREQUENCY: 5000, c.EVALUATION_RENDER: False, c.EVALUATION_RETURNS: [], c.NUM_EVALUATION_EPISODES: 5, # Exploration c.EXPLORATION_STEPS: 1000, c.EXPLORATION_STRATEGY: UniformContinuousAgent(min_action, max_action, np.random.RandomState(seed)), # General c.DEVICE: device, c.SEED: seed, # Load c.LOAD_MODEL: False, # Logging c.PRINT_INTERVAL: 5000, c.SAVE_INTERVAL: 50000, c.LOG_INTERVAL: 1, # Model c.MODEL_SETTING: { c.MODEL_ARCHITECTURE: LSTMSquashedGaussianSAC, c.KWARGS: { c.OBS_DIM: obs_dim, c.HIDDEN_STATE_DIM: hidden_state_dim, c.ACTION_DIM: action_dim, c.SHARED_LAYERS: VALUE_BASED_LINEAR_LAYERS(in_dim=obs_dim), c.INITIAL_ALPHA: 1., c.DEVICE: device, c.NORMALIZE_OBS: False, c.NORMALIZE_VALUE: False, }, }, c.OPTIMIZER_SETTING: { c.POLICY: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 3e-4, }, }, c.QS: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 3e-4, }, }, c.ALPHA: { c.OPTIMIZER: torch.optim.Adam, c.KWARGS: { c.LR: 3e-4, }, }, }, c.EVALUATION_PREPROCESSING: gt.Identity(), c.TRAIN_PREPROCESSING: gt.Identity(), # SAC c.ACCUM_NUM_GRAD: 1, c.ACTOR_UPDATE_INTERVAL: 1, c.BATCH_SIZE: 256, c.BUFFER_WARMUP: 1000, c.GAMMA: 0.99, c.LEARN_ALPHA: True, c.MAX_GRAD_NORM: 1e10, c.NUM_GRADIENT_UPDATES: 1, c.NUM_PREFETCH: 1, c.REWARD_SCALING: 1., c.STEPS_BETWEEN_UPDATE: 1, c.TARGET_ENTROPY: -action_dim, c.TARGET_UPDATE_INTERVAL: 5000, c.TAU: 1., c.UPDATE_NUM: 0, # Progress Tracking c.CUM_EPISODE_LENGTHS: [0], c.CURR_EPISODE: 1, c.NUM_UPDATES: 0, c.RETURNS: [], # Save c.SAVE_PATH: f"../results/pybullet/hopper/gt-sac-fr-lstm-reg_q_targ/{seed}", # c.SAVE_PATH: None, # train parameters c.MAX_TOTAL_STEPS: max_total_steps, c.TRAIN_RENDER: False, } train_sac(experiment_config=experiment_setting)
27.5311
114
0.567431
794226326f7f791bb6770c1660668b5743e09659
383
py
Python
tests/xoto3/utils/cm_test.py
xoeye/xoto3
ef91cde3cce81e1ded311389358271d5c8eba02b
[ "MIT" ]
16
2020-05-23T15:23:38.000Z
2022-03-18T19:28:37.000Z
tests/xoto3/utils/cm_test.py
xoeye/xoto3
ef91cde3cce81e1ded311389358271d5c8eba02b
[ "MIT" ]
9
2020-08-19T23:08:36.000Z
2021-10-06T17:16:35.000Z
tests/xoto3/utils/cm_test.py
xoeye/xoto3
ef91cde3cce81e1ded311389358271d5c8eba02b
[ "MIT" ]
2
2020-12-12T08:23:53.000Z
2021-09-03T20:25:54.000Z
from contextlib import contextmanager from xoto3.utils.cm import xf_cm @contextmanager def yield_3(): print("generating a 3") yield 3 print("cleaning that 3 right on up") def test_transform_context_manager(): def add_one(x: int): return x + 1 yield_4 = xf_cm(add_one)(yield_3()) with yield_4 as actually_four: assert actually_four == 4
18.238095
40
0.684073
7942264ef3dda42be1549e119ad750faf49fe9a5
2,756
py
Python
src/pykeen/datasets/nations/__init__.py
nhutnamhcmus/pykeen
62d4f075fbd39135d6a5c8677d95e1ac46f8318f
[ "MIT" ]
88
2018-10-14T16:28:38.000Z
2020-06-22T08:03:15.000Z
src/pykeen/datasets/nations/__init__.py
nhutnamhcmus/pykeen
62d4f075fbd39135d6a5c8677d95e1ac46f8318f
[ "MIT" ]
42
2018-10-10T18:05:56.000Z
2020-06-09T09:19:27.000Z
src/pykeen/datasets/nations/__init__.py
nhutnamhcmus/pykeen
62d4f075fbd39135d6a5c8677d95e1ac46f8318f
[ "MIT" ]
19
2019-02-15T17:36:46.000Z
2020-03-28T11:03:41.000Z
# -*- coding: utf-8 -*- """Get triples from the Nations dataset.""" import pathlib from docdata import parse_docdata from ..base import PathDataset from ..literal_base import NumericPathDataset from ...triples import TriplesNumericLiteralsFactory __all__ = [ "NATIONS_TRAIN_PATH", "NATIONS_TEST_PATH", "NATIONS_VALIDATE_PATH", "NATIONS_LITERALS_PATH", "Nations", "NationsLiteral", ] HERE = pathlib.Path(__file__).resolve().parent NATIONS_TRAIN_PATH = HERE.joinpath("train.txt") NATIONS_TEST_PATH = HERE.joinpath("test.txt") NATIONS_VALIDATE_PATH = HERE.joinpath("valid.txt") NATIONS_LITERALS_PATH = HERE.joinpath("literals.txt") @parse_docdata class Nations(PathDataset): """The Nations dataset. --- name: Nations statistics: entities: 14 relations: 55 training: 1592 testing: 201 validation: 199 triples: 1992 citation: author: Zhenfeng Lei year: 2017 github: ZhenfengLei/KGDatasets """ def __init__(self, create_inverse_triples: bool = False, **kwargs): """Initialize the Nations dataset. :param create_inverse_triples: Should inverse triples be created? Defaults to false. :param kwargs: keyword arguments passed to :class:`pykeen.datasets.base.PathDataset`. """ super().__init__( training_path=NATIONS_TRAIN_PATH, testing_path=NATIONS_TEST_PATH, validation_path=NATIONS_VALIDATE_PATH, create_inverse_triples=create_inverse_triples, **kwargs, ) @parse_docdata class NationsLiteral(NumericPathDataset): """The Nations dataset with literals. --- name: NationsL statistics: entities: 14 relations: 55 training: 1592 testing: 201 validation: 199 triples: 1992 literal_relations: 2 literal_triples: 26 citation: author: Hoyt year: 2020 github: pykeen/pykeen """ training: TriplesNumericLiteralsFactory def __init__(self, create_inverse_triples: bool = False, **kwargs): """Initialize the Nations dataset with literals. :param create_inverse_triples: Should inverse triples be created? Defaults to false. :param kwargs: keyword arguments passed to :class:`pykeen.datasets.base.PathDataset`. """ super().__init__( training_path=NATIONS_TRAIN_PATH, testing_path=NATIONS_TEST_PATH, validation_path=NATIONS_VALIDATE_PATH, literals_path=NATIONS_LITERALS_PATH, create_inverse_triples=create_inverse_triples, **kwargs, ) if __name__ == "__main__": Nations().summarize()
26.247619
93
0.658926
794226eba8905b6ad571a59ff22592140a4e3305
1,170
py
Python
gen_data2.py
tsnik/RandomGraphModelsComparison
f5ecfcfb0f267f3988edae08522de18ec036b6f7
[ "MIT" ]
null
null
null
gen_data2.py
tsnik/RandomGraphModelsComparison
f5ecfcfb0f267f3988edae08522de18ec036b6f7
[ "MIT" ]
null
null
null
gen_data2.py
tsnik/RandomGraphModelsComparison
f5ecfcfb0f267f3988edae08522de18ec036b6f7
[ "MIT" ]
null
null
null
import pickle from generators.GaiKapadiaGenerator import GaiKapadiaGeneratorHetero2, GaiKapadiaGenerator from simulation import monte_carlo_orig from utills import gen_banks # Homogeneous for num in range(1, 7): banks = gen_banks(100) data = {"banks": banks} simulations = {} x = [0.01 * n for n in range(100)] mean = [] var = [] for i in x: print(i) simulations[i] = monte_carlo_orig(banks, 100, GaiKapadiaGenerator, i) data["simulations"] = simulations with open('data\\GaiKapadia\\simulation' + str(num) + '.pickle', 'wb') as f: pickle.dump(data, f) # Heterogeneous for num in range(1, 7): banks = gen_banks(100) data = {"banks": banks} simulations = {} x = [0.01 * n for n in range(100)] mean = [] var = [] for i in x: print(i) simulations[i] = monte_carlo_orig(banks, 100, GaiKapadiaGeneratorHetero2, i) data["simulations"] = simulations with open('data\\GaiKapadiaHetero\\simulation' + str(num) + '.pickle', 'wb') as f: pickle.dump(data, f)
29.25
90
0.579487
794226f315b3ca7f7f401d85507eaff657454055
15,001
py
Python
brats_example.py
mcogswellsri/dare_brain_demo
9f4c4298dabbc1511c1bba37903f742ad1b0a7b1
[ "Apache-2.0" ]
null
null
null
brats_example.py
mcogswellsri/dare_brain_demo
9f4c4298dabbc1511c1bba37903f742ad1b0a7b1
[ "Apache-2.0" ]
null
null
null
brats_example.py
mcogswellsri/dare_brain_demo
9f4c4298dabbc1511c1bba37903f742ad1b0a7b1
[ "Apache-2.0" ]
null
null
null
import tempfile import argparse import os import os.path as pth import uuid import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import nibabel as nib import skimage.transform import skimage.io import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import colorsys import seaborn as sns import scipy.spatial.distance as distance gray_cmap = matplotlib.cm.get_cmap('gray') import sys sys.path.append('./monai_model/') from data_utils import load_data modality_to_idx = { 't1': 0, 't2': 1, 't2flair': 2, 't1ce': 3, } class BraTSExample: def __init__(self, params): parser = argparse.ArgumentParser() args = parser.parse_args() self.tmpdir = self.make_single_example_dataset_dir(params.image_dir) args.val_data = self.tmpdir args.max_examples = 1 args.split = None args.model = params.model self.model = params.model val_ds, val_loader = load_data(args, include_train=False, vis=True) self.val_ds = val_ds assert len(val_ds) == 1 # includes the pre-processing pipeline self.val_loader = val_loader # after pre-processing self.example = next(iter(self.val_loader)) self.shape = self.example['image'].shape self.slice_ids = list(map(str, range(0, self.shape[-1], 2))) self.modality_to_idx = { 't1': 0, 't2': 1, 't2flair': 2, 't1ce': 3, } self.cache_dir = tempfile.mkdtemp() self.pred = None self.pred_thresh = 0.5 self.random_hash = pth.basename(params.image_dir.rstrip('/')) self.MAX_CONST = 2000 def make_single_example_dataset_dir(self, example_dir): tmpdir = tempfile.mkdtemp() assert example_dir.endswith('/'), 'needed to get the right dname' dname = pth.basename(pth.dirname(example_dir)) os.symlink(example_dir, pth.join(tmpdir, dname)) print(example_dir, pth.join(tmpdir, dname)) return tmpdir def list_slices(self): return self.slice_ids def image_fname(self, img_id, modality): slice_idx = int(img_id) modality_idx = self.modality_to_idx[modality] fname = f'slice_{modality}_{slice_idx}_{self.random_hash}.png' fname = pth.join(self.cache_dir, fname) if not pth.exists(fname): slice = self.example['vis_image'][0, modality_idx, :, :, slice_idx] plt.imsave(fname, slice, cmap=gray_cmap) return fname def gt_fname(self, slice_id, label): slice_idx = int(slice_id) label_idx = { 'ET': 0, 'TC': 1, 'WT': 2, }[label] fname = f'gt_{slice_idx}_{label}_{self.random_hash}.png' fname = pth.join(self.cache_dir, fname) if not pth.exists(fname): ground_truth = self.example['seg'][0].cpu().numpy() plt.imsave(fname, seg_cmap(ground_truth[label_idx, :, :, slice_idx], label_idx, colorscheme='gt')) return fname def pred_fname(self, slice_id, label, colorscheme='pred'): slice_idx = int(slice_id) label_idx = { 'ET': 0, 'TC': 1, 'WT': 2, 'CSF': 3, 'GM': 4, 'WM': 5, }[label] if label_idx > 2: assert self.model == '2d_unet' fname = f'pred_{slice_idx}_{label}_{self.random_hash}.png' fname = pth.join(self.cache_dir, fname) if not pth.exists(fname): seg = self.get_y_pred(slice_idx, label_idx) plt.imsave(fname, seg_cmap(seg, label_idx, colorscheme)) return fname def counter_fname(self, slice_id, label, counter_input, modality, colorscheme='counterfactual'): slice_idx = int(slice_id) label_idx = { 'ET': 0, 'TC': 1, 'WT': 2, }[label] fname = f'counter_inpaint_{slice_idx}_{label}_{modality}_{self.random_hash}.png' fname = pth.join(self.cache_dir, fname) if not pth.exists(fname): if self.model == 'unet': raise Exception('not supported') elif self.model == '2d_att_unet': key = slice_id img, counter_slice_id = counter_input assert counter_slice_id == slice_id seg = self.predict_slice_attunet(img) seg = seg[label_idx] elif self.model == '2d_unet': key = slice_id img, counter_slice_id = counter_input assert counter_slice_id == slice_id seg = self.predict_slice_2dunet(img) seg = seg[label_idx] plt.imsave(fname, seg_cmap(seg, label_idx, colorscheme)) return fname def predict_slice_2dunet(self, img): if self.model != '2d_unet': raise Exception('Not using the right model. Should use the unet ' 'from demo_unet/') img = img.to(self.unet_2d.device) logits = self.unet_2d.unet(img) probs = logits # TODO: why? F.sigmoid(logits) probs = probs[0] # remove batch dimension # 'ET', 'TC', 'WT', 'CSF', 'GM', 'WM' seg = (probs > 0.5) return seg.cpu().numpy() def predict_slice_attunet(self, img): if self.model != '2d_att_unet': raise Exception('Not using a 2d segmentation model. Predict as ' 'one volume during initialization.') img = img.to(self.attunet.device) probs = self.attunet.unet(img) probs = probs[0] # remove batch dimension # 'Background', 'NCR/NET' , 'ED' , 'ET' seg = (probs > 0.3) # 'NCR/NET' , 'ED' , 'ET' # l1, l2, l4 seg = seg[1:] # see https://www.med.upenn.edu/cbica/brats2020/data.html and for mapping # reverse conversion: # l2 = WT - TC # l1 = TC - ET # l4 = ET # forward conversion: # ET = l4 # TC = l1 + ET # WT = l2 + TC # indices in seg after removing background dim: # l4 - 2 # l2 - 1 # l1 - 0 ET = seg[2] TC = seg[0] + ET WT = seg[1] + TC # [3, 240, 240] w/ first 3 ET,TC,WT in 1-hot float32 seg = torch.stack([ET, TC, WT]) seg = seg.to(torch.float).to('cpu').numpy() # then, select the right modality to create [240, 240]... pass that to seg_cmap return seg def counterfactual(self, slice_id, label, counter_input): slice_idx = int(slice_id) label_idx = { 'ET': 0, 'TC': 1, 'WT': 2, }[label] # ground truth segmentation gt = self.example['seg'][0].cpu().numpy() gt = gt[label_idx, :, :, slice_idx] img_shape = gt.shape gt = gt.flatten() # predicted segmentation # TODO: fix the root problem... going into eval mode results in weird # outputs... but there is stochasticity in the network, so torch.random.manual_seed(8) pred = self.get_y_pred(slice_idx, label_idx) pred = pred.flatten() # counterfactual segmentation img, counter_slice_id = counter_input assert counter_slice_id == slice_id if self.model == 'unet': raise Exception('not supported') elif self.model == '2d_att_unet': counter = self.predict_slice_attunet(img) elif self.model == '2d_unet': counter = self.predict_slice_2dunet(img) counter = counter[label_idx] counter = counter.flatten() assert set(list(np.unique(gt)) + list(np.unique(pred)) + list(np.unique(counter))) <= {0., 1.} if gt.sum() != 0: before_dice = distance.dice(gt, pred) after_dice = distance.dice(gt, counter) diff = after_dice - before_dice else: before_dice = 0 after_dice = 0 diff = 0 cmap = plt.cm.get_cmap('coolwarm') norm = matplotlib.colors.Normalize(vmin=-1., vmax=1., clip=True) mapper = plt.cm.ScalarMappable(norm=norm, cmap=cmap) diff_rgba = mapper.to_rgba(diff) stats = { 'before_dice': before_dice, 'after_dice': after_dice, 'diff_dice': diff, 'diff_color': matplotlib.colors.rgb2hex(diff_rgba), } # there's no spatial information, but still show as a (uniform) spatial heatmap heatmap = np.ones(img_shape) # diff in [-1, 1] heatmap *= diff # center at 0.5 in [0, 1] to meet imsave expectations heatmap = (heatmap + 1) / 2 fname = f'counter_heatmap_{slice_idx}_{label}_{self.random_hash}.png' fname = pth.join(self.cache_dir, fname) # plot with diverging map centered at 0.5 plt.imsave(fname, heatmap, vmin=0, vmax=1, cmap=cmap) return fname, stats def predict(self): if self.model != 'unet': raise Exception('Not using a 3d segmentation model. Predict as ' 'slices are requested instead of once beforehand ' 'as performed here.') self.net.eval() x, y, batch = prepare_batch(self.example) y_pred = self.net(x) y_pred_probs = torch.sigmoid(y_pred) pred_probs = y_pred_probs.cpu().detach().numpy() preds = (pred_probs > self.pred_thresh).astype(pred_probs.dtype) self.pred_probs = pred_probs self.preds = preds if 'seg' in self.example: self.example['y'] = self.example['seg'] self.example['y_pred'] = (y_pred_probs > self.pred_thresh).to(y_pred_probs) self.example['y_pred_probs'] = y_pred_probs def get_y_pred(self, slice_idx, label_idx=None): if self.model == 'unet': # TODO: should be self.preds, but make sure this doesn't mess up caching if self.pred is None: self.predict() seg = self.preds[0, :, :, :, slice_idx] elif self.model == '2d_att_unet': img = self.example['vis_image'][:, :, :, :, slice_idx] seg = self.predict_slice_attunet(img) elif self.model == '2d_unet': img = self.example['vis_image'][:, :, :, :, slice_idx] seg = self.predict_slice_2dunet(img) if label_idx is not None: seg = seg[label_idx] return seg def get_box_from_tumor(self, slice_id, tumor_type): label_idx = { 'ET': 0, 'TC': 1, 'WT': 2, }[tumor_type] slice_idx = int(slice_id) ground_truth = self.example['seg'][0].cpu().numpy() ground_truth = ground_truth[label_idx, :, :, slice_idx] # no label if (ground_truth == 0).all(): return None col_inds = np.where(ground_truth.sum(axis=0))[0] x = col_inds.min() w = (col_inds.max() + 1) - x row_inds = np.where(ground_truth.sum(axis=1))[0] y = row_inds.min() h = (row_inds.max() + 1) - y img_height, img_width = ground_truth.shape box = [x/img_width, y/img_height, w/img_width, h/img_height] return box def preprocess_for_inpainter(self, slice_id, modality): slice_idx = int(slice_id) eps = 1e-5 slice_size = (256, 256) nifti_file = self.val_ds.data[0][modality] try: vol = nib.load(nifti_file) except nib.filebasedimages.ImageFileError as e: warnings.warn(str(e)) vol = vol.get_data() # normalize by constant img_max = self.MAX_CONST vol = np.clip(vol, 0, self.MAX_CONST) if vol.max() > img_max: warnings.warn(f'img max is {vol.max()}, but normalizing by {img_max}') # normalize by individual max #img_max = vol.max() + eps img = vol[:, :, slice_idx] img = img.astype(np.float) img = img / img_max img = skimage.transform.resize(img, slice_size) assert len(img.shape) == 2, 'assumes single channel for now' img = np.tile(img[:, :, None], 3) return img #img = (img * 255).astype(np.uint8) #fname = f'in_inpaint_{slice_idx}_{self.random_hash}.png' #fname = pth.join(self.cache_dir, fname) #skimage.io.imsave(fname, img) #return fname def deprocess_from_inpainter(self, inpainted_img): img = inpainted_img.astype(np.float) img = img * self.MAX_CONST return img # https://stackoverflow.com/questions/37765197/darken-or-lighten-a-color-in-matplotlib def scale_lightness(rgb, scale_l): # scale_l from 0 to 2 # convert rgb to hls h, l, s = colorsys.rgb_to_hls(*rgb) # manipulate h, l, s values and return as rgb return colorsys.hls_to_rgb(h, min(1, l * scale_l), s = s) def get_seg_color(label_idx, colorscheme, with_alpha=True): # custom colormap with different color for each label scale = { 'gt': 0.7, 'pred': 1.0, 'counterfactual': 1.3, }[colorscheme] # ET, TC, WT if label_idx == 0: # c69255 color = (198/256, 146/256, 85/256) elif label_idx == 1: # a291e1 color = (162/256, 145/256, 225/256) if colorscheme == 'counterfactual': scale = 1.15 elif label_idx == 2: # 5ea5c5 color = (94/256, 165/256, 197/256) # CSF, GM, WM elif label_idx == 3: # DB162F color = (219/256, 22/256, 47/256) scale = scale + .3 elif label_idx == 4: # 383961 color = (56/256, 57/256, 97/256) scale = scale + .3 elif label_idx == 5: # 38423B color = (56/256, 66/256, 59/256) scale = scale + .3 color = scale_lightness(color, scale) if with_alpha: color += (1,) return color def seg_cmap(seg, label_idx, colorscheme): assert set(np.unique(seg)).issubset(set([0., 1.])) color = get_seg_color(label_idx, colorscheme) colors = np.array([ [0, 0, 0, 0], color, ]) cmap = ListedColormap(colors) # normal color map #cmap = matplotlib.cm.get_cmap('viridis') img = cmap(seg) # find background mask mask = (seg == 0) mask = mask[:, :, None].repeat(4, axis=2) mask[:, :, :3] = False # set background alpha to 0 img[mask] = 0. return img def prepare_batch(batch): batch = dict(batch) #for k, tensor in batch.items(): # if torch.is_tensor(tensor): # batch[k] = tensor.to(device) x = batch['image'] if "seg" in batch: seg = batch["seg"] else: seg = None return x, seg, batch
32.399568
110
0.562496
794227215472f302fed33acd7bb2817b778bbb19
4,458
py
Python
model/AAConv2d.py
BenQLange/AttentionAugmentedConvLSTM
d8419b7a628b02ac49e8450deb3d60450c7b2d6b
[ "MIT" ]
30
2020-10-06T04:28:16.000Z
2022-03-26T16:36:31.000Z
model/AAConv2d.py
BenQLange/AttentionAugmentedConvLSTM
d8419b7a628b02ac49e8450deb3d60450c7b2d6b
[ "MIT" ]
null
null
null
model/AAConv2d.py
BenQLange/AttentionAugmentedConvLSTM
d8419b7a628b02ac49e8450deb3d60450c7b2d6b
[ "MIT" ]
11
2020-10-16T08:33:21.000Z
2021-11-14T14:21:46.000Z
""" Pytorch implementation of Attention Augmented Convolution. Developed by: Myeongjun Kim (not us) Source code: https://github.com/leaderj1001/Attention-Augmented-Conv2d """ import torch import torch.nn as nn import torch.nn.functional as F use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") class AAConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, dk, dv, Nh, relative=True): super(AAConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.dk = (out_channels*dk)//1000 self.dv = (out_channels*dv)//1000 self.Nh = Nh self.relative = relative self.conv_out = nn.Conv2d(self.in_channels, self.out_channels - self.dv, self.kernel_size, padding=1) self.qkv_conv = nn.Conv2d(self.in_channels, 2 * self.dk + self.dv, kernel_size=1) self.attn_out = nn.Conv2d(self.dv, self.dv, 1) def forward(self, x): batch, _, height, width = x.size() conv_out = self.conv_out(x) flat_q, flat_k, flat_v, q, k, v = self.compute_flat_qkv(x, self.dk, self.dv, self.Nh) logits = torch.matmul(flat_q.transpose(2, 3), flat_k) if self.relative: h_rel_logits, w_rel_logits = self.relative_logits(q) logits += h_rel_logits logits += w_rel_logits weights = F.softmax(logits, dim=-1) attn_out = torch.matmul(weights, flat_v.transpose(2, 3)) attn_out = torch.reshape(attn_out, (batch, self.Nh, self.dv // self.Nh, height, width)) attn_out = self.combine_heads_2d(attn_out) attn_out = self.attn_out(attn_out) return torch.cat((conv_out, attn_out), dim=1) def compute_flat_qkv(self, x, dk, dv, Nh): N, _, H, W = x.size() qkv = self.qkv_conv(x) q, k, v = torch.split(qkv, [dk, dk, dv], dim=1) q = self.split_heads_2d(q, Nh) k = self.split_heads_2d(k, Nh) v = self.split_heads_2d(v, Nh) dkh = dk // Nh q *= dkh ** -0.5 flat_q = torch.reshape(q, (N, Nh, dk // Nh, H * W)) flat_k = torch.reshape(k, (N, Nh, dk // Nh, H * W)) flat_v = torch.reshape(v, (N, Nh, dv // Nh, H * W)) return flat_q, flat_k, flat_v, q, k, v def split_heads_2d(self, x, Nh): batch, channels, height, width = x.size() ret_shape = (batch, Nh, channels // Nh, height, width) split = torch.reshape(x, ret_shape) return split def combine_heads_2d(self, x): batch, Nh, dv, H, W = x.size() ret_shape = (batch, Nh * dv, H, W) return torch.reshape(x, ret_shape) def relative_logits(self, q): B, Nh, dk, H, W = q.size() q = torch.transpose(q, 2, 4).transpose(2, 3) key_rel_w = nn.Parameter(torch.randn((2 * W - 1, dk), requires_grad=True)).to(device) rel_logits_w = self.relative_logits_1d(q, key_rel_w, H, W, Nh, "w") key_rel_h = nn.Parameter(torch.randn((2 * H - 1, dk), requires_grad=True)).to(device) rel_logits_h = self.relative_logits_1d(torch.transpose(q, 2, 3), key_rel_h, W, H, Nh, "h") return rel_logits_h, rel_logits_w def relative_logits_1d(self, q, rel_k, H, W, Nh, case): rel_logits = torch.einsum('bhxyd,md->bhxym', q, rel_k) rel_logits = torch.reshape(rel_logits, (-1, Nh * H, W, 2 * W - 1)) rel_logits = self.rel_to_abs(rel_logits) rel_logits = torch.reshape(rel_logits, (-1, Nh, H, W, W)) rel_logits = torch.unsqueeze(rel_logits, dim=3) rel_logits = rel_logits.repeat((1, 1, 1, H, 1, 1)) if case == "w": rel_logits = torch.transpose(rel_logits, 3, 4) elif case == "h": rel_logits = torch.transpose(rel_logits, 2, 4).transpose(4, 5).transpose(3, 5) rel_logits = torch.reshape(rel_logits, (-1, Nh, H * W, H * W)) return rel_logits def rel_to_abs(self, x): B, Nh, L, _ = x.size() col_pad = torch.zeros((B, Nh, L, 1)).to(device) x = torch.cat((x, col_pad), dim=3) flat_x = torch.reshape(x, (B, Nh, L * 2 * L)) flat_pad = torch.zeros((B, Nh, L - 1)).to(device) flat_x_padded = torch.cat((flat_x, flat_pad), dim=2) final_x = torch.reshape(flat_x_padded, (B, Nh, L + 1, 2 * L - 1)) final_x = final_x[:, :, :L, L - 1:] return final_x
38.431034
109
0.598026
79422756098ce2971200da36efd707c502167e63
22,407
py
Python
django/forms/forms.py
Miserlou/django
35ddeee45573de57ae3c791bf36496b4a7028ddf
[ "BSD-3-Clause" ]
1
2016-03-07T15:37:48.000Z
2016-03-07T15:37:48.000Z
django/forms/forms.py
erdem/django
76d5daa60f90d3692b3ff3b7f5054e4bc7c1f374
[ "BSD-3-Clause" ]
null
null
null
django/forms/forms.py
erdem/django
76d5daa60f90d3692b3ff3b7f5054e4bc7c1f374
[ "BSD-3-Clause" ]
null
null
null
""" Form classes """ from __future__ import absolute_import, unicode_literals import copy from django.core.exceptions import ValidationError from django.forms.fields import Field, FileField from django.forms.util import flatatt, ErrorDict, ErrorList from django.forms.widgets import Media, media_property, TextInput, Textarea from django.utils.datastructures import SortedDict from django.utils.html import conditional_escape, format_html from django.utils.encoding import StrAndUnicode, smart_unicode, force_unicode from django.utils.safestring import mark_safe __all__ = ('BaseForm', 'Form') NON_FIELD_ERRORS = '__all__' def pretty_name(name): """Converts 'first_name' to 'First name'""" if not name: return '' return name.replace('_', ' ').capitalize() def get_declared_fields(bases, attrs, with_base_fields=True): """ Create a list of form field instances from the passed in 'attrs', plus any similar fields on the base classes (in 'bases'). This is used by both the Form and ModelForm metclasses. If 'with_base_fields' is True, all fields from the bases are used. Otherwise, only fields in the 'declared_fields' attribute on the bases are used. The distinction is useful in ModelForm subclassing. Also integrates any additional media definitions """ fields = [(field_name, attrs.pop(field_name)) for field_name, obj in attrs.items() if isinstance(obj, Field)] fields.sort(key=lambda x: x[1].creation_counter) # If this class is subclassing another Form, add that Form's fields. # Note that we loop over the bases in *reverse*. This is necessary in # order to preserve the correct order of fields. if with_base_fields: for base in bases[::-1]: if hasattr(base, 'base_fields'): fields = base.base_fields.items() + fields else: for base in bases[::-1]: if hasattr(base, 'declared_fields'): fields = base.declared_fields.items() + fields return SortedDict(fields) class DeclarativeFieldsMetaclass(type): """ Metaclass that converts Field attributes to a dictionary called 'base_fields', taking into account parent class 'base_fields' as well. """ def __new__(cls, name, bases, attrs): attrs['base_fields'] = get_declared_fields(bases, attrs) new_class = super(DeclarativeFieldsMetaclass, cls).__new__(cls, name, bases, attrs) if 'media' not in attrs: new_class.media = media_property(new_class) return new_class class BaseForm(StrAndUnicode): # This is the main implementation of all the Form logic. Note that this # class is different than Form. See the comments by the Form class for more # information. Any improvements to the form API should be made to *this* # class, not to the Form class. def __init__(self, data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=ErrorList, label_suffix=':', empty_permitted=False): self.is_bound = data is not None or files is not None self.data = data or {} self.files = files or {} self.auto_id = auto_id self.prefix = prefix self.initial = initial or {} self.error_class = error_class self.label_suffix = label_suffix self.empty_permitted = empty_permitted self._errors = None # Stores the errors after clean() has been called. self._changed_data = None # The base_fields class attribute is the *class-wide* definition of # fields. Because a particular *instance* of the class might want to # alter self.fields, we create self.fields here by copying base_fields. # Instances should always modify self.fields; they should not modify # self.base_fields. self.fields = copy.deepcopy(self.base_fields) def __unicode__(self): return self.as_table() def __iter__(self): for name in self.fields: yield self[name] def __getitem__(self, name): "Returns a BoundField with the given name." try: field = self.fields[name] except KeyError: raise KeyError('Key %r not found in Form' % name) return BoundField(self, field, name) def _get_errors(self): "Returns an ErrorDict for the data provided for the form" if self._errors is None: self.full_clean() return self._errors errors = property(_get_errors) def is_valid(self): """ Returns True if the form has no errors. Otherwise, False. If errors are being ignored, returns False. """ return self.is_bound and not bool(self.errors) def add_prefix(self, field_name): """ Returns the field name with a prefix appended, if this Form has a prefix set. Subclasses may wish to override. """ return self.prefix and ('%s-%s' % (self.prefix, field_name)) or field_name def add_initial_prefix(self, field_name): """ Add a 'initial' prefix for checking dynamic initial values """ return 'initial-%s' % self.add_prefix(field_name) def _html_output(self, normal_row, error_row, row_ender, help_text_html, errors_on_separate_row): "Helper function for outputting HTML. Used by as_table(), as_ul(), as_p()." top_errors = self.non_field_errors() # Errors that should be displayed above all fields. output, hidden_fields = [], [] for name, field in self.fields.items(): html_class_attr = '' bf = self[name] bf_errors = self.error_class([conditional_escape(error) for error in bf.errors]) # Escape and cache in local variable. if bf.is_hidden: if bf_errors: top_errors.extend(['(Hidden field %s) %s' % (name, force_unicode(e)) for e in bf_errors]) hidden_fields.append(unicode(bf)) else: # Create a 'class="..."' atribute if the row should have any # CSS classes applied. css_classes = bf.css_classes() if css_classes: html_class_attr = ' class="%s"' % css_classes if errors_on_separate_row and bf_errors: output.append(error_row % force_unicode(bf_errors)) if bf.label: label = conditional_escape(force_unicode(bf.label)) # Only add the suffix if the label does not end in # punctuation. if self.label_suffix: if label[-1] not in ':?.!': label = format_html('{0}{1}', label, self.label_suffix) label = bf.label_tag(label) or '' else: label = '' if field.help_text: help_text = help_text_html % force_unicode(field.help_text) else: help_text = '' output.append(normal_row % { 'errors': force_unicode(bf_errors), 'label': force_unicode(label), 'field': unicode(bf), 'help_text': help_text, 'html_class_attr': html_class_attr }) if top_errors: output.insert(0, error_row % force_unicode(top_errors)) if hidden_fields: # Insert any hidden fields in the last row. str_hidden = ''.join(hidden_fields) if output: last_row = output[-1] # Chop off the trailing row_ender (e.g. '</td></tr>') and # insert the hidden fields. if not last_row.endswith(row_ender): # This can happen in the as_p() case (and possibly others # that users write): if there are only top errors, we may # not be able to conscript the last row for our purposes, # so insert a new, empty row. last_row = (normal_row % {'errors': '', 'label': '', 'field': '', 'help_text':'', 'html_class_attr': html_class_attr}) output.append(last_row) output[-1] = last_row[:-len(row_ender)] + str_hidden + row_ender else: # If there aren't any rows in the output, just append the # hidden fields. output.append(str_hidden) return mark_safe('\n'.join(output)) def as_table(self): "Returns this form rendered as HTML <tr>s -- excluding the <table></table>." return self._html_output( normal_row = '<tr%(html_class_attr)s><th>%(label)s</th><td>%(errors)s%(field)s%(help_text)s</td></tr>', error_row = '<tr><td colspan="2">%s</td></tr>', row_ender = '</td></tr>', help_text_html = '<br /><span class="helptext">%s</span>', errors_on_separate_row = False) def as_ul(self): "Returns this form rendered as HTML <li>s -- excluding the <ul></ul>." return self._html_output( normal_row = '<li%(html_class_attr)s>%(errors)s%(label)s %(field)s%(help_text)s</li>', error_row = '<li>%s</li>', row_ender = '</li>', help_text_html = ' <span class="helptext">%s</span>', errors_on_separate_row = False) def as_p(self): "Returns this form rendered as HTML <p>s." return self._html_output( normal_row = '<p%(html_class_attr)s>%(label)s %(field)s%(help_text)s</p>', error_row = '%s', row_ender = '</p>', help_text_html = ' <span class="helptext">%s</span>', errors_on_separate_row = True) def non_field_errors(self): """ Returns an ErrorList of errors that aren't associated with a particular field -- i.e., from Form.clean(). Returns an empty ErrorList if there are none. """ return self.errors.get(NON_FIELD_ERRORS, self.error_class()) def _raw_value(self, fieldname): """ Returns the raw_value for a particular field name. This is just a convenient wrapper around widget.value_from_datadict. """ field = self.fields[fieldname] prefix = self.add_prefix(fieldname) return field.widget.value_from_datadict(self.data, self.files, prefix) def full_clean(self): """ Cleans all of self.data and populates self._errors and self.cleaned_data. """ self._errors = ErrorDict() if not self.is_bound: # Stop further processing. return self.cleaned_data = {} # If the form is permitted to be empty, and none of the form data has # changed from the initial data, short circuit any validation. if self.empty_permitted and not self.has_changed(): return self._clean_fields() self._clean_form() self._post_clean() if self._errors: del self.cleaned_data def _clean_fields(self): for name, field in self.fields.items(): # value_from_datadict() gets the data from the data dictionaries. # Each widget type knows how to retrieve its own data, because some # widgets split data over several HTML fields. value = field.widget.value_from_datadict(self.data, self.files, self.add_prefix(name)) try: if isinstance(field, FileField): initial = self.initial.get(name, field.initial) value = field.clean(value, initial) else: value = field.clean(value) self.cleaned_data[name] = value if hasattr(self, 'clean_%s' % name): value = getattr(self, 'clean_%s' % name)() self.cleaned_data[name] = value except ValidationError as e: self._errors[name] = self.error_class(e.messages) if name in self.cleaned_data: del self.cleaned_data[name] def _clean_form(self): try: self.cleaned_data = self.clean() except ValidationError as e: self._errors[NON_FIELD_ERRORS] = self.error_class(e.messages) def _post_clean(self): """ An internal hook for performing additional cleaning after form cleaning is complete. Used for model validation in model forms. """ pass def clean(self): """ Hook for doing any extra form-wide cleaning after Field.clean() been called on every field. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field named '__all__'. """ return self.cleaned_data def has_changed(self): """ Returns True if data differs from initial. """ return bool(self.changed_data) def _get_changed_data(self): if self._changed_data is None: self._changed_data = [] # XXX: For now we're asking the individual widgets whether or not the # data has changed. It would probably be more efficient to hash the # initial data, store it in a hidden field, and compare a hash of the # submitted data, but we'd need a way to easily get the string value # for a given field. Right now, that logic is embedded in the render # method of each widget. for name, field in self.fields.items(): prefixed_name = self.add_prefix(name) data_value = field.widget.value_from_datadict(self.data, self.files, prefixed_name) if not field.show_hidden_initial: initial_value = self.initial.get(name, field.initial) else: initial_prefixed_name = self.add_initial_prefix(name) hidden_widget = field.hidden_widget() initial_value = hidden_widget.value_from_datadict( self.data, self.files, initial_prefixed_name) if field.widget._has_changed(initial_value, data_value): self._changed_data.append(name) return self._changed_data changed_data = property(_get_changed_data) def _get_media(self): """ Provide a description of all media required to render the widgets on this form """ media = Media() for field in self.fields.values(): media = media + field.widget.media return media media = property(_get_media) def is_multipart(self): """ Returns True if the form needs to be multipart-encoded, i.e. it has FileInput. Otherwise, False. """ for field in self.fields.values(): if field.widget.needs_multipart_form: return True return False def hidden_fields(self): """ Returns a list of all the BoundField objects that are hidden fields. Useful for manual form layout in templates. """ return [field for field in self if field.is_hidden] def visible_fields(self): """ Returns a list of BoundField objects that aren't hidden fields. The opposite of the hidden_fields() method. """ return [field for field in self if not field.is_hidden] class Form(BaseForm): "A collection of Fields, plus their associated data." # This is a separate class from BaseForm in order to abstract the way # self.fields is specified. This class (Form) is the one that does the # fancy metaclass stuff purely for the semantic sugar -- it allows one # to define a form using declarative syntax. # BaseForm itself has no way of designating self.fields. __metaclass__ = DeclarativeFieldsMetaclass class BoundField(StrAndUnicode): "A Field plus data" def __init__(self, form, field, name): self.form = form self.field = field self.name = name self.html_name = form.add_prefix(name) self.html_initial_name = form.add_initial_prefix(name) self.html_initial_id = form.add_initial_prefix(self.auto_id) if self.field.label is None: self.label = pretty_name(name) else: self.label = self.field.label self.help_text = field.help_text or '' def __unicode__(self): """Renders this field as an HTML widget.""" if self.field.show_hidden_initial: return self.as_widget() + self.as_hidden(only_initial=True) return self.as_widget() def __iter__(self): """ Yields rendered strings that comprise all widgets in this BoundField. This really is only useful for RadioSelect widgets, so that you can iterate over individual radio buttons in a template. """ for subwidget in self.field.widget.subwidgets(self.html_name, self.value()): yield subwidget def __len__(self): return len(list(self.__iter__())) def __getitem__(self, idx): return list(self.__iter__())[idx] def _errors(self): """ Returns an ErrorList for this field. Returns an empty ErrorList if there are none. """ return self.form.errors.get(self.name, self.form.error_class()) errors = property(_errors) def as_widget(self, widget=None, attrs=None, only_initial=False): """ Renders the field by rendering the passed widget, adding any HTML attributes passed as attrs. If no widget is specified, then the field's default widget will be used. """ if not widget: widget = self.field.widget attrs = attrs or {} auto_id = self.auto_id if auto_id and 'id' not in attrs and 'id' not in widget.attrs: if not only_initial: attrs['id'] = auto_id else: attrs['id'] = self.html_initial_id if not only_initial: name = self.html_name else: name = self.html_initial_name return widget.render(name, self.value(), attrs=attrs) def as_text(self, attrs=None, **kwargs): """ Returns a string of HTML for representing this as an <input type="text">. """ return self.as_widget(TextInput(), attrs, **kwargs) def as_textarea(self, attrs=None, **kwargs): "Returns a string of HTML for representing this as a <textarea>." return self.as_widget(Textarea(), attrs, **kwargs) def as_hidden(self, attrs=None, **kwargs): """ Returns a string of HTML for representing this as an <input type="hidden">. """ return self.as_widget(self.field.hidden_widget(), attrs, **kwargs) def _data(self): """ Returns the data for this BoundField, or None if it wasn't given. """ return self.field.widget.value_from_datadict(self.form.data, self.form.files, self.html_name) data = property(_data) def value(self): """ Returns the value for this BoundField, using the initial value if the form is not bound or the data otherwise. """ if not self.form.is_bound: data = self.form.initial.get(self.name, self.field.initial) if callable(data): data = data() else: data = self.field.bound_data( self.data, self.form.initial.get(self.name, self.field.initial) ) return self.field.prepare_value(data) def label_tag(self, contents=None, attrs=None): """ Wraps the given contents in a <label>, if the field has an ID attribute. contents should be 'mark_safe'd to avoid HTML escaping. If contents aren't given, uses the field's HTML-escaped label. If attrs are given, they're used as HTML attributes on the <label> tag. """ contents = contents or conditional_escape(self.label) widget = self.field.widget id_ = widget.attrs.get('id') or self.auto_id if id_: attrs = attrs and flatatt(attrs) or '' contents = format_html('<label for="{0}"{1}>{2}</label>', widget.id_for_label(id_), attrs, contents ) return mark_safe(contents) def css_classes(self, extra_classes=None): """ Returns a string of space-separated CSS classes for this field. """ if hasattr(extra_classes, 'split'): extra_classes = extra_classes.split() extra_classes = set(extra_classes or []) if self.errors and hasattr(self.form, 'error_css_class'): extra_classes.add(self.form.error_css_class) if self.field.required and hasattr(self.form, 'required_css_class'): extra_classes.add(self.form.required_css_class) return ' '.join(extra_classes) def _is_hidden(self): "Returns True if this BoundField's widget is hidden." return self.field.widget.is_hidden is_hidden = property(_is_hidden) def _auto_id(self): """ Calculates and returns the ID attribute for this BoundField, if the associated Form has specified auto_id. Returns an empty string otherwise. """ auto_id = self.form.auto_id if auto_id and '%s' in smart_unicode(auto_id): return smart_unicode(auto_id) % self.html_name elif auto_id: return self.html_name return '' auto_id = property(_auto_id) def _id_for_label(self): """ Wrapper around the field widget's `id_for_label` method. Useful, for example, for focusing on this field regardless of whether it has a single widget or a MutiWidget. """ widget = self.field.widget id_ = widget.attrs.get('id') or self.auto_id return widget.id_for_label(id_) id_for_label = property(_id_for_label)
40.228007
130
0.604945
794228278bf05eab939e7a221c05b24af49ad009
2,457
py
Python
cinder/api/views/qos_specs.py
aarunsai81/netapp
8f0f7bf9be7f4d9fb9c3846bfc639c90a05f86ba
[ "Apache-2.0" ]
11
2015-08-25T13:11:18.000Z
2020-10-15T11:29:20.000Z
cinder/api/views/qos_specs.py
aarunsai81/netapp
8f0f7bf9be7f4d9fb9c3846bfc639c90a05f86ba
[ "Apache-2.0" ]
5
2018-01-25T11:31:56.000Z
2019-05-06T23:13:35.000Z
cinder/api/views/qos_specs.py
aarunsai81/netapp
8f0f7bf9be7f4d9fb9c3846bfc639c90a05f86ba
[ "Apache-2.0" ]
11
2015-02-20T18:48:24.000Z
2021-01-30T20:26:18.000Z
# Copyright (C) 2013 eBay Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from cinder.api import common class ViewBuilder(common.ViewBuilder): """Model QoS specs API responses as a python dictionary.""" _collection_name = "qos-specs" def __init__(self): """Initialize view builder.""" super(ViewBuilder, self).__init__() def summary_list(self, request, qos_specs, qos_count=None): """Show a list of qos_specs without many details.""" return self._list_view(self.detail, request, qos_specs, qos_count) def summary(self, request, qos_spec): """Generic, non-detailed view of a qos_specs.""" return self.detail(request, qos_spec) def detail(self, request, qos_spec): """Detailed view of a single qos_spec.""" # TODO(zhiteng) Add associations to detailed view return { 'qos_specs': { 'id': qos_spec.id, 'name': qos_spec.name, 'consumer': qos_spec.consumer, 'specs': qos_spec.specs }, 'links': self._get_links(request, qos_spec.id), } def associations(self, request, associates): """View of qos specs associations.""" return { 'qos_associations': associates } def _list_view(self, func, request, qos_specs, qos_count=None): """Provide a view for a list of qos_specs.""" specs_list = [func(request, specs)['qos_specs'] for specs in qos_specs] specs_links = self._get_collection_links(request, qos_specs, self._collection_name, qos_count) specs_dict = dict(qos_specs=specs_list) if specs_links: specs_dict['qos_specs_links'] = specs_links return specs_dict
36.671642
79
0.612536
7942285e7af8c95021d52f3ee8e6210da7da4976
6,380
py
Python
onmt/inference/search.py
Dan-hbd/NMTGMinor
84e59ac8391ee78852d7c71afc60c3c8b8e3d44d
[ "MIT" ]
75
2019-05-02T10:37:39.000Z
2022-02-13T17:53:24.000Z
onmt/inference/search.py
Dan-hbd/NMTGMinor
84e59ac8391ee78852d7c71afc60c3c8b8e3d44d
[ "MIT" ]
11
2018-11-08T16:52:51.000Z
2021-09-23T15:01:14.000Z
onmt/inference/search.py
Dan-hbd/NMTGMinor
84e59ac8391ee78852d7c71afc60c3c8b8e3d44d
[ "MIT" ]
34
2018-06-04T14:20:01.000Z
2022-01-26T08:10:05.000Z
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch import onmt class Search(object): def __init__(self, tgt_dict): # self.pad = onmt.constants.PAD # self.unk = onmt.constants.UNK # self.eos = onmt.constants.EOS # self.bos = onmt.constants.BOS self.vocab_size = tgt_dict.size() self.scores_buf = None self.indices_buf = None self.beams_buf = None def _init_buffers(self, t): if self.scores_buf is None: self.scores_buf = t.new() self.indices_buf = torch.LongTensor().to(device=t.device) def step(self, step, lprobs, scores, beam_size): """Take a single search step. Args: step: the current search step, starting at 0 lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step scores: (bsz x input_beam_size x step) the historical model scores of each hypothesis up to this point Return: A tuple of (scores, indices, beams) where: scores: (bsz x output_beam_size) the scores of the chosen elements; output_beam_size can be larger than input_beam_size, e.g., we may return 2*input_beam_size to account for EOS indices: (bsz x output_beam_size) the indices of the chosen elements beams: (bsz x output_beam_size) the hypothesis ids of the chosen elements, in the range [0, input_beam_size) :param lprobs: :param step: :param scores: :param beam_size: """ raise NotImplementedError def set_src_lengths(self, src_lengths): self.src_lengths = src_lengths class BeamSearch(Search): def __init__(self, tgt_dict): super().__init__(tgt_dict) def step(self, step, lprobs, scores, initial_score=None, **kwargs): super()._init_buffers(lprobs) # batch size first, then beam size bsz, beam_size, vocab_size = lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam if initial_score is None or torch.sum(initial_score).item() == 0: lprobs = lprobs[:, ::beam_size, :].contiguous() else: lprobs.add_(initial_score.unsqueeze(-1)) # if we don't do this, the first beam will contain top K of exactly the same thing ... else: # make probs contain cumulative scores for each hypothesis lprobs.add_(scores[:, :, step - 1].unsqueeze(-1)) # here lprobs should be (bsz, beam_size, V) (in streaming, bsz should be 1) torch.topk( lprobs.view(bsz, -1), # after view, it should be (bsz, beam_size x V) k=min( # Take the best 2 x beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size * 2, lprobs.view(bsz, -1).size(1) - beam_size, # -beam_size so we never select pad (beam_size times) ), out=(self.scores_buf, self.indices_buf), ) # torch.div(self.indices_buf, vocab_size, out=self.beams_buf) # beams_buf helps us know where the origin of each self.beams_buf = torch.true_divide(self.indices_buf, vocab_size).long() # indices: the word indices in the vocabulary self.indices_buf.fmod_(vocab_size) return self.scores_buf, self.indices_buf, self.beams_buf class DiverseBeamSearch(Search): """Diverse Beam Search. See "Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models" for details. We only implement the Hamming Diversity penalty here, which performed best in the original paper. """ def __init__(self, tgt_dict, num_groups, diversity_strength): super().__init__(tgt_dict) self.num_groups = num_groups self.diversity_strength = -diversity_strength self.diversity_buf = None self.beam = BeamSearch(tgt_dict) def step(self, step, lprobs, scores): super()._init_buffers(lprobs) bsz, beam_size, vocab_size = lprobs.size() if beam_size % self.num_groups != 0: raise ValueError( 'DiverseBeamSearch requires --beam to be divisible by the number of groups' ) group_size = beam_size // self.num_groups # initialize diversity penalty if self.diversity_buf is None: self.diversity_buf = lprobs.new() torch.zeros(lprobs[:, 0, :].size(), out=self.diversity_buf) scores_G, indices_G, beams_G = [], [], [] for g in range(self.num_groups): lprobs_g = lprobs[:, g::self.num_groups, :] scores_g = scores[:, g::self.num_groups, :] if step > 0 else None # apply diversity penalty if g > 0: lprobs_g = torch.add(lprobs_g, self.diversity_strength, self.diversity_buf.unsqueeze(1)) else: lprobs_g = lprobs_g.contiguous() scores_buf, indices_buf, beams_buf = self.beam.step(step, lprobs_g, scores_g) beams_buf.mul_(self.num_groups).add_(g) scores_G.append(scores_buf.clone()) indices_G.append(indices_buf.clone()) beams_G.append(beams_buf.clone()) # update diversity penalty self.diversity_buf.scatter_add_( 1, indices_buf, self.diversity_buf.new_ones(indices_buf.size()) ) # interleave results from different groups self.scores_buf = torch.stack(scores_G, dim=2, out=self.scores_buf).view(bsz, -1) self.indices_buf = torch.stack(indices_G, dim=2, out=self.indices_buf).view(bsz, -1) self.beams_buf = torch.stack(beams_G, dim=2, out=self.beams_buf).view(bsz, -1) return self.scores_buf, self.indices_buf, self.beams_buf
38.666667
112
0.614734
79422c05fdd619a3ad6566c6b19510aa2d729af3
6,700
py
Python
tensorflow_probability/python/distributions/exponential.py
jakee417/probability-1
ae7117f37ac441bc7a888167ea23e5e620c5bcde
[ "Apache-2.0" ]
3,670
2018-02-14T03:29:40.000Z
2022-03-30T01:19:52.000Z
tensorflow_probability/python/distributions/exponential.py
jakee417/probability-1
ae7117f37ac441bc7a888167ea23e5e620c5bcde
[ "Apache-2.0" ]
1,395
2018-02-24T02:28:49.000Z
2022-03-31T16:12:06.000Z
tensorflow_probability/python/distributions/exponential.py
jakee417/probability-1
ae7117f37ac441bc7a888167ea23e5e620c5bcde
[ "Apache-2.0" ]
1,135
2018-02-14T01:51:10.000Z
2022-03-28T02:24:11.000Z
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The Exponential distribution class.""" # Dependency imports import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import softplus as softplus_bijector from tensorflow_probability.python.distributions import gamma from tensorflow_probability.python.internal import distribution_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import parameter_properties from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import samplers from tensorflow_probability.python.internal import tensor_util __all__ = [ 'Exponential', ] class Exponential(gamma.Gamma): """Exponential distribution. The Exponential distribution is parameterized by an event `rate` parameter. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; lambda, x > 0) = exp(-lambda x) / Z Z = 1 / lambda ``` where `rate = lambda` and `Z` is the normalizaing constant. The Exponential distribution is a special case of the Gamma distribution, i.e., ```python Exponential(rate) = Gamma(concentration=1., rate) ``` The Exponential distribution uses a `rate` parameter, or "inverse scale", which can be intuited as, ```none X ~ Exponential(rate=1) Y = X / rate ``` """ def __init__(self, rate, force_probs_to_zero_outside_support=False, validate_args=False, allow_nan_stats=True, name='Exponential'): """Construct Exponential distribution with parameter `rate`. Args: rate: Floating point tensor, equivalent to `1 / mean`. Must contain only positive values. force_probs_to_zero_outside_support: Python `bool`. When `True`, negative and non-integer values are evaluated "strictly": `cdf` returns `0`, `sf` returns `1`, and `log_cdf` and `log_sf` correspond. When `False`, the implementation is free to save computation (and TF graph size) by evaluating something that matches the Exponential cdf at non-negative values `x` but produces an unrestricted result on other inputs. In the case of Exponential distribution, the `cdf` formula in this case happens to be the continuous function `1 - exp(rate * value)`. Note that this function is not itself a cdf function. Default value: `False`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) # Even though all statistics of are defined for valid inputs, this is not # true in the parent class "Gamma." Therefore, passing # allow_nan_stats=True # through to the parent class results in unnecessary asserts. with tf.name_scope(name) as name: self._rate = tensor_util.convert_nonref_to_tensor( rate, name='rate', dtype=dtype_util.common_dtype([rate], dtype_hint=tf.float32)) super(Exponential, self).__init__( concentration=1., rate=self._rate, allow_nan_stats=allow_nan_stats, validate_args=validate_args, force_probs_to_zero_outside_support=( force_probs_to_zero_outside_support), name=name) self._parameters = parameters @classmethod def _parameter_properties(cls, dtype, num_classes=None): # pylint: disable=g-long-lambda return dict( rate=parameter_properties.ParameterProperties( default_constraining_bijector_fn=( lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype))))) # pylint: enable=g-long-lambda @property def rate(self): return self._rate def _cdf(self, value): cdf = -tf.math.expm1(-self.rate * value) # Set cdf = 0 when value is less than 0. return distribution_util.extend_cdf_outside_support(value, cdf, low=0.) def _log_survival_function(self, value): rate = tf.convert_to_tensor(self._rate) log_sf = self._log_prob(value, rate=rate) - tf.math.log(rate) if self.force_probs_to_zero_outside_support: # Set log_survival_function = 0 when value is less than 0. log_sf = tf.where(value < 0., tf.zeros_like(log_sf), log_sf) return log_sf def _sample_n(self, n, seed=None): rate = tf.convert_to_tensor(self.rate) shape = ps.concat([[n], ps.shape(rate)], 0) # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use # `np.finfo(dtype_util.as_numpy_dtype(self.dtype)).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. sampled = samplers.uniform( shape, minval=np.finfo(dtype_util.as_numpy_dtype(self.dtype)).tiny, maxval=1., seed=seed, dtype=self.dtype) return -tf.math.log(sampled) / rate def _quantile(self, value): return -tf.math.log1p(-value) / self.rate def _default_event_space_bijector(self): return softplus_bijector.Softplus(validate_args=self.validate_args) @classmethod def _maximum_likelihood_parameters(cls, value): return {'rate': 1. / tf.reduce_mean(value, axis=0)}
37.853107
81
0.691343
79422c2db485f52d5c53a57e57ce272f710c5518
8,317
py
Python
spikeforest/spikeforestwidgets/unitwaveformswidget.py
mhhennig/spikeforest
5b4507ead724af3de0be5d48a3b23aaedb0be170
[ "Apache-2.0" ]
1
2021-09-23T01:07:19.000Z
2021-09-23T01:07:19.000Z
spikeforest/spikeforestwidgets/unitwaveformswidget.py
mhhennig/spikeforest
5b4507ead724af3de0be5d48a3b23aaedb0be170
[ "Apache-2.0" ]
null
null
null
spikeforest/spikeforestwidgets/unitwaveformswidget.py
mhhennig/spikeforest
5b4507ead724af3de0be5d48a3b23aaedb0be170
[ "Apache-2.0" ]
1
2021-09-23T01:07:21.000Z
2021-09-23T01:07:21.000Z
import numpy as np from matplotlib import pyplot as plt import vdomr as vd import time from spikeforest import spikewidgets as sw class UnitWaveformsWidget(vd.Component): def __init__(self, *, recording, sorting, max_num_spikes_per_unit=20, snippet_len=100): vd.Component.__init__(self) self._widgets = [ UnitWaveformWidget( recording=recording, sorting=sorting, unit_id=id, average_waveform=None, max_num_spikes_per_unit=max_num_spikes_per_unit, snippet_len=snippet_len ) for id in sorting.get_unit_ids() ] vd.devel.loadBootstrap() def setSelectedUnitIds(self, ids): ids = set(ids) for W in self._widgets: W.setSelected(W.unitId() in ids) def render(self): box_style = dict(float='left') boxes = [ vd.div(W, style=box_style) for W in self._widgets ] div = vd.div(boxes) return div class UnitWaveformWidget(vd.Component): def __init__(self, *, recording, sorting, unit_id, average_waveform=None, show_average=True, max_num_spikes_per_unit=20, snippet_len=100): vd.Component.__init__(self) self._plot = _UnitWaveformPlot( recording=recording, sorting=sorting, unit_id=unit_id, average_waveform=average_waveform, show_average=show_average, max_num_spikes_per_unit=max_num_spikes_per_unit, snippet_len=snippet_len ) self._plot_div = vd.components.LazyDiv(self._plot) self._unit_id = unit_id self._selected = False def setSelected(self, val): if self._selected == val: return self._selected = val self.refresh() def unitId(self): return self._unit_id def render(self): style0 = {'border': 'solid 1px black', 'margin': '5px'} style1 = {} if self._selected: style1['background-color'] = 'yellow' return vd.div( vd.p('Unit {}'.format(self._unit_id), style={'text-align': 'center'}), vd.div(self._plot_div, style=style0), style=style1 ) class _UnitWaveformPlot(vd.components.Pyplot): def __init__(self, *, recording, sorting, unit_id, average_waveform, show_average, max_num_spikes_per_unit, snippet_len): vd.components.Pyplot.__init__(self) self._recording = recording self._sorting = sorting self._unit_id = unit_id self._max_num_spikes_per_unit = max_num_spikes_per_unit self._average_waveform = average_waveform self._show_average = show_average self._snippet_len = snippet_len def plot(self): # W=sw.UnitWaveformsWidget(recording=self._recording,sorting=self._sorting,unit_ids=[self._unit_id],width=5,height=5) # W.plot() plot_unit_waveform( recording=self._recording, sorting=self._sorting, unit_id=self._unit_id, average_waveform=self._average_waveform, show_average=self._show_average, max_num_spikes_per_unit=self._max_num_spikes_per_unit, snippet_len=self._snippet_len ) def _compute_minimum_gap(x): a = np.sort(np.unique(x)) if len(a) <= 1: return 1 return np.min(np.diff(a)) def _plot_spike_shapes(*, representative_waveforms=None, average_waveform=None, show_average, channel_locations=None, ylim=None, max_representatives=None, color='blue', title=''): if average_waveform is None: if representative_waveforms is None: raise Exception('You must provide either average_waveform, representative waveforms, or both') average_waveform = np.mean(representative_waveforms, axis=2) M = average_waveform.shape[0] # number of channels T = average_waveform.shape[1] # number of timepoints if ylim is None: ylim = [average_waveform.min(), average_waveform.max()] yrange = ylim[1] - ylim[0] if channel_locations is None: channel_locations = np.zeros((M, 2)) for m in range(M): channel_locations[m, :] = [0, -m] if channel_locations.shape[1] > 2: channel_locations = channel_locations[:, -2:] xmin = np.min(channel_locations[:, 0]) xmax = np.max(channel_locations[:, 0]) ymin = np.min(channel_locations[:, 1]) ymax = np.max(channel_locations[:, 1]) xgap = _compute_minimum_gap(channel_locations[:, 0]) ygap = _compute_minimum_gap(channel_locations[:, 1]) xvals = np.linspace(-xgap * 0.8 / 2, xgap * 0.8 / 2, T) yscale = 1 / (yrange / 2) * ygap / 2 * 0.4 ax = plt.axes([0, 0, 1, 1], frameon=False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) if representative_waveforms is not None: if max_representatives is not None: W0 = representative_waveforms if W0.shape[2] > max_representatives: indices = np.random.choice(range(W0.shape[2]), size=max_representatives, replace=False) representative_waveforms = W0[:, :, indices] L = representative_waveforms.shape[2] # for j in range(L): # XX = np.zeros((T, M)) # YY = np.zeros((T, M)) # for m in range(M): # loc = channel_locations[m, -2:] # XX[:, m] = loc[0] + xvals # YY[:, m] = loc[1] + (representative_waveforms[m, :, j] - representative_waveforms[m, 0, j])*yscale # color=(np.random.uniform(0,1), np.random.uniform(0,1), np.random.uniform(0,1)) # plt.plot(XX, YY, color=color, alpha=0.3) XX = np.zeros((T, M, L)) YY = np.zeros((T, M, L)) for m in range(M): loc = channel_locations[m, -2:] for j in range(L): XX[:, m, j] = loc[0] + xvals YY[:, m, j] = loc[1] + (representative_waveforms[m, :, j] - representative_waveforms[m, 0, j]) * yscale XX = XX.reshape(T, M * L) YY = YY.reshape(T, M * L) plt.plot(XX, YY, color=(0.5, 0.5, 0.5), alpha=0.5) if show_average: XX = np.zeros((T, M)) YY = np.zeros((T, M)) for m in range(M): loc = channel_locations[m, -2:] XX[:, m] = loc[0] + xvals YY[:, m] = loc[1] + (average_waveform[m, :] - average_waveform[m, 0]) * yscale plt.plot(XX, YY, color) plt.xlim(xmin - xgap / 2, xmax + xgap / 2) plt.ylim(ymin - ygap / 2, ymax + ygap / 2) # plt.gca().set_axis_off() if title: plt.title(title, color='gray') def _get_random_spike_waveforms(*, recording, sorting, unit, max_num, channels, snippet_len): st = sorting.get_unit_spike_train(unit_id=unit) num_events = len(st) if num_events > max_num: event_indices = np.random.choice(range(num_events), size=max_num, replace=False) else: event_indices = range(num_events) spikes = recording.get_snippets(reference_frames=st[event_indices].astype(int), snippet_len=snippet_len, channel_ids=channels) if len(spikes) > 0: spikes = np.dstack(tuple(spikes)) else: spikes = np.zeros((recording.get_num_channels(), snippet_len, 0)) return spikes def plot_unit_waveform(*, recording, sorting, unit_id, max_num_spikes_per_unit, average_waveform, show_average, channel_ids=None, snippet_len=100, title=''): if not channel_ids: channel_ids = recording.get_channel_ids() M = len(channel_ids) channel_locations = np.zeros((M, 2)) for ii, ch in enumerate(channel_ids): loc = recording.get_channel_property(ch, 'location') channel_locations[ii, :] = loc[-2:] spikes = _get_random_spike_waveforms(recording=recording, sorting=sorting, unit=unit_id, max_num=max_num_spikes_per_unit, channels=channel_ids, snippet_len=snippet_len) # if not title: # title='Unit {}'.format(int(unit_id)) _plot_spike_shapes(representative_waveforms=spikes, channel_locations=channel_locations, average_waveform=average_waveform, show_average=show_average, title=title)
38.151376
179
0.621137
79422c2ea05a3e109616ee3fb82e1ee907b49d7e
5,542
py
Python
web.py
legoktm/mass-rename
3f9b923c53b7ff66ffbd2a2052528f6f3a623386
[ "MIT" ]
1
2021-07-28T11:41:06.000Z
2021-07-28T11:41:06.000Z
web.py
legoktm/mass-rename
3f9b923c53b7ff66ffbd2a2052528f6f3a623386
[ "MIT" ]
null
null
null
web.py
legoktm/mass-rename
3f9b923c53b7ff66ffbd2a2052528f6f3a623386
[ "MIT" ]
null
null
null
#!/data/project/legobot/python/bin/python """ Copyright (C) 2013 Legoktm Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ print "Content-type: text/html\n\n" import cgitb cgitb.enable() import cgi import os import requests import subprocess import hashlib environ = {'INSTANCEPROJECT': 'tools', 'LOGNAME': 'local-legobot', 'USER': 'local-legobot', 'PATH': '/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/X11R6/bin', 'HOME': '/data/project/legobot/', 'LANG': 'en_US.UTF-8', 'TERM': 'xterm-256color', 'SHELL': '/bin/bash', 'SHLVL': '1', 'PYWIKIBOT2_DIR': '/data/project/legobot/.pywikibot/', 'SUDO_USER': 'legoktm', 'USERNAME': 'local-legobot', 'SUDO_UID': '2552', 'INSTANCENAME': 'tools-login', '_': '/usr/bin/python', 'SUDO_COMMAND': '/bin/bash', 'SUDO_GID': '500', 'OLDPWD': '/data/project/legobot/cgi-bin', 'NODE_PATH': '/usr/lib/nodejs:/usr/share/javascript', 'PWD': '/data/project/legobot/cgi-bin/massrename', 'MAIL': '/var/mail/local-legobot', } def TUSC(username, password, lang, project): headers = {'User-agent': 'Commons mass-rename tool by User:Legoktm'} # http://tools.wikimedia.de/~magnus/tusc.php?check=1&botmode=1&user=USERNAME&language=LANGUAGE&project=PROJECT&password=TUSC_PASSWORD params = {'check': 1, 'botmode': 1, 'user': username, 'language': lang, 'project': project, 'password': password, } url = 'http://tools-webproxy/tusc/tusc.php' r = requests.post(url, params, headers=headers) try: if int(r.text) == 1: return True except Exception: pass return False def authusers(username): with open(os.path.expanduser('~/.whitelist')) as f: t = f.read() for line in t: if line == username: return True return False def wrap(thing): return '<html><head><title>The Super Rename Tool!</title></head><body>{0}</body></html>'.format(thing) def start(): form = """<form action="/legobot/cgi-bin/massrename/web.py" method="post"> <input type="text" name="cat" placeholder="Category:Blah"><br /> <input type="text" name="find" placeholder="Thing to find"><br /> <input type="text" name="replace" placeholder="Thing to replace it with"><br /> <input type="text" name="reason" placeholder="Move reason"><br /> <input type="text" name="username" placeholder="TUSC: username"><br /> <input type="password" name="password" placeholder="TUSC: password"><br /> <input type="text" name="lang" placeholder="TUSC: language"><br /> <input type="text" name="project" placeholder="TUSC: project"><br /> <button type="submit">Go!</button> </form> """ return wrap(form) def tuscfailure(): return wrap('Could not authenticate with TUSC.') def notanadmin(): return wrap('Unfortunately this tool can only be used by Commons administrators.') def jobnotsent(): return wrap('There was an error sending your job. Please contact Legoktm with details of what you were trying ' 'to do.') def succeeded(val): return wrap('Your job has been sent. Legobot will process it shortly. If there are any issues, please let Legoktm ' 'know, and provide the ID for your job, which is: ' + val + '.') form = cgi.FieldStorage() if not 'cat' in form: print start() quit() cat = form['cat'].value username = form['username'].value password = form['password'].value lang = form['lang'].value project = form['project'].value find = form['find'].value replace = form['replace'].value reason = form['reason'].value summary = reason + ". On behalf of " + username t = TUSC(username, password, lang, project) if not t: print tuscfailure() quit() if not authusers(username): print notanadmin() quit() h = hashlib.md5() h.update(username) h.update(cat) h.update(find) h.update(replace) val = h.hexdigest() #we all good? #try: x = subprocess.check_output('qsub -N {0} -l h_vmem=256M -j y -o $HOME/renamelogs/{0} /data/project/legobot/cgi-bin/massrename/rename.py "{1}" "{2}" "{3}" "{4}"'.format( val, cat, find, replace, summary), stderr=subprocess.STDOUT, shell=True, env=environ) #except subprocess.CalledProcessError: # print jobnotsent() # quit() print succeeded(val)
35.075949
168
0.64742
79422cca9687d15a9ddafc5d3c7c022091906451
2,607
py
Python
allhub/repos/pages.py
srinivasreddy/allhub
ff20858c9984da5c4edd5043c39eed3b6d5d693d
[ "Apache-2.0" ]
2
2019-10-07T15:46:33.000Z
2019-11-26T04:30:39.000Z
allhub/repos/pages.py
srinivasreddy/allhub
ff20858c9984da5c4edd5043c39eed3b6d5d693d
[ "Apache-2.0" ]
1
2020-03-09T14:44:04.000Z
2020-03-09T14:44:04.000Z
allhub/repos/pages.py
srinivasreddy/allhub
ff20858c9984da5c4edd5043c39eed3b6d5d693d
[ "Apache-2.0" ]
2
2019-10-08T05:22:37.000Z
2019-10-08T06:20:47.000Z
from allhub.response import Response class PagesSiteMixin: def pages_site_info(self, owner, repo): url = "/repos/{owner}/{repo}/pages".format(owner=owner, repo=repo) self.response = Response(self.get(url), "PagesInfo") return self.response.transform() def enable_pages_site(self, owner, repo, source_branch, source_path): params = {"source": {"branch": source_branch, "path": source_path}} url = "/repos/{owner}/{repo}/pages".format(owner=owner, repo=repo) self.response = Response( self.post( url, params=params, **{"Accept": "application/vnd.github.switcheroo-preview+json"}, ), "PagesInfo", ) return self.response.transform() def disable_pages_site(self, owner, repo): url = "/repos/{owner}/{repo}/pages".format(owner=owner, repo=repo) self.response = Response( self.delete( url, **{"Accept": "application/vnd.github.switcheroo-preview+json"} ), "", ) return self.response.status_code == 204 def update_pages_site(self, owner, repo, cname, source): params = {"cname": cname, "source": source} url = "/repos/{owner}/{repo}/pages".format(owner=owner, repo=repo) self.response = Response( self.put( url, params=params, **{"Accept": "application/vnd.github.switcheroo-preview+json"}, ), "PagesInfo", ) return self.response.status_code == 204 def request_pages_build(self, owner, repo): url = "/repos/{owner}/{repo}/pages/builds".format(owner=owner, repo=repo) self.response = Response(self.post(url), "PagesInfo") return self.response.transform() def pages_build(self, owner, repo): url = "/repos/{owner}/{repo}/pages/builds".format(owner=owner, repo=repo) self.response = Response(self.get(url), "PagesInfo") return self.response.transform() def latest_pages_build(self, owner, repo): url = "/repos/{owner}/{repo}/pages/builds/latest".format(owner=owner, repo=repo) self.response = Response(self.get(url), "PagesInfo") return self.response.transform() def get_pages_build(self, owner, repo, build_id): url = "/repos/{owner}/{repo}/pages/builds/{build_id}".format( owner=owner, repo=repo, build_id=build_id ) self.response = Response(self.get(url), "PagesInfo") return self.response.transform()
38.910448
88
0.593402
79422cfeb94a6a0b53c7ab6d45eeb59103a47e94
1,755
py
Python
demo.py
Minyus/MegaDepth
89baf59897951b45361def8fecdc156a79d98ee2
[ "MIT" ]
null
null
null
demo.py
Minyus/MegaDepth
89baf59897951b45361def8fecdc156a79d98ee2
[ "MIT" ]
null
null
null
demo.py
Minyus/MegaDepth
89baf59897951b45361def8fecdc156a79d98ee2
[ "MIT" ]
null
null
null
import torch import sys from torch.autograd import Variable import numpy as np # from options.train_options import TrainOptions # opt = TrainOptions().parse() # set CUDA_VISIBLE_DEVICES before import torch from options.test_options import TestOptions opt = TestOptions().parse() # set CUDA_VISIBLE_DEVICES before import torch from data.data_loader import CreateDataLoader from models.models import create_model from skimage import io from skimage.transform import resize img_path = 'demo.jpg' model = create_model(opt) input_height = 384 input_width = 512 def test_simple(model): total_loss =0 toal_count = 0 print("============================= TEST ============================") model.switch_to_eval() img = np.float32(io.imread(img_path))/255.0 img = resize(img, (input_height, input_width), order = 1) input_img = torch.from_numpy( np.transpose(img, (2,0,1)) ).contiguous().float() input_img = input_img.unsqueeze(0) input_images = Variable(input_img.cuda() ) pred_log_depth = model.netG.forward(input_images) pred_log_depth = torch.squeeze(pred_log_depth) pred_depth = torch.exp(pred_log_depth) # visualize prediction using inverse depth, so that we don't need sky segmentation (if you want to use RGB map for visualization, \ # you have to run semantic segmentation to mask the sky first since the depth of sky is random from CNN) pred_inv_depth = 1/pred_depth pred_inv_depth = pred_inv_depth.data.cpu().numpy() # you might also use percentile for better visualization pred_inv_depth = pred_inv_depth/np.amax(pred_inv_depth) io.imsave('demo.png', pred_inv_depth) # print(pred_inv_depth.shape) sys.exit() test_simple(model) print("We are done")
31.909091
135
0.720798
79422d2f969e76edaea0c5a1dbe2a3cfcbb95d6a
7,492
py
Python
anytask/courses/migrations/0009_auto__add_field_course_max_tasks_withoout_score_per_student.py
AnnaSvalova/anytask
f814b43c496f67a2efe2a150873a1ae32ad97449
[ "MIT" ]
1
2018-12-03T05:48:43.000Z
2018-12-03T05:48:43.000Z
anytask/courses/migrations/0009_auto__add_field_course_max_tasks_withoout_score_per_student.py
AnnaSvalova/anytask
f814b43c496f67a2efe2a150873a1ae32ad97449
[ "MIT" ]
null
null
null
anytask/courses/migrations/0009_auto__add_field_course_max_tasks_withoout_score_per_student.py
AnnaSvalova/anytask
f814b43c496f67a2efe2a150873a1ae32ad97449
[ "MIT" ]
1
2021-09-18T22:38:20.000Z
2021-09-18T22:38:20.000Z
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Course.max_tasks_withoout_score_per_student' db.add_column('courses_course', 'max_tasks_withoout_score_per_student', self.gf('django.db.models.fields.IntegerField')(default=0, null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Course.max_tasks_withoout_score_per_student' db.delete_column('courses_course', 'max_tasks_withoout_score_per_student') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 8, 15, 19, 4, 13, 943963)'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 8, 15, 19, 4, 13, 943858)'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'courses.course': { 'Meta': {'object_name': 'Course'}, 'added_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'days_drop_from_blacklist': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['groups.Group']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_days_without_score': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'max_tasks_withoout_score_per_student': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'max_users_per_task': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256', 'db_index': 'True'}), 'students': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'course_students_set'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['auth.User']"}), 'take_policy': ('django.db.models.fields.IntegerField', [], {'default': '0', 'max_length': '1', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'teachers': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'course_teachers_set'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['auth.User']"}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0', 'max_length': '1', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}), 'year': ('django.db.models.fields.related.ForeignKey', [], {'default': '2012', 'to': "orm['years.Year']"}) }, 'groups.group': { 'Meta': {'unique_together': "(('year', 'name'),)", 'object_name': 'Group'}, 'added_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '256', 'blank': 'True'}), 'students': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}), 'year': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['years.Year']", 'blank': 'True'}) }, 'years.year': { 'Meta': {'object_name': 'Year'}, 'added_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'start_year': ('django.db.models.fields.IntegerField', [], {'unique': 'True', 'db_index': 'True'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now': 'True', 'blank': 'True'}) } } complete_apps = ['courses']
79.702128
206
0.579952
79422d5130b37f3b9dc077649969bccddeae1566
6,139
py
Python
wordpress/models.py
observermedia/django-wordpress-rest
f0d96891d8ac5a69c8ba90e044876e756fad1bfe
[ "MIT" ]
9
2015-08-10T23:12:27.000Z
2020-02-15T08:35:09.000Z
wordpress/models.py
observermedia/django-wordpress-rest
f0d96891d8ac5a69c8ba90e044876e756fad1bfe
[ "MIT" ]
1
2016-01-06T19:16:08.000Z
2016-01-06T19:16:08.000Z
wordpress/models.py
observermedia/django-wordpress-rest
f0d96891d8ac5a69c8ba90e044876e756fad1bfe
[ "MIT" ]
5
2016-02-29T09:29:58.000Z
2020-06-23T16:10:58.000Z
from __future__ import unicode_literals import collections from django.db import models from django.utils.translation import ugettext_lazy as _ from django.core.urlresolvers import reverse from jsonfield import JSONField class DateTracking(models.Model): """ An abstract model that adds tracking fields for creation and modification dates """ created_date = models.DateTimeField(blank=False, null=False, auto_now_add=True) updated_date = models.DateTimeField(blank=False, null=False, auto_now=True) class Meta: abstract = True class WordPressIDs(models.Model): """ An abstract model that adds basic WordPress API IDs """ site_id = models.IntegerField(blank=False, null=False, help_text=_("The site ID on Wordpress.com")) wp_id = models.IntegerField(blank=False, null=False, help_text=_("The object ID on Wordpress.com")) class Meta: abstract = True unique_together = ("wp_id", "site_id") class Category(WordPressIDs, DateTracking, models.Model): name = models.CharField(max_length=1000, blank=False, null=False) slug = models.SlugField(max_length=1000, blank=False, null=False, unique=True) description = models.TextField(blank=True, null=False) post_count = models.IntegerField(blank=False, null=False) parent_wp_id = models.IntegerField(blank=True, null=True) class Meta: verbose_name_plural = "categories" def __unicode__(self): return "{}: {}".format(self.pk, self.name) class Tag(WordPressIDs, DateTracking, models.Model): name = models.CharField(max_length=1000, blank=False, null=False) slug = models.SlugField(max_length=1000, blank=False, null=False, unique=True) description = models.TextField(blank=True, null=False) post_count = models.IntegerField(blank=False, null=False) def get_absolute_url(self): return reverse('tag', kwargs={"tag_slug": self.slug}) def __unicode__(self): return "{}: {}".format(self.pk, self.name) class Author(WordPressIDs, DateTracking, models.Model): login = models.CharField(max_length=255, blank=False, null=False) email = models.CharField(max_length=1000, blank=False, null=False) name = models.CharField(max_length=1000, blank=False, null=False) nice_name = models.CharField(max_length=1000, blank=False, null=False) url = models.CharField(max_length=1000, blank=False, null=False) avatar_url = models.CharField(max_length=1000, blank=False, null=False) profile_url = models.CharField(max_length=1000, blank=False, null=False) def __unicode__(self): return self.name class Media(WordPressIDs, DateTracking, models.Model): url = models.CharField(max_length=1000, blank=False, null=False, help_text=_("The full URL to the media file")) guid = models.CharField(max_length=1000, blank=True, null=True, db_index=True) uploaded_date = models.DateTimeField(blank=False, null=False) post_ID = models.IntegerField(blank=True, null=True, help_text=_("ID of the post this media is attached to")) file_name = models.CharField(max_length=500, blank=True, null=True) file_extension = models.CharField(max_length=10, blank=True, null=True) mime_type = models.CharField(max_length=200, blank=True, null=True) width = models.IntegerField(blank=True, null=True) height = models.IntegerField(blank=True, null=True) title = models.TextField(blank=True, null=True) caption = models.TextField(blank=True, null=True) description = models.TextField(blank=True, null=True) alt = models.TextField(blank=True, null=True) exif = JSONField(load_kwargs={'object_pairs_hook': collections.OrderedDict}) def __unicode__(self): return "{}: {}".format(self.pk, self.url) class Post(WordPressIDs, DateTracking, models.Model): author = models.ForeignKey("Author", blank=True, null=True) post_date = models.DateTimeField(blank=False, null=False) modified = models.DateTimeField(blank=False, null=False, help_text=_("The post's most recent update time")) title = models.TextField(blank=True, null=True) url = models.CharField(max_length=1000, blank=False, null=False, help_text=_("The full permalink URL to the post")) short_url = models.CharField(max_length=1000, blank=False, null=False, help_text=_("The wp.me short URL")) content = models.TextField(blank=True, null=True) excerpt = models.TextField(blank=True, null=True) slug = models.SlugField(max_length=200, blank=True, null=True, db_index=True) guid = models.CharField(max_length=1000, blank=True, null=True, db_index=True) status = models.CharField(max_length=20, blank=True, null=True) sticky = models.BooleanField(default=False, help_text=_("Show this post at the top of the chronological list, even if old.")) password = models.CharField(max_length=1000, blank=True, null=True) parent = JSONField(load_kwargs={'object_pairs_hook': collections.OrderedDict}, blank=True, null=True) post_type = models.CharField(max_length=20, blank=True, null=True) likes_enabled = models.NullBooleanField() sharing_enabled = models.NullBooleanField() like_count = models.IntegerField(blank=True, null=True) global_ID = models.CharField(max_length=1000) featured_image = models.CharField(max_length=1000) post_thumbnail = JSONField(blank=True, null=True, load_kwargs={'object_pairs_hook': collections.OrderedDict}) attachments = models.ManyToManyField("Media", blank=True) format = models.CharField(max_length=20) menu_order = models.IntegerField(blank=True, null=True) tags = models.ManyToManyField("Tag", blank=True) categories = models.ManyToManyField("Category", blank=True) metadata = JSONField(load_kwargs={'object_pairs_hook': collections.OrderedDict}) def __unicode__(self): return "{}: {}".format(self.pk, self.slug)
46.157895
114
0.702395
79422f7dc973f48283af23bf792f0aad18d1fa05
1,155
py
Python
django_dashboard/routers.py
keepexploring/smartbiogas
ca663435b05666113e3c0cb55e6f087c61497208
[ "MIT" ]
null
null
null
django_dashboard/routers.py
keepexploring/smartbiogas
ca663435b05666113e3c0cb55e6f087c61497208
[ "MIT" ]
10
2017-11-24T12:15:40.000Z
2022-02-10T06:41:32.000Z
django_dashboard/routers.py
keepexploring/smartbiogas
ca663435b05666113e3c0cb55e6f087c61497208
[ "MIT" ]
null
null
null
class Dashboard_Router(object): """ A router to control all database operations on models in the dashboard application """ def db_for_read(self, model, **hints): """ Point all operations on myapp2 models to 'my_db_2' """ if model._meta.app_label == 'django_dashboard': return 'data' return None def db_for_write(self, model, **hints): """ Point all operations on myapp models to 'other' """ if model._meta.app_label == 'django_dashboard': return 'data' return None def allow_relation(self, obj1, obj2, **hints): """ Allow relations if a model in the auth app is involved. """ if obj1._meta.app_label == 'django_dashboard' or \ obj2._meta.app_label == 'django_dashboard': return True return None def allow_migrate(self, db, app_label, model_name=None, **hints): """ Make sure the auth app only appears in the 'auth_db' database. """ if app_label == 'django_dashboard': return db == 'data' return None
31.216216
69
0.575758
79422ff0f4c8118b2719b183fc11414047c664ee
256
py
Python
utils/scraper/translation.py
Nuzair46/Galactic-Empire-Bot
2f2d2681d0a130a87dc9cff6ad5feba0af8b6d66
[ "MIT" ]
null
null
null
utils/scraper/translation.py
Nuzair46/Galactic-Empire-Bot
2f2d2681d0a130a87dc9cff6ad5feba0af8b6d66
[ "MIT" ]
null
null
null
utils/scraper/translation.py
Nuzair46/Galactic-Empire-Bot
2f2d2681d0a130a87dc9cff6ad5feba0af8b6d66
[ "MIT" ]
null
null
null
import googletrans from googletrans import Translator class language(): def translateto(text, lang): translator = Translator() final = translator.translate(text, dest = lang) language = googletrans.LANGUAGES return final.text,language[final.src]
25.6
49
0.773438
794230752a697bf28da367ab9bb3af8bd728e8ab
1,594
py
Python
Python/paint-house.py
RideGreg/LeetCode
b70818b1e6947bf29519a24f78816e022ebab59e
[ "MIT" ]
1
2022-01-30T06:55:28.000Z
2022-01-30T06:55:28.000Z
Python/paint-house.py
RideGreg/LeetCode
b70818b1e6947bf29519a24f78816e022ebab59e
[ "MIT" ]
null
null
null
Python/paint-house.py
RideGreg/LeetCode
b70818b1e6947bf29519a24f78816e022ebab59e
[ "MIT" ]
1
2021-12-31T03:56:39.000Z
2021-12-31T03:56:39.000Z
# Time: O(n) # Space: O(1) # 256 # There are a row of n houses, each house can be painted with one of the three colors: red, blue or green. # The cost of painting each house with a certain color is different. You have to paint all the houses # such that no two adjacent houses have the same color. # # The cost of painting each house with a certain color is represented by a n x 3 cost matrix. For example, # costs[0][0] is the cost of painting house 0 with color red; costs[1][2] is the cost of # painting house 1 with color green, and so on... Find the minimum cost to paint all houses. class Solution(object): def minCost(self, costs): """ :type costs: List[List[int]] :rtype: int """ ans = [0] * 3 for c in costs: ans = [c[0] + min(ans[1], ans[2]), c[1] + min(ans[2], ans[0]), c[2] + min(ans[0], ans[1])] return min(ans) # Time: O(n) # Space: O(n) class Solution2(object): # modified input list def minCost(self, costs): """ :type costs: List[List[int]] :rtype: int """ if not costs: return 0 n = len(costs) for i in range(1, n): costs[i][0] += min(costs[i - 1][1], costs[i - 1][2]) costs[i][1] += min(costs[i - 1][0], costs[i - 1][2]) costs[i][2] += min(costs[i - 1][0], costs[i - 1][1]) return min(costs[n - 1]) print(Solution().minCost([[14,2,11],[11,14,5],[14,3,10]])) # 10 = blue 2 + green 5 + blue 3 print(Solution().minCost([[1,2,3],[1,4,6]])) # 3
33.208333
106
0.550188
794231b561427ba75a1adc54c4758a74b68fbb0d
4,716
py
Python
api/metricsdata_test.py
liamnewmarch/chromium-dashboard
0e10b98554a85bd8edb7c61f8fa0494821fe005f
[ "Apache-2.0" ]
450
2015-01-31T03:16:15.000Z
2022-03-25T14:03:26.000Z
api/metricsdata_test.py
nirajbhutada/chromium-dashboard
6fcec787cad34350b50806f7ffde4238942d7ec3
[ "Apache-2.0" ]
1,336
2015-01-16T21:41:33.000Z
2022-03-30T16:28:24.000Z
api/metricsdata_test.py
Fmichi50/chromium-dashboard
e77396a8cc5a5f10f46ff9b9456f6aa0b2dc94d8
[ "Apache-2.0" ]
314
2015-01-28T00:17:45.000Z
2022-03-28T05:09:46.000Z
# Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import testing_config # Must be imported first import datetime import mock import flask # from google.appengine.api import users from framework import users from api import metricsdata from internals import models test_app = flask.Flask(__name__) class MetricsFunctionTests(testing_config.CustomTestCase): def setUp(self): self.datapoint = models.StableInstance( day_percentage=0.0123456789, date=datetime.date.today(), bucket_id=1, property_name='prop') def test_truncate_day_percentage(self): updated_datapoint = metricsdata._truncate_day_percentage(self.datapoint) self.assertEqual(0.01234568, updated_datapoint.day_percentage) def test_is_googler__anon(self): testing_config.sign_out() user = users.get_current_user() self.assertFalse(metricsdata._is_googler(user)) def test_is_googler__nongoogler(self): testing_config.sign_in('[email protected]', 111) user = users.get_current_user() self.assertFalse(metricsdata._is_googler(user)) def test_is_googler__googler(self): testing_config.sign_in('[email protected]', 111) user = users.get_current_user() self.assertTrue(metricsdata._is_googler(user)) def test_clean_data__no_op(self): testing_config.sign_in('[email protected]', 111) datapoints = [self.datapoint] updated_datapoints = metricsdata._clean_data(datapoints) self.assertEqual(0.0123456789, list(updated_datapoints)[0].day_percentage) def test_clean_data__clean_datapoints(self): testing_config.sign_out() datapoints = [self.datapoint] updated_datapoints = metricsdata._clean_data(datapoints) self.assertEqual(0.01234568, list(updated_datapoints)[0].day_percentage) class PopularityTimelineHandlerTests(testing_config.CustomTestCase): def setUp(self): self.handler = metricsdata.PopularityTimelineHandler() self.datapoint = models.StableInstance( day_percentage=0.0123456789, date=datetime.date.today(), bucket_id=1, property_name='prop') self.datapoint.put() def tearDown(self): self.datapoint.key.delete() def test_make_query(self): actual_query = self.handler.make_query(1) self.assertEqual(actual_query.kind, models.StableInstance._get_kind()) def test_get_template_data__bad_bucket(self): url = '/data/timeline/csspopularity?bucket_id=not-a-number' with test_app.test_request_context(url): actual = self.handler.get_template_data() self.assertEqual([], actual) def test_get_template_data__normal(self): testing_config.sign_out() url = '/data/timeline/csspopularity?bucket_id=1' with test_app.test_request_context(url): actual_datapoints = self.handler.get_template_data() self.assertEqual(1, len(actual_datapoints)) self.assertEqual(0.01234568, actual_datapoints[0]['day_percentage']) # TODO(jrobbins): Test for metricsdata.FeatureHandler. class FeatureBucketsHandlerTest(testing_config.CustomTestCase): def setUp(self): self.handler = metricsdata.FeatureBucketsHandler() self.prop_1 = models.CssPropertyHistogram( bucket_id=1, property_name='b prop') self.prop_1.put() self.prop_2 = models.CssPropertyHistogram( bucket_id=2, property_name='a prop') self.prop_2.put() self.prop_3 = models.FeatureObserverHistogram( bucket_id=3, property_name='b feat') self.prop_3.put() self.prop_4 = models.FeatureObserverHistogram( bucket_id=4, property_name='a feat') self.prop_4.put() def tearDown(self): self.prop_1.key.delete() self.prop_2.key.delete() self.prop_3.key.delete() self.prop_4.key.delete() def test_get_template_data__css(self): with test_app.test_request_context('/data/blink/cssprops'): actual_buckets = self.handler.get_template_data('cssprops') self.assertEqual( [(2, 'a prop'), (1, 'b prop')], actual_buckets) def test_get_template_data__js(self): with test_app.test_request_context('/data/blink/features'): actual_buckets = self.handler.get_template_data('features') self.assertEqual( [(4, 'a feat'), (3, 'b feat')], actual_buckets)
33.211268
78
0.744275
7942329c36169eed3489b27254df102ad7c629c8
7,259
py
Python
sdk/python/pulumi_google_native/jobs/v4/tenant.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
44
2021-04-18T23:00:48.000Z
2022-02-14T17:43:15.000Z
sdk/python/pulumi_google_native/jobs/v4/tenant.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
354
2021-04-16T16:48:39.000Z
2022-03-31T17:16:39.000Z
sdk/python/pulumi_google_native/jobs/v4/tenant.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
8
2021-04-24T17:46:51.000Z
2022-01-05T10:40:21.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['TenantArgs', 'Tenant'] @pulumi.input_type class TenantArgs: def __init__(__self__, *, external_id: pulumi.Input[str], name: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Tenant resource. :param pulumi.Input[str] external_id: Client side tenant identifier, used to uniquely identify the tenant. The maximum number of allowed characters is 255. :param pulumi.Input[str] name: Required during tenant update. The resource name for a tenant. This is generated by the service when a tenant is created. The format is "projects/{project_id}/tenants/{tenant_id}", for example, "projects/foo/tenants/bar". """ pulumi.set(__self__, "external_id", external_id) if name is not None: pulumi.set(__self__, "name", name) if project is not None: pulumi.set(__self__, "project", project) @property @pulumi.getter(name="externalId") def external_id(self) -> pulumi.Input[str]: """ Client side tenant identifier, used to uniquely identify the tenant. The maximum number of allowed characters is 255. """ return pulumi.get(self, "external_id") @external_id.setter def external_id(self, value: pulumi.Input[str]): pulumi.set(self, "external_id", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Required during tenant update. The resource name for a tenant. This is generated by the service when a tenant is created. The format is "projects/{project_id}/tenants/{tenant_id}", for example, "projects/foo/tenants/bar". """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) class Tenant(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, external_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, __props__=None): """ Creates a new tenant entity. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] external_id: Client side tenant identifier, used to uniquely identify the tenant. The maximum number of allowed characters is 255. :param pulumi.Input[str] name: Required during tenant update. The resource name for a tenant. This is generated by the service when a tenant is created. The format is "projects/{project_id}/tenants/{tenant_id}", for example, "projects/foo/tenants/bar". """ ... @overload def __init__(__self__, resource_name: str, args: TenantArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Creates a new tenant entity. :param str resource_name: The name of the resource. :param TenantArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(TenantArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, external_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = TenantArgs.__new__(TenantArgs) if external_id is None and not opts.urn: raise TypeError("Missing required property 'external_id'") __props__.__dict__["external_id"] = external_id __props__.__dict__["name"] = name __props__.__dict__["project"] = project super(Tenant, __self__).__init__( 'google-native:jobs/v4:Tenant', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Tenant': """ Get an existing Tenant resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = TenantArgs.__new__(TenantArgs) __props__.__dict__["external_id"] = None __props__.__dict__["name"] = None return Tenant(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="externalId") def external_id(self) -> pulumi.Output[str]: """ Client side tenant identifier, used to uniquely identify the tenant. The maximum number of allowed characters is 255. """ return pulumi.get(self, "external_id") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Required during tenant update. The resource name for a tenant. This is generated by the service when a tenant is created. The format is "projects/{project_id}/tenants/{tenant_id}", for example, "projects/foo/tenants/bar". """ return pulumi.get(self, "name")
43.467066
260
0.642375
79423389242ae0c8a41f0df6bb6087f409852cf2
14,095
py
Python
python/ray/remote_function.py
yorickvanzweeden/ray
79a9d6d5171071190f531121be310fb4d203cf11
[ "Apache-2.0" ]
null
null
null
python/ray/remote_function.py
yorickvanzweeden/ray
79a9d6d5171071190f531121be310fb4d203cf11
[ "Apache-2.0" ]
27
2021-08-07T07:07:24.000Z
2022-03-26T07:05:43.000Z
python/ray/remote_function.py
yorickvanzweeden/ray
79a9d6d5171071190f531121be310fb4d203cf11
[ "Apache-2.0" ]
null
null
null
import logging import inspect from functools import wraps from ray import cloudpickle as pickle from ray._raylet import PythonFunctionDescriptor from ray import cross_language, Language from ray._private.client_mode_hook import client_mode_convert_function from ray._private.client_mode_hook import client_mode_should_convert from ray.util.placement_group import ( PlacementGroup, check_placement_group_index, get_current_placement_group, ) import ray._private.signature import ray._private.runtime_env as runtime_support from ray.util.tracing.tracing_helper import (_tracing_task_invocation, _inject_tracing_into_function) # Default parameters for remote functions. DEFAULT_REMOTE_FUNCTION_CPUS = 1 DEFAULT_REMOTE_FUNCTION_NUM_RETURN_VALS = 1 DEFAULT_REMOTE_FUNCTION_MAX_CALLS = 0 # Normal tasks may be retried on failure this many times. # TODO(swang): Allow this to be set globally for an application. DEFAULT_REMOTE_FUNCTION_NUM_TASK_RETRIES = 3 logger = logging.getLogger(__name__) class RemoteFunction: """A remote function. This is a decorated function. It can be used to spawn tasks. Attributes: _language: The target language. _function: The original function. _function_descriptor: The function descriptor. This is not defined until the remote function is first invoked because that is when the function is pickled, and the pickled function is used to compute the function descriptor. _function_name: The module and function name. _num_cpus: The default number of CPUs to use for invocations of this remote function. _num_gpus: The default number of GPUs to use for invocations of this remote function. _memory: The heap memory request for this task. _object_store_memory: The object store memory request for this task. _resources: The default custom resource requirements for invocations of this remote function. _num_returns: The default number of return values for invocations of this remote function. _max_calls: The number of times a worker can execute this function before exiting. _decorator: An optional decorator that should be applied to the remote function invocation (as opposed to the function execution) before invoking the function. The decorator must return a function that takes in two arguments ("args" and "kwargs"). In most cases, it should call the function that was passed into the decorator and return the resulting ObjectRefs. For an example, see "test_decorated_function" in "python/ray/tests/test_basic.py". _function_signature: The function signature. _last_export_session_and_job: A pair of the last exported session and job to help us to know whether this function was exported. This is an imperfect mechanism used to determine if we need to export the remote function again. It is imperfect in the sense that the actor class definition could be exported multiple times by different workers. """ def __init__(self, language, function, function_descriptor, num_cpus, num_gpus, memory, object_store_memory, resources, accelerator_type, num_returns, max_calls, max_retries): if inspect.iscoroutinefunction(function): raise ValueError("'async def' should not be used for remote " "tasks. You can wrap the async function with " "`asyncio.get_event_loop.run_until(f())`. " "See more at docs.ray.io/async_api.html") self._language = language self._function = _inject_tracing_into_function(function) self._function_name = (function.__module__ + "." + function.__name__) self._function_descriptor = function_descriptor self._is_cross_language = language != Language.PYTHON self._num_cpus = (DEFAULT_REMOTE_FUNCTION_CPUS if num_cpus is None else num_cpus) self._num_gpus = num_gpus self._memory = memory if object_store_memory is not None: raise NotImplementedError( "setting object_store_memory is not implemented for tasks") self._object_store_memory = None self._resources = resources self._accelerator_type = accelerator_type self._num_returns = (DEFAULT_REMOTE_FUNCTION_NUM_RETURN_VALS if num_returns is None else num_returns) self._max_calls = (DEFAULT_REMOTE_FUNCTION_MAX_CALLS if max_calls is None else max_calls) self._max_retries = (DEFAULT_REMOTE_FUNCTION_NUM_TASK_RETRIES if max_retries is None else max_retries) self._decorator = getattr(function, "__ray_invocation_decorator__", None) self._function_signature = ray._private.signature.extract_signature( self._function) self._last_export_session_and_job = None # Override task.remote's signature and docstring @wraps(function) def _remote_proxy(*args, **kwargs): return self._remote(args=args, kwargs=kwargs) self.remote = _remote_proxy def __call__(self, *args, **kwargs): raise TypeError("Remote functions cannot be called directly. Instead " f"of running '{self._function_name}()', " f"try '{self._function_name}.remote()'.") def options(self, args=None, kwargs=None, num_returns=None, num_cpus=None, num_gpus=None, memory=None, object_store_memory=None, accelerator_type=None, resources=None, max_retries=None, placement_group="default", placement_group_bundle_index=-1, placement_group_capture_child_tasks=None, runtime_env=None, override_environment_variables=None, name=""): """Configures and overrides the task invocation parameters. The arguments are the same as those that can be passed to :obj:`ray.remote`. Examples: .. code-block:: python @ray.remote(num_gpus=1, max_calls=1, num_returns=2) def f(): return 1, 2 # Task f will require 2 gpus instead of 1. g = f.options(num_gpus=2, max_calls=None) """ func_cls = self class FuncWrapper: def remote(self, *args, **kwargs): return func_cls._remote( args=args, kwargs=kwargs, num_returns=num_returns, num_cpus=num_cpus, num_gpus=num_gpus, memory=memory, object_store_memory=object_store_memory, accelerator_type=accelerator_type, resources=resources, max_retries=max_retries, placement_group=placement_group, placement_group_bundle_index=placement_group_bundle_index, placement_group_capture_child_tasks=( placement_group_capture_child_tasks), runtime_env=runtime_env, override_environment_variables=( override_environment_variables), name=name) return FuncWrapper() @_tracing_task_invocation def _remote(self, args=None, kwargs=None, num_returns=None, num_cpus=None, num_gpus=None, memory=None, object_store_memory=None, accelerator_type=None, resources=None, max_retries=None, placement_group="default", placement_group_bundle_index=-1, placement_group_capture_child_tasks=None, runtime_env=None, override_environment_variables=None, name=""): """Submit the remote function for execution.""" if client_mode_should_convert(): return client_mode_convert_function( self, args, kwargs, num_returns=num_returns, num_cpus=num_cpus, num_gpus=num_gpus, memory=memory, object_store_memory=object_store_memory, accelerator_type=accelerator_type, resources=resources, max_retries=max_retries, placement_group=placement_group, placement_group_bundle_index=placement_group_bundle_index, placement_group_capture_child_tasks=( placement_group_capture_child_tasks), runtime_env=runtime_env, override_environment_variables=override_environment_variables, name=name) worker = ray.worker.global_worker worker.check_connected() # If this function was not exported in this session and job, we need to # export this function again, because the current GCS doesn't have it. if not self._is_cross_language and \ self._last_export_session_and_job != \ worker.current_session_and_job: # There is an interesting question here. If the remote function is # used by a subsequent driver (in the same script), should the # second driver pickle the function again? If yes, then the remote # function definition can differ in the second driver (e.g., if # variables in its closure have changed). We probably want the # behavior of the remote function in the second driver to be # independent of whether or not the function was invoked by the # first driver. This is an argument for repickling the function, # which we do here. self._pickled_function = pickle.dumps(self._function) self._function_descriptor = PythonFunctionDescriptor.from_function( self._function, self._pickled_function) self._last_export_session_and_job = worker.current_session_and_job worker.function_actor_manager.export(self) kwargs = {} if kwargs is None else kwargs args = [] if args is None else args if num_returns is None: num_returns = self._num_returns if max_retries is None: max_retries = self._max_retries if placement_group_capture_child_tasks is None: placement_group_capture_child_tasks = ( worker.should_capture_child_tasks_in_placement_group) if placement_group == "default": if placement_group_capture_child_tasks: placement_group = get_current_placement_group() else: placement_group = PlacementGroup.empty() if not placement_group: placement_group = PlacementGroup.empty() check_placement_group_index(placement_group, placement_group_bundle_index) resources = ray._private.utils.resources_from_resource_arguments( self._num_cpus, self._num_gpus, self._memory, self._object_store_memory, self._resources, self._accelerator_type, num_cpus, num_gpus, memory, object_store_memory, resources, accelerator_type) if runtime_env: runtime_env_dict = runtime_support.RuntimeEnvDict( runtime_env).get_parsed_dict() else: runtime_env_dict = {} if override_environment_variables: logger.warning("override_environment_variables is deprecated and " "will be removed in Ray 1.5. Please use " ".options(runtime_env={'env_vars': {...}}).remote()" "instead.") def invocation(args, kwargs): if self._is_cross_language: list_args = cross_language.format_args(worker, args, kwargs) elif not args and not kwargs and not self._function_signature: list_args = [] else: list_args = ray._private.signature.flatten_args( self._function_signature, args, kwargs) if worker.mode == ray.worker.LOCAL_MODE: assert not self._is_cross_language, \ "Cross language remote function " \ "cannot be executed locally." object_refs = worker.core_worker.submit_task( self._language, self._function_descriptor, list_args, name, num_returns, resources, max_retries, placement_group.id, placement_group_bundle_index, placement_group_capture_child_tasks, worker.debugger_breakpoint, runtime_env_dict, override_environment_variables=override_environment_variables or dict()) # Reset worker's debug context from the last "remote" command # (which applies only to this .remote call). worker.debugger_breakpoint = b"" if len(object_refs) == 1: return object_refs[0] elif len(object_refs) > 1: return object_refs if self._decorator is not None: invocation = self._decorator(invocation) return invocation(args, kwargs)
43.236196
79
0.614899
794234085b4fc411d6780bb2e8768a95f03ea14f
10,610
py
Python
pygsp/learning.py
dataronio/pygsp
0f35fbf2623d32060fe2f709715a88a818528e26
[ "BSD-3-Clause" ]
341
2015-09-07T16:59:41.000Z
2022-03-23T20:27:55.000Z
pygsp/learning.py
dataronio/pygsp
0f35fbf2623d32060fe2f709715a88a818528e26
[ "BSD-3-Clause" ]
96
2017-04-16T04:38:57.000Z
2021-11-02T18:36:41.000Z
pygsp/learning.py
dataronio/pygsp
0f35fbf2623d32060fe2f709715a88a818528e26
[ "BSD-3-Clause" ]
95
2016-03-25T14:35:28.000Z
2022-02-08T18:54:29.000Z
# -*- coding: utf-8 -*- r""" The :mod:`pygsp.learning` module provides functions to solve learning problems. Semi-supervized learning ======================== Those functions help to solve a semi-supervized learning problem, i.e., a problem where only some values of a graph signal are known and the others shall be inferred. .. autosummary:: regression_tikhonov classification_tikhonov classification_tikhonov_simplex """ import numpy as np from scipy import sparse def _import_pyunlocbox(): try: from pyunlocbox import functions, solvers except Exception as e: raise ImportError('Cannot import pyunlocbox, which is needed to solve ' 'this optimization problem. Try to install it with ' 'pip (or conda) install pyunlocbox. ' 'Original exception: {}'.format(e)) return functions, solvers def _to_logits(x): logits = np.zeros([len(x), np.max(x)+1]) logits[range(len(x)), x] = 1 return logits def classification_tikhonov_simplex(G, y, M, tau=0.1, **kwargs): r"""Solve a classification problem on graph via Tikhonov minimization with simple constraints. The function first transforms :math:`y` in logits :math:`Y`, then solves .. math:: \operatorname*{arg min}_X \| M X - Y \|_2^2 + \tau \ tr(X^T L X) \text{ s.t. } sum(X) = 1 \text{ and } X >= 0, where :math:`X` and :math:`Y` are logits. Parameters ---------- G : :class:`pygsp.graphs.Graph` y : array, length G.n_vertices Measurements. M : array of boolean, length G.n_vertices Masking vector. tau : float Regularization parameter. kwargs : dict Parameters for :func:`pyunlocbox.solvers.solve`. Returns ------- logits : array, length G.n_vertices The logits :math:`X`. Examples -------- >>> from pygsp import graphs, learning >>> import matplotlib.pyplot as plt >>> >>> G = graphs.Logo() >>> G.estimate_lmax() Create a ground truth signal: >>> signal = np.zeros(G.n_vertices) >>> signal[G.info['idx_s']] = 1 >>> signal[G.info['idx_p']] = 2 Construct a measurement signal from a binary mask: >>> rng = np.random.default_rng(42) >>> mask = rng.uniform(0, 1, G.n_vertices) > 0.5 >>> measures = signal.copy() >>> measures[~mask] = np.nan Solve the classification problem by reconstructing the signal: >>> recovery = learning.classification_tikhonov_simplex( ... G, measures, mask, tau=0.1, verbosity='NONE') Plot the results. Note that we recover the class with ``np.argmax(recovery, axis=1)``. >>> prediction = np.argmax(recovery, axis=1) >>> fig, ax = plt.subplots(2, 3, sharey=True, figsize=(10, 6)) >>> _ = G.plot(signal, ax=ax[0, 0], title='Ground truth') >>> _ = G.plot(measures, ax=ax[0, 1], title='Measurements') >>> _ = G.plot(prediction, ax=ax[0, 2], title='Recovered class') >>> _ = G.plot(recovery[:, 0], ax=ax[1, 0], title='Logit 0') >>> _ = G.plot(recovery[:, 1], ax=ax[1, 1], title='Logit 1') >>> _ = G.plot(recovery[:, 2], ax=ax[1, 2], title='Logit 2') >>> _ = fig.tight_layout() """ functions, solvers = _import_pyunlocbox() if tau <= 0: raise ValueError('Tau should be greater than 0.') y = y.copy() y[M == False] = 0 Y = _to_logits(y.astype(int)) Y[M == False, :] = 0 def proj_simplex(y): d = y.shape[1] a = np.ones(d) idx = np.argsort(y) def evalpL(y, k, idx): return np.sum(y[idx[k:]] - y[idx[k]]) - 1 def bisectsearch(idx, y): idxL, idxH = 0, d-1 L = evalpL(y, idxL, idx) H = evalpL(y, idxH, idx) if L < 0: return idxL while (idxH-idxL) > 1: iMid = int((idxL + idxH) / 2) M = evalpL(y, iMid, idx) if M > 0: idxL, L = iMid, M else: idxH, H = iMid, M return idxH def proj(idx, y): k = bisectsearch(idx, y) lam = (np.sum(y[idx[k:]]) - 1) / (d - k) return np.maximum(0, y - lam) x = np.empty_like(y) for i in range(len(y)): x[i] = proj(idx[i], y[i]) # x = np.stack(map(proj, idx, y)) return x def smooth_eval(x): xTLx = np.sum(x * (G.L.dot(x))) e = M * ((M * x.T) - Y.T) l2 = np.sum(e * e) return tau * xTLx + l2 def smooth_grad(x): return 2 * ((M * (M * x.T - Y.T)).T + tau * G.L * x) f1 = functions.func() f1._eval = smooth_eval f1._grad = smooth_grad f2 = functions.func() f2._eval = lambda x: 0 # Indicator functions evaluate to zero. f2._prox = lambda x, step: proj_simplex(x) step = 0.5 / (1 + tau * G.lmax) solver = solvers.forward_backward(step=step) ret = solvers.solve([f1, f2], Y.copy(), solver, **kwargs) return ret['sol'] def classification_tikhonov(G, y, M, tau=0): r"""Solve a classification problem on graph via Tikhonov minimization. The function first transforms :math:`y` in logits :math:`Y`, then solves .. math:: \operatorname*{arg min}_X \| M X - Y \|_2^2 + \tau \ tr(X^T L X) if :math:`\tau > 0`, and .. math:: \operatorname*{arg min}_X tr(X^T L X) \ \text{ s. t. } \ Y = M X otherwise, where :math:`X` and :math:`Y` are logits. The function returns the maximum of the logits. Parameters ---------- G : :class:`pygsp.graphs.Graph` y : array, length G.n_vertices Measurements. M : array of boolean, length G.n_vertices Masking vector. tau : float Regularization parameter. Returns ------- logits : array, length G.n_vertices The logits :math:`X`. Examples -------- >>> from pygsp import graphs, learning >>> import matplotlib.pyplot as plt >>> >>> G = graphs.Logo() Create a ground truth signal: >>> signal = np.zeros(G.n_vertices) >>> signal[G.info['idx_s']] = 1 >>> signal[G.info['idx_p']] = 2 Construct a measurement signal from a binary mask: >>> rng = np.random.default_rng(42) >>> mask = rng.uniform(0, 1, G.n_vertices) > 0.5 >>> measures = signal.copy() >>> measures[~mask] = np.nan Solve the classification problem by reconstructing the signal: >>> recovery = learning.classification_tikhonov(G, measures, mask, tau=0) Plot the results. Note that we recover the class with ``np.argmax(recovery, axis=1)``. >>> prediction = np.argmax(recovery, axis=1) >>> fig, ax = plt.subplots(2, 3, sharey=True, figsize=(10, 6)) >>> _ = G.plot(signal, ax=ax[0, 0], title='Ground truth') >>> _ = G.plot(measures, ax=ax[0, 1], title='Measurements') >>> _ = G.plot(prediction, ax=ax[0, 2], title='Recovered class') >>> _ = G.plot(recovery[:, 0], ax=ax[1, 0], title='Logit 0') >>> _ = G.plot(recovery[:, 1], ax=ax[1, 1], title='Logit 1') >>> _ = G.plot(recovery[:, 2], ax=ax[1, 2], title='Logit 2') >>> _ = fig.tight_layout() """ y = y.copy() y[M == False] = 0 Y = _to_logits(y.astype(int)) return regression_tikhonov(G, Y, M, tau) def regression_tikhonov(G, y, M, tau=0): r"""Solve a regression problem on graph via Tikhonov minimization. The function solves .. math:: \operatorname*{arg min}_x \| M x - y \|_2^2 + \tau \ x^T L x if :math:`\tau > 0`, and .. math:: \operatorname*{arg min}_x x^T L x \ \text{ s. t. } \ y = M x otherwise. Parameters ---------- G : :class:`pygsp.graphs.Graph` y : array, length G.n_vertices Measurements. M : array of boolean, length G.n_vertices Masking vector. tau : float Regularization parameter. Returns ------- x : array, length G.n_vertices Recovered values :math:`x`. Examples -------- >>> from pygsp import graphs, filters, learning >>> import matplotlib.pyplot as plt >>> >>> G = graphs.Sensor(N=100, seed=42) >>> G.estimate_lmax() Create a smooth ground truth signal: >>> filt = lambda x: 1 / (1 + 10*x) >>> filt = filters.Filter(G, filt) >>> rng = np.random.default_rng(42) >>> signal = filt.analyze(rng.normal(size=G.n_vertices)) Construct a measurement signal from a binary mask: >>> mask = rng.uniform(0, 1, G.n_vertices) > 0.5 >>> measures = signal.copy() >>> measures[~mask] = np.nan Solve the regression problem by reconstructing the signal: >>> recovery = learning.regression_tikhonov(G, measures, mask, tau=0) Plot the results: >>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(10, 3)) >>> limits = [signal.min(), signal.max()] >>> _ = G.plot(signal, ax=ax1, limits=limits, title='Ground truth') >>> _ = G.plot(measures, ax=ax2, limits=limits, title='Measures') >>> _ = G.plot(recovery, ax=ax3, limits=limits, title='Recovery') >>> _ = fig.tight_layout() """ if tau > 0: y = y.copy() y[M == False] = 0 if sparse.issparse(G.L): def Op(x): return (M * x.T).T + tau * (G.L.dot(x)) LinearOp = sparse.linalg.LinearOperator([G.N, G.N], Op) if y.ndim > 1: sol = np.empty(shape=y.shape) res = np.empty(shape=y.shape[1]) for i in range(y.shape[1]): sol[:, i], res[i] = sparse.linalg.cg( LinearOp, y[:, i]) else: sol, res = sparse.linalg.cg(LinearOp, y) # TODO: do something with the residual... return sol else: # Creating this matrix may be problematic in term of memory. # Consider using an operator instead... if type(G.L).__module__ == np.__name__: LinearOp = np.diag(M*1) + tau * G.L return np.linalg.solve(LinearOp, M * y) else: if np.prod(M.shape) != G.n_vertices: raise ValueError("M should be of size [G.n_vertices,]") indl = M indu = (M == False) Luu = G.L[indu, :][:, indu] Wul = - G.L[indu, :][:, indl] if sparse.issparse(G.L): sol_part = sparse.linalg.spsolve(Luu, Wul.dot(y[indl])) else: sol_part = np.linalg.solve(Luu, np.matmul(Wul, y[indl])) sol = y.copy() sol[indu] = sol_part return sol
28.598383
79
0.55344
79423433cdcc39041c7fd83b1754e656cc596c82
3,178
py
Python
backend/api/models.py
AndyPaPaLeu/Disfactory
4afc370ae6b0d526891fce2b1fe0b9c687309ed1
[ "MIT" ]
null
null
null
backend/api/models.py
AndyPaPaLeu/Disfactory
4afc370ae6b0d526891fce2b1fe0b9c687309ed1
[ "MIT" ]
null
null
null
backend/api/models.py
AndyPaPaLeu/Disfactory
4afc370ae6b0d526891fce2b1fe0b9c687309ed1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import uuid from django.conf import settings from django.contrib.gis.db import models from django.contrib.gis.geos import Point from django.contrib.postgres.fields import JSONField class Factory(models.Model): """Factories that are potential to be illegal.""" # List of fact_type & status factory_type_list = [ ("1","金屬"), ("2-1","沖床、銑床、車床、鏜孔"), ("2-2", "焊接、鑄造、熱處理"), ("2-3", "金屬表面處理、噴漆"), ("3", "塑膠加工、射出"), ("4", "橡膠加工"), ("5", "非金屬礦物(石材)"), ("6", "食品"), ("7", "皮革"), ("8", "紡織"), ("9", "其他") ] status_list = [ ("D","已舉報"), ("F","資料不齊"), ("A","待審核") ] # All Features id = models.UUIDField( primary_key=True, default=uuid.uuid4, editable=False, verbose_name="ID", ) lat = models.FloatField() lng = models.FloatField() point = models.PointField(srid=settings.POSTGIS_SRID) landcode = models.CharField(max_length=50, blank=True, null=True) name = models.CharField(max_length=50, blank=True, null=True) factory_type = models.CharField(max_length=3, choices=factory_type_list, default="9") status = models.CharField(max_length=1, choices=status_list, default="A") status_time = models.DateTimeField(auto_now_add=True) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def save(self, *args, **kwargs): self.point = Point(self.lng, self.lat, srid=4326) self.point.transform(settings.POSTGIS_SRID) super(Factory, self).save(*args, **kwargs) class ReportRecord(models.Model): """Report records send by users. `ReportRecord` will be queried in advanced by admins from Citizen of the Earth, Taiwan. They will filter the most recent records out every a few weeks to catch the bad guys. """ id = models.AutoField(primary_key=True) factory = models.ForeignKey("Factory", on_delete=models.PROTECT) user_ip = models.GenericIPAddressField(default="192.168.0.1", blank=True, null=True) action_type = models.CharField(max_length=10) # PUT, POST action_body = JSONField() # request body created_at = models.DateTimeField(auto_now_add=True) contact = models.CharField(max_length=64, blank=True, null=True) others = models.CharField(max_length=1024, blank=True) class Image(models.Model): """Images of factories that are uploaded by user.""" id = models.UUIDField( primary_key=True, default=uuid.uuid4, editable=False, ) factory = models.ForeignKey( "Factory", on_delete=models.PROTECT, related_name="images", blank=True, null=True, ) report_record = models.ForeignKey( "ReportRecord", on_delete=models.PROTECT, blank=True, null=True, ) image_path = models.URLField(max_length=256) # get from Imgur created_at = models.DateTimeField(auto_now_add=True) # the DB saving time orig_time = models.DateTimeField(blank=True, null=True) # the actual photo taken time
30.854369
89
0.636249
794234572a920a864b13e67d733c2043997abdbd
28,376
py
Python
venv/Lib/site-packages/PyOpenGL-3.0.1/src/get_gl_extensions.py
temelkirci/Motion_Editor
a8b8d4c4d2dcc9be28385600f56066cef92a38ad
[ "MIT" ]
1
2022-03-02T17:07:20.000Z
2022-03-02T17:07:20.000Z
venv/Lib/site-packages/PyOpenGL-3.0.1/src/get_gl_extensions.py
temelkirci/RealTime_6DOF_Motion_Editor
a8b8d4c4d2dcc9be28385600f56066cef92a38ad
[ "MIT" ]
null
null
null
venv/Lib/site-packages/PyOpenGL-3.0.1/src/get_gl_extensions.py
temelkirci/RealTime_6DOF_Motion_Editor
a8b8d4c4d2dcc9be28385600f56066cef92a38ad
[ "MIT" ]
null
null
null
#! /usr/bin/env python """Script to download OpenGL extensions header and produce wrappers This script is the mechanism that allows for automatically wrapping new extensions with basic ctypes-level functionality. It doesn't do everything, but it approximates the same level of access as GLEW or pyglet will give you. The script also downloads the extension specification into .txt files that sit next to the same-named .py files, the purpose of this is to allow developers to grep through the source files looking for common features, such as references to the glGet* tables. glGetBoolean/glGetInteger/glGetFloat/glGetDouble A CSV file in this directory controls registration of constants for use with glGet, the format of the file is a tab-delimited format with the constants in the first column. Records are as follows: For no registration (e.g. when you need a custom function): CONSTANT For a static size: CONSTANT (1,) For dynamic dictionary-based lookup of size based on another parameter: CONSTANT pname LOOKUPCONSTANT (1,) LOOKUPCONSTANT (4,) ... Note that only constants which appear in a downloadable specification (.txt file) under a New Tokens header with a note that they can be passed to glGetBoolean will be so registered. """ import urllib, os, sys, re, string, traceback, logging, textwrap EXTENSION_HEADER_SOURCE = 'http://www.opengl.org/registry/api/glext.h' #ROOT_EXTENSION_SOURCE = 'http://oss.sgi.com/projects/ogl-sample/registry/' ROOT_EXTENSION_SOURCE = 'http://www.opengl.org/registry/specs/' AUTOGENERATION_SENTINEL = """### DO NOT EDIT above the line "END AUTOGENERATED SECTION" below!""" AUTOGENERATION_SENTINEL_END = """### END AUTOGENERATED SECTION""" if not os.path.isdir( os.path.join('..','OpenGL','GL') ): raise RuntimeError( """Only run this script with the src directory as the current working directory""" ) log = logging.getLogger( 'autogen' ) def download( url ): """Download the given url, informing the user of what we're doing""" sys.stderr.write( 'Download: %r\n'%(url,)) file = urllib.urlopen( url ) return file.read() registry = {} def nameToPath( name ): return os.path.join( * name.split( '_',2 ) ) def nameToPathMinusGL( name ): return "/".join( name.split( '_',2 )[1:] ) def indent( text, indent='\t' ): return "\n".join([ '%s%s'%(indent,line) for line in text.splitlines() ]) class Helper( object ): root = ROOT_EXTENSION_SOURCE def __getitem__( self, key ): item = getattr( self, key, None ) if item is None: raise KeyError( key ) if callable( item ): return item() else: return item class Function( Helper ): def __init__( self, returnType, name, signature, dll='platform.GL' ): """Parse definition into our various elements""" self.returnType = self.parseReturnType(returnType) self.name = name try: self.argTypes, self.argNames = self.parseArguments( signature ) except Exception, err: log.error( """Error parsing arguments for %s %s: %s""", name, signature, err ) self.argTypes, self.argNames = (), () ## self.pysignature = '(%s)'%( ## ", ".join([ ## item.split()[-1].strip('*') ## for item in signature[1:-1].split( ',' ) ## if item.strip().strip('*') ## ]) ## ) self.dll = dll findName = re.compile( '[a-zA-z0-9]*$' ) def parseReturnType( self, returnType ): return self.cTypeToPyType( returnType ) def parseArguments( self, signature ): """Parse a C argument-type declaration into a ctypes-style argTypes and argNames""" signature = signature.strip()[1:-1] # first and easiest case is a void call... if not signature.strip() or signature.strip() == 'void': return (), () types, names = [], [] for item in signature.split( ',' ): item = item.strip() nameMatch = self.findName.search( item ) if not nameMatch: raise ValueError( item ) name = nameMatch.group(0) rest = item[:nameMatch.start(0)].strip() types.append( self.cTypeToPyType( rest ) ) names.append( name ) return types, names def cTypeToPyType( self, base ): """Given a C declared type for an argument/return type, get Python/ctypes version""" base = base.strip() if base.endswith( 'const' ): return self.cTypeToPyType( base[:-5] ) elif base.startswith( 'const' ): return self.cTypeToPyType( base[5:] ) elif base.endswith( '*' ): new = self.cTypeToPyType( base[:-1] ) if new == 'constants.GLvoid': return 'ctypes.c_void_p' elif self.CTYPE_TO_ARRAY_TYPE.has_key( new ): return 'arrays.%s'%(self.CTYPE_TO_ARRAY_TYPE[new]) elif new in ( 'arrays.GLcharArray','arrays.GLcharARBArray'): # can't have a pointer to these... return 'ctypes.POINTER( ctypes.POINTER( constants.GLchar ))' elif new in ( 'constants.GLcharARB',): return 'ctypes.POINTER( ctypes.c_char_p )' else: log.warn( 'Unconverted pointer type in %s: %r', self.name, new ) return 'ctypes.POINTER(%s)'%(new) else: return 'constants.%s'%(base,) def errorReturn( self ): return '0' def declaration( self ): """Produce a declaration for this function in ctypes format""" dll = self.dll returnType = self.returnType if self.argTypes: argTypes = '(%s,)'%( ','.join(self.argTypes)) else: argTypes = '()' if self.argNames: argNames = '(%s,)'%( ','.join([repr(x) for x in self.argNames])) else: argNames = '()' arguments = ', '.join([ '%(type)s(%(name)s)'%locals() for (type,name) in [ (type.split('.',1)[1],name) for type,name in zip( self.argTypes,self.argNames ) ] ]) name = self.name if returnType.strip() in ('constants.GLvoid', 'constants.void'): returnType = pyReturn = 'None' else: pyReturn = self.returnType log.info( 'returnType %s -> %s', self.returnType, pyReturn ) doc = '%(name)s(%(arguments)s) -> %(pyReturn)s'%locals() return self.TEMPLATE%locals() TEMPLATE = """%(name)s = platform.createExtensionFunction( %(name)r,dll=%(dll)s, extension=EXTENSION_NAME, resultType=%(returnType)s, argTypes=%(argTypes)s, doc=%(doc)r, argNames=%(argNames)s, deprecated=_DEPRECATED, ) """ CTYPE_TO_ARRAY_TYPE = { 'constants.GLfloat': 'GLfloatArray', 'constants.float': 'GLfloatArray', 'constants.GLclampf': 'GLclampfArray', 'constants.GLdouble': 'GLdoubleArray', 'constants.double': 'GLdoubleArray', 'constants.int': 'GLintArray', 'constants.GLint': 'GLintArray', 'constants.GLuint': 'GLuintArray', 'constants.unsigned int':'GLuintArray', 'constants.unsigned char': 'GLbyteArray', 'constants.uint': 'GLuintArray', 'constants.GLshort': 'GLshortArray', 'constants.GLushort': 'GLushortArray', 'constants.short unsigned int':'GLushortArray', 'constants.GLubyte': 'GLubyteArray', 'constants.GLbool': 'GLbooleanArray', 'constants.GLboolean': 'GLbooleanArray', 'arrays.GLbooleanArray': 'GLbooleanArray', 'constants.GLbyte': 'GLbyteArray', 'constants.char': 'GLbyteArray', 'constants.gleDouble': 'GLdoubleArray', 'constants.GLchar': 'GLcharArray', 'constants.GLcharARB': 'GLcharARBArray', 'constants.GLhalfNV': 'GLushortArray', 'constants.GLhandle': 'GLuintArray', 'constants.GLhandleARB': 'GLuintArray', 'constants.GLenum': 'GLuintArray', # following should all have special sub-classes that enforce dimensions 'constants.gleDouble * 4': 'GLdoubleArray', 'constants.gleDouble * 3': 'GLdoubleArray', 'constants.gleDouble * 2': 'GLdoubleArray', 'constants.c_float * 3': 'GLfloatArray', 'constants.gleDouble * 3 * 2': 'GLdoubleArray', 'constants.GLsizei': 'GLsizeiArray', 'constants.GLint64': 'GLint64Array', 'constants.GLint64EXT': 'GLint64Array', 'constants.GLuint64': 'GLuint64Array', 'constants.GLuint64EXT': 'GLuint64Array', } # Don't know how Tarn got the api_versions, short of manually entering them... WRAPPER_TEMPLATE = """'''OpenGL extension %(owner)s.%(module)s Automatically generated by the get_gl_extensions script, do not edit! ''' from OpenGL import platform, constants, constant, arrays from OpenGL import extensions from OpenGL.GL import glget import ctypes EXTENSION_NAME = %(constantModule)r _DEPRECATED = %(deprecatedFlag)r %(constants)s %(declarations)s%(deprecated)s """ INIT_TEMPLATE = """ def glInit%(camelModule)s%(owner)s(): '''Return boolean indicating whether this extension is available''' return extensions.hasGLExtension( EXTENSION_NAME ) """ FINAL_MODULE_TEMPLATE = """'''OpenGL extension %(owner)s.%(module)s This module customises the behaviour of the OpenGL.raw.%(prefix)s.%(owner)s.%(module)s to provide a more Python-friendly API %(overview)sThe official definition of this extension is available here: %(root)s%(owner)s/%(module)s.txt ''' from OpenGL import platform, constants, constant, arrays from OpenGL import extensions, wrapper from OpenGL.GL import glget import ctypes from OpenGL.raw.%(prefix)s.%(owner)s.%(module)s import * """ class Module( Helper ): targetDirectory = os.path.join( '..','OpenGL') rawTargetDirectory = os.path.join( '..','OpenGL','raw') prefix = 'GL' defineFinder = re.compile( r'\#define[ \t]+([a-zA-Z0-9_]+)[ \t]*(0x[0-9a-fA-F]+)' ) functionFinder = re.compile( r'GLAPI[ \t]+(.*?)[ \t]+APIENTRY[ \t]+([a-zA-Z0-9_]+)[ \t]*\(' ) signatureFinderTemplate = r'typedef[ \t]+%(returnTypeRE)s[ \t]+\(APIENTRYP[ \t]+PFN%(nameUpper)sPROC\)[ \t]*(\(.*?\))[;]' typeDefFinder = re.compile( r'typedef[ \t]+(([a-zA-Z0-9_]+[ \t]*)+);' ) RAW_MODULE_TEMPLATE = WRAPPER_TEMPLATE + INIT_TEMPLATE def __init__( self, name, segments, header ): log.info( 'name: %r', name ) if not name.startswith( 'GL_' ): name = 'GL_'+name self.name = name self.segments = segments self.header = header try: self.prefix, self.owner, self.module = name.split('_',2) self.sentinelConstant = '%s_%s'%(self.owner,self.module) except ValueError: if name.endswith( 'SGIX' ): self.prefix = "GL" self.owner = 'SGIX' self.module = name[3:-4] self.sentinelConstant = '%s%s'%(self.module,self.owner) else: log.error( """Unable to parse module name: %s""", name ) raise if self.module[0] in string.digits: self.module = 'GL_%s'%(self.module,) self.camelModule = "".join([x.title() for x in self.module.split('_')]) self.rawModule = self.module # XXX need to figure this out better self.rawOwner = self.owner while self.owner and self.owner[0] in string.digits: self.owner = self.owner[1:] self.rawPathName = os.path.join( self.rawTargetDirectory, self.prefix, self.owner, self.module+'.py' ) self.pathName = os.path.join( self.targetDirectory, self.prefix, self.owner, self.module+'.py' ) self.findFunctions() self.constantModule = '%(prefix)s_%(owner)s_%(rawModule)s'%self if self.rawModule.endswith( '_DEPRECATED' ): self.constantModule = self.constantModule[:-len('_DEPRECATED')] self.deprecatedFlag = True else: self.deprecatedFlag = False specification = self.getSpecification() self.overview = '' if self.header.includeOverviews: for title,section in specification.blocks( specification.source ): if title.startswith( 'Overview' ): self.overview = 'Overview (from the spec)\n%s\n\n'%( indent( section.replace('\xd4','O').replace('\xd5','O') ) ) break def shouldReplace( self ): """Should we replace the given filename?""" filename = self.pathName if not os.path.isfile( filename ): return True else: hasLines = 0 for line in open( filename ): if line.strip() == AUTOGENERATION_SENTINEL_END.strip(): return True hasLines = 1 if not hasLines: return True return False def findFunctions( self ): """Find all of our function definitions""" result = [] for segment in self.segments: for match in self.functionFinder.finditer(segment): returnType, name = match.groups() nameUpper = re.escape(name.upper()) returnTypeRE = re.escape( returnType ) signatureFinder = re.compile( self.signatureFinderTemplate%locals() ) try: signature = signatureFinder.search( segment ).group(1) result.append( Function( returnType, name, signature )) except AttributeError: log.warn( "Couldn't find signature for function %s %s", returnType,name, ) self.functions = result def declarations( self ): """ DECLARE_VOID_EXT(glPointParameterfARB, (GLenum pname, GLfloat param), (pname, param)) DECLARE_VOID_EXT(glPointParameterfvARB, (GLenum pname, const GLfloat* param), (pname, param)) """ result = [] for function in self.functions: result.append( function.declaration() ) return "\n".join( result ) def functionNames( self ): """ "glPointParameterfARB", "glPointParameterfvARB", """ result = [] for function in self.functions: result.append( '"%s",'%(function.name,)) return "\n".join(result) def swigFunctionDeclarations( self ): """ void glPointParameterfARB(GLenum pname, GLfloat param); DOC(glPointParameterfARB, "glPointParameterfARB(pname, param) -> None") void glPointParameterfvARB(GLenum pname, const GLfloat* param); DOC(glPointParameterfvARB, "glPointParameterfvARB(pname, param) -> None") """ result = [] for segment in self.segments: for match in self.typeDefFinder.finditer( segment ): result.append( match.group(0)) for function in self.functions: result.append( '%(returnType)s %(name)s%(signature)s;'%function ) result.append( 'DOC(%(name)s, "%(name)s%(pysignature)s")'%function ) return "\n".join( result ) def constants( self ): """Retrieve constants from the segments This is, of course, all heuristically done :) """ result = [] glGets = self.getSpecification().glGetConstants() glGetSizes = self.header.glGetSizes for segment in self.segments: for match in self.defineFinder.finditer( segment ): name,value = match.groups() value = int(value,0) result.append( '%(name)s = constant.Constant( %(name)r, 0x%(value)X )'%locals() ) if glGets.has_key( name ) or glGetSizes.has_key( name ): size = glGetSizes.get( name, [] ) if len(size) == 0: # not yet specified... glGetSizes[ name ] = [] elif len(size) == 1: # static size... size = size[0] result.append( """glget.addGLGetConstant( %(name)s, %(size)s )"""%locals() ) else: # param name, then (key,value) for rest of elements param = size[0] rest = size[1:] set = {} while rest: current = rest[:2] del rest[:2] if len(current) == 2: set[current[0]] = current[1] else: log.warn( """Incorrect format for glGet constant %s (unevent set of values)""", name, ) size = '{ %s }'%( ','.join([ '%s : %s'%( key,value ) for (key,value) in set ]) ) result.append( """glget.addGLGetConstant( %(name)s, %(size)s, %(param)r )"""%locals() ) return '\n'.join(result) SPEC_EXCEPTIONS = { # different URLs... grr... '3DFX/multisample': 'http://oss.sgi.com/projects/ogl-sample/registry/3DFX/3dfx_multisample.txt', #'EXT/color_matrix': 'http://oss.sgi.com/projects/ogl-sample/registry/SGI/color_matrix.txt', #'EXT/texture_cube_map': 'http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_cube_map.txt', 'SGIS/fog_function': 'http://oss.sgi.com/projects/ogl-sample/registry/SGIS/fog_func.txt', } def getSpecification( self ): """Retrieve our specification document... Retrieves the .txt file which defines this specification, allowing us to review the document locally in order to provide a reasonable wrapping of it... """ specFile = os.path.splitext( self.pathName )[0] + '.txt' specURLFragment = nameToPathMinusGL(self.name) if self.SPEC_EXCEPTIONS.has_key( specURLFragment ): specURL = self.SPEC_EXCEPTIONS[ specURLFragment ] else: specURL = '%s/%s.txt'%( ROOT_EXTENSION_SOURCE, specURLFragment, ) if not os.path.isfile( specFile ): try: data = download(specURL) except Exception, err: log.warn( """Failure downloading specification %s: %s""", specURL, err ) data = "" else: try: open(specFile,'w').write( data ) except IOError, err: pass else: data = open( specFile ).read() if 'Error 404' in data: log.info( """Spec 404: %s""", specURL) data = '' return Specification( data ) def process( self ): """(re)Wrap the given module""" # first the raw wrapped API... directory = os.path.dirname(self.rawPathName) try: os.makedirs( directory ) except os.error: pass if not os.path.isfile( os.path.join(directory, '__init__.py')): open( os.path.join(directory, '__init__.py'),'w').write( '''"""OpenGL Extensions"""''' ) current = '' toWrite = self.RAW_MODULE_TEMPLATE % self try: current = open( self.rawPathName, 'r').read() except Exception, err: pass if current.strip() != toWrite.strip(): fh = open( self.rawPathName, 'w') fh.write( toWrite ) fh.close() if self.shouldReplace( ): # now the final module with any included custom code... toWrite = FINAL_MODULE_TEMPLATE % self current = '' try: current = open( self.pathName, 'r').read() except Exception, err: pass else: found = current.rfind( '\n'+AUTOGENERATION_SENTINEL_END ) if found >= -1: if current[:found].strip() == toWrite.strip(): # we aren't going to change anything... return False found += len( '\n' + AUTOGENERATION_SENTINEL_END ) current = current[found:] else: current = '' try: fh = open( self.pathName, 'w') except IOError, err: log.warn( "Unable to create module for %r %s", self.name, err ) return False else: fh.write( toWrite ) fh.write( AUTOGENERATION_SENTINEL_END ) fh.write( current ) fh.close() return True return False def deprecated( self ): """Produce import line for deprecated functions if appropriate""" name = self.name + '_DEPRECATED' if self.header.registry.get( name ): return '''# import legacy entry points to allow checking for bool(entryPoint) from OpenGL.raw.%(prefix)s.%(owner)s.%(module)s_DEPRECATED import *'''%self return '' class VersionModule( Module ): """Module representing an OpenGL version's extension to the spec""" targetDirectory = os.path.join( '..','OpenGL') rawTargetDirectory = os.path.join( '..','OpenGL','raw') prefix = 'GL' RAW_MODULE_TEMPLATE = WRAPPER_TEMPLATE def getSpecification( self ): """Retrieve our specification document... Retrieves the .txt file which defines this specification, allowing us to review the document locally in order to provide a reasonable wrapping of it... """ return Specification( '' ) class Specification( object ): """Parser for parsing OpenGL specifications for interesting information """ def __init__( self, source ): """Store the source text for the specification""" self.source = source def blocks( self, data ): """Retrieve the set of all blocks""" data = data.splitlines() title = [] block = [] for line in data: if line and line.lstrip() == line: if block: yield "\n".join(title), textwrap.dedent( "\n".join(block) ) title = [ ] block = [ ] title.append( line ) else: block.append( line ) if block: yield "\n".join(title), textwrap.dedent( "\n".join(block) ) def constantBlocks( self ): """Retrieve the set of constant blocks""" for title,block in self.blocks( self.source ): if title and title.startswith( 'New Tokens' ): yield block def glGetConstants( self ): """Retrieve the set of constants which pass to glGet* functions""" table = {} for block in self.constantBlocks(): for title, section in self.blocks( block ): for possible in ( 'GetBooleanv','GetIntegerv','<pname> of Get' ): if possible in title: for line in section.splitlines(): line = line.strip().split() if len(line) == 2: constant,value = line table['GL_%s'%(constant,)] = value break return table class Header( object ): """Manages the overall header source registry -- registry of extensions/versions found with the header segments that define them... includeOverviews -- if True, include the specification's overviews in the indivdual extensions """ registry = None includeOverviews = True def getFile( self ): """Load or download the source of the glext.h header""" if not os.path.isfile( 'glext.h' ): data = download( EXTENSION_HEADER_SOURCE ) open( 'glext.h', 'w').write( data ) else: data = open( 'glext.h' ).read() return data def getRegistry( self ): """Retrieve a parsed registry of extensions/versions This uses accidents of the header definition to produce the results, but the header is fairly consistent... returns { name: segments} to pass to Module init """ if self.registry: return self.registry file = self.getFile() index = file.find( '#define GL_GLEXT_VERSION' ) file = file[index:] extensions = file.split( '\n#ifndef ' )[1:] for item in extensions: name, definition = item.split( None, 1 ) definition = '#ifndef '+item registry.setdefault( name, []).append( definition ) self.registry = registry return registry def iterModules( self ): """Yield each Module( name, segments ) for all extensions extensions do *not* include the GL core versions... """ items = self.getRegistry().items() items.sort() for name, segments in items: if name in ('APIENTRY','APIENTRYP','GLAPI'): continue if not name.startswith( 'GL_VERSION' ): yield Module( name, segments, header=self ) else: yield VersionModule( name, segments, header=self ) def iterVersions( self ): """Yield each Version( name, segments ) for all versions""" items = self.getRegistry().items() items.sort() for name, segments in items: if name.startswith( 'GL_VERSION' ): yield Version( name, segments ) def autoGenerate( self ): """Autogenerate all Modules in this header""" new = {} total = count = 0 for module in self.iterModules(): if module.process( ): new[module.constantModule] = module count += 1 total += 1 return total, count def constantSections( self ): """Print the constant sections for all modules""" for module in self.iterModules(): module.getSpecification() for constant, value in module.getSpecification().glGetConstants().items(): #print title print constant glGetSizes = {} def loadGLGetSizes( self ): """Load manually-generated table of glGet* sizes""" table = self.glGetSizes try: lines = [ line.split('\t') for line in open( 'glgetsizes.csv' ).read().splitlines() ] except IOError, err: pass else: for line in lines: if line and line[0]: table[line[0].strip('"')] = [ v for v in [ v.strip('"') for v in line[1:] ] if v ] def saveGLGetSizes( self ): """Save out sorted list of glGet sizes to disk""" items = self.glGetSizes.items() items.sort() data = "\n".join([ '%s\t%s'%( key,"\t".join(value) ) for (key,value) in items ]) open( 'glgetsizes.csv','w').write( data ) if __name__ == "__main__": logging.basicConfig() log.setLevel( logging.WARN ) header = Header() header.loadGLGetSizes() total,count = Header().autoGenerate() print '%s total %s replaced'%(total,count) header.saveGLGetSizes() #header.constantSections()
39.301939
125
0.551593
794235c04f65aa169640bcbddcf291f837503be7
1,080
py
Python
adventofcode/2016/03.py
hacktoolkit/code_challenges
d71f8362496a72963a53abba7bcc9dd4d35a2920
[ "MIT" ]
10
2015-01-31T09:04:45.000Z
2022-01-08T04:09:48.000Z
adventofcode/2016/03.py
hacktoolkit/code_challenges
d71f8362496a72963a53abba7bcc9dd4d35a2920
[ "MIT" ]
3
2016-05-16T07:37:01.000Z
2016-05-18T14:14:16.000Z
adventofcode/2016/03.py
hacktoolkit/code_challenges
d71f8362496a72963a53abba7bcc9dd4d35a2920
[ "MIT" ]
6
2015-02-06T06:00:00.000Z
2020-02-13T16:13:48.000Z
from utils import ( InputConfig, ingest, transpose, ) INPUT_FILE = '03.in' EXPECTED_ANSWERS = (983, 1836, ) def main(): solution = Solution() answers = (solution.solve1(), solution.solve2(), ) print(answers) assert(answers == EXPECTED_ANSWERS) class Solution: def __init__(self): self.data = ingest(INPUT_FILE, InputConfig(as_table=True, cell_func=int)) def solve1(self): valid_triangles = 0 for values in self.data: a, b, c = sorted(values) if a + b > c: valid_triangles += 1 answer = valid_triangles return answer def solve2(self): matrix = transpose(self.data) values = [ col for row in matrix for col in row ] valid_triangles = 0 for i in range(0, len(values), 3): a, b, c = sorted(values[i:i+3]) if a + b > c: valid_triangles += 1 answer = valid_triangles return answer if __name__ == '__main__': main()
19.636364
81
0.539815
79423650e93c04dd2815f8685ef1ba379328ae87
10,530
py
Python
tests/core/ssl/test_ssl.py
vito-jwt/chia-blockchain
cd0a1c28e3c41ac2650ab7b3ef6a041e0c7f87b2
[ "Apache-2.0" ]
6
2021-05-21T10:29:32.000Z
2021-07-10T12:51:34.000Z
tests/core/ssl/test_ssl.py
Mateus-dang/chia-blockchain
2d2693496591b0b786461d16929b99a980d2528f
[ "Apache-2.0" ]
28
2021-07-13T21:07:14.000Z
2022-03-29T21:10:38.000Z
tests/core/ssl/test_ssl.py
Mateus-dang/chia-blockchain
2d2693496591b0b786461d16929b99a980d2528f
[ "Apache-2.0" ]
2
2021-04-20T16:37:10.000Z
2021-04-24T04:59:36.000Z
import asyncio import aiohttp import pytest from chia.protocols.shared_protocol import protocol_version from chia.server.outbound_message import NodeType from chia.server.server import ChiaServer, ssl_context_for_client from chia.server.ws_connection import WSChiaConnection from chia.ssl.create_ssl import generate_ca_signed_cert from chia.types.peer_info import PeerInfo from chia.util.block_tools import test_constants from chia.util.ints import uint16 from tests.setup_nodes import ( bt, self_hostname, setup_farmer_harvester, setup_introducer, setup_simulators_and_wallets, setup_timelord, ) async def establish_connection(server: ChiaServer, dummy_port: int, ssl_context) -> bool: timeout = aiohttp.ClientTimeout(total=10) session = aiohttp.ClientSession(timeout=timeout) try: incoming_queue: asyncio.Queue = asyncio.Queue() url = f"wss://{self_hostname}:{server._port}/ws" ws = await session.ws_connect(url, autoclose=False, autoping=True, ssl=ssl_context) wsc = WSChiaConnection( NodeType.FULL_NODE, ws, server._port, server.log, True, False, self_hostname, incoming_queue, lambda x, y: x, None, 100, 30, ) handshake = await wsc.perform_handshake(server._network_id, protocol_version, dummy_port, NodeType.FULL_NODE) await session.close() return handshake except Exception: await session.close() return False class TestSSL: @pytest.fixture(scope="function") async def harvester_farmer(self): async for _ in setup_farmer_harvester(test_constants): yield _ @pytest.fixture(scope="function") async def wallet_node(self): async for _ in setup_simulators_and_wallets(1, 1, {}): yield _ @pytest.fixture(scope="function") async def introducer(self): async for _ in setup_introducer(21233): yield _ @pytest.fixture(scope="function") async def timelord(self): async for _ in setup_timelord(21236, 21237, False, test_constants, bt): yield _ @pytest.mark.asyncio async def test_public_connections(self, wallet_node): full_nodes, wallets = wallet_node full_node_api = full_nodes[0] server_1: ChiaServer = full_node_api.full_node.server wallet_node, server_2 = wallets[0] success = await server_2.start_client(PeerInfo(self_hostname, uint16(server_1._port)), None) assert success is True @pytest.mark.asyncio async def test_farmer(self, harvester_farmer): harvester_api, farmer_api = harvester_farmer farmer_server = farmer_api.farmer.server # Create valid cert (valid meaning signed with private CA) priv_crt = farmer_server._private_key_path.parent / "valid.crt" priv_key = farmer_server._private_key_path.parent / "valid.key" generate_ca_signed_cert( farmer_server.ca_private_crt_path.read_bytes(), farmer_server.ca_private_key_path.read_bytes(), priv_crt, priv_key, ) ssl_context = ssl_context_for_client( farmer_server.ca_private_crt_path, farmer_server.ca_private_crt_path, priv_crt, priv_key ) connected = await establish_connection(farmer_server, 12312, ssl_context) assert connected is True # Create not authenticated cert pub_crt = farmer_server._private_key_path.parent / "non_valid.crt" pub_key = farmer_server._private_key_path.parent / "non_valid.key" generate_ca_signed_cert( farmer_server.chia_ca_crt_path.read_bytes(), farmer_server.chia_ca_key_path.read_bytes(), pub_crt, pub_key ) ssl_context = ssl_context_for_client( farmer_server.chia_ca_crt_path, farmer_server.chia_ca_crt_path, pub_crt, pub_key ) connected = await establish_connection(farmer_server, 12312, ssl_context) assert connected is False ssl_context = ssl_context_for_client( farmer_server.ca_private_crt_path, farmer_server.ca_private_crt_path, pub_crt, pub_key ) connected = await establish_connection(farmer_server, 12312, ssl_context) assert connected is False @pytest.mark.asyncio async def test_full_node(self, wallet_node): full_nodes, wallets = wallet_node full_node_api = full_nodes[0] full_node_server = full_node_api.full_node.server # Create not authenticated cert pub_crt = full_node_server._private_key_path.parent / "p2p.crt" pub_key = full_node_server._private_key_path.parent / "p2p.key" generate_ca_signed_cert( full_node_server.chia_ca_crt_path.read_bytes(), full_node_server.chia_ca_key_path.read_bytes(), pub_crt, pub_key, ) ssl_context = ssl_context_for_client( full_node_server.chia_ca_crt_path, full_node_server.chia_ca_crt_path, pub_crt, pub_key ) connected = await establish_connection(full_node_server, 12312, ssl_context) assert connected is True @pytest.mark.asyncio async def test_wallet(self, wallet_node): full_nodes, wallets = wallet_node wallet_node, wallet_server = wallets[0] # Wallet should not accept incoming connections pub_crt = wallet_server._private_key_path.parent / "p2p.crt" pub_key = wallet_server._private_key_path.parent / "p2p.key" generate_ca_signed_cert( wallet_server.chia_ca_crt_path.read_bytes(), wallet_server.chia_ca_key_path.read_bytes(), pub_crt, pub_key ) ssl_context = ssl_context_for_client( wallet_server.chia_ca_crt_path, wallet_server.chia_ca_crt_path, pub_crt, pub_key ) connected = await establish_connection(wallet_server, 12312, ssl_context) assert connected is False # Not even signed by private cert priv_crt = wallet_server._private_key_path.parent / "valid.crt" priv_key = wallet_server._private_key_path.parent / "valid.key" generate_ca_signed_cert( wallet_server.ca_private_crt_path.read_bytes(), wallet_server.ca_private_key_path.read_bytes(), priv_crt, priv_key, ) ssl_context = ssl_context_for_client( wallet_server.ca_private_crt_path, wallet_server.ca_private_crt_path, priv_crt, priv_key ) connected = await establish_connection(wallet_server, 12312, ssl_context) assert connected is False @pytest.mark.asyncio async def test_harvester(self, harvester_farmer): harvester, farmer_api = harvester_farmer harvester_server = harvester.server # harvester should not accept incoming connections pub_crt = harvester_server._private_key_path.parent / "p2p.crt" pub_key = harvester_server._private_key_path.parent / "p2p.key" generate_ca_signed_cert( harvester_server.chia_ca_crt_path.read_bytes(), harvester_server.chia_ca_key_path.read_bytes(), pub_crt, pub_key, ) ssl_context = ssl_context_for_client( harvester_server.chia_ca_crt_path, harvester_server.chia_ca_crt_path, pub_crt, pub_key ) connected = await establish_connection(harvester_server, 12312, ssl_context) assert connected is False # Not even signed by private cert priv_crt = harvester_server._private_key_path.parent / "valid.crt" priv_key = harvester_server._private_key_path.parent / "valid.key" generate_ca_signed_cert( harvester_server.ca_private_crt_path.read_bytes(), harvester_server.ca_private_key_path.read_bytes(), priv_crt, priv_key, ) ssl_context = ssl_context_for_client( harvester_server.ca_private_crt_path, harvester_server.ca_private_crt_path, priv_crt, priv_key ) connected = await establish_connection(harvester_server, 12312, ssl_context) assert connected is False @pytest.mark.asyncio async def test_introducer(self, introducer): introducer_api, introducer_server = introducer # Create not authenticated cert pub_crt = introducer_server.chia_ca_key_path.parent / "p2p.crt" pub_key = introducer_server.chia_ca_key_path.parent / "p2p.key" generate_ca_signed_cert( introducer_server.chia_ca_crt_path.read_bytes(), introducer_server.chia_ca_key_path.read_bytes(), pub_crt, pub_key, ) ssl_context = ssl_context_for_client( introducer_server.chia_ca_crt_path, introducer_server.chia_ca_crt_path, pub_crt, pub_key ) connected = await establish_connection(introducer_server, 12312, ssl_context) assert connected is True @pytest.mark.asyncio async def test_timelord(self, timelord): timelord_api, timelord_server = timelord # timelord should not accept incoming connections pub_crt = timelord_server._private_key_path.parent / "p2p.crt" pub_key = timelord_server._private_key_path.parent / "p2p.key" generate_ca_signed_cert( timelord_server.chia_ca_crt_path.read_bytes(), timelord_server.chia_ca_key_path.read_bytes(), pub_crt, pub_key, ) ssl_context = ssl_context_for_client( timelord_server.chia_ca_crt_path, timelord_server.chia_ca_crt_path, pub_crt, pub_key ) connected = await establish_connection(timelord_server, 12312, ssl_context) assert connected is False # Not even signed by private cert priv_crt = timelord_server._private_key_path.parent / "valid.crt" priv_key = timelord_server._private_key_path.parent / "valid.key" generate_ca_signed_cert( timelord_server.ca_private_crt_path.read_bytes(), timelord_server.ca_private_key_path.read_bytes(), priv_crt, priv_key, ) ssl_context = ssl_context_for_client( timelord_server.ca_private_crt_path, timelord_server.ca_private_crt_path, priv_crt, priv_key ) connected = await establish_connection(timelord_server, 12312, ssl_context) assert connected is False
40.344828
118
0.688034
794236ef9da41238d051fa544bb382526350f649
43,898
py
Python
files_sdk/models/user.py
Files-com/files-sdk-python
84cedc9be099cd9e4db6249ef7a9d60595487090
[ "MIT" ]
14
2020-08-05T15:48:06.000Z
2021-08-18T13:13:39.000Z
files_sdk/models/user.py
Files-com/files-sdk-python
84cedc9be099cd9e4db6249ef7a9d60595487090
[ "MIT" ]
4
2020-10-30T14:49:25.000Z
2021-09-29T17:11:53.000Z
files_sdk/models/user.py
Files-com/files-sdk-python
84cedc9be099cd9e4db6249ef7a9d60595487090
[ "MIT" ]
null
null
null
import builtins import datetime from files_sdk.api import Api from files_sdk.list_obj import ListObj from files_sdk.exceptions import InvalidParameterError, MissingParameterError, NotImplementedError class User: default_attributes = { 'id': None, # int64 - User ID 'username': None, # string - User's username 'admin_group_ids': None, # array - List of group IDs of which this user is an administrator 'allowed_ips': None, # string - A list of allowed IPs if applicable. Newline delimited 'attachments_permission': None, # boolean - DEPRECATED: Can the user create Bundles (aka Share Links)? Use the bundle permission instead. 'api_keys_count': None, # int64 - Number of api keys associated with this user 'authenticate_until': None, # date-time - Scheduled Date/Time at which user will be deactivated 'authentication_method': None, # string - How is this user authenticated? 'avatar_url': None, # string - URL holding the user's avatar 'billing_permission': None, # boolean - Allow this user to perform operations on the account, payments, and invoices? 'bypass_site_allowed_ips': None, # boolean - Allow this user to skip site-wide IP blacklists? 'bypass_inactive_disable': None, # boolean - Exempt this user from being disabled based on inactivity? 'created_at': None, # date-time - When this user was created 'dav_permission': None, # boolean - Can the user connect with WebDAV? 'disabled': None, # boolean - Is user disabled? Disabled users cannot log in, and do not count for billing purposes. Users can be automatically disabled after an inactivity period via a Site setting. 'email': None, # email - User email address 'ftp_permission': None, # boolean - Can the user access with FTP/FTPS? 'group_ids': None, # string - Comma-separated list of group IDs of which this user is a member 'header_text': None, # string - Text to display to the user in the header of the UI 'language': None, # string - Preferred language 'last_login_at': None, # date-time - User's last login time 'last_protocol_cipher': None, # string - The last protocol and cipher used 'lockout_expires': None, # date-time - Time in the future that the user will no longer be locked out if applicable 'name': None, # string - User's full name 'company': None, # string - User's company 'notes': None, # string - Any internal notes on the user 'notification_daily_send_time': None, # int64 - Hour of the day at which daily notifications should be sent. Can be in range 0 to 23 'office_integration_enabled': None, # boolean - Enable integration with Office for the web? 'password_set_at': None, # date-time - Last time the user's password was set 'password_validity_days': None, # int64 - Number of days to allow user to use the same password 'public_keys_count': None, # int64 - Number of public keys associated with this user 'receive_admin_alerts': None, # boolean - Should the user receive admin alerts such a certificate expiration notifications and overages? 'require_2fa': None, # string - 2FA required setting 'active_2fa': None, # boolean - Is 2fa active for the user? 'require_password_change': None, # boolean - Is a password change required upon next user login? 'password_expired': None, # boolean - Is user's password expired? 'restapi_permission': None, # boolean - Can this user access the REST API? 'self_managed': None, # boolean - Does this user manage it's own credentials or is it a shared/bot user? 'sftp_permission': None, # boolean - Can the user access with SFTP? 'site_admin': None, # boolean - Is the user an administrator for this site? 'skip_welcome_screen': None, # boolean - Skip Welcome page in the UI? 'ssl_required': None, # string - SSL required setting 'sso_strategy_id': None, # int64 - SSO (Single Sign On) strategy ID for the user, if applicable. 'subscribe_to_newsletter': None, # boolean - Is the user subscribed to the newsletter? 'externally_managed': None, # boolean - Is this user managed by a SsoStrategy? 'time_zone': None, # string - User time zone 'type_of_2fa': None, # string - Type(s) of 2FA methods in use. Will be either `sms`, `totp`, `u2f`, `yubi`, or multiple values sorted alphabetically and joined by an underscore. 'user_root': None, # string - Root folder for FTP (and optionally SFTP if the appropriate site-wide setting is set.) Note that this is not used for API, Desktop, or Web interface. 'avatar_file': None, # file - An image file for your user avatar. 'avatar_delete': None, # boolean - If true, the avatar will be deleted. 'change_password': None, # string - Used for changing a password on an existing user. 'change_password_confirmation': None, # string - Optional, but if provided, we will ensure that it matches the value sent in `change_password`. 'grant_permission': None, # string - Permission to grant on the user root. Can be blank or `full`, `read`, `write`, `list`, or `history`. 'group_id': None, # int64 - Group ID to associate this user with. 'imported_password_hash': None, # string - Pre-calculated hash of the user's password. If supplied, this will be used to authenticate the user on first login. Supported hash menthods are MD5, SHA1, and SHA256. 'password': None, # string - User password. 'password_confirmation': None, # string - Optional, but if provided, we will ensure that it matches the value sent in `password`. 'announcements_read': None, # boolean - Signifies that the user has read all the announcements in the UI. } def __init__(self, attributes=None, options=None): if not isinstance(attributes, dict): attributes = {} if not isinstance(options, dict): options = {} self.set_attributes(attributes) self.options = options def set_attributes(self, attributes): for (attribute, default_value) in User.default_attributes.items(): setattr(self, attribute, attributes.get(attribute, default_value)) def get_attributes(self): return {k: getattr(self, k, None) for k in User.default_attributes if getattr(self, k, None) is not None} # Unlock user who has been locked out due to failed logins def unlock(self, params = None): if not isinstance(params, dict): params = {} if hasattr(self, "id") and self.id: params['id'] = self.id else: raise MissingParameterError("Current object doesn't have a id") if "id" not in params: raise MissingParameterError("Parameter missing: id") if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") response, _options = Api.send_request("POST", "/users/{id}/unlock".format(id=params['id']), params, self.options) return response.data # Resend user welcome email def resend_welcome_email(self, params = None): if not isinstance(params, dict): params = {} if hasattr(self, "id") and self.id: params['id'] = self.id else: raise MissingParameterError("Current object doesn't have a id") if "id" not in params: raise MissingParameterError("Parameter missing: id") if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") response, _options = Api.send_request("POST", "/users/{id}/resend_welcome_email".format(id=params['id']), params, self.options) return response.data # Trigger 2FA Reset process for user who has lost access to their existing 2FA methods def user_2fa_reset(self, params = None): if not isinstance(params, dict): params = {} if hasattr(self, "id") and self.id: params['id'] = self.id else: raise MissingParameterError("Current object doesn't have a id") if "id" not in params: raise MissingParameterError("Parameter missing: id") if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") response, _options = Api.send_request("POST", "/users/{id}/2fa/reset".format(id=params['id']), params, self.options) return response.data # Parameters: # avatar_file - file - An image file for your user avatar. # avatar_delete - boolean - If true, the avatar will be deleted. # change_password - string - Used for changing a password on an existing user. # change_password_confirmation - string - Optional, but if provided, we will ensure that it matches the value sent in `change_password`. # email - string - User's email. # grant_permission - string - Permission to grant on the user root. Can be blank or `full`, `read`, `write`, `list`, or `history`. # group_id - int64 - Group ID to associate this user with. # group_ids - string - A list of group ids to associate this user with. Comma delimited. # imported_password_hash - string - Pre-calculated hash of the user's password. If supplied, this will be used to authenticate the user on first login. Supported hash menthods are MD5, SHA1, and SHA256. # password - string - User password. # password_confirmation - string - Optional, but if provided, we will ensure that it matches the value sent in `password`. # announcements_read - boolean - Signifies that the user has read all the announcements in the UI. # allowed_ips - string - A list of allowed IPs if applicable. Newline delimited # attachments_permission - boolean - DEPRECATED: Can the user create Bundles (aka Share Links)? Use the bundle permission instead. # authenticate_until - string - Scheduled Date/Time at which user will be deactivated # authentication_method - string - How is this user authenticated? # billing_permission - boolean - Allow this user to perform operations on the account, payments, and invoices? # bypass_inactive_disable - boolean - Exempt this user from being disabled based on inactivity? # bypass_site_allowed_ips - boolean - Allow this user to skip site-wide IP blacklists? # dav_permission - boolean - Can the user connect with WebDAV? # disabled - boolean - Is user disabled? Disabled users cannot log in, and do not count for billing purposes. Users can be automatically disabled after an inactivity period via a Site setting. # ftp_permission - boolean - Can the user access with FTP/FTPS? # header_text - string - Text to display to the user in the header of the UI # language - string - Preferred language # notification_daily_send_time - int64 - Hour of the day at which daily notifications should be sent. Can be in range 0 to 23 # name - string - User's full name # company - string - User's company # notes - string - Any internal notes on the user # office_integration_enabled - boolean - Enable integration with Office for the web? # password_validity_days - int64 - Number of days to allow user to use the same password # receive_admin_alerts - boolean - Should the user receive admin alerts such a certificate expiration notifications and overages? # require_password_change - boolean - Is a password change required upon next user login? # restapi_permission - boolean - Can this user access the REST API? # self_managed - boolean - Does this user manage it's own credentials or is it a shared/bot user? # sftp_permission - boolean - Can the user access with SFTP? # site_admin - boolean - Is the user an administrator for this site? # skip_welcome_screen - boolean - Skip Welcome page in the UI? # ssl_required - string - SSL required setting # sso_strategy_id - int64 - SSO (Single Sign On) strategy ID for the user, if applicable. # subscribe_to_newsletter - boolean - Is the user subscribed to the newsletter? # require_2fa - string - 2FA required setting # time_zone - string - User time zone # user_root - string - Root folder for FTP (and optionally SFTP if the appropriate site-wide setting is set.) Note that this is not used for API, Desktop, or Web interface. # username - string - User's username def update(self, params = None): if not isinstance(params, dict): params = {} if hasattr(self, "id") and self.id: params['id'] = self.id else: raise MissingParameterError("Current object doesn't have a id") if "id" not in params: raise MissingParameterError("Parameter missing: id") if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") if "change_password" in params and not isinstance(params["change_password"], str): raise InvalidParameterError("Bad parameter: change_password must be an str") if "change_password_confirmation" in params and not isinstance(params["change_password_confirmation"], str): raise InvalidParameterError("Bad parameter: change_password_confirmation must be an str") if "email" in params and not isinstance(params["email"], str): raise InvalidParameterError("Bad parameter: email must be an str") if "grant_permission" in params and not isinstance(params["grant_permission"], str): raise InvalidParameterError("Bad parameter: grant_permission must be an str") if "group_id" in params and not isinstance(params["group_id"], int): raise InvalidParameterError("Bad parameter: group_id must be an int") if "group_ids" in params and not isinstance(params["group_ids"], str): raise InvalidParameterError("Bad parameter: group_ids must be an str") if "imported_password_hash" in params and not isinstance(params["imported_password_hash"], str): raise InvalidParameterError("Bad parameter: imported_password_hash must be an str") if "password" in params and not isinstance(params["password"], str): raise InvalidParameterError("Bad parameter: password must be an str") if "password_confirmation" in params and not isinstance(params["password_confirmation"], str): raise InvalidParameterError("Bad parameter: password_confirmation must be an str") if "allowed_ips" in params and not isinstance(params["allowed_ips"], str): raise InvalidParameterError("Bad parameter: allowed_ips must be an str") if "authenticate_until" in params and not isinstance(params["authenticate_until"], str): raise InvalidParameterError("Bad parameter: authenticate_until must be an str") if "authentication_method" in params and not isinstance(params["authentication_method"], str): raise InvalidParameterError("Bad parameter: authentication_method must be an str") if "header_text" in params and not isinstance(params["header_text"], str): raise InvalidParameterError("Bad parameter: header_text must be an str") if "language" in params and not isinstance(params["language"], str): raise InvalidParameterError("Bad parameter: language must be an str") if "notification_daily_send_time" in params and not isinstance(params["notification_daily_send_time"], int): raise InvalidParameterError("Bad parameter: notification_daily_send_time must be an int") if "name" in params and not isinstance(params["name"], str): raise InvalidParameterError("Bad parameter: name must be an str") if "company" in params and not isinstance(params["company"], str): raise InvalidParameterError("Bad parameter: company must be an str") if "notes" in params and not isinstance(params["notes"], str): raise InvalidParameterError("Bad parameter: notes must be an str") if "password_validity_days" in params and not isinstance(params["password_validity_days"], int): raise InvalidParameterError("Bad parameter: password_validity_days must be an int") if "ssl_required" in params and not isinstance(params["ssl_required"], str): raise InvalidParameterError("Bad parameter: ssl_required must be an str") if "sso_strategy_id" in params and not isinstance(params["sso_strategy_id"], int): raise InvalidParameterError("Bad parameter: sso_strategy_id must be an int") if "require_2fa" in params and not isinstance(params["require_2fa"], str): raise InvalidParameterError("Bad parameter: require_2fa must be an str") if "time_zone" in params and not isinstance(params["time_zone"], str): raise InvalidParameterError("Bad parameter: time_zone must be an str") if "user_root" in params and not isinstance(params["user_root"], str): raise InvalidParameterError("Bad parameter: user_root must be an str") if "username" in params and not isinstance(params["username"], str): raise InvalidParameterError("Bad parameter: username must be an str") response, _options = Api.send_request("PATCH", "/users/{id}".format(id=params['id']), params, self.options) return response.data def delete(self, params = None): if not isinstance(params, dict): params = {} if hasattr(self, "id") and self.id: params['id'] = self.id else: raise MissingParameterError("Current object doesn't have a id") if "id" not in params: raise MissingParameterError("Parameter missing: id") if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") response, _options = Api.send_request("DELETE", "/users/{id}".format(id=params['id']), params, self.options) return response.data def destroy(self, params = None): self.delete(params) def save(self): if hasattr(self, "id") and self.id: self.update(self.get_attributes()) else: new_obj = create(self.get_attributes(), self.options) self.set_attributes(new_obj.get_attributes()) # Parameters: # cursor - string - Used for pagination. Send a cursor value to resume an existing list from the point at which you left off. Get a cursor from an existing list via the X-Files-Cursor-Next header. # per_page - int64 - Number of records to show per page. (Max: 10,000, 1,000 or less is recommended). # sort_by - object - If set, sort records by the specified field in either 'asc' or 'desc' direction (e.g. sort_by[last_login_at]=desc). Valid fields are `authenticate_until`, `email`, `last_desktop_login_at`, `last_login_at`, `username`, `company`, `name`, `site_admin`, `receive_admin_alerts`, `password_validity_days`, `ssl_required` or `not_site_admin`. # filter - object - If set, return records where the specifiied field is equal to the supplied value. Valid fields are `username`, `email`, `company`, `site_admin`, `password_validity_days`, `ssl_required`, `last_login_at`, `authenticate_until` or `not_site_admin`. # filter_gt - object - If set, return records where the specifiied field is greater than the supplied value. Valid fields are `username`, `email`, `company`, `site_admin`, `password_validity_days`, `ssl_required`, `last_login_at`, `authenticate_until` or `not_site_admin`. # filter_gteq - object - If set, return records where the specifiied field is greater than or equal to the supplied value. Valid fields are `username`, `email`, `company`, `site_admin`, `password_validity_days`, `ssl_required`, `last_login_at`, `authenticate_until` or `not_site_admin`. # filter_like - object - If set, return records where the specifiied field is equal to the supplied value. Valid fields are `username`, `email`, `company`, `site_admin`, `password_validity_days`, `ssl_required`, `last_login_at`, `authenticate_until` or `not_site_admin`. # filter_lt - object - If set, return records where the specifiied field is less than the supplied value. Valid fields are `username`, `email`, `company`, `site_admin`, `password_validity_days`, `ssl_required`, `last_login_at`, `authenticate_until` or `not_site_admin`. # filter_lteq - object - If set, return records where the specifiied field is less than or equal to the supplied value. Valid fields are `username`, `email`, `company`, `site_admin`, `password_validity_days`, `ssl_required`, `last_login_at`, `authenticate_until` or `not_site_admin`. # ids - string - comma-separated list of User IDs # q[username] - string - List users matching username. # q[email] - string - List users matching email. # q[notes] - string - List users matching notes field. # q[admin] - string - If `true`, list only admin users. # q[allowed_ips] - string - If set, list only users with overridden allowed IP setting. # q[password_validity_days] - string - If set, list only users with overridden password validity days setting. # q[ssl_required] - string - If set, list only users with overridden SSL required setting. # search - string - Searches for partial matches of name, username, or email. def list(params = None, options = None): if not isinstance(params, dict): params = {} if not isinstance(options, dict): options = {} if "cursor" in params and not isinstance(params["cursor"], str): raise InvalidParameterError("Bad parameter: cursor must be an str") if "per_page" in params and not isinstance(params["per_page"], int): raise InvalidParameterError("Bad parameter: per_page must be an int") if "sort_by" in params and not isinstance(params["sort_by"], dict): raise InvalidParameterError("Bad parameter: sort_by must be an dict") if "filter" in params and not isinstance(params["filter"], dict): raise InvalidParameterError("Bad parameter: filter must be an dict") if "filter_gt" in params and not isinstance(params["filter_gt"], dict): raise InvalidParameterError("Bad parameter: filter_gt must be an dict") if "filter_gteq" in params and not isinstance(params["filter_gteq"], dict): raise InvalidParameterError("Bad parameter: filter_gteq must be an dict") if "filter_like" in params and not isinstance(params["filter_like"], dict): raise InvalidParameterError("Bad parameter: filter_like must be an dict") if "filter_lt" in params and not isinstance(params["filter_lt"], dict): raise InvalidParameterError("Bad parameter: filter_lt must be an dict") if "filter_lteq" in params and not isinstance(params["filter_lteq"], dict): raise InvalidParameterError("Bad parameter: filter_lteq must be an dict") if "ids" in params and not isinstance(params["ids"], str): raise InvalidParameterError("Bad parameter: ids must be an str") if "search" in params and not isinstance(params["search"], str): raise InvalidParameterError("Bad parameter: search must be an str") return ListObj(User,"GET", "/users", params, options) def all(params = None, options = None): list(params, options) # Parameters: # id (required) - int64 - User ID. def find(id, params = None, options = None): if not isinstance(params, dict): params = {} if not isinstance(options, dict): options = {} params["id"] = id if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") if "id" not in params: raise MissingParameterError("Parameter missing: id") response, options = Api.send_request("GET", "/users/{id}".format(id=params['id']), params, options) return User(response.data, options) def get(id, params = None, options = None): find(id, params, options) # Parameters: # avatar_file - file - An image file for your user avatar. # avatar_delete - boolean - If true, the avatar will be deleted. # change_password - string - Used for changing a password on an existing user. # change_password_confirmation - string - Optional, but if provided, we will ensure that it matches the value sent in `change_password`. # email - string - User's email. # grant_permission - string - Permission to grant on the user root. Can be blank or `full`, `read`, `write`, `list`, or `history`. # group_id - int64 - Group ID to associate this user with. # group_ids - string - A list of group ids to associate this user with. Comma delimited. # imported_password_hash - string - Pre-calculated hash of the user's password. If supplied, this will be used to authenticate the user on first login. Supported hash menthods are MD5, SHA1, and SHA256. # password - string - User password. # password_confirmation - string - Optional, but if provided, we will ensure that it matches the value sent in `password`. # announcements_read - boolean - Signifies that the user has read all the announcements in the UI. # allowed_ips - string - A list of allowed IPs if applicable. Newline delimited # attachments_permission - boolean - DEPRECATED: Can the user create Bundles (aka Share Links)? Use the bundle permission instead. # authenticate_until - string - Scheduled Date/Time at which user will be deactivated # authentication_method - string - How is this user authenticated? # billing_permission - boolean - Allow this user to perform operations on the account, payments, and invoices? # bypass_inactive_disable - boolean - Exempt this user from being disabled based on inactivity? # bypass_site_allowed_ips - boolean - Allow this user to skip site-wide IP blacklists? # dav_permission - boolean - Can the user connect with WebDAV? # disabled - boolean - Is user disabled? Disabled users cannot log in, and do not count for billing purposes. Users can be automatically disabled after an inactivity period via a Site setting. # ftp_permission - boolean - Can the user access with FTP/FTPS? # header_text - string - Text to display to the user in the header of the UI # language - string - Preferred language # notification_daily_send_time - int64 - Hour of the day at which daily notifications should be sent. Can be in range 0 to 23 # name - string - User's full name # company - string - User's company # notes - string - Any internal notes on the user # office_integration_enabled - boolean - Enable integration with Office for the web? # password_validity_days - int64 - Number of days to allow user to use the same password # receive_admin_alerts - boolean - Should the user receive admin alerts such a certificate expiration notifications and overages? # require_password_change - boolean - Is a password change required upon next user login? # restapi_permission - boolean - Can this user access the REST API? # self_managed - boolean - Does this user manage it's own credentials or is it a shared/bot user? # sftp_permission - boolean - Can the user access with SFTP? # site_admin - boolean - Is the user an administrator for this site? # skip_welcome_screen - boolean - Skip Welcome page in the UI? # ssl_required - string - SSL required setting # sso_strategy_id - int64 - SSO (Single Sign On) strategy ID for the user, if applicable. # subscribe_to_newsletter - boolean - Is the user subscribed to the newsletter? # require_2fa - string - 2FA required setting # time_zone - string - User time zone # user_root - string - Root folder for FTP (and optionally SFTP if the appropriate site-wide setting is set.) Note that this is not used for API, Desktop, or Web interface. # username - string - User's username def create(params = None, options = None): if not isinstance(params, dict): params = {} if not isinstance(options, dict): options = {} if "change_password" in params and not isinstance(params["change_password"], str): raise InvalidParameterError("Bad parameter: change_password must be an str") if "change_password_confirmation" in params and not isinstance(params["change_password_confirmation"], str): raise InvalidParameterError("Bad parameter: change_password_confirmation must be an str") if "email" in params and not isinstance(params["email"], str): raise InvalidParameterError("Bad parameter: email must be an str") if "grant_permission" in params and not isinstance(params["grant_permission"], str): raise InvalidParameterError("Bad parameter: grant_permission must be an str") if "group_id" in params and not isinstance(params["group_id"], int): raise InvalidParameterError("Bad parameter: group_id must be an int") if "group_ids" in params and not isinstance(params["group_ids"], str): raise InvalidParameterError("Bad parameter: group_ids must be an str") if "imported_password_hash" in params and not isinstance(params["imported_password_hash"], str): raise InvalidParameterError("Bad parameter: imported_password_hash must be an str") if "password" in params and not isinstance(params["password"], str): raise InvalidParameterError("Bad parameter: password must be an str") if "password_confirmation" in params and not isinstance(params["password_confirmation"], str): raise InvalidParameterError("Bad parameter: password_confirmation must be an str") if "allowed_ips" in params and not isinstance(params["allowed_ips"], str): raise InvalidParameterError("Bad parameter: allowed_ips must be an str") if "authenticate_until" in params and not isinstance(params["authenticate_until"], str): raise InvalidParameterError("Bad parameter: authenticate_until must be an str") if "authentication_method" in params and not isinstance(params["authentication_method"], str): raise InvalidParameterError("Bad parameter: authentication_method must be an str") if "header_text" in params and not isinstance(params["header_text"], str): raise InvalidParameterError("Bad parameter: header_text must be an str") if "language" in params and not isinstance(params["language"], str): raise InvalidParameterError("Bad parameter: language must be an str") if "notification_daily_send_time" in params and not isinstance(params["notification_daily_send_time"], int): raise InvalidParameterError("Bad parameter: notification_daily_send_time must be an int") if "name" in params and not isinstance(params["name"], str): raise InvalidParameterError("Bad parameter: name must be an str") if "company" in params and not isinstance(params["company"], str): raise InvalidParameterError("Bad parameter: company must be an str") if "notes" in params and not isinstance(params["notes"], str): raise InvalidParameterError("Bad parameter: notes must be an str") if "password_validity_days" in params and not isinstance(params["password_validity_days"], int): raise InvalidParameterError("Bad parameter: password_validity_days must be an int") if "ssl_required" in params and not isinstance(params["ssl_required"], str): raise InvalidParameterError("Bad parameter: ssl_required must be an str") if "sso_strategy_id" in params and not isinstance(params["sso_strategy_id"], int): raise InvalidParameterError("Bad parameter: sso_strategy_id must be an int") if "require_2fa" in params and not isinstance(params["require_2fa"], str): raise InvalidParameterError("Bad parameter: require_2fa must be an str") if "time_zone" in params and not isinstance(params["time_zone"], str): raise InvalidParameterError("Bad parameter: time_zone must be an str") if "user_root" in params and not isinstance(params["user_root"], str): raise InvalidParameterError("Bad parameter: user_root must be an str") if "username" in params and not isinstance(params["username"], str): raise InvalidParameterError("Bad parameter: username must be an str") response, options = Api.send_request("POST", "/users", params, options) return User(response.data, options) # Unlock user who has been locked out due to failed logins def unlock(id, params = None, options = None): if not isinstance(params, dict): params = {} if not isinstance(options, dict): options = {} params["id"] = id if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") if "id" not in params: raise MissingParameterError("Parameter missing: id") response, _options = Api.send_request("POST", "/users/{id}/unlock".format(id=params['id']), params, options) return response.data # Resend user welcome email def resend_welcome_email(id, params = None, options = None): if not isinstance(params, dict): params = {} if not isinstance(options, dict): options = {} params["id"] = id if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") if "id" not in params: raise MissingParameterError("Parameter missing: id") response, _options = Api.send_request("POST", "/users/{id}/resend_welcome_email".format(id=params['id']), params, options) return response.data # Trigger 2FA Reset process for user who has lost access to their existing 2FA methods def user_2fa_reset(id, params = None, options = None): if not isinstance(params, dict): params = {} if not isinstance(options, dict): options = {} params["id"] = id if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") if "id" not in params: raise MissingParameterError("Parameter missing: id") response, _options = Api.send_request("POST", "/users/{id}/2fa/reset".format(id=params['id']), params, options) return response.data # Parameters: # avatar_file - file - An image file for your user avatar. # avatar_delete - boolean - If true, the avatar will be deleted. # change_password - string - Used for changing a password on an existing user. # change_password_confirmation - string - Optional, but if provided, we will ensure that it matches the value sent in `change_password`. # email - string - User's email. # grant_permission - string - Permission to grant on the user root. Can be blank or `full`, `read`, `write`, `list`, or `history`. # group_id - int64 - Group ID to associate this user with. # group_ids - string - A list of group ids to associate this user with. Comma delimited. # imported_password_hash - string - Pre-calculated hash of the user's password. If supplied, this will be used to authenticate the user on first login. Supported hash menthods are MD5, SHA1, and SHA256. # password - string - User password. # password_confirmation - string - Optional, but if provided, we will ensure that it matches the value sent in `password`. # announcements_read - boolean - Signifies that the user has read all the announcements in the UI. # allowed_ips - string - A list of allowed IPs if applicable. Newline delimited # attachments_permission - boolean - DEPRECATED: Can the user create Bundles (aka Share Links)? Use the bundle permission instead. # authenticate_until - string - Scheduled Date/Time at which user will be deactivated # authentication_method - string - How is this user authenticated? # billing_permission - boolean - Allow this user to perform operations on the account, payments, and invoices? # bypass_inactive_disable - boolean - Exempt this user from being disabled based on inactivity? # bypass_site_allowed_ips - boolean - Allow this user to skip site-wide IP blacklists? # dav_permission - boolean - Can the user connect with WebDAV? # disabled - boolean - Is user disabled? Disabled users cannot log in, and do not count for billing purposes. Users can be automatically disabled after an inactivity period via a Site setting. # ftp_permission - boolean - Can the user access with FTP/FTPS? # header_text - string - Text to display to the user in the header of the UI # language - string - Preferred language # notification_daily_send_time - int64 - Hour of the day at which daily notifications should be sent. Can be in range 0 to 23 # name - string - User's full name # company - string - User's company # notes - string - Any internal notes on the user # office_integration_enabled - boolean - Enable integration with Office for the web? # password_validity_days - int64 - Number of days to allow user to use the same password # receive_admin_alerts - boolean - Should the user receive admin alerts such a certificate expiration notifications and overages? # require_password_change - boolean - Is a password change required upon next user login? # restapi_permission - boolean - Can this user access the REST API? # self_managed - boolean - Does this user manage it's own credentials or is it a shared/bot user? # sftp_permission - boolean - Can the user access with SFTP? # site_admin - boolean - Is the user an administrator for this site? # skip_welcome_screen - boolean - Skip Welcome page in the UI? # ssl_required - string - SSL required setting # sso_strategy_id - int64 - SSO (Single Sign On) strategy ID for the user, if applicable. # subscribe_to_newsletter - boolean - Is the user subscribed to the newsletter? # require_2fa - string - 2FA required setting # time_zone - string - User time zone # user_root - string - Root folder for FTP (and optionally SFTP if the appropriate site-wide setting is set.) Note that this is not used for API, Desktop, or Web interface. # username - string - User's username def update(id, params = None, options = None): if not isinstance(params, dict): params = {} if not isinstance(options, dict): options = {} params["id"] = id if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") if "change_password" in params and not isinstance(params["change_password"], str): raise InvalidParameterError("Bad parameter: change_password must be an str") if "change_password_confirmation" in params and not isinstance(params["change_password_confirmation"], str): raise InvalidParameterError("Bad parameter: change_password_confirmation must be an str") if "email" in params and not isinstance(params["email"], str): raise InvalidParameterError("Bad parameter: email must be an str") if "grant_permission" in params and not isinstance(params["grant_permission"], str): raise InvalidParameterError("Bad parameter: grant_permission must be an str") if "group_id" in params and not isinstance(params["group_id"], int): raise InvalidParameterError("Bad parameter: group_id must be an int") if "group_ids" in params and not isinstance(params["group_ids"], str): raise InvalidParameterError("Bad parameter: group_ids must be an str") if "imported_password_hash" in params and not isinstance(params["imported_password_hash"], str): raise InvalidParameterError("Bad parameter: imported_password_hash must be an str") if "password" in params and not isinstance(params["password"], str): raise InvalidParameterError("Bad parameter: password must be an str") if "password_confirmation" in params and not isinstance(params["password_confirmation"], str): raise InvalidParameterError("Bad parameter: password_confirmation must be an str") if "allowed_ips" in params and not isinstance(params["allowed_ips"], str): raise InvalidParameterError("Bad parameter: allowed_ips must be an str") if "authenticate_until" in params and not isinstance(params["authenticate_until"], str): raise InvalidParameterError("Bad parameter: authenticate_until must be an str") if "authentication_method" in params and not isinstance(params["authentication_method"], str): raise InvalidParameterError("Bad parameter: authentication_method must be an str") if "header_text" in params and not isinstance(params["header_text"], str): raise InvalidParameterError("Bad parameter: header_text must be an str") if "language" in params and not isinstance(params["language"], str): raise InvalidParameterError("Bad parameter: language must be an str") if "notification_daily_send_time" in params and not isinstance(params["notification_daily_send_time"], int): raise InvalidParameterError("Bad parameter: notification_daily_send_time must be an int") if "name" in params and not isinstance(params["name"], str): raise InvalidParameterError("Bad parameter: name must be an str") if "company" in params and not isinstance(params["company"], str): raise InvalidParameterError("Bad parameter: company must be an str") if "notes" in params and not isinstance(params["notes"], str): raise InvalidParameterError("Bad parameter: notes must be an str") if "password_validity_days" in params and not isinstance(params["password_validity_days"], int): raise InvalidParameterError("Bad parameter: password_validity_days must be an int") if "ssl_required" in params and not isinstance(params["ssl_required"], str): raise InvalidParameterError("Bad parameter: ssl_required must be an str") if "sso_strategy_id" in params and not isinstance(params["sso_strategy_id"], int): raise InvalidParameterError("Bad parameter: sso_strategy_id must be an int") if "require_2fa" in params and not isinstance(params["require_2fa"], str): raise InvalidParameterError("Bad parameter: require_2fa must be an str") if "time_zone" in params and not isinstance(params["time_zone"], str): raise InvalidParameterError("Bad parameter: time_zone must be an str") if "user_root" in params and not isinstance(params["user_root"], str): raise InvalidParameterError("Bad parameter: user_root must be an str") if "username" in params and not isinstance(params["username"], str): raise InvalidParameterError("Bad parameter: username must be an str") if "id" not in params: raise MissingParameterError("Parameter missing: id") response, options = Api.send_request("PATCH", "/users/{id}".format(id=params['id']), params, options) return User(response.data, options) def delete(id, params = None, options = None): if not isinstance(params, dict): params = {} if not isinstance(options, dict): options = {} params["id"] = id if "id" in params and not isinstance(params["id"], int): raise InvalidParameterError("Bad parameter: id must be an int") if "id" not in params: raise MissingParameterError("Parameter missing: id") response, _options = Api.send_request("DELETE", "/users/{id}".format(id=params['id']), params, options) return response.data def destroy(id, params = None, options = None): delete(id, params, options) def new(*args, **kwargs): return User(*args, **kwargs)
72.438944
359
0.70477
79423789704070c6a4de993938326a49817b4d08
3,173
py
Python
cron_read_data_from_aggregate.py
HadiOfBBG/pegasusrises
0a2df78eac955d3966030bdca1731bf0aa63510c
[ "Apache-2.0" ]
null
null
null
cron_read_data_from_aggregate.py
HadiOfBBG/pegasusrises
0a2df78eac955d3966030bdca1731bf0aa63510c
[ "Apache-2.0" ]
null
null
null
cron_read_data_from_aggregate.py
HadiOfBBG/pegasusrises
0a2df78eac955d3966030bdca1731bf0aa63510c
[ "Apache-2.0" ]
null
null
null
import csv from collections import defaultdict import StringIO from google.appengine.ext import blobstore from google.appengine.ext.webapp import blobstore_handlers from jinja_template import JinjaTemplating from google.appengine.ext import db from google.appengine.api import memcache from questions_details_from_google_sheets import QuestionsDetailsFromGoogleSheet from models.pegasus_model import BbgDemoModel from models.questions import Questions from save_data_into_pegasus_db import SaveDataIntoPegasusDatabase from urllib2 import Request, urlopen, URLError import json import ast from xmltodict import * import xmltodict class CronToReadDataFromAggregate(JinjaTemplating): def get(self): self.response.out.write("Cron way of reading pegasus database") return # self.getFormIdsGeneratedByAggregate() def post(self): self.getFormIdsGeneratedByAggregate() #this function get the ID of the form to retieve data from and also calls the function that requst for the data def getFormIdsGeneratedByAggregate(self): #Here am suppose to query and get all form IDs so a query(Loop through) to make request to get IDS of data submitted on that form #For Pegasus A, it is moslty likely going to be one form # self.response.out.write('You are here to read data right?') # return form_id = 'pegasusDemoQuestionnaire' num_of_form_ids = '1000' self.getIdsOfDataSubmissions(form_id, num_of_form_ids) return def getIdsOfDataSubmissions(self, form_id,num_of_form_ids): # uuid:64802bb2-383c-476d-a7aa-95db88bfb734 request = Request('https://pegasusodk.appspot.com/view/submissionList?formId=' + form_id + '&numEntries=' + num_of_form_ids) try: response = urlopen(request) data_submissions = response.read() converting_form_ids_in_xml_to_json = xmltodict.parse(data_submissions) list_of_submissions_ids = converting_form_ids_in_xml_to_json['idChunk']['idList']['id'] # self.response.out.write(converting_form_ids_in_xml_to_json['idChunk']['idList']['id']) # return for submission_id in list_of_submissions_ids: self.response.out.write(submission_id) self.response.out.write("\n") # return # self.getDataSubmittedUsingSubmissionID(form_id, submission_id) return except URLError, e: self.response.out.write('No submissions IDs retrieved. Got an error code:') def getDataSubmittedUsingSubmissionID(self,form_id,submission_id): request = Request('https://pegasusodk.appspot.com/formid[@version=null and @uiVersion=null]/topElement[@key=idvalue]') try: response = urlopen(request) data_associated_with_submission_id = response.read() json_form_of_data_submitted = xmltodict.parse(data_associated_with_submission_id) self.response.out.write(json_form_of_data_submitted) except URLError, e: self.response.out.write('No submissions retrieved. Got an error code:')
37.329412
137
0.716987
794237b6ddd85963136bd45e3b6cf1b288f9a8d7
2,212
py
Python
vspk/v6/fetchers/nucosremarkingpolicytables_fetcher.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
19
2016-03-07T12:34:22.000Z
2020-06-11T11:09:02.000Z
vspk/v6/fetchers/nucosremarkingpolicytables_fetcher.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
40
2016-06-13T15:36:54.000Z
2020-11-10T18:14:43.000Z
vspk/v6/fetchers/nucosremarkingpolicytables_fetcher.py
axxyhtrx/vspk-python
4495882c6bcbb1ef51b14b9f4dc7efe46476ff50
[ "BSD-3-Clause" ]
15
2016-06-10T22:06:01.000Z
2020-12-15T18:37:42.000Z
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc, 2017 Nokia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from bambou import NURESTFetcher class NUCOSRemarkingPolicyTablesFetcher(NURESTFetcher): """ Represents a NUCOSRemarkingPolicyTables fetcher Notes: This fetcher enables to fetch NUCOSRemarkingPolicyTable objects. See: bambou.NURESTFetcher """ @classmethod def managed_class(cls): """ Return NUCOSRemarkingPolicyTable class that is managed. Returns: .NUCOSRemarkingPolicyTable: the managed class """ from .. import NUCOSRemarkingPolicyTable return NUCOSRemarkingPolicyTable
41.735849
86
0.738246
794238faa1c31f6b769a87f3377822b2f8827ddc
55,195
py
Python
tests/test_modeling_tf_common.py
wilcoln/transformers
6331d4fe59e85840bb5693837e791f4caedcd53b
[ "Apache-2.0" ]
null
null
null
tests/test_modeling_tf_common.py
wilcoln/transformers
6331d4fe59e85840bb5693837e791f4caedcd53b
[ "Apache-2.0" ]
null
null
null
tests/test_modeling_tf_common.py
wilcoln/transformers
6331d4fe59e85840bb5693837e791f4caedcd53b
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import os import random import tempfile import unittest from importlib import import_module from typing import List, Tuple from transformers import is_tf_available from transformers.testing_utils import _tf_gpu_memory_limit, is_pt_tf_cross_test, require_tf, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TFSharedEmbeddings, tf_top_k_top_p_filtering, ) if _tf_gpu_memory_limit is not None: gpus = tf.config.list_physical_devices("GPU") for gpu in gpus: # Restrict TensorFlow to only allocate x GB of memory on the GPUs try: tf.config.set_logical_device_configuration( gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] ) logical_gpus = tf.config.list_logical_devices("GPU") print("Logical GPUs", logical_gpus) except RuntimeError as e: # Virtual devices must be set before GPUs have been initialized print(e) def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key: setattr(configs_no_init, key, 0.0) return configs_no_init @require_tf class TFModelTesterMixin: model_tester = None all_model_classes = () all_generative_model_classes = () test_resize_embeddings = True is_encoder_decoder = False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: inputs_dict = copy.deepcopy(inputs_dict) if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values(): inputs_dict = { k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(v, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values(): inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) elif model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.values(): inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values(): inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values(): inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in [ *TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(), *TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(), *TF_MODEL_FOR_MASKED_LM_MAPPING.values(), *TF_MODEL_FOR_PRETRAINING_MAPPING.values(), *TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(), ]: inputs_dict["labels"] = tf.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 ) return inputs_dict def test_initialization(self): pass def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) model = model_class.from_pretrained(tmpdirname) after_outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assert_outputs_same(after_outputs, outputs) def test_graph_mode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @tf.function def run_in_graph_mode(): return model(inputs) outputs = run_in_graph_mode() self.assertIsNotNone(outputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["input_ids"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_saved_model_creation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = False config.output_attentions = False if hasattr(config, "use_cache"): config.use_cache = False model_class = self.all_model_classes[0] class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) model(class_inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model") self.assertTrue(os.path.exists(saved_model_dir)) @slow def test_saved_model_creation_extended(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True if hasattr(config, "use_cache"): config.use_cache = True for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) model(class_inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model") self.assertTrue(os.path.exists(saved_model_dir)) @slow def test_saved_model_with_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # A saved model is always executed in graph mode, since we merged the PR #8777 # the booleans in graph mode are always the ones in the config, then we update # the use_cache property if it exists in order to have similar booleans with the inputs if "use_cache" in class_inputs_dict: config.use_cache = class_inputs_dict.pop("use_cache") model = model_class(config) num_out = len(model(class_inputs_dict)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) saved_model_dir = os.path.join(tmpdirname, "saved_model") model = tf.keras.models.load_model(saved_model_dir) outputs = model(class_inputs_dict) if self.is_encoder_decoder: output = outputs["encoder_hidden_states"] if isinstance(outputs, dict) else outputs[-1] else: output = outputs["hidden_states"] if isinstance(outputs, dict) else outputs[-1] hidden_states = [t.numpy() for t in output] self.assertEqual(len(outputs), num_out) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) @slow def test_saved_model_with_attentions_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_attentions = True encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) # A saved model is always executed in graph mode, since we merged the PR #8777 # the booleans in graph mode are always the ones in the config, then we update # the use_cache property if it exists in order to have similar booleans with the inputs if "use_cache" in class_inputs_dict: config.use_cache = class_inputs_dict.pop("use_cache") model = model_class(config) num_out = len(model(class_inputs_dict)) with tempfile.TemporaryDirectory() as tmpdirname: saved_model_dir = os.path.join(tmpdirname, "saved_model") model.save_pretrained(saved_model_dir) model = tf.keras.models.load_model(saved_model_dir) outputs = model(class_inputs_dict) if self.is_encoder_decoder: output = outputs["encoder_attentions"] if isinstance(outputs, dict) else outputs[-1] else: output = outputs["attentions"] if isinstance(outputs, dict) else outputs[-1] attentions = [t.numpy() for t in output] self.assertEqual(len(outputs), num_out) self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_keras_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_main_layer_classes = set( module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(module) if module_member_name.endswith("MainLayer") for module_member in (getattr(module, module_member_name),) if isinstance(module_member, type) and tf.keras.layers.Layer in module_member.__bases__ and getattr(module_member, "_keras_serializable", False) ) for main_layer_class in tf_main_layer_classes: # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter if "T5" in main_layer_class.__name__: # Take the same values than in TFT5ModelTester for this shared layer shared = TFSharedEmbeddings(99, 32, name="shared") config.use_cache = inputs_dict.pop("use_cache", None) main_layer = main_layer_class(config, embed_tokens=shared) else: main_layer = main_layer_class(config) symbolic_inputs = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs)) outputs = model(inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "keras_model.h5") model.save(filepath) if "T5" in main_layer_class.__name__: model = tf.keras.models.load_model( filepath, custom_objects={ main_layer_class.__name__: main_layer_class, "TFSharedEmbeddings": TFSharedEmbeddings, }, ) else: model = tf.keras.models.load_model( filepath, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(model, tf.keras.Model) after_outputs = model(inputs_dict) self.assert_outputs_same(after_outputs, outputs) def assert_outputs_same(self, after_outputs, outputs): # Make sure we don't have nans if isinstance(after_outputs, tf.Tensor): out_1 = after_outputs.numpy() elif isinstance(after_outputs, dict): out_1 = after_outputs[list(after_outputs.keys())[0]].numpy() else: out_1 = after_outputs[0].numpy() out_2 = outputs[0].numpy() self.assertEqual(out_1.shape, out_2.shape) out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @is_pt_tf_cross_test def test_pt_tf_model_equivalence(self): import torch import transformers config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) config.output_hidden_states = True tf_model = model_class(config) pt_model = pt_model_class(config) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class) ) pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model) # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences pt_model.eval() pt_inputs_dict = {} for name, key in self._prepare_for_class(inputs_dict, model_class).items(): if type(key) == bool: pt_inputs_dict[name] = key else: pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long) # need to rename encoder-decoder "inputs" for PyTorch if "inputs" in pt_inputs_dict and self.is_encoder_decoder: pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs") with torch.no_grad(): pto = pt_model(**pt_inputs_dict) tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False) tf_hidden_states = tfo[0].numpy() pt_hidden_states = pto[0].numpy() tf_nans = np.copy(np.isnan(tf_hidden_states)) pt_nans = np.copy(np.isnan(pt_hidden_states)) pt_hidden_states[tf_nans] = 0 tf_hidden_states[tf_nans] = 0 pt_hidden_states[pt_nans] = 0 tf_hidden_states[pt_nans] = 0 max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states)) self.assertLessEqual(max_diff, 4e-2) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path) # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences pt_model.eval() pt_inputs_dict = {} for name, key in self._prepare_for_class(inputs_dict, model_class).items(): if type(key) == bool: key = np.array(key, dtype=bool) pt_inputs_dict[name] = torch.from_numpy(key).to(torch.long) else: pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long) # need to rename encoder-decoder "inputs" for PyTorch if "inputs" in pt_inputs_dict and self.is_encoder_decoder: pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs") with torch.no_grad(): pto = pt_model(**pt_inputs_dict) tfo = tf_model(self._prepare_for_class(inputs_dict, model_class)) tfo = tfo[0].numpy() pto = pto[0].numpy() tf_nans = np.copy(np.isnan(tfo)) pt_nans = np.copy(np.isnan(pto)) pto[tf_nans] = 0 tfo[tf_nans] = 0 pto[pt_nans] = 0 tfo[pt_nans] = 0 max_diff = np.amax(np.abs(tfo - pto)) self.assertLessEqual(max_diff, 4e-2) def test_train_pipeline_custom_model(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_main_layer_classes = set( module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(module) if module_member_name.endswith("MainLayer") for module_member in (getattr(module, module_member_name),) if isinstance(module_member, type) and tf.keras.layers.Layer in module_member.__bases__ and getattr(module_member, "_keras_serializable", False) ) for main_layer_class in tf_main_layer_classes: # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter if "T5" in main_layer_class.__name__: # Take the same values than in TFT5ModelTester for this shared layer shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared") config.use_cache = False main_layer = main_layer_class(config, embed_tokens=shared) del inputs_dict["use_cache"] else: main_layer = main_layer_class(config) symbolic_inputs = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } if hasattr(self.model_tester, "num_labels"): num_labels = self.model_tester.num_labels else: num_labels = 2 X = tf.data.Dataset.from_tensor_slices( (inputs_dict, np.ones((self.model_tester.batch_size, self.model_tester.seq_length, num_labels, 1))) ).batch(1) hidden_states = main_layer(symbolic_inputs)[0] outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states) model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs]) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["binary_accuracy"]) model.fit(X, epochs=1) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "keras_model.h5") model.save(filepath) if "T5" in main_layer_class.__name__: model = tf.keras.models.load_model( filepath, custom_objects={ main_layer_class.__name__: main_layer_class, "TFSharedEmbeddings": TFSharedEmbeddings, }, ) else: model = tf.keras.models.load_model( filepath, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(model, tf.keras.Model) model(inputs_dict) def test_compile_tf_model(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() max_input = getattr(self.model_tester, "max_position_embeddings", 512) optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") for model_class in self.all_model_classes: if self.is_encoder_decoder: input_ids = { "decoder_input_ids": tf.keras.Input( batch_shape=(2, max_input), name="decoder_input_ids", dtype="int32", ), "input_ids": tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32"), } elif model_class in TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values(): input_ids = tf.keras.Input(batch_shape=(4, 2, max_input), name="input_ids", dtype="int32") else: input_ids = tf.keras.Input(batch_shape=(2, max_input), name="input_ids", dtype="int32") # Prepare our model model = model_class(config) model(self._prepare_for_class(inputs_dict, model_class)) # Model must be called before saving. # Let's load it from the disk to be sure we can use pretrained weights with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) model = model_class.from_pretrained(tmpdirname) outputs_dict = model(input_ids) hidden_states = outputs_dict[0] # Add a dense layer on top to test integration with other keras modules outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states) # Compile extended model extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs]) extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) def test_keyword_and_dict_args(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_ids = inputs_keywords.pop("input_ids", None) outputs_keywords = model(input_ids, **inputs_keywords) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) def check_decoder_attentions_output(outputs): out_len = len(outputs) self.assertEqual(out_len % 2, 0) decoder_attentions = outputs.decoder_attentions self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(outputs): attentions = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["use_cache"] = False config.output_hidden_states = False model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) out_len = len(outputs) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) if self.is_encoder_decoder: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_decoder_attentions_output(outputs) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True config.output_hidden_states = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_hidden_states, True) check_encoder_attentions_output(outputs) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) if model.config.is_encoder_decoder: encoder_hidden_states = outputs.encoder_hidden_states decoder_hidden_states = outputs.decoder_hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(encoder_hidden_states), expected_num_layers) self.assertListEqual( list(encoder_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(decoder_hidden_states), expected_num_layers) self.assertListEqual( list(decoder_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) else: hidden_states = outputs.hidden_states self.assertEqual(config.output_attentions, False) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() list_lm_models = ( list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.values()) + list(TF_MODEL_FOR_MASKED_LM_MAPPING.values()) + list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values()) ) for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class in list_lm_models: x = model.get_output_embeddings() assert isinstance(x, tf.keras.layers.Layer) name = model.get_bias() assert isinstance(name, dict) for k, v in name.items(): assert isinstance(v, tf.Variable) else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) first, second = ( model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], ) out_1 = first.numpy() out_2 = second.numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(tuple_object, dict_object)), msg=f"Tuple and dict output are not equal. Difference: {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}", ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def _get_embeds(self, wte, input_ids): # ^^ In our TF models, the input_embeddings can take slightly different forms, # so we try a few of them. # We used to fall back to just synthetically creating a dummy tensor of ones: try: x = wte(input_ids, mode="embedding") except Exception: try: x = wte([input_ids], mode="embedding") except Exception: try: x = wte([input_ids, None, None, None], mode="embedding") except Exception: if hasattr(self.model_tester, "embedding_size"): x = tf.ones( input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32, ) else: x = tf.ones( input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32, ) return x def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = self._get_embeds(wte, input_ids) else: inputs["inputs_embeds"] = self._get_embeds(wte, encoder_input_ids) inputs["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids) model(inputs) def test_numpy_arrays_inputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def prepare_numpy_arrays(inputs_dict): inputs_np_dict = {} for k, v in inputs_dict.items(): if tf.is_tensor(v): inputs_np_dict[k] = v.numpy() else: inputs_np_dict[k] = np.array(k) return inputs_np_dict for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) inputs_np = prepare_numpy_arrays(inputs) model(inputs_np) def test_resize_token_embeddings(self): if not self.test_resize_embeddings: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(model, embedding_layer): if hasattr(embedding_layer, "word_embeddings"): return embedding_layer.word_embeddings elif hasattr(embedding_layer, "weight"): return embedding_layer.weight elif hasattr(embedding_layer, "decoder"): return embedding_layer.decoder else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model(model.dummy_inputs) if hasattr(embedding_layer, "word_embeddings"): return embedding_layer.word_embeddings elif hasattr(embedding_layer, "weight"): return embedding_layer.weight elif hasattr(embedding_layer, "decoder"): return embedding_layer.decoder else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10, None]: # build the embeddings model = model_class(config=config) old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) old_bias = model.get_bias() old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(size) new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) new_bias = model.get_bias() new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. assert_size = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0], assert_size) # check that weights remain the same after resizing models_equal = True for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_bias is not None and new_bias is not None: for old_weight, new_weight in zip(old_bias.values(), new_bias.values()): self.assertEqual(new_weight.shape[0], assert_size) models_equal = True for p1, p2 in zip(old_weight.value(), new_weight.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0], assert_size) self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1]) models_equal = True for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) def test_lm_head_model_random_no_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict["input_ids"] # iterate over all generative models for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined mobel needs input_ids with self.assertRaises(AssertionError): model.generate(do_sample=True, max_length=5) # num_return_sequences = 1 self._check_generated_ids(model.generate(input_ids, do_sample=True)) else: # num_return_sequences = 1 self._check_generated_ids(model.generate(do_sample=True, max_length=5)) with self.assertRaises(AssertionError): # generating multiple sequences when no beam search generation # is not allowed as it would always generate the same sequences model.generate(input_ids, do_sample=False, num_return_sequences=2) # num_return_sequences > 1, sample self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_ids.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) def test_lm_head_model_random_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict["input_ids"] for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1 self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2)) else: # num_return_sequences = 1 self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2)) with self.assertRaises(AssertionError): # generating more sequences than having beams leads is not possible model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2) # num_return_sequences > 1, sample self._check_generated_ids( model.generate( input_ids, do_sample=True, num_beams=2, num_return_sequences=2, ) ) # num_return_sequences > 1, greedy self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_ids.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) if getattr(model, "compute_loss", None): # The number of elements in the loss should be the same as the number of elements in the label prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) added_label = prepared_for_class[ sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0] ] loss_size = tf.size(added_label) if model.__class__ in TF_MODEL_FOR_CAUSAL_LM_MAPPING.values(): # if loss is causal lm loss, labels are shift, so that one label per batch # is cut loss_size = loss_size - self.model_tester.batch_size # Test that model correctly compute the loss with kwargs prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) input_ids = prepared_for_class.pop("input_ids") loss = model(input_ids, **prepared_for_class)[0] self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a dict prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) loss = model(prepared_for_class)[0] self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a tuple prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) # Get keys that were added with the _prepare_for_class function label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: "input_ids"} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] self.assertEqual(loss.shape, [loss_size]) def _generate_random_bad_tokens(self, num_bad_tokens, model): # special tokens cannot be bad tokens special_tokens = [] if model.config.bos_token_id is not None: special_tokens.append(model.config.bos_token_id) if model.config.pad_token_id is not None: special_tokens.append(model.config.pad_token_id) if model.config.eos_token_id is not None: special_tokens.append(model.config.eos_token_id) # create random bad tokens that are not special tokens bad_tokens = [] while len(bad_tokens) < num_bad_tokens: token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0] if token not in special_tokens: bad_tokens.append(token) return bad_tokens def _check_generated_ids(self, output_ids): for token_id in output_ids[0].numpy().tolist(): self.assertGreaterEqual(token_id, 0) self.assertLess(token_id, self.model_tester.vocab_size) def _check_match_tokens(self, generated_ids, bad_words_ids): # for all bad word tokens for bad_word_ids in bad_words_ids: # for all slices in batch for generated_ids_slice in generated_ids: # for all word idx for i in range(len(bad_word_ids), len(generated_ids_slice)): # if tokens match if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids: return True return False def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None): """Creates a random int32 tensor of the shape within the vocab size.""" if rng is None: rng = random.Random() total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32) return output @require_tf class UtilsFunctionsTest(unittest.TestCase): # tests whether the top_k_top_p_filtering function behaves as expected def test_top_k_top_p_filtering(self): logits = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ], dtype=tf.float32, ) non_inf_expected_idx = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.int32, ) # expected non filtered idx as noted above non_inf_expected_output = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023], dtype=tf.float32, ) # expected non filtered values as noted above output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4) non_inf_output = output[output != -float("inf")] non_inf_idx = tf.cast( tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))), dtype=tf.int32, ) tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12) tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)
46.460438
137
0.615726
79423937c6050f53dbd09a0b249ad9f0ca672f6d
2,463
py
Python
pygenetic/Statistics.py
QuailAutomation/pygenetic
93b0240a1942b882df30b53d856a87becca1d7ec
[ "MIT" ]
2
2020-05-30T05:13:37.000Z
2021-03-15T19:54:28.000Z
pygenetic/Statistics.py
QuailAutomation/pygenetic
93b0240a1942b882df30b53d856a87becca1d7ec
[ "MIT" ]
1
2021-06-19T20:30:25.000Z
2021-06-19T20:30:25.000Z
pygenetic/Statistics.py
QuailAutomation/pygenetic
93b0240a1942b882df30b53d856a87becca1d7ec
[ "MIT" ]
2
2020-08-02T20:52:50.000Z
2021-02-07T15:52:15.000Z
import matplotlib import os if 'TRAVIS' in os.environ: print('Warning: no DISPLAY environment variable found. Using matplotlib non-interactive Agg backend') matplotlib.use('Agg') import matplotlib.pyplot as plt class Statistics: """ Class to generate Statistics on operation of Genetic Algorithm Instance Members: ----------------- statistic_dict : A dictionary storing different statistics mapped to list storing each generation data Stats stored are best-fitness, worst-fitness, avg-fitness, diversity and mutation-rate """ def __init__(self): self.statistic_dict = {'best-fitness':[],'worst-fitness':[],'avg-fitness':[],'diversity':[],'mutation_rate':[]} def add_statistic(self,statistic,value): """ Appends a value to specified statistic, usually called after each iteration Parameters : ------------ statistic : The statistic for which the value is relevant and is to be appended value : Th evalue to be appended """ if statistic in self.statistic_dict: self.statistic_dict[statistic].append(value) else: self.statistic_dict[statistic] = [value] def plot(self): """ Generates a line graph for each statistic to display change over iterations """ fig,ax = plt.subplots() ax.set_xlabel('Generation') ax.set_ylabel('Statistic') for statistic in self.statistic_dict: ax.plot(range(1,len(self.statistic_dict[statistic])+1),self.statistic_dict[statistic],label=statistic) fig.legend(loc='upper left') return fig def plot_statistics(self,statistics): """ Generates a line graph for list of specified statistics to display change over iterations Parameters : ---------- statistics : A list of statistic names whose variation is to be shown """ fig,ax = plt.subplots() ax.set_xlabel('Generation') ax.set_ylabel('Statistic') for statistic in statistics: ax.plot(range(1,len(self.statistic_dict[statistic])+1),self.statistic_dict[statistic],label=statistic) fig.legend(loc='upper left') return fig def plot_statistic(self,statistic): """ Generates a line graph for specified statistic to display change over iterations Parameters : ---------- statistic : The statistic name whose variation is to be shown """ fig,ax = plt.subplots() ax.set_xlabel('Generation') ax.set_ylabel('Statistic') ax.plot(range(1,len(self.statistic_dict[statistic])+1),self.statistic_dict[statistic],label=statistic) fig.legend(loc='upper left') return fig
29.321429
113
0.725132
79423995f1a3d63eb992419866556d65dfa1230a
13,981
py
Python
tests/test_binder_file_field.py
MLewiDev/django-binder
3f55f18169ed5536305f7c0c2e257962346d30f4
[ "MIT" ]
null
null
null
tests/test_binder_file_field.py
MLewiDev/django-binder
3f55f18169ed5536305f7c0c2e257962346d30f4
[ "MIT" ]
null
null
null
tests/test_binder_file_field.py
MLewiDev/django-binder
3f55f18169ed5536305f7c0c2e257962346d30f4
[ "MIT" ]
null
null
null
from os.path import basename from io import BytesIO from PIL import Image from tempfile import NamedTemporaryFile from django.test import TestCase, Client from django.core.files.base import ContentFile from django.core.files.uploadedfile import SimpleUploadedFile from django.contrib.auth.models import User from django.db import connection from binder.json import jsonloads from .testapp.models import Zoo from .utils import temp_imagefile JPG_CONTENT = b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00\xff\xdb\x00C\x00\x08\x06\x06\x07\x06\x05\x08\x07\x07\x07\t\t\x08\n\x0c\x14\r\x0c\x0b\x0b\x0c\x19\x12\x13\x0f\x14\x1d\x1a\x1f\x1e\x1d\x1a\x1c\x1c $.\' ",#\x1c\x1c(7),01444\x1f\'9=82<.342\xff\xdb\x00C\x01\t\t\t\x0c\x0b\x0c\x18\r\r\x182!\x1c!22222222222222222222222222222222222222222222222222\xff\xc0\x00\x11\x08\x00\x01\x00\x01\x03\x01"\x00\x02\x11\x01\x03\x11\x01\xff\xc4\x00\x1f\x00\x00\x01\x05\x01\x01\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\xff\xc4\x00\xb5\x10\x00\x02\x01\x03\x03\x02\x04\x03\x05\x05\x04\x04\x00\x00\x01}\x01\x02\x03\x00\x04\x11\x05\x12!1A\x06\x13Qa\x07"q\x142\x81\x91\xa1\x08#B\xb1\xc1\x15R\xd1\xf0$3br\x82\t\n\x16\x17\x18\x19\x1a%&\'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz\x83\x84\x85\x86\x87\x88\x89\x8a\x92\x93\x94\x95\x96\x97\x98\x99\x9a\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xff\xc4\x00\x1f\x01\x00\x03\x01\x01\x01\x01\x01\x01\x01\x01\x01\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\xff\xc4\x00\xb5\x11\x00\x02\x01\x02\x04\x04\x03\x04\x07\x05\x04\x04\x00\x01\x02w\x00\x01\x02\x03\x11\x04\x05!1\x06\x12AQ\x07aq\x13"2\x81\x08\x14B\x91\xa1\xb1\xc1\t#3R\xf0\x15br\xd1\n\x16$4\xe1%\xf1\x17\x18\x19\x1a&\'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x92\x93\x94\x95\x96\x97\x98\x99\x9a\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xff\xda\x00\x0c\x03\x01\x00\x02\x11\x03\x11\x00?\x00\xb5E\x14W\xc6\x9eq\xff\xd9' PNG_CONTENT = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00\x00\x01\x08\x02\x00\x00\x00\x90wS\xde\x00\x00\x00\x0cIDATx\x9cc0*K\x01\x00\x01\xea\x01\r1\x93\xfe`\x00\x00\x00\x00IEND\xaeB`\x82' JPG_HASH = '7f6262521ea97a0dca86703b5fc90d648303f877' PNG_HASH = '1888ce8ba1019738482c8dc3e30bea871b4e47e7' class BinderFileFieldTest(TestCase): def setUp(self): super().setUp() u = User(username='testuser', is_active=True, is_superuser=True) u.set_password('test') u.save() self.client = Client() r = self.client.login(username='testuser', password='test') self.assertTrue(r) def test_save(self): zoo = Zoo(name='Apenheul') zoo.binder_picture = ContentFile(JPG_CONTENT, name='pic.jpg') self.assertEqual(zoo.binder_picture.content_type, 'image/jpeg') self.assertEqual(zoo.binder_picture.content_hash, JPG_HASH) zoo.save() zoo2 = Zoo.objects.get(pk=zoo.pk) self.assertEqual(zoo2.binder_picture.content_type, 'image/jpeg') self.assertEqual(zoo2.binder_picture.content_hash, JPG_HASH) def test_post(self): filename = 'pic.jpg' zoo = Zoo(name='Apenheul') zoo.save() response = self.client.post('/zoo/%s/binder_picture/' % zoo.id, data={ 'file': ContentFile(JPG_CONTENT, name=filename), }) self.assertEqual(response.status_code, 200) content = jsonloads(response.content) # Remove once Django 3 lands with: https://docs.djangoproject.com/en/3.1/howto/custom-file-storage/#django.core.files.storage.get_alternative_name zoo.refresh_from_db() filename = basename(zoo.binder_picture.name) # Without folders foo/bar/ self.assertEqual( content['data']['binder_picture'], '/zoo/{}/binder_picture/?h={}&content_type=image/jpeg&filename={}'.format(zoo.pk, JPG_HASH, filename), ) response = self.client.get('/zoo/{}/'.format(zoo.pk)) self.assertEqual(response.status_code, 200) data = jsonloads(response.content) self.assertEqual( data['data']['binder_picture'], '/zoo/{}/binder_picture/?h={}&content_type=image/jpeg&filename={}'.format(zoo.pk, JPG_HASH, filename), ) def test_post_no_extension(self): filename = 'foobar' zoo = Zoo(name='Apenheul') zoo.save() response = self.client.post('/zoo/%s/binder_picture/' % zoo.id, data={ 'file': ContentFile('foobar', name=filename), }) self.assertEqual(response.status_code, 400) # # Remove once Django 3 lands with: https://docs.djangoproject.com/en/3.1/howto/custom-file-storage/#django.core.files.storage.get_alternative_name # zoo.refresh_from_db() # filename = basename(zoo.binder_picture.name) # Without folders foo/bar/ # # self.assertEqual( # content['data']['binder_picture'], # '/zoo/{}/binder_picture/?h={}&content_type=&filename={}'.format(zoo.pk, HASH, filename), # ) # # response = self.client.get('/zoo/{}/'.format(zoo.pk)) # # self.assertEqual(response.status_code, 200) # data = jsonloads(response.content) # self.assertEqual( # data['data']['binder_picture'], # '/zoo/{}/binder_picture/?h={}&content_type=&filename={}'.format(zoo.pk, HASH, filename), # ) def test_post_with_long_filename(self): filename = 'this_is_an_extremely_long_filename_which_should_be_over_200_chars_but_under_400_and_im_running_out_of_things_to_say_and_i_guess_we_just_keep_going_and_im_now_in_poznan_working_onsite_perhaps_thats_interesting_and_just_ordered_pizza_for_lunch.jpg' zoo = Zoo(name='Apenheul') zoo.save() response = self.client.post('/zoo/%s/binder_picture/' % zoo.id, data={ 'file': ContentFile(JPG_CONTENT, name=filename), }) self.assertEqual(response.status_code, 200) content = jsonloads(response.content) # Remove once Django 3 lands with: https://docs.djangoproject.com/en/3.1/howto/custom-file-storage/#django.core.files.storage.get_alternative_name zoo.refresh_from_db() filename = basename(zoo.binder_picture.name) # Without folders foo/bar/ self.assertEqual( content['data']['binder_picture'], '/zoo/{}/binder_picture/?h={}&content_type=image/jpeg&filename={}'.format(zoo.pk, JPG_HASH, filename), ) response = self.client.get('/zoo/{}/'.format(zoo.pk)) self.assertEqual(response.status_code, 200) data = jsonloads(response.content) self.assertEqual( data['data']['binder_picture'], '/zoo/{}/binder_picture/?h={}&content_type=image/jpeg&filename={}'.format(zoo.pk, JPG_HASH, filename), ) def test_get(self): filename = 'pic.jpg' zoo = Zoo(name='Apenheul') zoo.binder_picture = ContentFile(JPG_CONTENT, name=filename) zoo.save() response = self.client.get('/zoo/{}/'.format(zoo.pk)) self.assertEqual(response.status_code, 200) data = jsonloads(response.content) # Remove once Django 3 lands with: https://docs.djangoproject.com/en/3.1/howto/custom-file-storage/#django.core.files.storage.get_alternative_name zoo.refresh_from_db() filename = basename(zoo.binder_picture.name) # Without folders foo/bar/ self.assertEqual( data['data']['binder_picture'], '/zoo/{}/binder_picture/?h={}&content_type=image/jpeg&filename={}'.format(zoo.pk, JPG_HASH, filename), ) def test_setting_blank(self): zoo = Zoo(name='Apenheul') zoo.binder_picture = '' zoo.save() response = self.client.get('/zoo/{}/'.format(zoo.pk)) self.assertEqual(response.status_code, 200) data = jsonloads(response.content) self.assertIsNone(data['data']['binder_picture']) def test_upgrade_from_normal_file_field_with_existing_data(self): filename = 'pic.jpg' zoo = Zoo(name='Apenheul') zoo.save() with open(filename, 'wb+') as file: file.write(JPG_CONTENT) with connection.cursor() as cur: # Update db directly to mimic existing records. cur.execute("UPDATE {} set binder_picture='{}'".format(zoo._meta.db_table, file.name)) response = self.client.get('/zoo/{}/'.format(zoo.pk)) self.assertEqual(response.status_code, 200) data = jsonloads(response.content) # Remove once Django 3 lands with: https://docs.djangoproject.com/en/3.1/howto/custom-file-storage/#django.core.files.storage.get_alternative_name zoo.refresh_from_db() filename = zoo.binder_picture.name self.assertEqual( data['data']['binder_picture'], '/zoo/{}/binder_picture/?h={}&content_type=image/jpeg&filename={}'.format(zoo.pk, JPG_HASH, filename), ) def test_reusing_same_file_for_multiple_fields(self): with BytesIO() as bytesio: im = Image.new('RGBA', (50,100)) im.save(bytesio, format='png') bytesio.seek(0) test_image = SimpleUploadedFile('test.png', bytesio.read()) zoo1 = Zoo(name='Apenheul', django_picture=test_image) zoo1.save() zoo2 = Zoo(name='Apenheul', django_picture=test_image) zoo2.save() zoo3 = Zoo(name='Apenheul', binder_picture=test_image) zoo3.save() zoo4 = Zoo(name='Apenheul', binder_picture=test_image) zoo4.save() # I've seen this happen a few times, where a file exists in the db but not on disk. def test_non_existing_file_on_diks(self): zoo = Zoo(name='Apenheul') zoo.save() with connection.cursor() as cur: # Update db directly to mimic record without existing file cur.execute("UPDATE {} set binder_picture='non-exisiting-pic.jpg'".format(zoo._meta.db_table)) response = self.client.get('/zoo/{}/'.format(zoo.pk)) self.assertEqual(response.status_code, 200) data = jsonloads(response.content) self.assertEqual( data['data']['binder_picture'], '/zoo/{}/binder_picture/?h={}&content_type=image/jpeg&filename={}'.format(zoo.pk, '', 'non-exisiting-pic.jpg'), ) def test_post_image_doesnt_leave_unclosed_file(self): zoo = Zoo(name='Apenheul') zoo.save() # Basically this construction of assertRaise wrapped around assertWarns # is to make sure no warning is triggered. This works, since assertWarns # raises an AssertionError. Basically a `self.assertNotWarns`. with self.assertRaises(AssertionError) as cm: with self.assertWarns(ResourceWarning) as cm2: response = self.client.post('/zoo/%s/binder_picture_custom_extensions/' % zoo.id, data={ 'file': ContentFile(PNG_CONTENT, name='foobar.png'), }) self.assertEqual(str(cm.exception), 'ResourceWarning not triggered') class BinderFileFieldBlankNotNullableTest(TestCase): def setUp(self): super().setUp() u = User(username='testuser', is_active=True, is_superuser=True) u.set_password('test') u.save() self.client = Client() r = self.client.login(username='testuser', password='test') self.assertTrue(r) def test_setting_blank(self): zoo = Zoo(name='Apenheul') zoo.django_picture_not_null = '' zoo.binder_picture_not_null = '' zoo.save() response = self.client.get('/zoo/{}/'.format(zoo.pk)) self.assertEqual(response.status_code, 200) data = jsonloads(response.content) self.assertIsNone(data['data']['django_picture_not_null']) self.assertIsNone(data['data']['binder_picture_not_null']) # When a file field is blank=True and null=False, Django will convert the # None to empty string. def test_deleting(self): zoo = Zoo(name='Apenheul') zoo.django_picture_not_null = ContentFile(JPG_CONTENT, name='pic.jpg') zoo.binder_picture_not_null = ContentFile(JPG_CONTENT, name='pic.jpg') zoo.save() zoo.django_picture_not_null.delete() zoo.binder_picture_not_null.delete() zoo.refresh_from_db() self.assertEqual('', zoo.django_picture_not_null) self.assertEqual('', zoo.binder_picture_not_null) class BinderFileFieldAllowedExtensionTest(TestCase): def setUp(self): super().setUp() u = User(username='testuser', is_active=True, is_superuser=True) u.set_password('test') u.save() self.client = Client() r = self.client.login(username='testuser', password='test') self.assertTrue(r) def test_post_allowed_extension_fail(self): zoo = Zoo(name='Apenheul') zoo.save() response = self.client.post('/zoo/%s/binder_picture_custom_extensions/' % zoo.id, data={ 'file': ContentFile(JPG_CONTENT, name='foobar.jpg'), }) self.assertEqual(response.status_code, 400) def test_post_without_extension_fails(self): zoo = Zoo(name='Apenheul') zoo.save() response = self.client.post('/zoo/%s/binder_picture_custom_extensions/' % zoo.id, data={ 'file': ContentFile(PNG_CONTENT, name='foobar'), }) self.assertEqual(response.status_code, 400) content = jsonloads(response.content) self.assertEqual(content['code'], 'FileTypeIncorrect') self.assertEqual(content['allowed_types'], [{"extension": "png"}]) def test_post_allowed_extension_success(self): for filename in ['foobar.png', 'foobar.PNG', 'foobar.Png', 'foobar.pNg', 'foobar.pnG']: with self.subTest(filename=filename): zoo = Zoo(name='Apenheul') zoo.save() response = self.client.post('/zoo/%s/binder_picture_custom_extensions/' % zoo.id, data={ 'file': ContentFile(PNG_CONTENT, name=filename), }) self.assertEqual(response.status_code, 200) content = jsonloads(response.content) # Remove once Django 3 lands with: https://docs.djangoproject.com/en/3.1/howto/custom-file-storage/#django.core.files.storage.get_alternative_name zoo.refresh_from_db() filename = basename(zoo.binder_picture_custom_extensions.name) # Without folders foo/bar/ self.assertEqual( content['data']['binder_picture_custom_extensions'], '/zoo/{}/binder_picture_custom_extensions/?h={}&content_type=image/png&filename={}'.format(zoo.pk, PNG_HASH, filename), ) response = self.client.get('/zoo/{}/'.format(zoo.pk)) self.assertEqual(response.status_code, 200) data = jsonloads(response.content) self.assertEqual( data['data']['binder_picture_custom_extensions'], '/zoo/{}/binder_picture_custom_extensions/?h={}&content_type=image/png&filename={}'.format(zoo.pk, PNG_HASH, filename), )
41.859281
1,876
0.733066
794239d23f13b3f3024830568a3d632d3b5fed1f
3,883
py
Python
docker/pythonpath_dev/superset_config.py
7vikpeculiar/superset
800ced5e257d5d83d6dbe4ced0e7318ac40d026f
[ "Apache-2.0" ]
2
2021-12-21T15:57:16.000Z
2022-01-31T02:22:02.000Z
docker/pythonpath_dev/superset_config.py
7vikpeculiar/superset
800ced5e257d5d83d6dbe4ced0e7318ac40d026f
[ "Apache-2.0" ]
10
2022-01-05T01:31:07.000Z
2022-03-16T01:09:46.000Z
docker/pythonpath_dev/superset_config.py
7vikpeculiar/superset
800ced5e257d5d83d6dbe4ced0e7318ac40d026f
[ "Apache-2.0" ]
2
2021-12-21T13:41:18.000Z
2021-12-26T22:16:43.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # This file is included in the final Docker image and SHOULD be overridden when # deploying the image to prod. Settings configured here are intended for use in local # development environments. Also note that superset_config_docker.py is imported # as a final step as a means to override "defaults" configured here # import logging import os from datetime import timedelta from typing import Optional from cachelib.file import FileSystemCache from celery.schedules import crontab logger = logging.getLogger() def get_env_variable(var_name: str, default: Optional[str] = None) -> str: """Get the environment variable or raise exception.""" try: return os.environ[var_name] except KeyError: if default is not None: return default else: error_msg = "The environment variable {} was missing, abort...".format( var_name ) raise EnvironmentError(error_msg) DATABASE_DIALECT = get_env_variable("DATABASE_DIALECT") DATABASE_USER = get_env_variable("DATABASE_USER") DATABASE_PASSWORD = get_env_variable("DATABASE_PASSWORD") DATABASE_HOST = get_env_variable("DATABASE_HOST") DATABASE_PORT = get_env_variable("DATABASE_PORT") DATABASE_DB = get_env_variable("DATABASE_DB") # The SQLAlchemy connection string. SQLALCHEMY_DATABASE_URI = "%s://%s:%s@%s:%s/%s" % ( DATABASE_DIALECT, DATABASE_USER, DATABASE_PASSWORD, DATABASE_HOST, DATABASE_PORT, DATABASE_DB, ) REDIS_HOST = get_env_variable("REDIS_HOST") REDIS_PORT = get_env_variable("REDIS_PORT") REDIS_CELERY_DB = get_env_variable("REDIS_CELERY_DB", "0") REDIS_RESULTS_DB = get_env_variable("REDIS_RESULTS_DB", "1") RESULTS_BACKEND = FileSystemCache("/app/superset_home/sqllab") class CeleryConfig(object): BROKER_URL = f"redis://{REDIS_HOST}:{REDIS_PORT}/{REDIS_CELERY_DB}" CELERY_IMPORTS = ("superset.sql_lab",) CELERY_RESULT_BACKEND = f"redis://{REDIS_HOST}:{REDIS_PORT}/{REDIS_RESULTS_DB}" CELERYD_LOG_LEVEL = "DEBUG" CELERYD_PREFETCH_MULTIPLIER = 1 CELERY_ACKS_LATE = False CELERYBEAT_SCHEDULE = { "reports.scheduler": { "task": "reports.scheduler", "schedule": crontab(minute="*", hour="*"), }, "reports.prune_log": { "task": "reports.prune_log", "schedule": crontab(minute=10, hour=0), }, } CELERY_CONFIG = CeleryConfig FEATURE_FLAGS = {"ALERT_REPORTS": True} ALERT_REPORTS_NOTIFICATION_DRY_RUN = True WEBDRIVER_BASEURL = "http://superset:8088/" # The base URL for the email report hyperlinks. WEBDRIVER_BASEURL_USER_FRIENDLY = WEBDRIVER_BASEURL SQLLAB_CTAS_NO_LIMIT = True # # Optionally import superset_config_docker.py (which will have been included on # the PYTHONPATH) in order to allow for local settings to be overridden # try: import superset_config_docker from superset_config_docker import * # noqa logger.info( f"Loaded your Docker configuration at " f"[{superset_config_docker.__file__}]" ) except ImportError: logger.info("Using default Docker config...")
33.765217
86
0.731136
79423affaf4f467800c3768d6919e02a95c6b675
1,471
py
Python
concrete_settings/contrib/sources/yaml_source.py
coordt/concrete-settings
b444c3f1f8cdbe30135c1978876215e04ebc7622
[ "MIT" ]
5
2020-04-25T12:18:33.000Z
2021-03-26T18:51:33.000Z
concrete_settings/contrib/sources/yaml_source.py
coordt/concrete-settings
b444c3f1f8cdbe30135c1978876215e04ebc7622
[ "MIT" ]
13
2019-03-20T10:42:39.000Z
2021-07-07T08:01:05.000Z
concrete_settings/contrib/sources/yaml_source.py
coordt/concrete-settings
b444c3f1f8cdbe30135c1978876215e04ebc7622
[ "MIT" ]
3
2020-04-25T08:53:29.000Z
2021-07-06T19:15:52.000Z
from typing import Any, Tuple, Union, Type from concrete_settings.exceptions import ConcreteSettingsError from concrete_settings.sources import FileSource, register_source, NotFound @register_source class YamlSource(FileSource): extensions = ['.yml', '.yaml'] def __init__(self, path): try: import yaml # noqa: F401 # imported but unused except ImportError as e: raise ConcreteSettingsError( f'YAML source is not available for `{path}` ' 'due to error importing `yaml` package.\n' 'Perhaps you have forgotten to install PyYAML?' ) from e super().__init__(path) self._data = None def read(self, setting, parents: Tuple[str, ...] = ()) -> Union[Type[NotFound], Any]: if self._data is None: self._data = self._read_file(self.path) d = self._data for key in parents: d = d[key] val = d.get(setting.name, NotFound) return val @staticmethod def _read_file(path): import yaml try: with open(path) as f: raw_data = f.read() return yaml.safe_load(raw_data) or {} except FileNotFoundError as e: raise ConcreteSettingsError(f"Source file {path} was not found") from e except yaml.YAMLError as e: raise ConcreteSettingsError(f"Error parsing YAML from {path}: {e}") from e
31.297872
89
0.598912
79423b25723d7790a6454c86821d0f4225d6f44f
4,928
py
Python
dialite/_base.py
flexxui/dialite
9a62d34c0b8eb7b61b527bcf82e7ba0e4808d866
[ "BSD-2-Clause" ]
13
2018-02-26T14:28:57.000Z
2022-03-22T16:22:31.000Z
dialite/_base.py
flexxui/dialite
9a62d34c0b8eb7b61b527bcf82e7ba0e4808d866
[ "BSD-2-Clause" ]
4
2018-10-29T19:44:44.000Z
2020-09-07T12:11:14.000Z
dialite/_base.py
flexxui/dialite
9a62d34c0b8eb7b61b527bcf82e7ba0e4808d866
[ "BSD-2-Clause" ]
4
2018-08-09T09:56:05.000Z
2020-06-08T06:10:20.000Z
from __future__ import absolute_import, division, print_function import os import subprocess import sys import time import webbrowser from . import logger if sys.version_info < (3,): # pragma: no cover input = raw_input # noqa class BaseApp(object): """The base app class. Acts as a placeholder to define the API that subclasses must implement. """ def works(self): raise NotImplementedError() # to test whether the app actually works def fail(self, title, message): raise NotImplementedError() def warn(self, title, message): raise NotImplementedError() def inform(self, title, message): raise NotImplementedError() def ask_ok(self, title, message): raise NotImplementedError() def ask_retry(self, title, message): raise NotImplementedError() def ask_yesno(self, title, message): raise NotImplementedError() class TerminalApp(BaseApp): """An application classes that uses input().""" def works(self): return hastty() def fail(self, title, message): logger.error("%s: %s" % (title, message)) def warn(self, title, message): logger.warning("%s: %s" % (title, message)) def inform(self, title, message): logger.info("%s: %s" % (title, message)) def ask_ok(self, title, message): text = "%s: %s" % (title, message) text += "\nconfirm ([y]/n)? " return self._ask_yes_no(text) def ask_retry(self, title, message): text = "%s: %s" % (title, message) text += "\nretry ([y]/n)? " return self._ask_yes_no(text) def ask_yesno(self, title, message): text = "%s: %s" % (title, message) text += "\nanswer ([y]/n)? " return self._ask_yes_no(text) def _ask_yes_no(self, text, default="y"): while True: res = input(text) or default if res.lower() in ("y", "yes"): return True elif res.lower() in ("n", "no"): return False else: print("invalid answer") class StubApp(BaseApp): """A stub application class for platforms that we do not support, and where no tty is available. Pass warning() and inform(), fail for anything else. """ def works(self): return True def _error(self, kind, title, message): # Show error in browser, because user may not be able to see exception show_error_via_browser() # Close program t = "Cannot show %s-dialog on platform %s.\n %s: %s" sys.exit(t % (kind, sys.platform, title, message)) def fail(self, title, message): logger.error("FAIL %s: %s" % (title, message)) def warn(self, title, message): logger.warning("WARN %s: %s" % (title, message)) def inform(self, title, message): logger.info("INFO %s: %s" % (title, message)) def ask_ok(self, title, message): self._error("CONFIRM", title, message) def ask_retry(self, title, message): self._error("RETRY", title, message) def ask_yesno(self, title, message): self._error("YESNO", title, message) def check_output(*args, **kwargs): """Call a subprocess, return return-code and stdout. When *this* process exits, kills the subprocess. """ kwargs["stdout"] = subprocess.PIPE kwargs["stderr"] = subprocess.STDOUT p = subprocess.Popen(*args, **kwargs) try: while p.poll() is None: time.sleep(0.002) return p.poll(), p.stdout.read().decode("utf-8", "ignore") finally: if p.poll() is None: # pragma: no cover p.kill() def test_call(*args, **kwargs): """Test whether a subprocess call succeeds.""" try: subprocess.check_output(*args, **kwargs) return True except Exception: return False def hastty(): """Whether (it looks like) a tty is available.""" try: return sys.stdin and sys.stdin.isatty() except Exception: # pragma: no cover return False # i.e. no isatty method? error_html = """ <html><body> Dialite error:<br/> Could not show dialog on this platform, and cannot fallback to a tty. </body></html> """.lstrip() def show_error_via_browser(): # Select file to write html log to dir = os.path.expanduser("~") for name in ("Desktop", "desktop"): if os.path.isdir(os.path.join(dir, name)): dir = os.path.join(dir, name) break filename = os.path.join(dir, "dialite_error.html") # Write file try: with open(filename, "wb") as f: f.write(error_html.encode("utf-8")) except Exception: # pragma: no cover return # no user directory, or rights to write there? # Open it in a browser try: webbrowser.open(filename) except Exception: # pragma: no cover return # no browser?
27.377778
78
0.600649
79423b6b092fd9a8cdcc056dbc6bd72767799c75
881
py
Python
tests/generators/ios/test_conversion.py
brianleungwh/signals
d28d2722d681d390ebd21cd668d0b19f2f184451
[ "MIT" ]
3
2016-02-04T22:58:03.000Z
2017-12-15T13:37:47.000Z
tests/generators/ios/test_conversion.py
brianleungwh/signals
d28d2722d681d390ebd21cd668d0b19f2f184451
[ "MIT" ]
37
2015-08-28T20:17:23.000Z
2021-12-13T19:48:49.000Z
tests/generators/ios/test_conversion.py
brianleungwh/signals
d28d2722d681d390ebd21cd668d0b19f2f184451
[ "MIT" ]
6
2016-01-12T18:51:27.000Z
2016-10-19T10:32:45.000Z
import unittest from signals.generators.ios.conversion import python_to_objc_variable, sanitize_field_name, get_proper_name class ConversionTestCase(unittest.TestCase): def test_python_to_objc_variable(self): self.assertEqual(python_to_objc_variable("verbose_description"), "verboseDescription") self.assertEqual(python_to_objc_variable("verbose_description", capitalize_first=True), "VerboseDescription") def test_sanitize_field_name(self): self.assertEqual(sanitize_field_name("description"), "theDescription") self.assertEqual(sanitize_field_name("messages"), "messages") def test_get_proper_name(self): self.assertEqual(get_proper_name("unread_count"), "unreadCount") self.assertEqual(get_proper_name("unread_count", capitalize_first=True), "UnreadCount") self.assertEqual(get_proper_name("id"), "theID")
48.944444
117
0.777526
79423b73098cb09753e7797851719ad8248837d8
9,369
py
Python
hrf/trfx_semi.py
thu-spmi/semi-EBM
393e3ea3566dd60c48872a5c573a335e8e802707
[ "Apache-2.0" ]
2
2021-09-18T14:21:24.000Z
2021-12-20T03:39:13.000Z
hrf/trfx_semi.py
thu-spmi/semi-EBM
393e3ea3566dd60c48872a5c573a335e8e802707
[ "Apache-2.0" ]
null
null
null
hrf/trfx_semi.py
thu-spmi/semi-EBM
393e3ea3566dd60c48872a5c573a335e8e802707
[ "Apache-2.0" ]
1
2021-09-12T07:02:23.000Z
2021-09-12T07:02:23.000Z
import numpy as np import time from collections import OrderedDict from base import seq, log from . import trfx from .trfx import DefaultOps class Config(trfx.Config): def __init__(self, data): super().__init__(data) self.train_batch_size = 1000 self.full_batch_size = 100 self.inter_alpha = 100 class TRF(trfx.TRF): def __init__(self, config, data_x, data_full, logdir, device='/gpu:0', name='trf'): super().__init__(config, data_x, logdir, device, name) self.data_full = data_full self.data_x = data_x def update(self, data_list, sample_list, data_full_list=None): if data_full_list is None: return super().update(data_list, sample_list) # compute the scalars data_scalar = np.ones(len(data_list)) / len(data_list) sample_len = np.array([len(x) for x in sample_list]) sample_facter = np.array(self.config.pi_true[self.config.min_len:]) / \ np.array(self.config.pi_0[self.config.min_len:]) sample_scalar = sample_facter[sample_len - self.config.min_len] / len(sample_list) # update word phi if not self.config.fix_trf_model: with self.time_recoder.recode('update_word'): self.phi_word.update(data_list, data_scalar, sample_list, sample_scalar, learning_rate=self.cur_lr_word) if not self.config.fix_crf_model: data_full_scalar = self.config.inter_alpha * np.ones(len(data_full_list)) / len(data_full_list) data_part_list = data_list + sample_list + data_full_list data_part_scalar = -np.concatenate([data_scalar, -sample_scalar, -data_full_scalar], axis=0) # forward-backward for data data_part_list_x = [s.x[0] for s in data_part_list] with self.time_recoder.recode('update_marginal_data'): data_fp_logps_list, logzs_data = self.marginal_logps(data_part_list_x) with self.time_recoder.recode('update_tag'): self.phi_tag.update(data_full_list, data_full_scalar, data_part_list, data_part_scalar, data_fp_logps_list=None, sample_fp_logps_list=data_fp_logps_list, learning_rate=self.cur_lr_tag) with self.time_recoder.recode('update_mix'): self.phi_mix.update(data_full_list, data_full_scalar, data_part_list, data_part_scalar, data_fp_logps_list=None, sample_fp_logps_list=data_fp_logps_list, learning_rate=self.cur_lr_mix) # update zeta with self.time_recoder.recode('update_logz'): self.norm_const.update(sample_list, learning_rate=self.cur_lr_logz) logz1 = self.get_true_logz(self.config.min_len)[0] self.norm_const.set_logz1(logz1) # update simulater with self.time_recoder.recode('update_simulater'): self.sampler.update(seq.get_x(sample_list)) # update dbg info self.sample_cur_pi.fill(0) for x in sample_list: self.sample_cur_pi[len(x)] += 1 self.sample_acc_count += self.sample_cur_pi self.sample_cur_pi /= self.sample_cur_pi.sum() dbg_info = dict() dbg_info['logz1'] = logz1 acc_pi = self.sample_acc_count / np.sum(self.sample_acc_count) dbg_info['pi_dist'] = np.arccos(np.dot(acc_pi, self.config.pi_0) / np.linalg.norm(acc_pi) / np.linalg.norm(self.config.pi_0)) return dbg_info def train(self, print_per_epoch=0.1, operation=None): # initialize self.initialize() if self.exist_model(): self.restore() if self.config.load_crf_model is not None: self.restore_crf(self.config.load_crf_model) if self.config.load_trf_model is not None: self.restore_trf(self.config.load_trf_model) train_list = self.data.datas[0] valid_list = self.data.datas[1] print('[TRF] [Train]...') time_beginning = time.time() model_train_nll = [] # model_train_nll_phi = [] # model_q_nll = [] # model_kl_dist = [] self.data.train_batch_size = self.config.train_batch_size self.data.is_shuffle = True self.data_full.train_batch_size = self.config.full_batch_size self.data_full.is_shuffle = True epoch_step_num = self.data.get_epoch_step_num() print('[TRF] epoch_step_num={}'.format(epoch_step_num)) print('[TRF] train_list={}'.format(len(train_list))) print('[TRF] valid_list={}'.format(len(valid_list))) last_epoch = 0 epoch = 0 print_next_epoch = 0 for step, (data_seqs, data_full_seqs) in enumerate(zip(self.data, self.data_full)): ########################### # extra operations ########################### if operation is not None: operation.run(step, epoch) if int(self.data.get_cur_epoch()) > last_epoch: self.save() last_epoch = int(self.data.get_cur_epoch()) if epoch >= self.config.max_epoch: print('[TRF] train stop!') self.save() # operation.perform(step, epoch) break # update epoches epoch = self.data.get_cur_epoch() # update training information self.training_info['trained_step'] += 1 self.training_info['trained_epoch'] = self.data.get_cur_epoch() self.training_info['trained_time'] = (time.time() - time_beginning) / 60 # draw samples with self.time_recoder.recode('sample'): sample_seqs = self.draw(self.config.sample_batch_size) # update paramters with self.time_recoder.recode('update'): # learining rate self.cur_lr_word = self.config.lr_word.get_lr(step+1, epoch) self.cur_lr_tag = self.config.lr_tag.get_lr(step+1, epoch) self.cur_lr_mix = self.config.lr_mix.get_lr(step+1, epoch) self.cur_lr_logz = self.config.lr_logz.get_lr(step+1, epoch) # update update_info = self.update(data_seqs, sample_seqs, data_full_seqs) # evaulate the nll with self.time_recoder.recode('eval_train_nll'): nll_train = self.eval(data_seqs)[0] model_train_nll.append(nll_train) # model_train_nll_phi.append(self.eval(data_seqs, is_norm=False)[0]) # model_kl_dist.append(self.eval(sample_seqs)[0] - self.mcmc.eval(sample_seqs)[0]) if epoch >= print_next_epoch: print_next_epoch = epoch + print_per_epoch time_since_beg = (time.time() - time_beginning) / 60 # with self.time_recoder.recode('eval'): # model_valid_nll = self.eval(valid_list)[0] info = OrderedDict() info['step'] = step info['epoch'] = epoch info['time'] = time_since_beg info['lr_tag'] = '{:.2e}'.format(self.cur_lr_tag) info['lr_mix'] = '{:.2e}'.format(self.cur_lr_mix) info['lr_word'] = '{:.2e}'.format(self.cur_lr_word) info['lr_logz'] = '{:.2e}'.format(self.cur_lr_logz) info['lj_rate'] = self.sampler.lj_rate info['mv_rate'] = self.sampler.mv_rate info['logz1'] = self.update_global_norm() info.update(update_info) info['train'] = np.mean(model_train_nll[-epoch_step_num:]) # info['train_phi'] = np.mean(model_train_nll_phi[-100:]) # info['valid'] = model_valid_nll # info['auxil'] = np.mean(model_q_nll[-epoch_step_num:]) # info['kl_dist'] = np.mean(model_kl_dist[-epoch_step_num:]) x_list = seq.get_x(sample_seqs) info['kl_dist'] = np.mean(-self.get_logpxs(x_list, for_eval=False)) - self.sampler.eval(x_list)[0] ########## true_logz = None if self.config.max_len <= 5: true_logz = np.array(self.get_true_logz()) sa_logz = np.array(self.norm_const.get_logz()) self.norm_const.set_logz(true_logz) true_nll_train = self.eval(train_list)[0] self.norm_const.set_logz(sa_logz) info['true_train'] = true_nll_train log.print_line(info) print('[end]') # self.debug_logz() # write time f = self.write_files.get('time') f.write('step={} epoch={:.3f} time={:.2f} '.format(step, epoch, time_since_beg)) f.write(' '.join(['{}={:.2f}'.format(x[0], x[1]) for x in self.time_recoder.time_recoder.items()]) + '\n') f.flush() # write zeta, logz, pi self.write_log_zeta(step, true_logz)
41.64
122
0.572847
79423baecf69f422facb64d13574e8c5929ae599
649
py
Python
focalloss.py
shiqiuwang/Hardness_aware_Sample_Distillation
b70823e9e180ed61a02e1eb73bbe9a3c2897050f
[ "Apache-2.0", "MIT" ]
null
null
null
focalloss.py
shiqiuwang/Hardness_aware_Sample_Distillation
b70823e9e180ed61a02e1eb73bbe9a3c2897050f
[ "Apache-2.0", "MIT" ]
null
null
null
focalloss.py
shiqiuwang/Hardness_aware_Sample_Distillation
b70823e9e180ed61a02e1eb73bbe9a3c2897050f
[ "Apache-2.0", "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' @Time : 2021/7/22 15:14 @Author : Qiushi Wang @FileName: focalloss.py @Software: PyCharm ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np class FocalLoss(nn.Module): def __init__(self, gamma=0.0, alpha=1.0): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha self.criterion = nn.CrossEntropyLoss(reduce=False) def forward(self, inputs, targets): loss = self.criterion(inputs, targets) return torch.mul(loss, torch.pow((1 - torch.exp(-1*loss)), self.gamma))
23.178571
79
0.659476
79423ca1c81c8146bb8277bb6988e95d942949ad
2,475
py
Python
Geometry/HGCalCommonData/test/python/testHGCalParametersDD4Hep_cfg.py
gputtley/cmssw
c1ef8454804e4ebea8b65f59c4a952a6c94fde3b
[ "Apache-2.0" ]
2
2017-09-29T13:32:51.000Z
2019-01-31T00:40:58.000Z
Geometry/HGCalCommonData/test/python/testHGCalParametersDD4Hep_cfg.py
gputtley/cmssw
c1ef8454804e4ebea8b65f59c4a952a6c94fde3b
[ "Apache-2.0" ]
8
2020-03-20T23:18:36.000Z
2020-05-27T11:00:06.000Z
Geometry/HGCalCommonData/test/python/testHGCalParametersDD4Hep_cfg.py
gputtley/cmssw
c1ef8454804e4ebea8b65f59c4a952a6c94fde3b
[ "Apache-2.0" ]
3
2017-06-07T15:22:28.000Z
2019-02-28T20:48:30.000Z
import FWCore.ParameterSet.Config as cms process = cms.Process("HGCalParametersTest") process.load("SimGeneral.HepPDTESSource.pdt_cfi") process.load("Geometry.HGCalCommonData.hgcalParametersInitialization_cfi") process.load('FWCore.MessageService.MessageLogger_cfi') if hasattr(process,'MessageLogger'): process.MessageLogger.categories.append('HGCalGeom') process.DDDetectorESProducer = cms.ESSource("DDDetectorESProducer", confGeomXMLFiles = cms.FileInPath('Geometry/HGCalCommonData/data/dd4hep/cms-test-ddhgcal-algorithm.xml'), appendToDataLabel = cms.string('') ) process.DDCompactViewESProducer = cms.ESProducer("DDCompactViewESProducer", appendToDataLabel = cms.string('') ) process.load("IOMC.RandomEngine.IOMC_cff") process.RandomNumberGeneratorService.generator.initialSeed = 456789 process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.generator = cms.EDProducer("FlatRandomEGunProducer", PGunParameters = cms.PSet( PartID = cms.vint32(14), MinEta = cms.double(-3.5), MaxEta = cms.double(3.5), MinPhi = cms.double(-3.14159265359), MaxPhi = cms.double(3.14159265359), MinE = cms.double(9.99), MaxE = cms.double(10.01) ), AddAntiParticle = cms.bool(False), Verbosity = cms.untracked.int32(0), firstRun = cms.untracked.uint32(1) ) process.hgcalEEParametersInitialize.fromDD4Hep = cms.bool(True) process.hgcalHESiParametersInitialize.fromDD4Hep = cms.bool(True) process.hgcalHEScParametersInitialize.fromDD4Hep = cms.bool(True) process.testEE = cms.EDAnalyzer("HGCalParameterTester", Name = cms.untracked.string("HGCalEESensitive"), Mode = cms.untracked.int32(1) # Mode = cms.untracked.int32(0) ) process.testHESil = process.testEE.clone( Name = cms.untracked.string("HGCalHESiliconSensitive") ) process.testHESci = process.testEE.clone( Name = cms.untracked.string("HGCalHEScintillatorSensitive"), Mode = cms.untracked.int32(2) ) #process.p1 = cms.Path(process.generator*process.testEE*process.testHESil*process.testHESci) process.p1 = cms.Path(process.generator*process.testEE*process.testHESil)
38.076923
149
0.671111
79423d510370578dd70fc8b4700deedf2dbede26
3,995
py
Python
Tests/test_PopGen_GenePop_EasyController.py
adamnovak/biopython
92772dd6add33e0b87ab593841f924f0f6f16090
[ "PostgreSQL" ]
5
2016-03-09T03:41:23.000Z
2022-01-24T12:34:44.000Z
Tests/test_PopGen_GenePop_EasyController.py
adamnovak/biopython
92772dd6add33e0b87ab593841f924f0f6f16090
[ "PostgreSQL" ]
null
null
null
Tests/test_PopGen_GenePop_EasyController.py
adamnovak/biopython
92772dd6add33e0b87ab593841f924f0f6f16090
[ "PostgreSQL" ]
6
2016-10-24T11:27:13.000Z
2020-02-26T16:35:01.000Z
# Copyright 2009 by Tiago Antao <[email protected]>. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. import os import unittest from Bio import MissingExternalDependencyError from Bio.PopGen.GenePop.EasyController import EasyController #Tests genepop related code for easy contorller. Note: this requires genepop #test_PopGen_GenePop_nodepend tests code that does not require genepop found = False for path in os.environ['PATH'].split(os.pathsep): try: for filename in os.listdir(path): if filename.startswith('Genepop'): found = True except os.error: pass # Path doesn't exist - correct to pass if not found: raise MissingExternalDependencyError( "Install GenePop if you want to use Bio.PopGen.GenePop.") cur_dir = os.path.abspath(".") # Tests directory class AppTest(unittest.TestCase): """Tests genepop execution via biopython using EasyController. """ def setUp(self): #Genepop likes to be on the directory where the file is. os.chdir("PopGen") self.ctrl = EasyController("big.gen") def tearDown(self): os.chdir(cur_dir) def test_basic_info(self): """Test basic info. """ pops, loci = self.ctrl.get_basic_info() self.assertEqual(len(pops), 10) self.assertEqual(len(loci), 37) def test_get_heterozygosity_info(self): """Test heterozygosity info. """ hz_info = self.ctrl.get_heterozygosity_info(0, "Locus2") self.assertEqual(hz_info[1], 24) self.assertEqual(hz_info[3], 7) def test_get_alleles(self): """Test get alleles. """ #Returns keys of a dict, so order is Python implementation dependent self.assertEqual(set(self.ctrl.get_alleles(0, "Locus3")), set([3, 20])) def test_get_alleles_all_pops(self): """Test get alleles for all populations. """ self.assertEqual(self.ctrl.get_alleles_all_pops("Locus4"), [1, 3]) def test_get_fis(self): """Test get Fis. """ alleles, overall = self.ctrl.get_fis(0, "Locus2") self.assertEqual(alleles[3][0], 55) self.assertEqual(overall[0], 62) def test_get_allele_frequency(self): """Test allele frequency. """ tot_genes, alleles = self.ctrl.get_allele_frequency(0, "Locus2") self.assertEqual(tot_genes, 62) self.assertTrue(abs(alleles[20] - 0.113) < 0.05) def test_get_genotype_count(self): """Test genotype count. """ self.assertEqual(len(self.ctrl.get_genotype_count(0, "Locus2")), 3) def test_estimate_nm(self): """Test Nm estimation. """ nms = self.ctrl.estimate_nm() self.assertEqual(nms[0], 28.0) #These tests are frequently failing, possibly due to a Genepop problem. # def test_get_avg_fst_pair_locus(self): # """Test get average Fst for pairwise pops on a locus. # """ # self.assertEqual(len(self.ctrl.get_avg_fst_pair_locus("Locus4")), 45) # # def test_get_avg_fst_pair(self): # """Test get pairwise Fst. # """ # pop_fis = self.ctrl.get_avg_fst_pair() # self.assertEqual(len(pop_fis), 45) def test_get_avg_fis(self): """Test average Fis. """ self.ctrl.get_avg_fis() def test_get_multilocus_f_stats(self): """Test multilocus F stats. """ mf = self.ctrl.get_multilocus_f_stats() self.assertEqual(len(mf), 3) self.assertTrue(mf[0]<0.1) def test_get_f_stats(self): """Test F stats. """ fs = self.ctrl.get_f_stats("Locus2") self.assertEqual(len(fs), 5) self.assertTrue(fs[0]<0) if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity = 2) unittest.main(testRunner=runner)
31.456693
79
0.64005
79423f0f0cc8795100f645d43b43906c99f3a99e
2,410
py
Python
pptremoteagent.py
gigibu5/python-ppt-remote
e19b2711a8c76e19d5175f622904eab8b11387b5
[ "MIT" ]
null
null
null
pptremoteagent.py
gigibu5/python-ppt-remote
e19b2711a8c76e19d5175f622904eab8b11387b5
[ "MIT" ]
null
null
null
pptremoteagent.py
gigibu5/python-ppt-remote
e19b2711a8c76e19d5175f622904eab8b11387b5
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # This is a script to remote control PowerPoint presentations on Windows from your smartphone. # Usage: # * Run pptremoteserver.py on a server accessible from the internet # * Run pptremoteagent.py on the computer where you have PowerPoint running # * Open the pptremoteserver's IP address with your smartphone's browser and control the slideshow # # Notes: # * By default pptremoteagent.py polls localhost:8080. To have it poll a different address, run: # pptremoteagent.py -s <serverip>:<serverport> # * You will need to install the following Python 3 modules: # On server: flask # On agent: keyboard, pywin32, requests from win32gui import GetWindowText, GetForegroundWindow import time, requests, sys, getopt, keyboard REQUESTS_CONNECT_TIMEOUT = 5 REQUESTS_READ_TIMEOUT = 5 COMMANDS = ['next', 'back', 'stop'] def getcommand (p_server): try: r = requests.get('http://' + p_server + '/command', timeout=(REQUESTS_CONNECT_TIMEOUT, REQUESTS_READ_TIMEOUT)) except: print('WARNING: unable to access command server') return(None) if r.status_code != requests.codes.ok: return (None) rjson = r.json() if not rjson is None: rcmd = rjson['command'] if rcmd in COMMANDS: return(rcmd) return(None) def main(argv): #initialize variables for command line arguments arg_server = '127.0.0.1:8080' #get command line arguments try: opts, args = getopt.getopt(argv, 's:') except getopt.GetoptError: sys.exit(2) for opt, arg in opts: if opt == '-s': arg_server = arg print ('INFO: Polling server %s' % arg_server) while (True): time.sleep(1) wintext = GetWindowText(GetForegroundWindow()) if wintext.startswith('PowerPointova diaprojekcija - ['): cmd = getcommand (arg_server) if not cmd is None: if cmd == 'next': keyboard.send('space') elif cmd == 'back': keyboard.send('backspace') elif cmd == 'stop': keyboard.send('escape') if __name__ == '__main__': main(sys.argv[1:])
31.710526
119
0.582988
79423f4557e53addb8df59cd788e9718c14cb853
3,903
py
Python
spec/API_specification/signatures/utility_functions.py
cnpryer/array-api
02fa9237eab3258120778baec12cd38cfd309ee3
[ "MIT" ]
null
null
null
spec/API_specification/signatures/utility_functions.py
cnpryer/array-api
02fa9237eab3258120778baec12cd38cfd309ee3
[ "MIT" ]
null
null
null
spec/API_specification/signatures/utility_functions.py
cnpryer/array-api
02fa9237eab3258120778baec12cd38cfd309ee3
[ "MIT" ]
null
null
null
from ._types import Optional, Tuple, Union, array def all(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array: """ Tests whether all input array elements evaluate to ``True`` along a specified axis. .. note:: Positive infinity, negative infinity, and NaN must evaluate to ``True``. .. note:: If ``x`` is an empty array or the size of the axis (dimension) along which to evaluate elements is zero, the test result must be ``True``. Parameters ---------- x: array input array. axis: Optional[Union[int, Tuple[int, ...]]] axis or axes along which to perform a logical AND reduction. By default, a logical AND reduction must be performed over the entire array. If a tuple of integers, logical AND reductions must be performed over multiple axes. A valid ``axis`` must be an integer on the interval ``[-N, N)``, where ``N`` is the rank (number of dimensions) of ``x``. If an ``axis`` is specified as a negative integer, the function must determine the axis along which to perform a reduction by counting backward from the last dimension (where ``-1`` refers to the last dimension). If provided an invalid ``axis``, the function must raise an exception. Default: ``None``. keepdims: bool If ``True``, the reduced axes (dimensions) must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see :ref:`broadcasting`). Otherwise, if ``False``, the reduced axes (dimensions) must not be included in the result. Default: ``False``. Returns ------- out: array if a logical AND reduction was performed over the entire array, the returned array must be a zero-dimensional array containing the test result; otherwise, the returned array must be a non-zero-dimensional array containing the test results. The returned array must have a data type of ``bool``. """ def any(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array: """ Tests whether any input array element evaluates to ``True`` along a specified axis. .. note:: Positive infinity, negative infinity, and NaN must evaluate to ``True``. .. note:: If ``x`` is an empty array or the size of the axis (dimension) along which to evaluate elements is zero, the test result must be ``False``. Parameters ---------- x: array input array. axis: Optional[Union[int, Tuple[int, ...]]] axis or axes along which to perform a logical OR reduction. By default, a logical OR reduction must be performed over the entire array. If a tuple of integers, logical OR reductions must be performed over multiple axes. A valid ``axis`` must be an integer on the interval ``[-N, N)``, where ``N`` is the rank (number of dimensions) of ``x``. If an ``axis`` is specified as a negative integer, the function must determine the axis along which to perform a reduction by counting backward from the last dimension (where ``-1`` refers to the last dimension). If provided an invalid ``axis``, the function must raise an exception. Default: ``None``. keepdims: bool If ``True``, the reduced axes (dimensions) must be included in the result as singleton dimensions, and, accordingly, the result must be compatible with the input array (see :ref:`broadcasting`). Otherwise, if ``False``, the reduced axes (dimensions) must not be included in the result. Default: ``False``. Returns ------- out: array if a logical OR reduction was performed over the entire array, the returned array must be a zero-dimensional array containing the test result; otherwise, the returned array must be a non-zero-dimensional array containing the test results. The returned array must have a data type of ``bool``. """ __all__ = ['all', 'any']
72.277778
655
0.694081
79423f52837badbf12ad9812152743d647d1c9c4
25
py
Python
keras2cpp/__init__.py
AlessandroFasse/keras2cpp
b30ec20f49ab1d4211e56e94ff83c3da27519d56
[ "MIT" ]
null
null
null
keras2cpp/__init__.py
AlessandroFasse/keras2cpp
b30ec20f49ab1d4211e56e94ff83c3da27519d56
[ "MIT" ]
null
null
null
keras2cpp/__init__.py
AlessandroFasse/keras2cpp
b30ec20f49ab1d4211e56e94ff83c3da27519d56
[ "MIT" ]
null
null
null
from ._keras2cpp import *
25
25
0.8
79423fb83c5b9ea7f0048619f44f226757d9238f
1,012
py
Python
conf/settings.py
gustavohenrique/django-splinter-example
19f2b66649dd48cdc4e7784baa792abbc9393987
[ "MIT" ]
2
2019-07-11T18:05:09.000Z
2021-11-15T09:52:49.000Z
conf/settings.py
gustavohenrique/django-splinter-example
19f2b66649dd48cdc4e7784baa792abbc9393987
[ "MIT" ]
null
null
null
conf/settings.py
gustavohenrique/django-splinter-example
19f2b66649dd48cdc4e7784baa792abbc9393987
[ "MIT" ]
null
null
null
# coding: utf-8 import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) SECRET_KEY = 'a4fc$s%ytp6$)=u+%r!^%pecjuqit&ar$ue8#y5n6z4q0axl3c' DEBUG = True TEMPLATE_DEBUG = False ALLOWED_HOSTS = ['*'] INSTALLED_APPS = ( 'django.contrib.contenttypes', 'django.contrib.staticfiles', 'poll' ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'conf.urls' WSGI_APPLICATION = 'conf.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = False USE_L10N = False USE_TZ = True STATIC_URL = '/static/'
20.653061
65
0.710474
79423fe80095752239b0f5ce51f3fafc5efaa381
507
py
Python
ABC_C/ABC167_C.py
ryosuke0825/atcoder_python
185cdbe7db44ecca1aaf357858d16d31ce515ddb
[ "MIT" ]
null
null
null
ABC_C/ABC167_C.py
ryosuke0825/atcoder_python
185cdbe7db44ecca1aaf357858d16d31ce515ddb
[ "MIT" ]
null
null
null
ABC_C/ABC167_C.py
ryosuke0825/atcoder_python
185cdbe7db44ecca1aaf357858d16d31ce515ddb
[ "MIT" ]
null
null
null
N, M, X = map(int, input().split()) CA = [] for _ in range(N): tmp = list(map(int, input().split())) CA.append(tmp) ans = -1 for i in range(2**N): tmp_cost = 0 tmp_X = [0]*(M+1) for j in range(N): if ((i >> j) & 1): for k in range(M+1): tmp_X[k] += CA[j][k] for j in range(1, M+1): if tmp_X[j] < X: break else: if ans == -1: ans = tmp_X[0] else: ans = min(ans, tmp_X[0]) print(ans)
21.125
41
0.424063
79424208c0dc911f46ec133ae22b5ce56e4ac7c9
9,335
py
Python
tensorflow_probability/python/distributions/normal.py
TheCaffeineDev/probability
7aa13647c57fe621eadc2b7ad3020817aa8b9ba5
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/normal.py
TheCaffeineDev/probability
7aa13647c57fe621eadc2b7ad3020817aa8b9ba5
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/normal.py
TheCaffeineDev/probability
7aa13647c57fe621eadc2b7ad3020817aa8b9ba5
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The Normal (Gaussian) distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import identity as identity_bijector from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.distributions import kullback_leibler from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import prefer_static from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import special_math from tensorflow_probability.python.internal import tensor_util __all__ = [ 'Normal', ] class Normal(distribution.Distribution): """The Normal distribution with location `loc` and `scale` parameters. #### Mathematical details The probability density function (pdf) is, ```none pdf(x; mu, sigma) = exp(-0.5 (x - mu)**2 / sigma**2) / Z Z = (2 pi sigma**2)**0.5 ``` where `loc = mu` is the mean, `scale = sigma` is the std. deviation, and, `Z` is the normalization constant. The Normal distribution is a member of the [location-scale family]( https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ Normal(loc=0, scale=1) Y = loc + scale * X ``` #### Examples Examples of initialization of one or a batch of distributions. ```python import tensorflow_probability as tfp tfd = tfp.distributions # Define a single scalar Normal distribution. dist = tfd.Normal(loc=0., scale=3.) # Evaluate the cdf at 1, returning a scalar. dist.cdf(1.) # Define a batch of two scalar valued Normals. # The first has mean 1 and standard deviation 11, the second 2 and 22. dist = tfd.Normal(loc=[1, 2.], scale=[11, 22.]) # Evaluate the pdf of the first distribution on 0, and the second on 1.5, # returning a length two tensor. dist.prob([0, 1.5]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) ``` Arguments are broadcast when possible. ```python # Define a batch of two scalar valued Normals. # Both have mean 1, but different standard deviations. dist = tfd.Normal(loc=1., scale=[11, 22.]) # Evaluate the pdf of both distributions on the same point, 3.0, # returning a length 2 tensor. dist.prob(3.0) ``` """ def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name='Normal'): """Construct Normal distributions with mean and stddev `loc` and `scale`. The parameters `loc` and `scale` must be shaped in a way that supports broadcasting (e.g. `loc + scale` is a valid operation). Args: loc: Floating point tensor; the means of the distribution(s). scale: Floating point tensor; the stddevs of the distribution(s). Must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if `loc` and `scale` have different `dtype`. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([loc, scale], dtype_hint=tf.float32) self._loc = tensor_util.convert_nonref_to_tensor( loc, dtype=dtype, name='loc') self._scale = tensor_util.convert_nonref_to_tensor( scale, dtype=dtype, name='scale') super(Normal, self).__init__( dtype=dtype, reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(('loc', 'scale'), ([tf.convert_to_tensor(sample_shape, dtype=tf.int32)] * 2))) @classmethod def _params_event_ndims(cls): return dict(loc=0, scale=0) @property def loc(self): """Distribution parameter for the mean.""" return self._loc @property def scale(self): """Distribution parameter for standard deviation.""" return self._scale def _batch_shape_tensor(self, loc=None, scale=None): return prefer_static.broadcast_shape( prefer_static.shape(self.loc if loc is None else loc), prefer_static.shape(self.scale if scale is None else scale)) def _batch_shape(self): return tf.broadcast_static_shape(self.loc.shape, self.scale.shape) def _event_shape_tensor(self): return tf.constant([], dtype=tf.int32) def _event_shape(self): return tf.TensorShape([]) def _sample_n(self, n, seed=None): loc = tf.convert_to_tensor(self.loc) scale = tf.convert_to_tensor(self.scale) shape = tf.concat([[n], self._batch_shape_tensor(loc=loc, scale=scale)], axis=0) sampled = tf.random.normal( shape=shape, mean=0., stddev=1., dtype=self.dtype, seed=seed) return sampled * scale + loc def _log_prob(self, x): scale = tf.convert_to_tensor(self.scale) log_unnormalized = -0.5 * tf.math.squared_difference( x / scale, self.loc / scale) log_normalization = tf.constant( 0.5 * np.log(2. * np.pi), dtype=self.dtype) + tf.math.log(scale) return log_unnormalized - log_normalization def _log_cdf(self, x): return special_math.log_ndtr(self._z(x)) def _cdf(self, x): return special_math.ndtr(self._z(x)) def _log_survival_function(self, x): return special_math.log_ndtr(-self._z(x)) def _survival_function(self, x): return special_math.ndtr(-self._z(x)) def _entropy(self): log_normalization = tf.constant( 0.5 * np.log(2. * np.pi), dtype=self.dtype) + tf.math.log(self.scale) entropy = 0.5 + log_normalization return entropy * tf.ones_like(self.loc) def _mean(self): return self.loc * tf.ones_like(self.scale) def _quantile(self, p): return special_math.ndtri(p) * self.scale + self.loc def _stddev(self): return self.scale * tf.ones_like(self.loc) _mode = _mean def _z(self, x, scale=None): """Standardize input `x` to a unit normal.""" with tf.name_scope('standardize'): return (x - self.loc) / (self.scale if scale is None else scale) def _default_event_space_bijector(self): return identity_bijector.Identity(validate_args=self.validate_args) def _parameter_control_dependencies(self, is_init): assertions = [] if is_init: try: self._batch_shape() except ValueError: raise ValueError( 'Arguments `loc` and `scale` must have compatible shapes; ' 'loc.shape={}, scale.shape={}.'.format( self.loc.shape, self.scale.shape)) # We don't bother checking the shapes in the dynamic case because # all member functions access both arguments anyway. if not self.validate_args: assert not assertions # Should never happen. return [] if is_init != tensor_util.is_ref(self.scale): assertions.append(assert_util.assert_positive( self.scale, message='Argument `scale` must be positive.')) return assertions @kullback_leibler.RegisterKL(Normal, Normal) def _kl_normal_normal(a, b, name=None): """Calculate the batched KL divergence KL(a || b) with a and b Normal. Args: a: instance of a Normal distribution object. b: instance of a Normal distribution object. name: Name to use for created operations. Default value: `None` (i.e., `'kl_normal_normal'`). Returns: kl_div: Batchwise KL(a || b) """ with tf.name_scope(name or 'kl_normal_normal'): b_scale = tf.convert_to_tensor(b.scale) # We'll read it thrice. diff_log_scale = tf.math.log(a.scale) - tf.math.log(b_scale) return ( 0.5 * tf.math.squared_difference(a.loc / b_scale, b.loc / b_scale) + 0.5 * tf.math.expm1(2. * diff_log_scale) - diff_log_scale)
33.102837
81
0.683985
794242c24b3a0025891c247d822546c028a62428
74,621
py
Python
certbot/cli.py
daramousk/certbot
082040afb4c6542445ee8437a3dea61171706a80
[ "Apache-2.0" ]
null
null
null
certbot/cli.py
daramousk/certbot
082040afb4c6542445ee8437a3dea61171706a80
[ "Apache-2.0" ]
null
null
null
certbot/cli.py
daramousk/certbot
082040afb4c6542445ee8437a3dea61171706a80
[ "Apache-2.0" ]
null
null
null
"""Certbot command line argument & config processing.""" # pylint: disable=too-many-lines from __future__ import print_function import argparse import copy import glob import logging.handlers import sys import configargparse import six import zope.component import zope.interface from zope.interface import interfaces as zope_interfaces from acme import challenges # pylint: disable=unused-import, no-name-in-module from acme.magic_typing import Any, Dict, Optional # pylint: enable=unused-import, no-name-in-module import certbot import certbot.plugins.enhancements as enhancements import certbot.plugins.selection as plugin_selection from certbot import constants from certbot import crypto_util from certbot import errors from certbot import hooks from certbot import interfaces from certbot import util from certbot.compat import os from certbot.display import util as display_util from certbot.plugins import disco as plugins_disco logger = logging.getLogger(__name__) # Global, to save us from a lot of argument passing within the scope of this module helpful_parser = None # type: Optional[HelpfulArgumentParser] # For help strings, figure out how the user ran us. # When invoked from letsencrypt-auto, sys.argv[0] is something like: # "/home/user/.local/share/certbot/bin/certbot" # Note that this won't work if the user set VENV_PATH or XDG_DATA_HOME before # running letsencrypt-auto (and sudo stops us from seeing if they did), so it # should only be used for purposes where inability to detect letsencrypt-auto # fails safely LEAUTO = "letsencrypt-auto" if "CERTBOT_AUTO" in os.environ: # if we're here, this is probably going to be certbot-auto, unless the # user saved the script under a different name LEAUTO = os.path.basename(os.environ["CERTBOT_AUTO"]) old_path_fragment = os.path.join(".local", "share", "letsencrypt") new_path_prefix = os.path.abspath(os.path.join(os.sep, "opt", "eff.org", "certbot", "venv")) if old_path_fragment in sys.argv[0] or sys.argv[0].startswith(new_path_prefix): cli_command = LEAUTO else: cli_command = "certbot" # Argparse's help formatting has a lot of unhelpful peculiarities, so we want # to replace as much of it as we can... # This is the stub to include in help generated by argparse SHORT_USAGE = """ {0} [SUBCOMMAND] [options] [-d DOMAIN] [-d DOMAIN] ... Certbot can obtain and install HTTPS/TLS/SSL certificates. By default, it will attempt to use a webserver both for obtaining and installing the certificate. """.format(cli_command) # This section is used for --help and --help all ; it needs information # about installed plugins to be fully formatted COMMAND_OVERVIEW = """The most common SUBCOMMANDS and flags are: obtain, install, and renew certificates: (default) run Obtain & install a certificate in your current webserver certonly Obtain or renew a certificate, but do not install it renew Renew all previously obtained certificates that are near expiry enhance Add security enhancements to your existing configuration -d DOMAINS Comma-separated list of domains to obtain a certificate for %s --standalone Run a standalone webserver for authentication %s --webroot Place files in a server's webroot folder for authentication --manual Obtain certificates interactively, or using shell script hooks -n Run non-interactively --test-cert Obtain a test certificate from a staging server --dry-run Test "renew" or "certonly" without saving any certificates to disk manage certificates: certificates Display information about certificates you have from Certbot revoke Revoke a certificate (supply --cert-path or --cert-name) delete Delete a certificate manage your account: register Create an ACME account unregister Deactivate an ACME account update_account Update an ACME account --agree-tos Agree to the ACME server's Subscriber Agreement -m EMAIL Email address for important account notifications """ # This is the short help for certbot --help, where we disable argparse # altogether HELP_AND_VERSION_USAGE = """ More detailed help: -h, --help [TOPIC] print this message, or detailed help on a topic; the available TOPICS are: all, automation, commands, paths, security, testing, or any of the subcommands or plugins (certonly, renew, install, register, nginx, apache, standalone, webroot, etc.) -h all print a detailed help page including all topics --version print the version number """ # These argparse parameters should be removed when detecting defaults. ARGPARSE_PARAMS_TO_REMOVE = ("const", "nargs", "type",) # These sets are used when to help detect options set by the user. EXIT_ACTIONS = set(("help", "version",)) ZERO_ARG_ACTIONS = set(("store_const", "store_true", "store_false", "append_const", "count",)) # Maps a config option to a set of config options that may have modified it. # This dictionary is used recursively, so if A modifies B and B modifies C, # it is determined that C was modified by the user if A was modified. VAR_MODIFIERS = {"account": set(("server",)), "renew_hook": set(("deploy_hook",)), "server": set(("dry_run", "staging",)), "webroot_map": set(("webroot_path",))} def report_config_interaction(modified, modifiers): """Registers config option interaction to be checked by set_by_cli. This function can be called by during the __init__ or add_parser_arguments methods of plugins to register interactions between config options. :param modified: config options that can be modified by modifiers :type modified: iterable or str (string_types) :param modifiers: config options that modify modified :type modifiers: iterable or str (string_types) """ if isinstance(modified, six.string_types): modified = (modified,) if isinstance(modifiers, six.string_types): modifiers = (modifiers,) for var in modified: VAR_MODIFIERS.setdefault(var, set()).update(modifiers) def possible_deprecation_warning(config): "A deprecation warning for users with the old, not-self-upgrading letsencrypt-auto." if cli_command != LEAUTO: return if config.no_self_upgrade: # users setting --no-self-upgrade might be hanging on a client version like 0.3.0 # or 0.5.0 which is the new script, but doesn't set CERTBOT_AUTO; they don't # need warnings return if "CERTBOT_AUTO" not in os.environ: logger.warning("You are running with an old copy of letsencrypt-auto" " that does not receive updates, and is less reliable than more" " recent versions. The letsencrypt client has also been renamed" " to Certbot. We recommend upgrading to the latest certbot-auto" " script, or using native OS packages.") logger.debug("Deprecation warning circumstances: %s / %s", sys.argv[0], os.environ) class _Default(object): """A class to use as a default to detect if a value is set by a user""" def __bool__(self): return False def __eq__(self, other): return isinstance(other, _Default) def __hash__(self): return id(_Default) def __nonzero__(self): return self.__bool__() def set_by_cli(var): """ Return True if a particular config variable has been set by the user (CLI or config file) including if the user explicitly set it to the default. Returns False if the variable was assigned a default value. """ detector = set_by_cli.detector # type: ignore if detector is None and helpful_parser is not None: # Setup on first run: `detector` is a weird version of config in which # the default value of every attribute is wrangled to be boolean-false plugins = plugins_disco.PluginsRegistry.find_all() # reconstructed_args == sys.argv[1:], or whatever was passed to main() reconstructed_args = helpful_parser.args + [helpful_parser.verb] detector = set_by_cli.detector = prepare_and_parse_args( # type: ignore plugins, reconstructed_args, detect_defaults=True) # propagate plugin requests: eg --standalone modifies config.authenticator detector.authenticator, detector.installer = ( # type: ignore plugin_selection.cli_plugin_requests(detector)) if not isinstance(getattr(detector, var), _Default): logger.debug("Var %s=%s (set by user).", var, getattr(detector, var)) return True for modifier in VAR_MODIFIERS.get(var, []): if set_by_cli(modifier): logger.debug("Var %s=%s (set by user).", var, VAR_MODIFIERS.get(var, [])) return True return False # static housekeeping var # functions attributed are not supported by mypy # https://github.com/python/mypy/issues/2087 set_by_cli.detector = None # type: ignore def has_default_value(option, value): """Does option have the default value? If the default value of option is not known, False is returned. :param str option: configuration variable being considered :param value: value of the configuration variable named option :returns: True if option has the default value, otherwise, False :rtype: bool """ if helpful_parser is not None: return (option in helpful_parser.defaults and helpful_parser.defaults[option] == value) return False def option_was_set(option, value): """Was option set by the user or does it differ from the default? :param str option: configuration variable being considered :param value: value of the configuration variable named option :returns: True if the option was set, otherwise, False :rtype: bool """ return set_by_cli(option) or not has_default_value(option, value) def argparse_type(variable): """Return our argparse type function for a config variable (default: str)""" # pylint: disable=protected-access if helpful_parser is not None: for action in helpful_parser.parser._actions: if action.type is not None and action.dest == variable: return action.type return str def read_file(filename, mode="rb"): """Returns the given file's contents. :param str filename: path to file :param str mode: open mode (see `open`) :returns: absolute path of filename and its contents :rtype: tuple :raises argparse.ArgumentTypeError: File does not exist or is not readable. """ try: filename = os.path.abspath(filename) with open(filename, mode) as the_file: contents = the_file.read() return filename, contents except IOError as exc: raise argparse.ArgumentTypeError(exc.strerror) def flag_default(name): """Default value for CLI flag.""" # XXX: this is an internal housekeeping notion of defaults before # argparse has been set up; it is not accurate for all flags. Call it # with caution. Plugin defaults are missing, and some things are using # defaults defined in this file, not in constants.py :( return copy.deepcopy(constants.CLI_DEFAULTS[name]) def config_help(name, hidden=False): """Extract the help message for an `.IConfig` attribute.""" # pylint: disable=no-member if hidden: return argparse.SUPPRESS field = interfaces.IConfig.__getitem__(name) # type: zope.interface.interface.Attribute # pylint: disable=no-value-for-parameter return field.__doc__ class HelpfulArgumentGroup(object): """Emulates an argparse group for use with HelpfulArgumentParser. This class is used in the add_group method of HelpfulArgumentParser. Command line arguments can be added to the group, but help suppression and default detection is applied by HelpfulArgumentParser when necessary. """ def __init__(self, helpful_arg_parser, topic): self._parser = helpful_arg_parser self._topic = topic def add_argument(self, *args, **kwargs): """Add a new command line argument to the argument group.""" self._parser.add(self._topic, *args, **kwargs) class CustomHelpFormatter(argparse.HelpFormatter): """This is a clone of ArgumentDefaultsHelpFormatter, with bugfixes. In particular we fix https://bugs.python.org/issue28742 """ def _get_help_string(self, action): helpstr = action.help if '%(default)' not in action.help and '(default:' not in action.help: if action.default != argparse.SUPPRESS: defaulting_nargs = [argparse.OPTIONAL, argparse.ZERO_OR_MORE] if action.option_strings or action.nargs in defaulting_nargs: helpstr += ' (default: %(default)s)' return helpstr # The attributes here are: # short: a string that will be displayed by "certbot -h commands" # opts: a string that heads the section of flags with which this command is documented, # both for "certbot -h SUBCOMMAND" and "certbot -h all" # usage: an optional string that overrides the header of "certbot -h SUBCOMMAND" VERB_HELP = [ ("run (default)", { "short": "Obtain/renew a certificate, and install it", "opts": "Options for obtaining & installing certificates", "usage": SHORT_USAGE.replace("[SUBCOMMAND]", ""), "realname": "run" }), ("certonly", { "short": "Obtain or renew a certificate, but do not install it", "opts": "Options for modifying how a certificate is obtained", "usage": ("\n\n certbot certonly [options] [-d DOMAIN] [-d DOMAIN] ...\n\n" "This command obtains a TLS/SSL certificate without installing it anywhere.") }), ("renew", { "short": "Renew all certificates (or one specified with --cert-name)", "opts": ("The 'renew' subcommand will attempt to renew all" " certificates (or more precisely, certificate lineages) you have" " previously obtained if they are close to expiry, and print a" " summary of the results. By default, 'renew' will reuse the options" " used to create obtain or most recently successfully renew each" " certificate lineage. You can try it with `--dry-run` first. For" " more fine-grained control, you can renew individual lineages with" " the `certonly` subcommand. Hooks are available to run commands" " before and after renewal; see" " https://certbot.eff.org/docs/using.html#renewal for more" " information on these."), "usage": "\n\n certbot renew [--cert-name CERTNAME] [options]\n\n" }), ("certificates", { "short": "List certificates managed by Certbot", "opts": "List certificates managed by Certbot", "usage": ("\n\n certbot certificates [options] ...\n\n" "Print information about the status of certificates managed by Certbot.") }), ("delete", { "short": "Clean up all files related to a certificate", "opts": "Options for deleting a certificate", "usage": "\n\n certbot delete --cert-name CERTNAME\n\n" }), ("revoke", { "short": "Revoke a certificate specified with --cert-path or --cert-name", "opts": "Options for revocation of certificates", "usage": "\n\n certbot revoke [--cert-path /path/to/fullchain.pem | " "--cert-name example.com] [options]\n\n" }), ("register", { "short": "Register for account with Let's Encrypt / other ACME server", "opts": "Options for account registration", "usage": "\n\n certbot register --email [email protected] [options]\n\n" }), ("update_account", { "short": "Update existing account with Let's Encrypt / other ACME server", "opts": "Options for account modification", "usage": "\n\n certbot update_account --email [email protected] [options]\n\n" }), ("unregister", { "short": "Irrevocably deactivate your account", "opts": "Options for account deactivation.", "usage": "\n\n certbot unregister [options]\n\n" }), ("install", { "short": "Install an arbitrary certificate in a server", "opts": "Options for modifying how a certificate is deployed", "usage": "\n\n certbot install --cert-path /path/to/fullchain.pem " " --key-path /path/to/private-key [options]\n\n" }), ("config_changes", { "short": "Show changes that Certbot has made to server configurations", "opts": "Options for controlling which changes are displayed", "usage": "\n\n certbot config_changes --num NUM [options]\n\n" }), ("rollback", { "short": "Roll back server conf changes made during certificate installation", "opts": "Options for rolling back server configuration changes", "usage": "\n\n certbot rollback --checkpoints 3 [options]\n\n" }), ("plugins", { "short": "List plugins that are installed and available on your system", "opts": 'Options for for the "plugins" subcommand', "usage": "\n\n certbot plugins [options]\n\n" }), ("update_symlinks", { "short": "Recreate symlinks in your /etc/letsencrypt/live/ directory", "opts": ("Recreates certificate and key symlinks in {0}, if you changed them by hand " "or edited a renewal configuration file".format( os.path.join(flag_default("config_dir"), "live"))), "usage": "\n\n certbot update_symlinks [options]\n\n" }), ("enhance", { "short": "Add security enhancements to your existing configuration", "opts": ("Helps to harden the TLS configuration by adding security enhancements " "to already existing configuration."), "usage": "\n\n certbot enhance [options]\n\n" }), ] # VERB_HELP is a list in order to preserve order, but a dict is sometimes useful VERB_HELP_MAP = dict(VERB_HELP) class HelpfulArgumentParser(object): """Argparse Wrapper. This class wraps argparse, adding the ability to make --help less verbose, and request help on specific subcategories at a time, eg 'certbot --help security' for security options. """ def __init__(self, args, plugins, detect_defaults=False): from certbot import main self.VERBS = { "auth": main.certonly, "certonly": main.certonly, "config_changes": main.config_changes, "run": main.run, "install": main.install, "plugins": main.plugins_cmd, "register": main.register, "update_account": main.update_account, "unregister": main.unregister, "renew": main.renew, "revoke": main.revoke, "rollback": main.rollback, "everything": main.run, "update_symlinks": main.update_symlinks, "certificates": main.certificates, "delete": main.delete, "enhance": main.enhance, } # Get notification function for printing try: self.notify = zope.component.getUtility( interfaces.IDisplay).notification except zope_interfaces.ComponentLookupError: self.notify = display_util.NoninteractiveDisplay( sys.stdout).notification # List of topics for which additional help can be provided HELP_TOPICS = ["all", "security", "paths", "automation", "testing"] HELP_TOPICS += list(self.VERBS) + self.COMMANDS_TOPICS + ["manage"] plugin_names = list(plugins) self.help_topics = HELP_TOPICS + plugin_names + [None] # type: ignore self.detect_defaults = detect_defaults self.args = args if self.args and self.args[0] == 'help': self.args[0] = '--help' self.determine_verb() help1 = self.prescan_for_flag("-h", self.help_topics) help2 = self.prescan_for_flag("--help", self.help_topics) if isinstance(help1, bool) and isinstance(help2, bool): self.help_arg = help1 or help2 else: self.help_arg = help1 if isinstance(help1, six.string_types) else help2 short_usage = self._usage_string(plugins, self.help_arg) self.visible_topics = self.determine_help_topics(self.help_arg) # elements are added by .add_group() self.groups = {} # type: Dict[str, argparse._ArgumentGroup] # elements are added by .parse_args() self.defaults = {} # type: Dict[str, Any] self.parser = configargparse.ArgParser( prog="certbot", usage=short_usage, formatter_class=CustomHelpFormatter, args_for_setting_config_path=["-c", "--config"], default_config_files=flag_default("config_files"), config_arg_help_message="path to config file (default: {0})".format( " and ".join(flag_default("config_files")))) # This is the only way to turn off overly verbose config flag documentation self.parser._add_config_file_help = False # pylint: disable=protected-access # Help that are synonyms for --help subcommands COMMANDS_TOPICS = ["command", "commands", "subcommand", "subcommands", "verbs"] def _list_subcommands(self): longest = max(len(v) for v in VERB_HELP_MAP) text = "The full list of available SUBCOMMANDS is:\n\n" for verb, props in sorted(VERB_HELP): doc = props.get("short", "") text += '{0:<{length}} {1}\n'.format(verb, doc, length=longest) text += "\nYou can get more help on a specific subcommand with --help SUBCOMMAND\n" return text def _usage_string(self, plugins, help_arg): """Make usage strings late so that plugins can be initialised late :param plugins: all discovered plugins :param help_arg: False for none; True for --help; "TOPIC" for --help TOPIC :rtype: str :returns: a short usage string for the top of --help TOPIC) """ if "nginx" in plugins: nginx_doc = "--nginx Use the Nginx plugin for authentication & installation" else: nginx_doc = "(the certbot nginx plugin is not installed)" if "apache" in plugins: apache_doc = "--apache Use the Apache plugin for authentication & installation" else: apache_doc = "(the certbot apache plugin is not installed)" usage = SHORT_USAGE if help_arg is True: self.notify(usage + COMMAND_OVERVIEW % (apache_doc, nginx_doc) + HELP_AND_VERSION_USAGE) sys.exit(0) elif help_arg in self.COMMANDS_TOPICS: self.notify(usage + self._list_subcommands()) sys.exit(0) elif help_arg == "all": # if we're doing --help all, the OVERVIEW is part of the SHORT_USAGE at # the top; if we're doing --help someothertopic, it's OT so it's not usage += COMMAND_OVERVIEW % (apache_doc, nginx_doc) else: custom = VERB_HELP_MAP.get(help_arg, {}).get("usage", None) usage = custom if custom else usage return usage def remove_config_file_domains_for_renewal(self, parsed_args): """Make "certbot renew" safe if domains are set in cli.ini.""" # Works around https://github.com/certbot/certbot/issues/4096 if self.verb == "renew": for source, flags in self.parser._source_to_settings.items(): # pylint: disable=protected-access if source.startswith("config_file") and "domains" in flags: parsed_args.domains = _Default() if self.detect_defaults else [] def parse_args(self): """Parses command line arguments and returns the result. :returns: parsed command line arguments :rtype: argparse.Namespace """ parsed_args = self.parser.parse_args(self.args) parsed_args.func = self.VERBS[self.verb] parsed_args.verb = self.verb self.remove_config_file_domains_for_renewal(parsed_args) if self.detect_defaults: return parsed_args self.defaults = dict((key, copy.deepcopy(self.parser.get_default(key))) for key in vars(parsed_args)) # Do any post-parsing homework here if self.verb == "renew": if parsed_args.force_interactive: raise errors.Error( "{0} cannot be used with renew".format( constants.FORCE_INTERACTIVE_FLAG)) parsed_args.noninteractive_mode = True if parsed_args.force_interactive and parsed_args.noninteractive_mode: raise errors.Error( "Flag for non-interactive mode and {0} conflict".format( constants.FORCE_INTERACTIVE_FLAG)) if parsed_args.staging or parsed_args.dry_run: self.set_test_server(parsed_args) if parsed_args.csr: self.handle_csr(parsed_args) if parsed_args.must_staple: parsed_args.staple = True if parsed_args.validate_hooks: hooks.validate_hooks(parsed_args) if parsed_args.allow_subset_of_names: if any(util.is_wildcard_domain(d) for d in parsed_args.domains): raise errors.Error("Using --allow-subset-of-names with a" " wildcard domain is not supported.") if parsed_args.hsts and parsed_args.auto_hsts: raise errors.Error( "Parameters --hsts and --auto-hsts cannot be used simultaneously.") possible_deprecation_warning(parsed_args) return parsed_args def set_test_server(self, parsed_args): """We have --staging/--dry-run; perform sanity check and set config.server""" if parsed_args.server not in (flag_default("server"), constants.STAGING_URI): conflicts = ["--staging"] if parsed_args.staging else [] conflicts += ["--dry-run"] if parsed_args.dry_run else [] raise errors.Error("--server value conflicts with {0}".format( " and ".join(conflicts))) parsed_args.server = constants.STAGING_URI if parsed_args.dry_run: if self.verb not in ["certonly", "renew"]: raise errors.Error("--dry-run currently only works with the " "'certonly' or 'renew' subcommands (%r)" % self.verb) parsed_args.break_my_certs = parsed_args.staging = True if glob.glob(os.path.join(parsed_args.config_dir, constants.ACCOUNTS_DIR, "*")): # The user has a prod account, but might not have a staging # one; we don't want to start trying to perform interactive registration parsed_args.tos = True parsed_args.register_unsafely_without_email = True def handle_csr(self, parsed_args): """Process a --csr flag.""" if parsed_args.verb != "certonly": raise errors.Error("Currently, a CSR file may only be specified " "when obtaining a new or replacement " "via the certonly command. Please try the " "certonly command instead.") if parsed_args.allow_subset_of_names: raise errors.Error("--allow-subset-of-names cannot be used with --csr") csrfile, contents = parsed_args.csr[0:2] typ, csr, domains = crypto_util.import_csr_file(csrfile, contents) # This is not necessary for webroot to work, however, # obtain_certificate_from_csr requires parsed_args.domains to be set for domain in domains: add_domains(parsed_args, domain) if not domains: # TODO: add CN to domains instead: raise errors.Error( "Unfortunately, your CSR %s needs to have a SubjectAltName for every domain" % parsed_args.csr[0]) parsed_args.actual_csr = (csr, typ) csr_domains = set([d.lower() for d in domains]) config_domains = set(parsed_args.domains) if csr_domains != config_domains: raise errors.ConfigurationError( "Inconsistent domain requests:\nFrom the CSR: {0}\nFrom command line/config: {1}" .format(", ".join(csr_domains), ", ".join(config_domains))) def determine_verb(self): """Determines the verb/subcommand provided by the user. This function works around some of the limitations of argparse. """ if "-h" in self.args or "--help" in self.args: # all verbs double as help arguments; don't get them confused self.verb = "help" return for i, token in enumerate(self.args): if token in self.VERBS: verb = token if verb == "auth": verb = "certonly" if verb == "everything": verb = "run" self.verb = verb self.args.pop(i) return self.verb = "run" def prescan_for_flag(self, flag, possible_arguments): """Checks cli input for flags. Check for a flag, which accepts a fixed set of possible arguments, in the command line; we will use this information to configure argparse's help correctly. Return the flag's argument, if it has one that matches the sequence @possible_arguments; otherwise return whether the flag is present. """ if flag not in self.args: return False pos = self.args.index(flag) try: nxt = self.args[pos + 1] if nxt in possible_arguments: return nxt except IndexError: pass return True def add(self, topics, *args, **kwargs): """Add a new command line argument. :param topics: str or [str] help topic(s) this should be listed under, or None for options that don't fit under a specific topic which will only be shown in "--help all" output. The first entry determines where the flag lives in the "--help all" output (None -> "optional arguments"). :param list *args: the names of this argument flag :param dict **kwargs: various argparse settings for this argument """ if isinstance(topics, list): # if this flag can be listed in multiple sections, try to pick the one # that the user has asked for help about topic = self.help_arg if self.help_arg in topics else topics[0] else: topic = topics # there's only one if self.detect_defaults: kwargs = self.modify_kwargs_for_default_detection(**kwargs) if self.visible_topics[topic]: if topic in self.groups: group = self.groups[topic] group.add_argument(*args, **kwargs) else: self.parser.add_argument(*args, **kwargs) else: kwargs["help"] = argparse.SUPPRESS self.parser.add_argument(*args, **kwargs) def modify_kwargs_for_default_detection(self, **kwargs): """Modify an arg so we can check if it was set by the user. Changes the parameters given to argparse when adding an argument so we can properly detect if the value was set by the user. :param dict kwargs: various argparse settings for this argument :returns: a modified versions of kwargs :rtype: dict """ action = kwargs.get("action", None) if action not in EXIT_ACTIONS: kwargs["action"] = ("store_true" if action in ZERO_ARG_ACTIONS else "store") kwargs["default"] = _Default() for param in ARGPARSE_PARAMS_TO_REMOVE: kwargs.pop(param, None) return kwargs def add_deprecated_argument(self, argument_name, num_args): """Adds a deprecated argument with the name argument_name. Deprecated arguments are not shown in the help. If they are used on the command line, a warning is shown stating that the argument is deprecated and no other action is taken. :param str argument_name: Name of deprecated argument. :param int nargs: Number of arguments the option takes. """ util.add_deprecated_argument( self.parser.add_argument, argument_name, num_args) def add_group(self, topic, verbs=(), **kwargs): """Create a new argument group. This method must be called once for every topic, however, calls to this function are left next to the argument definitions for clarity. :param str topic: Name of the new argument group. :param str verbs: List of subcommands that should be documented as part of this help group / topic :returns: The new argument group. :rtype: `HelpfulArgumentGroup` """ if self.visible_topics[topic]: self.groups[topic] = self.parser.add_argument_group(topic, **kwargs) if self.help_arg: for v in verbs: self.groups[topic].add_argument(v, help=VERB_HELP_MAP[v]["short"]) return HelpfulArgumentGroup(self, topic) def add_plugin_args(self, plugins): """ Let each of the plugins add its own command line arguments, which may or may not be displayed as help topics. """ for name, plugin_ep in six.iteritems(plugins): parser_or_group = self.add_group(name, description=plugin_ep.long_description) plugin_ep.plugin_cls.inject_parser_options(parser_or_group, name) def determine_help_topics(self, chosen_topic): """ The user may have requested help on a topic, return a dict of which topics to display. @chosen_topic has prescan_for_flag's return type :returns: dict """ # topics maps each topic to whether it should be documented by # argparse on the command line if chosen_topic == "auth": chosen_topic = "certonly" if chosen_topic == "everything": chosen_topic = "run" if chosen_topic == "all": # Addition of condition closes #6209 (removal of duplicate route53 option). return dict([(t, True) if t != 'certbot-route53:auth' else (t, False) for t in self.help_topics]) elif not chosen_topic: return dict([(t, False) for t in self.help_topics]) return dict([(t, t == chosen_topic) for t in self.help_topics]) def _add_all_groups(helpful): helpful.add_group("automation", description="Flags for automating execution & other tweaks") helpful.add_group("security", description="Security parameters & server settings") helpful.add_group("testing", description="The following flags are meant for testing and integration purposes only.") helpful.add_group("paths", description="Flags for changing execution paths & servers") helpful.add_group("manage", description="Various subcommands and flags are available for managing your certificates:", verbs=["certificates", "delete", "renew", "revoke", "update_symlinks"]) # VERBS for verb, docs in VERB_HELP: name = docs.get("realname", verb) helpful.add_group(name, description=docs["opts"]) def prepare_and_parse_args(plugins, args, detect_defaults=False): # pylint: disable=too-many-statements """Returns parsed command line arguments. :param .PluginsRegistry plugins: available plugins :param list args: command line arguments with the program name removed :returns: parsed command line arguments :rtype: argparse.Namespace """ # pylint: disable=too-many-statements helpful = HelpfulArgumentParser(args, plugins, detect_defaults) _add_all_groups(helpful) # --help is automatically provided by argparse helpful.add( None, "-v", "--verbose", dest="verbose_count", action="count", default=flag_default("verbose_count"), help="This flag can be used " "multiple times to incrementally increase the verbosity of output, " "e.g. -vvv.") helpful.add( None, "-t", "--text", dest="text_mode", action="store_true", default=flag_default("text_mode"), help=argparse.SUPPRESS) helpful.add( None, "--max-log-backups", type=nonnegative_int, default=flag_default("max_log_backups"), help="Specifies the maximum number of backup logs that should " "be kept by Certbot's built in log rotation. Setting this " "flag to 0 disables log rotation entirely, causing " "Certbot to always append to the same log file.") helpful.add( [None, "automation", "run", "certonly", "enhance"], "-n", "--non-interactive", "--noninteractive", dest="noninteractive_mode", action="store_true", default=flag_default("noninteractive_mode"), help="Run without ever asking for user input. This may require " "additional command line flags; the client will try to explain " "which ones are required if it finds one missing") helpful.add( [None, "register", "run", "certonly", "enhance"], constants.FORCE_INTERACTIVE_FLAG, action="store_true", default=flag_default("force_interactive"), help="Force Certbot to be interactive even if it detects it's not " "being run in a terminal. This flag cannot be used with the " "renew subcommand.") helpful.add( [None, "run", "certonly", "certificates", "enhance"], "-d", "--domains", "--domain", dest="domains", metavar="DOMAIN", action=_DomainsAction, default=flag_default("domains"), help="Domain names to apply. For multiple domains you can use " "multiple -d flags or enter a comma separated list of domains " "as a parameter. The first domain provided will be the " "subject CN of the certificate, and all domains will be " "Subject Alternative Names on the certificate. " "The first domain will also be used in " "some software user interfaces and as the file paths for the " "certificate and related material unless otherwise " "specified or you already have a certificate with the same " "name. In the case of a name collision it will append a number " "like 0001 to the file path name. (default: Ask)") helpful.add( [None, "run", "certonly", "register"], "--eab-kid", dest="eab_kid", metavar="EAB_KID", help="Key Identifier for External Account Binding" ) helpful.add( [None, "run", "certonly", "register"], "--eab-hmac-key", dest="eab_hmac_key", metavar="EAB_HMAC_KEY", help="HMAC key for External Account Binding" ) helpful.add( [None, "run", "certonly", "manage", "delete", "certificates", "renew", "enhance"], "--cert-name", dest="certname", metavar="CERTNAME", default=flag_default("certname"), help="Certificate name to apply. This name is used by Certbot for housekeeping " "and in file paths; it doesn't affect the content of the certificate itself. " "To see certificate names, run 'certbot certificates'. " "When creating a new certificate, specifies the new certificate's name. " "(default: the first provided domain or the name of an existing " "certificate on your system for the same domains)") helpful.add( [None, "testing", "renew", "certonly"], "--dry-run", action="store_true", dest="dry_run", default=flag_default("dry_run"), help="Perform a test run of the client, obtaining test (invalid) certificates" " but not saving them to disk. This can currently only be used" " with the 'certonly' and 'renew' subcommands. \nNote: Although --dry-run" " tries to avoid making any persistent changes on a system, it " " is not completely side-effect free: if used with webserver authenticator plugins" " like apache and nginx, it makes and then reverts temporary config changes" " in order to obtain test certificates, and reloads webservers to deploy and then" " roll back those changes. It also calls --pre-hook and --post-hook commands" " if they are defined because they may be necessary to accurately simulate" " renewal. --deploy-hook commands are not called.") helpful.add( ["register", "automation"], "--register-unsafely-without-email", action="store_true", default=flag_default("register_unsafely_without_email"), help="Specifying this flag enables registering an account with no " "email address. This is strongly discouraged, because in the " "event of key loss or account compromise you will irrevocably " "lose access to your account. You will also be unable to receive " "notice about impending expiration or revocation of your " "certificates. Updates to the Subscriber Agreement will still " "affect you, and will be effective 14 days after posting an " "update to the web site.") # TODO: When `certbot register --update-registration` is fully deprecated, # delete following helpful.add helpful.add( "register", "--update-registration", action="store_true", default=flag_default("update_registration"), dest="update_registration", help=argparse.SUPPRESS) helpful.add( ["register", "update_account", "unregister", "automation"], "-m", "--email", default=flag_default("email"), help=config_help("email")) helpful.add(["register", "update_account", "automation"], "--eff-email", action="store_true", default=flag_default("eff_email"), dest="eff_email", help="Share your e-mail address with EFF") helpful.add(["register", "update_account", "automation"], "--no-eff-email", action="store_false", default=flag_default("eff_email"), dest="eff_email", help="Don't share your e-mail address with EFF") helpful.add( ["automation", "certonly", "run"], "--keep-until-expiring", "--keep", "--reinstall", dest="reinstall", action="store_true", default=flag_default("reinstall"), help="If the requested certificate matches an existing certificate, always keep the " "existing one until it is due for renewal (for the " "'run' subcommand this means reinstall the existing certificate). (default: Ask)") helpful.add( "automation", "--expand", action="store_true", default=flag_default("expand"), help="If an existing certificate is a strict subset of the requested names, " "always expand and replace it with the additional names. (default: Ask)") helpful.add( "automation", "--version", action="version", version="%(prog)s {0}".format(certbot.__version__), help="show program's version number and exit") helpful.add( ["automation", "renew"], "--force-renewal", "--renew-by-default", dest="renew_by_default", action="store_true", default=flag_default("renew_by_default"), help="If a certificate " "already exists for the requested domains, renew it now, " "regardless of whether it is near expiry. (Often " "--keep-until-expiring is more appropriate). Also implies " "--expand.") helpful.add( "automation", "--renew-with-new-domains", dest="renew_with_new_domains", action="store_true", default=flag_default("renew_with_new_domains"), help="If a " "certificate already exists for the requested certificate name " "but does not match the requested domains, renew it now, " "regardless of whether it is near expiry.") helpful.add( "automation", "--reuse-key", dest="reuse_key", action="store_true", default=flag_default("reuse_key"), help="When renewing, use the same private key as the existing " "certificate.") helpful.add( ["automation", "renew", "certonly"], "--allow-subset-of-names", action="store_true", default=flag_default("allow_subset_of_names"), help="When performing domain validation, do not consider it a failure " "if authorizations can not be obtained for a strict subset of " "the requested domains. This may be useful for allowing renewals for " "multiple domains to succeed even if some domains no longer point " "at this system. This option cannot be used with --csr.") helpful.add( "automation", "--agree-tos", dest="tos", action="store_true", default=flag_default("tos"), help="Agree to the ACME Subscriber Agreement (default: Ask)") helpful.add( ["unregister", "automation"], "--account", metavar="ACCOUNT_ID", default=flag_default("account"), help="Account ID to use") helpful.add( "automation", "--duplicate", dest="duplicate", action="store_true", default=flag_default("duplicate"), help="Allow making a certificate lineage that duplicates an existing one " "(both can be renewed in parallel)") helpful.add( "automation", "--os-packages-only", action="store_true", default=flag_default("os_packages_only"), help="(certbot-auto only) install OS package dependencies and then stop") helpful.add( "automation", "--no-self-upgrade", action="store_true", default=flag_default("no_self_upgrade"), help="(certbot-auto only) prevent the certbot-auto script from" " upgrading itself to newer released versions (default: Upgrade" " automatically)") helpful.add( "automation", "--no-bootstrap", action="store_true", default=flag_default("no_bootstrap"), help="(certbot-auto only) prevent the certbot-auto script from" " installing OS-level dependencies (default: Prompt to install " " OS-wide dependencies, but exit if the user says 'No')") helpful.add( "automation", "--no-permissions-check", action="store_true", default=flag_default("no_permissions_check"), help="(certbot-auto only) skip the check on the file system" " permissions of the certbot-auto script") helpful.add( ["automation", "renew", "certonly", "run"], "-q", "--quiet", dest="quiet", action="store_true", default=flag_default("quiet"), help="Silence all output except errors. Useful for automation via cron." " Implies --non-interactive.") # overwrites server, handled in HelpfulArgumentParser.parse_args() helpful.add(["testing", "revoke", "run"], "--test-cert", "--staging", dest="staging", action="store_true", default=flag_default("staging"), help="Use the staging server to obtain or revoke test (invalid) certificates; equivalent" " to --server " + constants.STAGING_URI) helpful.add( "testing", "--debug", action="store_true", default=flag_default("debug"), help="Show tracebacks in case of errors, and allow certbot-auto " "execution on experimental platforms") helpful.add( [None, "certonly", "run"], "--debug-challenges", action="store_true", default=flag_default("debug_challenges"), help="After setting up challenges, wait for user input before " "submitting to CA") helpful.add( "testing", "--no-verify-ssl", action="store_true", help=config_help("no_verify_ssl"), default=flag_default("no_verify_ssl")) helpful.add( ["testing", "standalone", "manual"], "--http-01-port", type=int, dest="http01_port", default=flag_default("http01_port"), help=config_help("http01_port")) helpful.add( ["testing", "standalone"], "--http-01-address", dest="http01_address", default=flag_default("http01_address"), help=config_help("http01_address")) helpful.add( ["testing", "nginx"], "--https-port", type=int, default=flag_default("https_port"), help=config_help("https_port")) helpful.add( "testing", "--break-my-certs", action="store_true", default=flag_default("break_my_certs"), help="Be willing to replace or renew valid certificates with invalid " "(testing/staging) certificates") helpful.add( "security", "--rsa-key-size", type=int, metavar="N", default=flag_default("rsa_key_size"), help=config_help("rsa_key_size")) helpful.add( "security", "--must-staple", action="store_true", dest="must_staple", default=flag_default("must_staple"), help=config_help("must_staple")) helpful.add( ["security", "enhance"], "--redirect", action="store_true", dest="redirect", default=flag_default("redirect"), help="Automatically redirect all HTTP traffic to HTTPS for the newly " "authenticated vhost. (default: Ask)") helpful.add( "security", "--no-redirect", action="store_false", dest="redirect", default=flag_default("redirect"), help="Do not automatically redirect all HTTP traffic to HTTPS for the newly " "authenticated vhost. (default: Ask)") helpful.add( ["security", "enhance"], "--hsts", action="store_true", dest="hsts", default=flag_default("hsts"), help="Add the Strict-Transport-Security header to every HTTP response." " Forcing browser to always use SSL for the domain." " Defends against SSL Stripping.") helpful.add( "security", "--no-hsts", action="store_false", dest="hsts", default=flag_default("hsts"), help=argparse.SUPPRESS) helpful.add( ["security", "enhance"], "--uir", action="store_true", dest="uir", default=flag_default("uir"), help='Add the "Content-Security-Policy: upgrade-insecure-requests"' ' header to every HTTP response. Forcing the browser to use' ' https:// for every http:// resource.') helpful.add( "security", "--no-uir", action="store_false", dest="uir", default=flag_default("uir"), help=argparse.SUPPRESS) helpful.add( "security", "--staple-ocsp", action="store_true", dest="staple", default=flag_default("staple"), help="Enables OCSP Stapling. A valid OCSP response is stapled to" " the certificate that the server offers during TLS.") helpful.add( "security", "--no-staple-ocsp", action="store_false", dest="staple", default=flag_default("staple"), help=argparse.SUPPRESS) helpful.add( "security", "--strict-permissions", action="store_true", default=flag_default("strict_permissions"), help="Require that all configuration files are owned by the current " "user; only needed if your config is somewhere unsafe like /tmp/") helpful.add( ["manual", "standalone", "certonly", "renew"], "--preferred-challenges", dest="pref_challs", action=_PrefChallAction, default=flag_default("pref_challs"), help='A sorted, comma delimited list of the preferred challenge to ' 'use during authorization with the most preferred challenge ' 'listed first (Eg, "dns" or "http,dns"). ' 'Not all plugins support all challenges. See ' 'https://certbot.eff.org/docs/using.html#plugins for details. ' 'ACME Challenges are versioned, but if you pick "http" rather ' 'than "http-01", Certbot will select the latest version ' 'automatically.') helpful.add( "renew", "--pre-hook", help="Command to be run in a shell before obtaining any certificates." " Intended primarily for renewal, where it can be used to temporarily" " shut down a webserver that might conflict with the standalone" " plugin. This will only be called if a certificate is actually to be" " obtained/renewed. When renewing several certificates that have" " identical pre-hooks, only the first will be executed.") helpful.add( "renew", "--post-hook", help="Command to be run in a shell after attempting to obtain/renew" " certificates. Can be used to deploy renewed certificates, or to" " restart any servers that were stopped by --pre-hook. This is only" " run if an attempt was made to obtain/renew a certificate. If" " multiple renewed certificates have identical post-hooks, only" " one will be run.") helpful.add("renew", "--renew-hook", action=_RenewHookAction, help=argparse.SUPPRESS) helpful.add( "renew", "--no-random-sleep-on-renew", action="store_false", default=flag_default("random_sleep_on_renew"), dest="random_sleep_on_renew", help=argparse.SUPPRESS) helpful.add( "renew", "--deploy-hook", action=_DeployHookAction, help='Command to be run in a shell once for each successfully' ' issued certificate. For this command, the shell variable' ' $RENEWED_LINEAGE will point to the config live subdirectory' ' (for example, "/etc/letsencrypt/live/example.com") containing' ' the new certificates and keys; the shell variable' ' $RENEWED_DOMAINS will contain a space-delimited list of' ' renewed certificate domains (for example, "example.com' ' www.example.com"') helpful.add( "renew", "--disable-hook-validation", action="store_false", dest="validate_hooks", default=flag_default("validate_hooks"), help="Ordinarily the commands specified for" " --pre-hook/--post-hook/--deploy-hook will be checked for" " validity, to see if the programs being run are in the $PATH," " so that mistakes can be caught early, even when the hooks" " aren't being run just yet. The validation is rather" " simplistic and fails if you use more advanced shell" " constructs, so you can use this switch to disable it." " (default: False)") helpful.add( "renew", "--no-directory-hooks", action="store_false", default=flag_default("directory_hooks"), dest="directory_hooks", help="Disable running executables found in Certbot's hook directories" " during renewal. (default: False)") helpful.add( "renew", "--disable-renew-updates", action="store_true", default=flag_default("disable_renew_updates"), dest="disable_renew_updates", help="Disable automatic updates to your server configuration that" " would otherwise be done by the selected installer plugin, and triggered" " when the user executes \"certbot renew\", regardless of if the certificate" " is renewed. This setting does not apply to important TLS configuration" " updates.") helpful.add( "renew", "--no-autorenew", action="store_false", default=flag_default("autorenew"), dest="autorenew", help="Disable auto renewal of certificates.") helpful.add_deprecated_argument("--agree-dev-preview", 0) helpful.add_deprecated_argument("--dialog", 0) # Deprecation of tls-sni-01 related cli flags # TODO: remove theses flags completely in few releases class _DeprecatedTLSSNIAction(util._ShowWarning): # pylint: disable=protected-access def __call__(self, parser, namespace, values, option_string=None): super(_DeprecatedTLSSNIAction, self).__call__(parser, namespace, values, option_string) namespace.https_port = values helpful.add( ["testing", "standalone", "apache", "nginx"], "--tls-sni-01-port", type=int, action=_DeprecatedTLSSNIAction, help=argparse.SUPPRESS) helpful.add_deprecated_argument("--tls-sni-01-address", 1) # Populate the command line parameters for new style enhancements enhancements.populate_cli(helpful.add) _create_subparsers(helpful) _paths_parser(helpful) # _plugins_parsing should be the last thing to act upon the main # parser (--help should display plugin-specific options last) _plugins_parsing(helpful, plugins) if not detect_defaults: global helpful_parser # pylint: disable=global-statement helpful_parser = helpful return helpful.parse_args() def _create_subparsers(helpful): helpful.add("config_changes", "--num", type=int, default=flag_default("num"), help="How many past revisions you want to be displayed") from certbot.client import sample_user_agent # avoid import loops helpful.add( None, "--user-agent", default=flag_default("user_agent"), help='Set a custom user agent string for the client. User agent strings allow ' 'the CA to collect high level statistics about success rates by OS, ' 'plugin and use case, and to know when to deprecate support for past Python ' "versions and flags. If you wish to hide this information from the Let's " 'Encrypt server, set this to "". ' '(default: {0}). The flags encoded in the user agent are: ' '--duplicate, --force-renew, --allow-subset-of-names, -n, and ' 'whether any hooks are set.'.format(sample_user_agent())) helpful.add( None, "--user-agent-comment", default=flag_default("user_agent_comment"), type=_user_agent_comment_type, help="Add a comment to the default user agent string. May be used when repackaging Certbot " "or calling it from another tool to allow additional statistical data to be collected." " Ignored if --user-agent is set. (Example: Foo-Wrapper/1.0)") helpful.add("certonly", "--csr", default=flag_default("csr"), type=read_file, help="Path to a Certificate Signing Request (CSR) in DER or PEM format." " Currently --csr only works with the 'certonly' subcommand.") helpful.add("revoke", "--reason", dest="reason", choices=CaseInsensitiveList(sorted(constants.REVOCATION_REASONS, key=constants.REVOCATION_REASONS.get)), action=_EncodeReasonAction, default=flag_default("reason"), help="Specify reason for revoking certificate. (default: unspecified)") helpful.add("revoke", "--delete-after-revoke", action="store_true", default=flag_default("delete_after_revoke"), help="Delete certificates after revoking them, along with all previous and later " "versions of those certificates.") helpful.add("revoke", "--no-delete-after-revoke", action="store_false", dest="delete_after_revoke", default=flag_default("delete_after_revoke"), help="Do not delete certificates after revoking them. This " "option should be used with caution because the 'renew' " "subcommand will attempt to renew undeleted revoked " "certificates.") helpful.add("rollback", "--checkpoints", type=int, metavar="N", default=flag_default("rollback_checkpoints"), help="Revert configuration N number of checkpoints.") helpful.add("plugins", "--init", action="store_true", default=flag_default("init"), help="Initialize plugins.") helpful.add("plugins", "--prepare", action="store_true", default=flag_default("prepare"), help="Initialize and prepare plugins.") helpful.add("plugins", "--authenticators", action="append_const", dest="ifaces", default=flag_default("ifaces"), const=interfaces.IAuthenticator, help="Limit to authenticator plugins only.") helpful.add("plugins", "--installers", action="append_const", dest="ifaces", default=flag_default("ifaces"), const=interfaces.IInstaller, help="Limit to installer plugins only.") class CaseInsensitiveList(list): """A list that will ignore case when searching. This class is passed to the `choices` argument of `argparse.add_arguments` through the `helpful` wrapper. It is necessary due to special handling of command line arguments by `set_by_cli` in which the `type_func` is not applied.""" def __contains__(self, element): return super(CaseInsensitiveList, self).__contains__(element.lower()) def _paths_parser(helpful): add = helpful.add verb = helpful.verb if verb == "help": verb = helpful.help_arg cph = "Path to where certificate is saved (with auth --csr), installed from, or revoked." sections = ["paths", "install", "revoke", "certonly", "manage"] if verb == "certonly": add(sections, "--cert-path", type=os.path.abspath, default=flag_default("auth_cert_path"), help=cph) elif verb == "revoke": add(sections, "--cert-path", type=read_file, required=False, help=cph) else: add(sections, "--cert-path", type=os.path.abspath, help=cph) section = "paths" if verb in ("install", "revoke"): section = verb # revoke --key-path reads a file, install --key-path takes a string add(section, "--key-path", type=((verb == "revoke" and read_file) or os.path.abspath), help="Path to private key for certificate installation " "or revocation (if account key is missing)") default_cp = None if verb == "certonly": default_cp = flag_default("auth_chain_path") add(["paths", "install"], "--fullchain-path", default=default_cp, type=os.path.abspath, help="Accompanying path to a full certificate chain (certificate plus chain).") add("paths", "--chain-path", default=default_cp, type=os.path.abspath, help="Accompanying path to a certificate chain.") add("paths", "--config-dir", default=flag_default("config_dir"), help=config_help("config_dir")) add("paths", "--work-dir", default=flag_default("work_dir"), help=config_help("work_dir")) add("paths", "--logs-dir", default=flag_default("logs_dir"), help="Logs directory.") add("paths", "--server", default=flag_default("server"), help=config_help("server")) def _plugins_parsing(helpful, plugins): # It's nuts, but there are two "plugins" topics. Somehow this works helpful.add_group( "plugins", description="Plugin Selection: Certbot client supports an " "extensible plugins architecture. See '%(prog)s plugins' for a " "list of all installed plugins and their names. You can force " "a particular plugin by setting options provided below. Running " "--help <plugin_name> will list flags specific to that plugin.") helpful.add("plugins", "--configurator", default=flag_default("configurator"), help="Name of the plugin that is both an authenticator and an installer." " Should not be used together with --authenticator or --installer. " "(default: Ask)") helpful.add("plugins", "-a", "--authenticator", default=flag_default("authenticator"), help="Authenticator plugin name.") helpful.add("plugins", "-i", "--installer", default=flag_default("installer"), help="Installer plugin name (also used to find domains).") helpful.add(["plugins", "certonly", "run", "install", "config_changes"], "--apache", action="store_true", default=flag_default("apache"), help="Obtain and install certificates using Apache") helpful.add(["plugins", "certonly", "run", "install", "config_changes"], "--nginx", action="store_true", default=flag_default("nginx"), help="Obtain and install certificates using Nginx") helpful.add(["plugins", "certonly"], "--standalone", action="store_true", default=flag_default("standalone"), help='Obtain certificates using a "standalone" webserver.') helpful.add(["plugins", "certonly"], "--manual", action="store_true", default=flag_default("manual"), help="Provide laborious manual instructions for obtaining a certificate") helpful.add(["plugins", "certonly"], "--webroot", action="store_true", default=flag_default("webroot"), help="Obtain certificates by placing files in a webroot directory.") helpful.add(["plugins", "certonly"], "--dns-cloudflare", action="store_true", default=flag_default("dns_cloudflare"), help=("Obtain certificates using a DNS TXT record (if you are " "using Cloudflare for DNS).")) helpful.add(["plugins", "certonly"], "--dns-cloudxns", action="store_true", default=flag_default("dns_cloudxns"), help=("Obtain certificates using a DNS TXT record (if you are " "using CloudXNS for DNS).")) helpful.add(["plugins", "certonly"], "--dns-digitalocean", action="store_true", default=flag_default("dns_digitalocean"), help=("Obtain certificates using a DNS TXT record (if you are " "using DigitalOcean for DNS).")) helpful.add(["plugins", "certonly"], "--dns-dnsimple", action="store_true", default=flag_default("dns_dnsimple"), help=("Obtain certificates using a DNS TXT record (if you are " "using DNSimple for DNS).")) helpful.add(["plugins", "certonly"], "--dns-dnsmadeeasy", action="store_true", default=flag_default("dns_dnsmadeeasy"), help=("Obtain certificates using a DNS TXT record (if you are " "using DNS Made Easy for DNS).")) helpful.add(["plugins", "certonly"], "--dns-gehirn", action="store_true", default=flag_default("dns_gehirn"), help=("Obtain certificates using a DNS TXT record " "(if you are using Gehirn Infrastracture Service for DNS).")) helpful.add(["plugins", "certonly"], "--dns-google", action="store_true", default=flag_default("dns_google"), help=("Obtain certificates using a DNS TXT record (if you are " "using Google Cloud DNS).")) helpful.add(["plugins", "certonly"], "--dns-linode", action="store_true", default=flag_default("dns_linode"), help=("Obtain certificates using a DNS TXT record (if you are " "using Linode for DNS).")) helpful.add(["plugins", "certonly"], "--dns-luadns", action="store_true", default=flag_default("dns_luadns"), help=("Obtain certificates using a DNS TXT record (if you are " "using LuaDNS for DNS).")) helpful.add(["plugins", "certonly"], "--dns-nsone", action="store_true", default=flag_default("dns_nsone"), help=("Obtain certificates using a DNS TXT record (if you are " "using NS1 for DNS).")) helpful.add(["plugins", "certonly"], "--dns-ovh", action="store_true", default=flag_default("dns_ovh"), help=("Obtain certificates using a DNS TXT record (if you are " "using OVH for DNS).")) helpful.add(["plugins", "certonly"], "--dns-rfc2136", action="store_true", default=flag_default("dns_rfc2136"), help="Obtain certificates using a DNS TXT record (if you are using BIND for DNS).") helpful.add(["plugins", "certonly"], "--dns-route53", action="store_true", default=flag_default("dns_route53"), help=("Obtain certificates using a DNS TXT record (if you are using Route53 for " "DNS).")) helpful.add(["plugins", "certonly"], "--dns-sakuracloud", action="store_true", default=flag_default("dns_sakuracloud"), help=("Obtain certificates using a DNS TXT record " "(if you are using Sakura Cloud for DNS).")) # things should not be reorder past/pre this comment: # plugins_group should be displayed in --help before plugin # specific groups (so that plugins_group.description makes sense) helpful.add_plugin_args(plugins) class _EncodeReasonAction(argparse.Action): """Action class for parsing revocation reason.""" def __call__(self, parser, namespace, reason, option_string=None): """Encodes the reason for certificate revocation.""" code = constants.REVOCATION_REASONS[reason.lower()] setattr(namespace, self.dest, code) class _DomainsAction(argparse.Action): """Action class for parsing domains.""" def __call__(self, parser, namespace, domain, option_string=None): """Just wrap add_domains in argparseese.""" add_domains(namespace, domain) def add_domains(args_or_config, domains): """Registers new domains to be used during the current client run. Domains are not added to the list of requested domains if they have already been registered. :param args_or_config: parsed command line arguments :type args_or_config: argparse.Namespace or configuration.NamespaceConfig :param str domain: one or more comma separated domains :returns: domains after they have been normalized and validated :rtype: `list` of `str` """ validated_domains = [] for domain in domains.split(","): domain = util.enforce_domain_sanity(domain.strip()) validated_domains.append(domain) if domain not in args_or_config.domains: args_or_config.domains.append(domain) return validated_domains class _PrefChallAction(argparse.Action): """Action class for parsing preferred challenges.""" def __call__(self, parser, namespace, pref_challs, option_string=None): try: challs = parse_preferred_challenges(pref_challs.split(",")) except errors.Error as error: raise argparse.ArgumentError(self, str(error)) namespace.pref_challs.extend(challs) def parse_preferred_challenges(pref_challs): """Translate and validate preferred challenges. :param pref_challs: list of preferred challenge types :type pref_challs: `list` of `str` :returns: validated list of preferred challenge types :rtype: `list` of `str` :raises errors.Error: if pref_challs is invalid """ aliases = {"dns": "dns-01", "http": "http-01", "tls-sni": "tls-sni-01"} challs = [c.strip() for c in pref_challs] challs = [aliases.get(c, c) for c in challs] # Ignore tls-sni-01 from the list, and generates a deprecation warning # TODO: remove this option completely in few releases if "tls-sni-01" in challs: logger.warning('TLS-SNI-01 support is deprecated. This value is being dropped from the ' 'setting of --preferred-challenges and future versions of Certbot will ' 'error if it is included.') challs = [chall for chall in challs if chall != "tls-sni-01"] unrecognized = ", ".join(name for name in challs if name not in challenges.Challenge.TYPES) if unrecognized: raise errors.Error( "Unrecognized challenges: {0}".format(unrecognized)) return challs def _user_agent_comment_type(value): if "(" in value or ")" in value: raise argparse.ArgumentTypeError("may not contain parentheses") return value class _DeployHookAction(argparse.Action): """Action class for parsing deploy hooks.""" def __call__(self, parser, namespace, values, option_string=None): renew_hook_set = namespace.deploy_hook != namespace.renew_hook if renew_hook_set and namespace.renew_hook != values: raise argparse.ArgumentError( self, "conflicts with --renew-hook value") namespace.deploy_hook = namespace.renew_hook = values class _RenewHookAction(argparse.Action): """Action class for parsing renew hooks.""" def __call__(self, parser, namespace, values, option_string=None): deploy_hook_set = namespace.deploy_hook is not None if deploy_hook_set and namespace.deploy_hook != values: raise argparse.ArgumentError( self, "conflicts with --deploy-hook value") namespace.renew_hook = values def nonnegative_int(value): """Converts value to an int and checks that it is not negative. This function should used as the type parameter for argparse arguments. :param str value: value provided on the command line :returns: integer representation of value :rtype: int :raises argparse.ArgumentTypeError: if value isn't a non-negative integer """ try: int_value = int(value) except ValueError: raise argparse.ArgumentTypeError("value must be an integer") if int_value < 0: raise argparse.ArgumentTypeError("value must be non-negative") return int_value
45.639755
134
0.639887
7942442203076f3ef9bf083b8ec144db80f0c5f7
119
py
Python
azure_monitor/src/azure_monitor/version.py
hectorhdzg/opentelemetry-azure-monitor-python
f57679d80f259181486a1124f0d6b71012d4826b
[ "MIT" ]
null
null
null
azure_monitor/src/azure_monitor/version.py
hectorhdzg/opentelemetry-azure-monitor-python
f57679d80f259181486a1124f0d6b71012d4826b
[ "MIT" ]
null
null
null
azure_monitor/src/azure_monitor/version.py
hectorhdzg/opentelemetry-azure-monitor-python
f57679d80f259181486a1124f0d6b71012d4826b
[ "MIT" ]
1
2020-07-30T13:31:44.000Z
2020-07-30T13:31:44.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. __version__ = "0.4.dev0"
29.75
59
0.756303
794244479cde3a398065451c51f81014624c3a16
1,481
py
Python
third_party/mosquitto/test/broker/03-publish-dollar-v5.py
HowJMay/simple-tangle-accelerator
d79bfda23a0fcf67d5a7f9e66f02efa3e73ba381
[ "MIT" ]
null
null
null
third_party/mosquitto/test/broker/03-publish-dollar-v5.py
HowJMay/simple-tangle-accelerator
d79bfda23a0fcf67d5a7f9e66f02efa3e73ba381
[ "MIT" ]
null
null
null
third_party/mosquitto/test/broker/03-publish-dollar-v5.py
HowJMay/simple-tangle-accelerator
d79bfda23a0fcf67d5a7f9e66f02efa3e73ba381
[ "MIT" ]
1
2021-05-04T16:09:27.000Z
2021-05-04T16:09:27.000Z
#!/usr/bin/env python3 # Test whether a PUBLISH to $ topics QoS 1 results in the expected PUBACK packet. from mosq_test_helper import * mid = 1 def helper(topic, reason_code): global mid publish_packet = mosq_test.gen_publish(topic, qos=1, mid=mid, payload="message", proto_ver=5) if reason_code == 0: puback_packet = mosq_test.gen_puback(mid, proto_ver=5) else: puback_packet = mosq_test.gen_puback(mid, proto_ver=5, reason_code=reason_code) sock = mosq_test.do_client_connect(connect_packet, connack_packet, port=port) mosq_test.do_send_receive(sock, publish_packet, puback_packet, "puback%d"%(mid)) rc = 1 keepalive = 60 connect_packet = mosq_test.gen_connect("pub-test", keepalive=keepalive, proto_ver=5) connack_packet = mosq_test.gen_connack(rc=0, proto_ver=5) port = mosq_test.get_port() broker = mosq_test.start_broker(filename=os.path.basename(__file__), port=port) try: sock = mosq_test.do_client_connect(connect_packet, connack_packet, port=port) helper("$SYS/broker/uptime", mqtt5_rc.MQTT_RC_NOT_AUTHORIZED) helper("$SYS/broker/connection/me", mqtt5_rc.MQTT_RC_NOT_AUTHORIZED) helper("$SYS/broker/connection/me/state", mqtt5_rc.MQTT_RC_NO_MATCHING_SUBSCRIBERS) helper("$share/share/topic", mqtt5_rc.MQTT_RC_NOT_AUTHORIZED) rc = 0 sock.close() finally: broker.terminate() broker.wait() (stdo, stde) = broker.communicate() if rc: print(stde.decode('utf-8')) exit(rc)
31.510638
97
0.735989
7942448d45ee3fb70d1bdf5b147ccbb936c57314
140
py
Python
tcsstamp/__version__.py
rhuygen/tcsstamp
61fbf80210dc49b05028dad5edc3b816ed4f0973
[ "MIT" ]
null
null
null
tcsstamp/__version__.py
rhuygen/tcsstamp
61fbf80210dc49b05028dad5edc3b816ed4f0973
[ "MIT" ]
null
null
null
tcsstamp/__version__.py
rhuygen/tcsstamp
61fbf80210dc49b05028dad5edc3b816ed4f0973
[ "MIT" ]
null
null
null
""" The one and only place for the version number. This file is used by """ VERSION = (0, 3, 7) __version__ = '.'.join(map(str, VERSION))
15.555556
46
0.65
794244d0fb94f4613871c46cc34e89661efa0174
25,223
py
Python
keystone/tests/unit/core.py
maestro-hybrid-cloud/keystone
a597a86b854215835a4d54885daeb161d7b0efb8
[ "Apache-2.0" ]
null
null
null
keystone/tests/unit/core.py
maestro-hybrid-cloud/keystone
a597a86b854215835a4d54885daeb161d7b0efb8
[ "Apache-2.0" ]
null
null
null
keystone/tests/unit/core.py
maestro-hybrid-cloud/keystone
a597a86b854215835a4d54885daeb161d7b0efb8
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import import atexit import datetime import functools import logging import os import re import shutil import socket import sys import uuid import warnings import fixtures from oslo_config import cfg from oslo_config import fixture as config_fixture from oslo_log import fixture as log_fixture from oslo_log import log from oslo_utils import timeutils import oslotest.base as oslotest from oslotest import mockpatch from paste.deploy import loadwsgi import six from sqlalchemy import exc from testtools import testcase # NOTE(ayoung) # environment.use_eventlet must run before any of the code that will # call the eventlet monkeypatching. from keystone.common import environment # noqa environment.use_eventlet() from keystone import auth from keystone.common import config as common_cfg from keystone.common import dependency from keystone.common import kvs from keystone.common.kvs import core as kvs_core from keystone.common import sql from keystone import config from keystone import exception from keystone import notifications from keystone.policy.backends import rules from keystone.server import common from keystone.tests.unit import ksfixtures from keystone.version import controllers from keystone.version import service config.configure() LOG = log.getLogger(__name__) PID = six.text_type(os.getpid()) TESTSDIR = os.path.dirname(os.path.abspath(__file__)) TESTCONF = os.path.join(TESTSDIR, 'config_files') ROOTDIR = os.path.normpath(os.path.join(TESTSDIR, '..', '..', '..')) VENDOR = os.path.join(ROOTDIR, 'vendor') ETCDIR = os.path.join(ROOTDIR, 'etc') def _calc_tmpdir(): env_val = os.environ.get('KEYSTONE_TEST_TEMP_DIR') if not env_val: return os.path.join(TESTSDIR, 'tmp', PID) return os.path.join(env_val, PID) TMPDIR = _calc_tmpdir() CONF = cfg.CONF log.register_options(CONF) rules.init() IN_MEM_DB_CONN_STRING = 'sqlite://' TIME_FORMAT = '%Y-%m-%dT%H:%M:%S.%fZ' exception._FATAL_EXCEPTION_FORMAT_ERRORS = True os.makedirs(TMPDIR) atexit.register(shutil.rmtree, TMPDIR) class dirs(object): @staticmethod def root(*p): return os.path.join(ROOTDIR, *p) @staticmethod def etc(*p): return os.path.join(ETCDIR, *p) @staticmethod def tests(*p): return os.path.join(TESTSDIR, *p) @staticmethod def tmp(*p): return os.path.join(TMPDIR, *p) @staticmethod def tests_conf(*p): return os.path.join(TESTCONF, *p) # keystone.common.sql.initialize() for testing. DEFAULT_TEST_DB_FILE = dirs.tmp('test.db') class EggLoader(loadwsgi.EggLoader): _basket = {} def find_egg_entry_point(self, object_type, name=None): egg_key = '%s:%s' % (object_type, name) egg_ep = self._basket.get(egg_key) if not egg_ep: egg_ep = super(EggLoader, self).find_egg_entry_point( object_type, name=name) self._basket[egg_key] = egg_ep return egg_ep # NOTE(dstanek): class paths were remove from the keystone-paste.ini in # favor of using entry points. This caused tests to slow to a crawl # since we reload the application object for each RESTful test. This # monkey-patching adds caching to paste deploy's egg lookup. loadwsgi.EggLoader = EggLoader @atexit.register def remove_test_databases(): db = dirs.tmp('test.db') if os.path.exists(db): os.unlink(db) pristine = dirs.tmp('test.db.pristine') if os.path.exists(pristine): os.unlink(pristine) def generate_paste_config(extension_name): # Generate a file, based on keystone-paste.ini, that is named: # extension_name.ini, and includes extension_name in the pipeline with open(dirs.etc('keystone-paste.ini'), 'r') as f: contents = f.read() new_contents = contents.replace(' service_v3', ' %s service_v3' % (extension_name)) new_paste_file = dirs.tmp(extension_name + '.ini') with open(new_paste_file, 'w') as f: f.write(new_contents) return new_paste_file def remove_generated_paste_config(extension_name): # Remove the generated paste config file, named extension_name.ini paste_file_to_remove = dirs.tmp(extension_name + '.ini') os.remove(paste_file_to_remove) def skip_if_cache_disabled(*sections): """This decorator is used to skip a test if caching is disabled. Caching can be disabled either globally or for a specific section. In the code fragment:: @skip_if_cache_is_disabled('assignment', 'token') def test_method(*args): ... The method test_method would be skipped if caching is disabled globally via the `enabled` option in the `cache` section of the configuration or if the `caching` option is set to false in either `assignment` or `token` sections of the configuration. This decorator can be used with no arguments to only check global caching. If a specified configuration section does not define the `caching` option, this decorator makes the same assumption as the `should_cache_fn` in keystone.common.cache that caching should be enabled. """ def wrapper(f): @functools.wraps(f) def inner(*args, **kwargs): if not CONF.cache.enabled: raise testcase.TestSkipped('Cache globally disabled.') for s in sections: conf_sec = getattr(CONF, s, None) if conf_sec is not None: if not getattr(conf_sec, 'caching', True): raise testcase.TestSkipped('%s caching disabled.' % s) return f(*args, **kwargs) return inner return wrapper def skip_if_no_multiple_domains_support(f): """Decorator to skip tests for identity drivers limited to one domain.""" @functools.wraps(f) def wrapper(*args, **kwargs): test_obj = args[0] if not test_obj.identity_api.multiple_domains_supported: raise testcase.TestSkipped('No multiple domains support') return f(*args, **kwargs) return wrapper class UnexpectedExit(Exception): pass def new_ref(): """Populates a ref with attributes common to some API entities.""" return { 'id': uuid.uuid4().hex, 'name': uuid.uuid4().hex, 'description': uuid.uuid4().hex, 'enabled': True} def new_region_ref(): ref = new_ref() # Region doesn't have name or enabled. del ref['name'] del ref['enabled'] ref['parent_region_id'] = None return ref def new_service_ref(): ref = new_ref() ref['type'] = uuid.uuid4().hex return ref def new_endpoint_ref(service_id, interface='public', default_region_id=None, **kwargs): ref = new_ref() del ref['enabled'] # enabled is optional ref['interface'] = interface ref['service_id'] = service_id ref['url'] = 'https://' + uuid.uuid4().hex + '.com' ref['region_id'] = default_region_id ref.update(kwargs) return ref def new_domain_ref(): ref = new_ref() return ref def new_project_ref(domain_id=None, parent_id=None, is_domain=False): ref = new_ref() ref['domain_id'] = domain_id ref['parent_id'] = parent_id ref['is_domain'] = is_domain return ref def new_user_ref(domain_id, project_id=None): ref = new_ref() ref['domain_id'] = domain_id ref['email'] = uuid.uuid4().hex ref['password'] = uuid.uuid4().hex if project_id: ref['default_project_id'] = project_id return ref def new_group_ref(domain_id): ref = new_ref() ref['domain_id'] = domain_id return ref def new_credential_ref(user_id, project_id=None, cred_type=None): ref = dict() ref['id'] = uuid.uuid4().hex ref['user_id'] = user_id if cred_type == 'ec2': ref['type'] = 'ec2' ref['blob'] = uuid.uuid4().hex else: ref['type'] = 'cert' ref['blob'] = uuid.uuid4().hex if project_id: ref['project_id'] = project_id return ref def new_role_ref(): ref = new_ref() # Roles don't have a description or the enabled flag del ref['description'] del ref['enabled'] return ref def new_policy_ref(): ref = new_ref() ref['blob'] = uuid.uuid4().hex ref['type'] = uuid.uuid4().hex return ref def new_trust_ref(trustor_user_id, trustee_user_id, project_id=None, impersonation=None, expires=None, role_ids=None, role_names=None, remaining_uses=None, allow_redelegation=False): ref = dict() ref['id'] = uuid.uuid4().hex ref['trustor_user_id'] = trustor_user_id ref['trustee_user_id'] = trustee_user_id ref['impersonation'] = impersonation or False ref['project_id'] = project_id ref['remaining_uses'] = remaining_uses ref['allow_redelegation'] = allow_redelegation if isinstance(expires, six.string_types): ref['expires_at'] = expires elif isinstance(expires, dict): ref['expires_at'] = ( timeutils.utcnow() + datetime.timedelta(**expires) ).strftime(TIME_FORMAT) elif expires is None: pass else: raise NotImplementedError('Unexpected value for "expires"') role_ids = role_ids or [] role_names = role_names or [] if role_ids or role_names: ref['roles'] = [] for role_id in role_ids: ref['roles'].append({'id': role_id}) for role_name in role_names: ref['roles'].append({'name': role_name}) return ref class BaseTestCase(oslotest.BaseTestCase): """Light weight base test class. This is a placeholder that will eventually go away once the setup/teardown in TestCase is properly trimmed down to the bare essentials. This is really just a play to speed up the tests by eliminating unnecessary work. """ def setUp(self): super(BaseTestCase, self).setUp() self.useFixture(mockpatch.PatchObject(sys, 'exit', side_effect=UnexpectedExit)) self.useFixture(log_fixture.get_logging_handle_error_fixture()) warnings.filterwarnings('error', category=DeprecationWarning, module='^keystone\\.') warnings.simplefilter('error', exc.SAWarning) self.addCleanup(warnings.resetwarnings) def cleanup_instance(self, *names): """Create a function suitable for use with self.addCleanup. :returns: a callable that uses a closure to delete instance attributes """ def cleanup(): for name in names: # TODO(dstanek): remove this 'if' statement once # load_backend in test_backend_ldap is only called once # per test if hasattr(self, name): delattr(self, name) return cleanup class TestCase(BaseTestCase): def config_files(self): return [] def config_overrides(self): # NOTE(morganfainberg): enforce config_overrides can only ever be # called a single time. assert self.__config_overrides_called is False self.__config_overrides_called = True signing_certfile = 'examples/pki/certs/signing_cert.pem' signing_keyfile = 'examples/pki/private/signing_key.pem' self.config_fixture.config(group='oslo_policy', policy_file=dirs.etc('policy.json')) self.config_fixture.config( # TODO(morganfainberg): Make Cache Testing a separate test case # in tempest, and move it out of the base unit tests. group='cache', backend='dogpile.cache.memory', enabled=True, proxies=['oslo_cache.testing.CacheIsolatingProxy']) self.config_fixture.config( group='catalog', driver='templated', template_file=dirs.tests('default_catalog.templates')) self.config_fixture.config( group='kvs', backends=[ ('keystone.tests.unit.test_kvs.' 'KVSBackendForcedKeyMangleFixture'), 'keystone.tests.unit.test_kvs.KVSBackendFixture']) self.config_fixture.config(group='revoke', driver='kvs') self.config_fixture.config( group='signing', certfile=signing_certfile, keyfile=signing_keyfile, ca_certs='examples/pki/certs/cacert.pem') self.config_fixture.config(group='token', driver='kvs') self.config_fixture.config( group='saml', certfile=signing_certfile, keyfile=signing_keyfile) self.config_fixture.config( default_log_levels=[ 'amqp=WARN', 'amqplib=WARN', 'boto=WARN', 'qpid=WARN', 'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO', 'iso8601=WARN', 'requests.packages.urllib3.connectionpool=WARN', 'routes.middleware=INFO', 'stevedore.extension=INFO', 'keystone.notifications=INFO', 'keystone.common._memcache_pool=INFO', 'keystone.common.ldap=INFO', ]) self.auth_plugin_config_override() def auth_plugin_config_override(self, methods=None, **method_classes): if methods is not None: self.config_fixture.config(group='auth', methods=methods) common_cfg.setup_authentication() if method_classes: self.config_fixture.config(group='auth', **method_classes) def _assert_config_overrides_called(self): assert self.__config_overrides_called is True def setUp(self): super(TestCase, self).setUp() self.__config_overrides_called = False self.addCleanup(CONF.reset) self.config_fixture = self.useFixture(config_fixture.Config(CONF)) self.addCleanup(delattr, self, 'config_fixture') self.config(self.config_files()) # NOTE(morganfainberg): mock the auth plugin setup to use the config # fixture which automatically unregisters options when performing # cleanup. def mocked_register_auth_plugin_opt(conf, opt): self.config_fixture.register_opt(opt, group='auth') self.useFixture(mockpatch.PatchObject( common_cfg, '_register_auth_plugin_opt', new=mocked_register_auth_plugin_opt)) self.config_overrides() # NOTE(morganfainberg): ensure config_overrides has been called. self.addCleanup(self._assert_config_overrides_called) self.useFixture(fixtures.FakeLogger(level=logging.DEBUG)) # NOTE(morganfainberg): This code is a copy from the oslo-incubator # log module. This is not in a function or otherwise available to use # without having a CONF object to setup logging. This should help to # reduce the log size by limiting what we log (similar to how Keystone # would run under mod_wsgi or eventlet). for pair in CONF.default_log_levels: mod, _sep, level_name = pair.partition('=') logger = logging.getLogger(mod) logger.setLevel(level_name) self.useFixture(ksfixtures.Cache()) # Clear the registry of providers so that providers from previous # tests aren't used. self.addCleanup(dependency.reset) self.addCleanup(kvs.INMEMDB.clear) # Ensure Notification subscriptions and resource types are empty self.addCleanup(notifications.clear_subscribers) self.addCleanup(notifications.reset_notifier) # Reset the auth-plugin registry self.addCleanup(self.clear_auth_plugin_registry) self.addCleanup(setattr, controllers, '_VERSIONS', []) def config(self, config_files): sql.initialize() CONF(args=[], project='keystone', default_config_files=config_files) def load_backends(self): """Initializes each manager and assigns them to an attribute.""" # TODO(blk-u): Shouldn't need to clear the registry here, but some # tests call load_backends multiple times. These should be fixed to # only call load_backends once. dependency.reset() # TODO(morganfainberg): Shouldn't need to clear the registry here, but # some tests call load_backends multiple times. Since it is not # possible to re-configure a backend, we need to clear the list. This # should eventually be removed once testing has been cleaned up. kvs_core.KEY_VALUE_STORE_REGISTRY.clear() self.clear_auth_plugin_registry() drivers, _unused = common.setup_backends( load_extra_backends_fn=self.load_extra_backends) for manager_name, manager in drivers.items(): setattr(self, manager_name, manager) self.addCleanup(self.cleanup_instance(*list(drivers.keys()))) def load_extra_backends(self): """Override to load managers that aren't loaded by default. This is useful to load managers initialized by extensions. No extra backends are loaded by default. :return: dict of name -> manager """ return {} def load_fixtures(self, fixtures): """Hacky basic and naive fixture loading based on a python module. Expects that the various APIs into the various services are already defined on `self`. """ # NOTE(dstanek): create a list of attribute names to be removed # from this instance during cleanup fixtures_to_cleanup = [] # TODO(termie): doing something from json, probably based on Django's # loaddata will be much preferred. if (hasattr(self, 'identity_api') and hasattr(self, 'assignment_api') and hasattr(self, 'resource_api')): for domain in fixtures.DOMAINS: try: rv = self.resource_api.create_domain(domain['id'], domain) except exception.Conflict: rv = self.resource_api.get_domain(domain['id']) except exception.NotImplemented: rv = domain attrname = 'domain_%s' % domain['id'] setattr(self, attrname, rv) fixtures_to_cleanup.append(attrname) for tenant in fixtures.TENANTS: if hasattr(self, 'tenant_%s' % tenant['id']): try: # This will clear out any roles on the project as well self.resource_api.delete_project(tenant['id']) except exception.ProjectNotFound: pass rv = self.resource_api.create_project( tenant['id'], tenant) attrname = 'tenant_%s' % tenant['id'] setattr(self, attrname, rv) fixtures_to_cleanup.append(attrname) for role in fixtures.ROLES: try: rv = self.role_api.create_role(role['id'], role) except exception.Conflict: rv = self.role_api.get_role(role['id']) attrname = 'role_%s' % role['id'] setattr(self, attrname, rv) fixtures_to_cleanup.append(attrname) for user in fixtures.USERS: user_copy = user.copy() tenants = user_copy.pop('tenants') try: existing_user = getattr(self, 'user_%s' % user['id'], None) if existing_user is not None: self.identity_api.delete_user(existing_user['id']) except exception.UserNotFound: pass # For users, the manager layer will generate the ID user_copy = self.identity_api.create_user(user_copy) # Our tests expect that the password is still in the user # record so that they can reference it, so put it back into # the dict returned. user_copy['password'] = user['password'] for tenant_id in tenants: try: self.assignment_api.add_user_to_project( tenant_id, user_copy['id']) except exception.Conflict: pass # Use the ID from the fixture as the attribute name, so # that our tests can easily reference each user dict, while # the ID in the dict will be the real public ID. attrname = 'user_%s' % user['id'] setattr(self, attrname, user_copy) fixtures_to_cleanup.append(attrname) self.addCleanup(self.cleanup_instance(*fixtures_to_cleanup)) def _paste_config(self, config): if not config.startswith('config:'): test_path = os.path.join(TESTSDIR, config) etc_path = os.path.join(ROOTDIR, 'etc', config) for path in [test_path, etc_path]: if os.path.exists('%s-paste.ini' % path): return 'config:%s-paste.ini' % path return config def loadapp(self, config, name='main'): return service.loadapp(self._paste_config(config), name=name) def clear_auth_plugin_registry(self): auth.controllers.AUTH_METHODS.clear() auth.controllers.AUTH_PLUGINS_LOADED = False def assertCloseEnoughForGovernmentWork(self, a, b, delta=3): """Asserts that two datetimes are nearly equal within a small delta. :param delta: Maximum allowable time delta, defined in seconds. """ msg = '%s != %s within %s delta' % (a, b, delta) self.assertTrue(abs(a - b).seconds <= delta, msg) def assertNotEmpty(self, l): self.assertTrue(len(l)) def assertRaisesRegexp(self, expected_exception, expected_regexp, callable_obj, *args, **kwargs): """Asserts that the message in a raised exception matches a regexp.""" try: callable_obj(*args, **kwargs) except expected_exception as exc_value: if isinstance(expected_regexp, six.string_types): expected_regexp = re.compile(expected_regexp) if isinstance(exc_value.args[0], unicode): if not expected_regexp.search(unicode(exc_value)): raise self.failureException( '"%s" does not match "%s"' % (expected_regexp.pattern, unicode(exc_value))) else: if not expected_regexp.search(str(exc_value)): raise self.failureException( '"%s" does not match "%s"' % (expected_regexp.pattern, str(exc_value))) else: if hasattr(expected_exception, '__name__'): excName = expected_exception.__name__ else: excName = str(expected_exception) raise self.failureException("%s not raised" % excName) @property def ipv6_enabled(self): if socket.has_ipv6: sock = None try: sock = socket.socket(socket.AF_INET6) # NOTE(Mouad): Try to bind to IPv6 loopback ip address. sock.bind(("::1", 0)) return True except socket.error: pass finally: if sock: sock.close() return False def skip_if_no_ipv6(self): if not self.ipv6_enabled: raise self.skipTest("IPv6 is not enabled in the system") def skip_if_env_not_set(self, env_var): if not os.environ.get(env_var): self.skipTest('Env variable %s is not set.' % env_var) class SQLDriverOverrides(object): """A mixin for consolidating sql-specific test overrides.""" def config_overrides(self): super(SQLDriverOverrides, self).config_overrides() # SQL specific driver overrides self.config_fixture.config(group='catalog', driver='sql') self.config_fixture.config(group='identity', driver='sql') self.config_fixture.config(group='policy', driver='sql') self.config_fixture.config(group='revoke', driver='sql') self.config_fixture.config(group='token', driver='sql') self.config_fixture.config(group='trust', driver='sql')
35.031944
79
0.630377
79424548d33de4aa405f63c3a67ad80562f4d292
158
py
Python
pistis/__init__.py
mbhall88/metis
8c5e5834f053f276ae937cde4e28b82fe8e1611e
[ "MIT" ]
6
2018-08-27T15:18:54.000Z
2021-07-17T04:17:20.000Z
pistis/__init__.py
mbhall88/metis
8c5e5834f053f276ae937cde4e28b82fe8e1611e
[ "MIT" ]
1
2018-04-17T21:33:34.000Z
2018-04-19T12:50:19.000Z
pistis/__init__.py
mbhall88/pistis
8c5e5834f053f276ae937cde4e28b82fe8e1611e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Top-level package for pistis.""" __author__ = """Michael Benjamin Hall""" __email__ = '[email protected]' __version__ = '0.1.0'
19.75
40
0.64557
7942462ea10d087e3bf1663780b2f3165ea22b10
922
py
Python
sorts/radix_sort.py
jenia90/Python
696fb4a681ad9e4d84e0d2b894daf449a3e30b24
[ "MIT" ]
14
2020-10-03T05:43:48.000Z
2021-11-01T21:02:26.000Z
sorts/radix_sort.py
jenia90/Python
696fb4a681ad9e4d84e0d2b894daf449a3e30b24
[ "MIT" ]
2
2020-10-19T17:42:36.000Z
2020-10-19T18:05:18.000Z
sorts/radix_sort.py
jenia90/Python
696fb4a681ad9e4d84e0d2b894daf449a3e30b24
[ "MIT" ]
12
2020-10-03T05:44:19.000Z
2022-01-16T05:37:54.000Z
from __future__ import annotations def radix_sort(list_of_ints: list[int]) -> list[int]: """ radix_sort(range(15)) == sorted(range(15)) True radix_sort(reversed(range(15))) == sorted(range(15)) True radix_sort([1,100,10,1000]) == sorted([1,100,10,1000]) True """ RADIX = 10 placement = 1 max_digit = max(list_of_ints) while placement <= max_digit: # declare and initialize empty buckets buckets = [list() for _ in range(RADIX)] # split list_of_ints between the buckets for i in list_of_ints: tmp = int((i / placement) % RADIX) buckets[tmp].append(i) # put each buckets' contents into list_of_ints a = 0 for b in range(RADIX): for i in buckets[b]: list_of_ints[a] = i a += 1 # move to next placement *= RADIX return list_of_ints
28.8125
58
0.571584
7942463ec6a5c0d6b1032f58303bed69ffbb5d35
2,089
py
Python
testing/testing-analysis-regress_field.py
jenfly/atmos
c0a733b78749098d8cc2caaaacee245e6aeeac07
[ "MIT" ]
16
2015-10-08T06:14:35.000Z
2020-02-12T02:47:33.000Z
testing/testing-analysis-regress_field.py
jenfly/atmos
c0a733b78749098d8cc2caaaacee245e6aeeac07
[ "MIT" ]
null
null
null
testing/testing-analysis-regress_field.py
jenfly/atmos
c0a733b78749098d8cc2caaaacee245e6aeeac07
[ "MIT" ]
3
2018-10-16T07:58:14.000Z
2021-09-17T06:39:00.000Z
import sys sys.path.append('/home/jwalker/dynamics/python/atmos-tools') sys.path.append('/home/jwalker/dynamics/python/atmos-read') import xray import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import collections import pandas as pd import atmos as atm import utils # monsoon-onset mpl.rcParams['font.size'] = 10 # ---------------------------------------------------------------------- onset_nm = 'CHP_MFC' years = np.arange(1979, 2015) datadir = atm.homedir() + 'datastore/merra/analysis/' varnms = ['U200', 'T200'] datafiles = collections.OrderedDict() filestr = datadir + 'merra_%s_dailyrel_%s_%d.nc' for nm in varnms: datafiles[nm] = [filestr % (nm, onset_nm, yr) for yr in years] # ---------------------------------------------------------------------- # Read data data = collections.OrderedDict() for nm in datafiles: var, onset, retreat = utils.load_dailyrel(datafiles[nm]) data[nm] = var # ---------------------------------------------------------------------- # Test atm.regress_field day = -60 # 1-d timeseries var = data['U200'].sel(dayrel=day) ts = atm.mean_over_geobox(var, 10, 30, 60, 100) ts_reg = atm.Linreg(onset, ts) ts_reg2 = atm.regress_field(ts, onset) print(ts_reg.r, ts_reg2.r.values) print(ts_reg.slope, ts_reg2.m.values) print(ts_reg.p, ts_reg2.p.values) # x-y data regdays = [-60, -30, 0, 30, 60] plotdays = [-60, -30] clev_r = np.arange(-1.0, 1.01, 0.05) for nm in varnms: print(nm) var = data[nm].sel(dayrel=regdays) reg_daily = atm.regress_field(var, onset, axis=0) for day in plotdays: reg = reg_daily.sel(dayrel=day) title = '%s day %d vs. Onset ' % (var.name, day) cint_m = atm.cinterval(reg.m) clev_m = atm.clevels(reg.m, cint_m, symmetric=True) plt.figure(figsize=(11, 8)) plt.subplot(1, 2, 1) atm.contourf_latlon(reg['r'], clev=clev_r, cmap='RdBu_r') plt.title(title + ' - Corr Coeff') plt.subplot(1, 2, 2) atm.contourf_latlon(reg['m'], clev=clev_m, cmap='RdBu_r') plt.title(title + ' - Reg Coeff')
29.013889
72
0.598372
79424770b1f8337bb2cf586e89d8c1a8121df1ba
5,860
py
Python
terrascript/openstack/r.py
vutsalsinghal/python-terrascript
3b9fb5ad77453d330fb0cd03524154a342c5d5dc
[ "BSD-2-Clause" ]
null
null
null
terrascript/openstack/r.py
vutsalsinghal/python-terrascript
3b9fb5ad77453d330fb0cd03524154a342c5d5dc
[ "BSD-2-Clause" ]
null
null
null
terrascript/openstack/r.py
vutsalsinghal/python-terrascript
3b9fb5ad77453d330fb0cd03524154a342c5d5dc
[ "BSD-2-Clause" ]
null
null
null
# terrascript/openstack/r.py import terrascript class openstack_blockstorage_quotaset_v2(terrascript.Resource): pass class openstack_blockstorage_quotaset_v3(terrascript.Resource): pass class openstack_blockstorage_volume_v1(terrascript.Resource): pass class openstack_blockstorage_volume_v2(terrascript.Resource): pass class openstack_blockstorage_volume_v3(terrascript.Resource): pass class openstack_blockstorage_volume_attach_v2(terrascript.Resource): pass class openstack_blockstorage_volume_attach_v3(terrascript.Resource): pass class openstack_compute_flavor_v2(terrascript.Resource): pass class openstack_compute_flavor_access_v2(terrascript.Resource): pass class openstack_compute_instance_v2(terrascript.Resource): pass class openstack_compute_interface_attach_v2(terrascript.Resource): pass class openstack_compute_keypair_v2(terrascript.Resource): pass class openstack_compute_secgroup_v2(terrascript.Resource): pass class openstack_compute_servergroup_v2(terrascript.Resource): pass class openstack_compute_floatingip_v2(terrascript.Resource): pass class openstack_compute_floatingip_associate_v2(terrascript.Resource): pass class openstack_compute_volume_attach_v2(terrascript.Resource): pass class openstack_containerinfra_clustertemplate_v1(terrascript.Resource): pass class openstack_containerinfra_cluster_v1(terrascript.Resource): pass class openstack_db_instance_v1(terrascript.Resource): pass class openstack_db_user_v1(terrascript.Resource): pass class openstack_db_configuration_v1(terrascript.Resource): pass class openstack_db_database_v1(terrascript.Resource): pass class openstack_dns_recordset_v2(terrascript.Resource): pass class openstack_dns_zone_v2(terrascript.Resource): pass class openstack_fw_firewall_v1(terrascript.Resource): pass class openstack_fw_policy_v1(terrascript.Resource): pass class openstack_fw_rule_v1(terrascript.Resource): pass class openstack_identity_endpoint_v3(terrascript.Resource): pass class openstack_identity_project_v3(terrascript.Resource): pass class openstack_identity_role_v3(terrascript.Resource): pass class openstack_identity_role_assignment_v3(terrascript.Resource): pass class openstack_identity_service_v3(terrascript.Resource): pass class openstack_identity_user_v3(terrascript.Resource): pass class openstack_identity_application_credential_v3(terrascript.Resource): pass class openstack_images_image_v2(terrascript.Resource): pass class openstack_lb_member_v1(terrascript.Resource): pass class openstack_lb_monitor_v1(terrascript.Resource): pass class openstack_lb_pool_v1(terrascript.Resource): pass class openstack_lb_vip_v1(terrascript.Resource): pass class openstack_lb_loadbalancer_v2(terrascript.Resource): pass class openstack_lb_listener_v2(terrascript.Resource): pass class openstack_lb_pool_v2(terrascript.Resource): pass class openstack_lb_member_v2(terrascript.Resource): pass class openstack_lb_monitor_v2(terrascript.Resource): pass class openstack_lb_l7policy_v2(terrascript.Resource): pass class openstack_lb_l7rule_v2(terrascript.Resource): pass class openstack_networking_floatingip_v2(terrascript.Resource): pass class openstack_networking_floatingip_associate_v2(terrascript.Resource): pass class openstack_networking_network_v2(terrascript.Resource): pass class openstack_networking_port_v2(terrascript.Resource): pass class openstack_networking_rbac_policy_v2(terrascript.Resource): pass class openstack_networking_port_secgroup_associate_v2(terrascript.Resource): pass class openstack_networking_qos_bandwidth_limit_rule_v2(terrascript.Resource): pass class openstack_networking_qos_dscp_marking_rule_v2(terrascript.Resource): pass class openstack_networking_qos_minimum_bandwidth_rule_v2(terrascript.Resource): pass class openstack_networking_qos_policy_v2(terrascript.Resource): pass class openstack_networking_router_v2(terrascript.Resource): pass class openstack_networking_router_interface_v2(terrascript.Resource): pass class openstack_networking_router_route_v2(terrascript.Resource): pass class openstack_networking_secgroup_v2(terrascript.Resource): pass class openstack_networking_secgroup_rule_v2(terrascript.Resource): pass class openstack_networking_subnet_v2(terrascript.Resource): pass class openstack_networking_subnet_route_v2(terrascript.Resource): pass class openstack_networking_subnetpool_v2(terrascript.Resource): pass class openstack_networking_addressscope_v2(terrascript.Resource): pass class openstack_networking_trunk_v2(terrascript.Resource): pass class openstack_objectstorage_container_v1(terrascript.Resource): pass class openstack_objectstorage_object_v1(terrascript.Resource): pass class openstack_objectstorage_tempurl_v1(terrascript.Resource): pass class openstack_vpnaas_ipsec_policy_v2(terrascript.Resource): pass class openstack_vpnaas_service_v2(terrascript.Resource): pass class openstack_vpnaas_ike_policy_v2(terrascript.Resource): pass class openstack_vpnaas_endpoint_group_v2(terrascript.Resource): pass class openstack_vpnaas_site_connection_v2(terrascript.Resource): pass class openstack_sharedfilesystem_securityservice_v2(terrascript.Resource): pass class openstack_sharedfilesystem_sharenetwork_v2(terrascript.Resource): pass class openstack_sharedfilesystem_share_v2(terrascript.Resource): pass class openstack_sharedfilesystem_share_access_v2(terrascript.Resource): pass class openstack_keymanager_secret_v1(terrascript.Resource): pass class openstack_keymanager_container_v1(terrascript.Resource): pass
23.629032
79
0.832253
79424802a8f944657e12fc180a6c7395ea8b623c
5,994
py
Python
Transformer/SLT_transformer/test.py
Seunghoon-Yi/Paper_review-PyTorch
44728cc9c3eee6c0146b0cff8a46099e789dfabc
[ "MIT" ]
2
2021-08-12T13:05:37.000Z
2021-12-30T08:25:18.000Z
Transformer/SLT_transformer/test.py
Seunghoon-Yi/Paper_review-PyTorch
44728cc9c3eee6c0146b0cff8a46099e789dfabc
[ "MIT" ]
null
null
null
Transformer/SLT_transformer/test.py
Seunghoon-Yi/Paper_review-PyTorch
44728cc9c3eee6c0146b0cff8a46099e789dfabc
[ "MIT" ]
null
null
null
from model import SLT_Transformer from dataloader import Vocab_tokenizer, get_loader from sklearn.utils import shuffle import pandas as pd import os import numpy as np import torch import torch.nn as nn device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def eval(Model, iterator, metric, data_tokenizer, trial): # No gradient updatd, no optimizer and clipping Model.eval() epoch_loss = 0 with torch.no_grad(): total_len = len(iterator) test_sentence = [] GT_sentence = [] for i, (features, glosses, translations) in enumerate(iterator): src, orth, trg = \ features.to(device), glosses.to(device), translations.to(device) predict_translation, predict_gloss = Model(src, trg[:, :-1]) for tokens in predict_translation: # Get argmax of tokens, bring it back to CPU. tokens = torch.argmax(tokens, dim = 1).to(dtype = torch.long, device = torch.device("cpu")) tokens = tokens.numpy() # make string, append it to test_sentence itos = data_tokenizer.stringnize(tokens) pred_string = ' '.join(itos) test_sentence.append(pred_string) for tokens in trg: tokens = tokens.to(dtype=torch.long, device=torch.device("cpu")) tokens = tokens.numpy() # make string, append it to test_sentence itos = data_tokenizer.stringnize(tokens[1:]) GT_string = ' '.join(itos) GT_sentence.append(GT_string) translation_dim = predict_translation.shape[-1] gloss_dim = predict_gloss.shape[-1] # Predictions predict_translation = predict_translation.contiguous().view(-1, translation_dim) predict_gloss = predict_gloss.contiguous().view(-1, gloss_dim) # GTs orth = orth.contiguous().view(-1) orth = orth.type(torch.LongTensor).to(device) trg = trg[:, 1:].contiguous().view(-1) trg = trg.type(torch.LongTensor).to(device) loss_translation = metric(predict_translation, trg) loss_gloss = metric(predict_gloss, orth) loss = loss_translation epoch_loss += loss.item() with open(f"./bestmodel/TestPred_trial_{trial}.txt", "w", -1, "utf-8") as f: f.write('\n'.join(test_sentence)) f.close() with open(f"./bestmodel/TestGT_trial_{trial}.txt", "w", -1, "utf-8") as f: f.write('\n'.join(GT_sentence)) f.close() return epoch_loss / len(iterator) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def main(): base_path = 'C:/Users/Siryu_sci/2021-MLVU/SLT_project/' train_data = pd.read_csv(base_path + "PHOENIX-2014-T.train.corpus.csv", delimiter='|') val_data = pd.read_csv(base_path + "PHOENIX-2014-T.dev.corpus.csv", delimiter='|') test_data = pd.read_csv(base_path + "PHOENIX-2014-T.test.corpus.csv", delimiter='|') Traindata = pd.concat([train_data, val_data]) max_len = 55 # Define the tokenizer. data : translation, orth : gloss data_tokenizer = Vocab_tokenizer(freq_th=1, max_len = max_len) orth_tokenizer = Vocab_tokenizer(freq_th=1, max_len = 60) data_tokenizer.build_vocab(Traindata.translation) orth_tokenizer.build_vocab(Traindata.orth) #print(orth_tokenizer.stoi) targets = data_tokenizer.numericalize(Traindata.translation) glosses = orth_tokenizer.numericalize(Traindata.orth) labels = Traindata.name.to_numpy() print("Translation : ", targets.shape, len(data_tokenizer), "\n", "Glosses : ", glosses.shape, len(orth_tokenizer)) # (7615, 300) 2948 ############################# Split them into Train and dev set ############################# labels, targets, glosses = shuffle(labels, targets, glosses, random_state=42) train_labels, train_glosses, train_translations = labels[:7115], glosses[:7115], targets[:7115] val_labels, val_glosses, val_translations = labels[7115:], glosses[7115:], targets[7115:] test_labels = test_data.name.to_numpy() test_glosses = orth_tokenizer.numericalize(test_data.orth) test_translations = data_tokenizer.numericalize(test_data.translation) BATCH_SIZE = 8 train_loader, train_dataset, pad_idx = get_loader(base_path, train_labels, train_glosses, train_translations, n_workers=2, BS=BATCH_SIZE, transform=None) val_loader, val_dataset, pad_idx = get_loader(base_path, val_labels, val_glosses, val_translations, n_workers=2, BS=BATCH_SIZE, transform=None) test_loader, test_dataset, pad_idx = get_loader(base_path, test_labels, test_glosses, test_translations, n_workers=2, BS=BATCH_SIZE, transform=None) N_tokens = len(data_tokenizer) # Since we're only training the model on the training dataset! N_glosses = len(orth_tokenizer) ######################### Define the model and auxiliary functions ######################### Transformer = SLT_Transformer(N_glosses, N_tokens, pad_idx, pad_idx, device=device).cuda() criterion = nn.CrossEntropyLoss().cuda() print(f'The model has {count_parameters(Transformer):,} trainable parameters') Transformer.load_state_dict(torch.load('B4_n2_d512_gloss_pool.pt')) total_loss = 0 N_trial = 5 for i in range(N_trial): test_loss = eval(Transformer, test_loader, criterion, data_tokenizer, i) print(test_loss) ; total_loss+=test_loss print("average loss : ", total_loss/N_trial) if __name__ == "__main__": main()
42.814286
116
0.621455
7942484b439e4cca8ca6a11c5ce73641d21bf282
596
py
Python
pixel_test.py
ChrisProgramming2018/ReinforcementLearning
d5895d989249978a0b24fa0488433950daeb31bd
[ "MIT" ]
null
null
null
pixel_test.py
ChrisProgramming2018/ReinforcementLearning
d5895d989249978a0b24fa0488433950daeb31bd
[ "MIT" ]
null
null
null
pixel_test.py
ChrisProgramming2018/ReinforcementLearning
d5895d989249978a0b24fa0488433950daeb31bd
[ "MIT" ]
null
null
null
import numpy as np import robosuite as suite from model_cnn import CNNStemNetwork env_name = 'SawyerPickPlace' env = suite.make(env_name, has_renderer=False, ignore_done=True, use_camera_obs=True, has_offscreen_renderer=True, camera_height=84, camera_width=84, render_collision_mesh=False, render_visual_mesh=True, camera_name='agentview', use_object_obs=False, camera_depth=True, reward_shaping=True,) state = env.reset() print(state) print(state["image"]) print(state["image"].shape)
18.060606
36
0.666107
79424b80c3637649defad3c6cc964dd7b919e9c3
233
py
Python
configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
yypurpose/mmdetection
ec6bfd96eae0af047c623f3d1ec31b0b3f1f4a6c
[ "Apache-2.0" ]
null
null
null
configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
yypurpose/mmdetection
ec6bfd96eae0af047c623f3d1ec31b0b3f1f4a6c
[ "Apache-2.0" ]
null
null
null
configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
yypurpose/mmdetection
ec6bfd96eae0af047c623f3d1ec31b0b3f1f4a6c
[ "Apache-2.0" ]
null
null
null
_base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
38.833333
73
0.699571
79424cbcc2b860ef06e391f7ca542b48fd6590ce
4,527
py
Python
tensorflow/tools/docs/tf_doctest.py
yolman230/tensorflow
8180678e1b71f9e4326b9d84987d78232000bac2
[ "Apache-2.0" ]
2
2019-12-10T11:03:50.000Z
2020-07-22T22:04:14.000Z
tensorflow/tools/docs/tf_doctest.py
yolman230/tensorflow
8180678e1b71f9e4326b9d84987d78232000bac2
[ "Apache-2.0" ]
2
2021-08-25T15:53:30.000Z
2022-02-10T01:40:41.000Z
tensorflow/tools/docs/tf_doctest.py
yolman230/tensorflow
8180678e1b71f9e4326b9d84987d78232000bac2
[ "Apache-2.0" ]
1
2019-12-10T05:27:13.000Z
2019-12-10T05:27:13.000Z
# Lint as: python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Run doctests for tensorflow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from absl import flags from absl.testing import absltest import numpy as np import tensorflow.compat.v2 as tf from tensorflow.tools.docs import tf_doctest_lib # We put doctest after absltest so that it picks up the unittest monkeypatch. # Otherwise doctest tests aren't runnable at all. import doctest # pylint: disable=g-bad-import-order tf.compat.v1.enable_v2_behavior() FLAGS = flags.FLAGS flags.DEFINE_string('module', None, 'A specific module to run doctest on.') flags.DEFINE_boolean('list', None, 'List all the modules in the core package imported.') flags.DEFINE_string('file', None, 'A specific file to run doctest on.') flags.mark_flags_as_mutual_exclusive(['module', 'file']) flags.mark_flags_as_mutual_exclusive(['list', 'file']) PACKAGE = 'tensorflow.python.' def find_modules(): """Finds all the modules in the core package imported. Returns: A list containing all the modules in tensorflow.python. """ tf_modules = [] for name, module in sys.modules.items(): if name.startswith(PACKAGE): tf_modules.append(module) return tf_modules def filter_on_submodules(all_modules, submodule): """Filters all the modules based on the module flag. The module flag has to be relative to the core package imported. For example, if `submodule=keras.layers` then, this function will return all the modules in the submodule. Args: all_modules: All the modules in the core package. submodule: Submodule to filter from all the modules. Returns: All the modules in the submodule. """ filtered_modules = [ mod for mod in all_modules if PACKAGE + submodule in mod.__name__ ] return filtered_modules def get_module_and_inject_docstring(file_path): """Replaces the docstring of the module with the changed file's content. Args: file_path: Path to the file Returns: A list containing the module changed by the file. """ file_path = os.path.abspath(file_path) mod_index = file_path.find(PACKAGE.replace('.', os.sep)) file_mod_name, _ = os.path.splitext(file_path[mod_index:]) file_module = sys.modules[file_mod_name.replace(os.sep, '.')] with open(file_path, 'r') as f: content = f.read() file_module.__doc__ = content return [file_module] class TfTestCase(tf.test.TestCase): def set_up(self, test): self.setUp() def tear_down(self, test): self.tearDown() def load_tests(unused_loader, tests, unused_ignore): """Loads all the tests in the docstrings and runs them.""" tf_modules = find_modules() if FLAGS.module: tf_modules = filter_on_submodules(tf_modules, FLAGS.module) if FLAGS.list: print('**************************************************') for mod in tf_modules: print(mod.__name__) print('**************************************************') return tests if FLAGS.file: tf_modules = get_module_and_inject_docstring(FLAGS.file) for module in tf_modules: testcase = TfTestCase() tests.addTests( doctest.DocTestSuite( module, test_finder=doctest.DocTestFinder(exclude_empty=False), extraglobs={ 'tf': tf, 'np': np, 'os': os }, setUp=testcase.set_up, tearDown=testcase.tear_down, checker=tf_doctest_lib.TfDoctestOutputChecker(), optionflags=(doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.IGNORE_EXCEPTION_DETAIL | doctest.DONT_ACCEPT_BLANKLINE), )) return tests if __name__ == '__main__': absltest.main()
28.118012
80
0.674398
79424d2fb1ce244159d7a3b0c533ef36236d4262
7,650
py
Python
sdk/python/pulumi_azure_native/network/v20200401/get_local_network_gateway.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20200401/get_local_network_gateway.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20200401/get_local_network_gateway.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetLocalNetworkGatewayResult', 'AwaitableGetLocalNetworkGatewayResult', 'get_local_network_gateway', ] @pulumi.output_type class GetLocalNetworkGatewayResult: """ A common class for general resource information. """ def __init__(__self__, bgp_settings=None, etag=None, fqdn=None, gateway_ip_address=None, id=None, local_network_address_space=None, location=None, name=None, provisioning_state=None, resource_guid=None, tags=None, type=None): if bgp_settings and not isinstance(bgp_settings, dict): raise TypeError("Expected argument 'bgp_settings' to be a dict") pulumi.set(__self__, "bgp_settings", bgp_settings) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if fqdn and not isinstance(fqdn, str): raise TypeError("Expected argument 'fqdn' to be a str") pulumi.set(__self__, "fqdn", fqdn) if gateway_ip_address and not isinstance(gateway_ip_address, str): raise TypeError("Expected argument 'gateway_ip_address' to be a str") pulumi.set(__self__, "gateway_ip_address", gateway_ip_address) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if local_network_address_space and not isinstance(local_network_address_space, dict): raise TypeError("Expected argument 'local_network_address_space' to be a dict") pulumi.set(__self__, "local_network_address_space", local_network_address_space) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if resource_guid and not isinstance(resource_guid, str): raise TypeError("Expected argument 'resource_guid' to be a str") pulumi.set(__self__, "resource_guid", resource_guid) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="bgpSettings") def bgp_settings(self) -> Optional['outputs.BgpSettingsResponse']: """ Local network gateway's BGP speaker settings. """ return pulumi.get(self, "bgp_settings") @property @pulumi.getter def etag(self) -> str: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def fqdn(self) -> Optional[str]: """ FQDN of local network gateway. """ return pulumi.get(self, "fqdn") @property @pulumi.getter(name="gatewayIpAddress") def gateway_ip_address(self) -> Optional[str]: """ IP address of local network gateway. """ return pulumi.get(self, "gateway_ip_address") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="localNetworkAddressSpace") def local_network_address_space(self) -> Optional['outputs.AddressSpaceResponse']: """ Local network site address space. """ return pulumi.get(self, "local_network_address_space") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the local network gateway resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> str: """ The resource GUID property of the local network gateway resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetLocalNetworkGatewayResult(GetLocalNetworkGatewayResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetLocalNetworkGatewayResult( bgp_settings=self.bgp_settings, etag=self.etag, fqdn=self.fqdn, gateway_ip_address=self.gateway_ip_address, id=self.id, local_network_address_space=self.local_network_address_space, location=self.location, name=self.name, provisioning_state=self.provisioning_state, resource_guid=self.resource_guid, tags=self.tags, type=self.type) def get_local_network_gateway(local_network_gateway_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetLocalNetworkGatewayResult: """ A common class for general resource information. :param str local_network_gateway_name: The name of the local network gateway. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['localNetworkGatewayName'] = local_network_gateway_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:network/v20200401:getLocalNetworkGateway', __args__, opts=opts, typ=GetLocalNetworkGatewayResult).value return AwaitableGetLocalNetworkGatewayResult( bgp_settings=__ret__.bgp_settings, etag=__ret__.etag, fqdn=__ret__.fqdn, gateway_ip_address=__ret__.gateway_ip_address, id=__ret__.id, local_network_address_space=__ret__.local_network_address_space, location=__ret__.location, name=__ret__.name, provisioning_state=__ret__.provisioning_state, resource_guid=__ret__.resource_guid, tags=__ret__.tags, type=__ret__.type)
36.428571
229
0.652418
79424eb4899625bb1d3174966210aac2fb2111ec
541
py
Python
bigbrain/bigbrain/oauth2/tags/customfilters.py
slhill/bigbrain
69dcf775c450c867c8c65c1b05e06cb6d3a7e5d4
[ "Apache-2.0" ]
null
null
null
bigbrain/bigbrain/oauth2/tags/customfilters.py
slhill/bigbrain
69dcf775c450c867c8c65c1b05e06cb6d3a7e5d4
[ "Apache-2.0" ]
null
null
null
bigbrain/bigbrain/oauth2/tags/customfilters.py
slhill/bigbrain
69dcf775c450c867c8c65c1b05e06cb6d3a7e5d4
[ "Apache-2.0" ]
null
null
null
from google.appengine.ext import webapp import json register = webapp.template.create_template_register() def gql_json_parser(query_obj): result = [] for entry in query_obj: result.append(dict([(p, unicode(getattr(entry, p))) for p in entry.properties()])) return result @register.filter(name='make_json') def make_json(thing): try: return json.dumps(thing) except Exception: return json.dumps(gql_json_parser(thing)) @register.filter(name='strip_benchmark') def strip_benchmark(name): return name[10:]
24.590909
90
0.731978
79424f1e8410408076d00010566f2bd8e4c9c1d6
748
py
Python
steps/oci-compute-step-instances-start/step.py
Bryxxit/relay-integrations-relay-oci-compute
d5d7f00317b9a58fecef9969660d50291ec4eb6b
[ "Apache-2.0" ]
null
null
null
steps/oci-compute-step-instances-start/step.py
Bryxxit/relay-integrations-relay-oci-compute
d5d7f00317b9a58fecef9969660d50291ec4eb6b
[ "Apache-2.0" ]
null
null
null
steps/oci-compute-step-instances-start/step.py
Bryxxit/relay-integrations-relay-oci-compute
d5d7f00317b9a58fecef9969660d50291ec4eb6b
[ "Apache-2.0" ]
2
2021-01-12T17:09:00.000Z
2021-01-13T12:57:32.000Z
#!/usr/bin/env python import oci from relay_sdk import Interface, Dynamic as D relay = Interface() config = { "user": relay.get(D.oci.connection.userOCID), "key_content": relay.get(D.oci.connection.keyContent), "fingerprint": relay.get(D.oci.connection.fingerprint), "tenancy": relay.get(D.oci.connection.tenancy), "region": relay.get(D.oci.region) } from oci.config import validate_config validate_config(config) # initialize the ComputeClient compute = oci.core.ComputeClient(config) instanceIDs = relay.get(D.oci.instanceIDs) if not instanceIDs: print("No instance IDs found") exit(0) print('Starting instances: {}'.format(instanceIDs)) for instanceID in instanceIDs: compute.instance_action(instanceID,"START")
24.933333
59
0.744652
79425005707466e3d2dcaef4913ae1b768d5d323
2,818
py
Python
samples.py
smartsheet-samples/python-snippets
04951c2ca8ae1a97386bdd3fa6e010f2845e1421
[ "MIT" ]
3
2018-05-14T14:08:33.000Z
2021-07-05T16:01:00.000Z
samples.py
smartsheet-samples/python-snippets
04951c2ca8ae1a97386bdd3fa6e010f2845e1421
[ "MIT" ]
null
null
null
samples.py
smartsheet-samples/python-snippets
04951c2ca8ae1a97386bdd3fa6e010f2845e1421
[ "MIT" ]
2
2019-04-12T16:59:19.000Z
2021-09-03T12:13:23.000Z
# Install the smartsheet sdk with the command: pip install smartsheet-python-sdk import smartsheet import logging # TODO: Set your API access token here, or leave as None and set as environment variable "SMARTSHEET_ACCESS_TOKEN" access_token = None # Download an image in a cell def download_cell_image(client, sheet_id, row_id, column_id, default_filename): # Get desired row row = client.Sheets.get_row(sheet_id, row_id) cell = row.get_column(column_id) image = cell.image filename = getattr(image, 'alt_text', default_filename) # Obtain a temporary image URL imageUrl = ss_client.models.ImageUrl( { "imageId": image.id } ) response = ss_client.Images.get_image_urls([imageUrl]) url = response.image_urls[0].url # Download the image import requests response = requests.get(url) if response.status_code == 200: with open(filename, 'wb') as f: f.write(response.content) # Set column definition to a list of contacts def add_column_contacts(ss_client, sheet_id, column_id, emails): column = ss_client.models.Column() column.type = 'CONTACT_LIST' contacts = [] for email in emails: contact_option = ss_client.models.contact_option.ContactOption() contact_option.email = email contacts.append(contact_option) column.contact_options = contacts ss_client.Sheets.update_column(sheet_id, column_id, column) return None # Set sheet link # Value from source will be visible in dest def set_sheet_link(ss_client, source_sheet_id, source_row_id, source_column_id, dest_sheet_id, dest_row_id, dest_column_id): cell_link = ss_client.models.CellLink() cell_link.sheet_id = source_sheet_id cell_link.row_id = source_row_id cell_link.column_id = source_column_id cell = ss_client.models.Cell() cell.column_id = dest_column_id cell.value = None cell.link_in_from_cell = cell_link row = ss_client.models.Row() row.id = dest_row_id row.cells.append(cell) rows = [] rows.append(row) ss_client.Sheets.update_rows(dest_sheet_id, rows) return None print('Starting ...') # Initialize client ss_client = smartsheet.Smartsheet(access_token) # Make sure we don't miss any error ss_client.errors_as_exceptions(True) # setup logging logging.basicConfig(filename='samples.log', level=logging.DEBUG) # Add your test calls here sheet_id = 5370997298751364 row_id = 6483985534609284 column_id = 2009176927954820 sheet_id2 = 6903887367038852 row_id2 = 6144655761926020 column_id2 = 7262773366286212 download_cell_image(ss_client, sheet_id, row_id, column_id, "save.jpg") # add_column_contacts(ss_client, sheet_id, column_id, ['[email protected]']) # set_sheet_link(ss_client, sheet_id2, row_id2, column_id2, sheet_id, row_id, column_id) print('Done')
29.978723
124
0.742725
79425119b157d84c715d6604792d8a4658441608
1,048
py
Python
UE4Parse/Assets/Objects/Decompress.py
MinshuG/pyUE4Parse
96cda8132ff423bd36be20828025c2c1c0a7e406
[ "MIT" ]
13
2021-06-09T09:21:00.000Z
2022-03-30T22:13:24.000Z
UE4Parse/Assets/Objects/Decompress.py
MinshuG/pyUE4Parse
96cda8132ff423bd36be20828025c2c1c0a7e406
[ "MIT" ]
3
2021-09-04T22:23:02.000Z
2022-03-04T09:45:45.000Z
UE4Parse/Assets/Objects/Decompress.py
MinshuG/pyUE4Parse
96cda8132ff423bd36be20828025c2c1c0a7e406
[ "MIT" ]
6
2021-09-02T10:28:21.000Z
2022-03-30T22:13:37.000Z
def Decompress(buffer: bytes, method, decompressSize = 0) -> bytes: if method == "Oodle": from UE4Parse.Oodle import Decompress as OoDecompress result = OoDecompress(buffer=buffer, decompressLength=decompressSize) assert len(result) == decompressSize return result elif method == "Gzip": from gzip import decompress as gDecompress result = gDecompress(buffer) assert len(result) == decompressSize return result elif method == "Zlib": from zlib import decompress as zDecompress result = zDecompress(buffer, bufsize=decompressSize) assert len(result) == decompressSize return result elif method == "LZ4": from lz4.frame import LZ4FrameDecompressor lz4Decompress = LZ4FrameDecompressor().decompress result = lz4Decompress(buffer, max_length=decompressSize) assert len(result) == decompressSize return result else: raise NotImplementedError("Unknown Compression Method " + str(method))
38.814815
78
0.674618
7942514027cd4e07d0a0d41f220087ae70649244
53,763
py
Python
plugins/modules/oci_database_autonomous_database.py
rishimahajan/oci-ansible-collection
3a0cfd55347466fcd8ab257d3d7c41d58f5469ab
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_database_autonomous_database.py
rishimahajan/oci-ansible-collection
3a0cfd55347466fcd8ab257d3d7c41d58f5469ab
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_database_autonomous_database.py
rishimahajan/oci-ansible-collection
3a0cfd55347466fcd8ab257d3d7c41d58f5469ab
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2017, 2020 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_database_autonomous_database short_description: Manage an AutonomousDatabase resource in Oracle Cloud Infrastructure description: - This module allows the user to create, update and delete an AutonomousDatabase resource in Oracle Cloud Infrastructure - For I(state=present), creates a new Autonomous Database. - "This resource has the following action operations in the M(oci_autonomous_database_actions) module: autonomous_database_manual_refresh, deregister_autonomous_database_data_safe, disable_autonomous_database_operations_insights, enable_autonomous_database_operations_insights, fail_over, generate_autonomous_database_wallet, register_autonomous_database_data_safe, restart, restore, rotate_autonomous_database_encryption_key, start, stop, switchover." version_added: "2.9" author: Oracle (@oracle) options: compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment of the Autonomous Database. - Required for create using I(state=present). - Required for update when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. - Required for delete when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. type: str db_name: description: - The database name. The name must begin with an alphabetic character and can contain a maximum of 14 alphanumeric characters. Special characters are not permitted. The database name must be unique in the tenancy. - Required for create using I(state=present). - This parameter is updatable. type: str cpu_core_count: description: - The number of OCPU cores to be made available to the database. - Required for create using I(state=present). - This parameter is updatable. type: int db_workload: description: - "The Autonomous Database workload type. The following values are valid:" - "- OLTP - indicates an Autonomous Transaction Processing database - DW - indicates an Autonomous Data Warehouse database - AJD - indicates an Autonomous JSON Database" - This parameter is updatable. type: str choices: - "OLTP" - "DW" - "AJD" data_storage_size_in_tbs: description: - The size, in terabytes, of the data volume that will be created and attached to the database. This storage can later be scaled up if needed. - Required for create using I(state=present). - This parameter is updatable. type: int is_free_tier: description: - Indicates if this is an Always Free resource. The default value is false. Note that Always Free Autonomous Databases have 1 CPU and 20GB of memory. For Always Free databases, memory and CPU cannot be scaled. - This parameter is updatable. type: bool admin_password: description: - "The password must be between 12 and 30 characters long, and must contain at least 1 uppercase, 1 lowercase, and 1 numeric character. It cannot contain the double quote symbol (\\") or the username \\"admin\\", regardless of casing." - This parameter is updatable. type: str display_name: description: - The user-friendly name for the Autonomous Database. The name does not have to be unique. - Required for create, update, delete when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is set. - This parameter is updatable when C(OCI_USE_NAME_AS_IDENTIFIER) is not set. type: str aliases: ["name"] license_model: description: - The Oracle license model that applies to the Oracle Autonomous Database. Bring your own license (BYOL) allows you to apply your current on- premises Oracle software licenses to equivalent, highly automated Oracle PaaS and IaaS services in the cloud. License Included allows you to subscribe to new Oracle Database software licenses and the Database service. Note that when provisioning an Autonomous Database on L(dedicated Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adbddoverview.htm), this attribute must be null because the attribute is already set at the Autonomous Exadata Infrastructure level. When using L(shared Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adboverview.htm#AEI), if a value is not specified, the system will supply the value of `BRING_YOUR_OWN_LICENSE`. - This parameter is updatable. type: str choices: - "LICENSE_INCLUDED" - "BRING_YOUR_OWN_LICENSE" is_preview_version_with_service_terms_accepted: description: - If set to `TRUE`, indicates that an Autonomous Database preview version is being provisioned, and that the preview version's terms of service have been accepted. Note that preview version software is only available for databases on L(shared Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adboverview.htm#AEI). type: bool is_auto_scaling_enabled: description: - Indicates if auto scaling is enabled for the Autonomous Database OCPU core count. The default value is `FALSE`. - This parameter is updatable. type: bool is_dedicated: description: - True if the database is on L(dedicated Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adbddoverview.htm). type: bool autonomous_container_database_id: description: - The Autonomous Container Database L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm). type: str is_access_control_enabled: description: - Indicates if the database-level access control is enabled. If disabled, database access is defined by the network security rules. If enabled, database access is restricted to the IP addresses defined by the rules specified with the `whitelistedIps` property. While specifying `whitelistedIps` rules is optional, if database-level access control is enabled and no rules are specified, the database will become inaccessible. The rules can be added later using the `UpdateAutonomousDatabase` API operation or edit option in console. When creating a database clone, the desired access control setting should be specified. By default, database-level access control will be disabled for the clone. - This property is applicable only to Autonomous Databases on the Exadata Cloud@Customer platform. - This parameter is updatable. type: bool whitelisted_ips: description: - The client IP access control list (ACL). This feature is available for autonomous databases on L(shared Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adboverview.htm#AEI) and on Exadata Cloud@Customer. Only clients connecting from an IP address included in the ACL may access the Autonomous Database instance. - "For shared Exadata infrastructure, this is an array of CIDR (Classless Inter-Domain Routing) notations for a subnet or VCN OCID. Use a semicolon (;) as a deliminator between the VCN-specific subnets or IPs. Example: `[\\"1.1.1.1\\",\\"1.1.1.0/24\\",\\"ocid1.vcn.oc1.sea.<unique_id>\\",\\"ocid1.vcn.oc1.sea.<unique_id1>;1.1.1.1\\",\\"ocid1.vcn.oc1.sea.<u nique_id2>;1.1.0.0/16\\"]` For Exadata Cloud@Customer, this is an array of IP addresses or CIDR (Classless Inter-Domain Routing) notations. Example: `[\\"1.1.1.1\\",\\"1.1.1.0/24\\",\\"1.1.2.25\\"]`" - For an update operation, if you want to delete all the IPs in the ACL, use an array with a single empty string entry. - This parameter is updatable. type: list is_data_guard_enabled: description: - Indicates whether the Autonomous Database has Data Guard enabled. - This parameter is updatable. type: bool subnet_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the subnet the resource is associated with. - "**Subnet Restrictions:** - For bare metal DB systems and for single node virtual machine DB systems, do not use a subnet that overlaps with 192.168.16.16/28. - For Exadata and virtual machine 2-node RAC systems, do not use a subnet that overlaps with 192.168.128.0/20. - For Autonomous Database, setting this will disable public secure access to the database." - These subnets are used by the Oracle Clusterware private interconnect on the database instance. Specifying an overlapping subnet will cause the private interconnect to malfunction. This restriction applies to both the client subnet and the backup subnet. - This parameter is updatable. type: str nsg_ids: description: - "A list of the L(OCIDs,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the network security groups (NSGs) that this resource belongs to. Setting this to an empty array after the list is created removes the resource from all NSGs. For more information about NSGs, see L(Security Rules,https://docs.cloud.oracle.com/Content/Network/Concepts/securityrules.htm). **NsgIds restrictions:** - Autonomous Databases with private access require at least 1 Network Security Group (NSG). The nsgIds array cannot be empty." - This parameter is updatable. type: list private_endpoint_label: description: - The private endpoint label for the resource. Setting this to an empty string, after the private endpoint database gets created, will change the same private endpoint database to the public endpoint database. - This parameter is updatable. type: str freeform_tags: description: - Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). - "Example: `{\\"Department\\": \\"Finance\\"}`" - This parameter is updatable. type: dict defined_tags: description: - Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). - This parameter is updatable. type: dict db_version: description: - A valid Oracle Database version for Autonomous Database. - This parameter is updatable. type: str source: description: - "The source of the database: Use `NONE` for creating a new Autonomous Database. Use `DATABASE` for creating a new Autonomous Database by cloning an existing Autonomous Database." - "For Autonomous Databases on L(shared Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adboverview.htm#AEI), the following cloning options are available: Use `BACKUP_FROM_ID` for creating a new Autonomous Database from a specified backup. Use `BACKUP_FROM_TIMESTAMP` for creating a point-in-time Autonomous Database clone using backups. For more information, see L(Cloning an Autonomous Database,https://docs.cloud.oracle.com/Content/Database/Tasks/adbcloning.htm)." type: str choices: - "DATABASE" - "CLONE_TO_REFRESHABLE" - "BACKUP_FROM_ID" - "BACKUP_FROM_TIMESTAMP" - "NONE" default: "NONE" source_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the source Autonomous Database that you will clone to create a new Autonomous Database. - Required when source is one of ['DATABASE', 'CLONE_TO_REFRESHABLE'] type: str clone_type: description: - The Autonomous Database clone type. - Required when source is one of ['BACKUP_FROM_TIMESTAMP', 'DATABASE', 'BACKUP_FROM_ID'] type: str choices: - "FULL" - "METADATA" refreshable_mode: description: - The refresh mode of the clone. AUTOMATIC indicates that the clone is automatically being refreshed with data from the source Autonomous Database. - This parameter is updatable. - Applicable when source is 'CLONE_TO_REFRESHABLE' type: str choices: - "AUTOMATIC" - "MANUAL" autonomous_database_backup_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the source Autonomous Database Backup that you will clone to create a new Autonomous Database. - Required when source is 'BACKUP_FROM_ID' type: str autonomous_database_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the source Autonomous Database that you will clone to create a new Autonomous Database. - Required for update using I(state=present) when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is not set. - Required for delete using I(state=absent) when environment variable C(OCI_USE_NAME_AS_IDENTIFIER) is not set. - Required when source is 'BACKUP_FROM_TIMESTAMP' type: str aliases: ["id"] timestamp: description: - The timestamp specified for the point-in-time clone of the source Autonomous Database. The timestamp must be in the past. - Required when source is 'BACKUP_FROM_TIMESTAMP' type: str is_refreshable_clone: description: - Indicates whether the Autonomous Database is a refreshable clone. - This parameter is updatable. type: bool open_mode: description: - The `DATABASE OPEN` mode. You can open the database in `READ_ONLY` or `READ_WRITE` mode. - This parameter is updatable. type: str choices: - "READ_ONLY" - "READ_WRITE" permission_level: description: - The Autonomous Database permission level. Restricted mode allows access only to admin users. - This parameter is updatable. type: str choices: - "RESTRICTED" - "UNRESTRICTED" state: description: - The state of the AutonomousDatabase. - Use I(state=present) to create or update an AutonomousDatabase. - Use I(state=absent) to delete an AutonomousDatabase. type: str required: false default: 'present' choices: ["present", "absent"] extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_creatable_resource, oracle.oci.oracle_wait_options ] """ EXAMPLES = """ - name: Create autonomous_database oci_database_autonomous_database: compartment_id: ocid.compartment.oc1..<unique_ID> display_name: example_autonomous_database db_name: adatabasedb1 admin_password: <password> cpu_core_count: 8 data_storage_size_in_tbs: 1 - name: Update autonomous_database using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_database_autonomous_database: cpu_core_count: 20 display_name: example_autonomous_database - name: Update autonomous_database using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_database_autonomous_database: autonomous_database_id: ocid1.autonomousdatabase.oc1.iad.Example cpu_core_count: 20 - name: Update autonomous_database oci_database_autonomous_database: autonomous_database_id: ocid1.autonomousdatabase.oc1.iad.Example - name: Delete autonomous_database oci_database_autonomous_database: autonomous_database_id: ocid1.autonomousdatabase.oc1.iad.Example state: absent - name: Delete autonomous_database using name (when environment variable OCI_USE_NAME_AS_IDENTIFIER is set) oci_database_autonomous_database: compartment_id: ocid.compartment.oc1..<unique_ID> display_name: example_autonomous_database state: absent """ RETURN = """ autonomous_database: description: - Details of the AutonomousDatabase resource acted upon by the current operation returned: on success type: complex contains: id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the Autonomous Database. returned: on success type: string sample: ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment. returned: on success type: string sample: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx lifecycle_state: description: - The current state of the Autonomous Database. returned: on success type: string sample: PROVISIONING lifecycle_details: description: - Information about the current lifecycle state. returned: on success type: string sample: lifecycle_details_example db_name: description: - The database name. returned: on success type: string sample: db_name_example is_free_tier: description: - Indicates if this is an Always Free resource. The default value is false. Note that Always Free Autonomous Databases have 1 CPU and 20GB of memory. For Always Free databases, memory and CPU cannot be scaled. returned: on success type: bool sample: true system_tags: description: - System tags for this resource. Each key is predefined and scoped to a namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). returned: on success type: dict sample: {} time_reclamation_of_free_autonomous_database: description: - The date and time the Always Free database will be stopped because of inactivity. If this time is reached without any database activity, the database will automatically be put into the STOPPED state. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 time_deletion_of_free_autonomous_database: description: - The date and time the Always Free database will be automatically deleted because of inactivity. If the database is in the STOPPED state and without activity until this time, it will be deleted. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 backup_config: description: - "" returned: on success type: complex contains: manual_backup_bucket_name: description: - Name of L(Object Storage,https://docs.cloud.oracle.com/Content/Object/Concepts/objectstorageoverview.htm) bucket to use for storing manual backups. returned: on success type: string sample: manual_backup_bucket_name_example manual_backup_type: description: - The manual backup destination type. returned: on success type: string sample: NONE cpu_core_count: description: - The number of OCPU cores to be made available to the database. returned: on success type: int sample: 56 data_storage_size_in_tbs: description: - The quantity of data in the database, in terabytes. returned: on success type: int sample: 56 infrastructure_type: description: - The infrastructure type this resource belongs to. returned: on success type: string sample: CLOUD is_dedicated: description: - True if the database uses L(dedicated Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adbddoverview.htm). returned: on success type: bool sample: true autonomous_container_database_id: description: - The Autonomous Container Database L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm). returned: on success type: string sample: ocid1.autonomouscontainerdatabase.oc1..xxxxxxEXAMPLExxxxxx time_created: description: - The date and time the Autonomous Database was created. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 display_name: description: - The user-friendly name for the Autonomous Database. The name does not have to be unique. returned: on success type: string sample: display_name_example service_console_url: description: - The URL of the Service Console for the Autonomous Database. returned: on success type: string sample: service_console_url_example connection_strings: description: - The connection string used to connect to the Autonomous Database. The username for the Service Console is ADMIN. Use the password you entered when creating the Autonomous Database for the password value. returned: on success type: complex contains: high: description: - The High database service provides the highest level of resources to each SQL statement resulting in the highest performance, but supports the fewest number of concurrent SQL statements. returned: on success type: string sample: high_example medium: description: - The Medium database service provides a lower level of resources to each SQL statement potentially resulting a lower level of performance, but supports more concurrent SQL statements. returned: on success type: string sample: medium_example low: description: - The Low database service provides the least level of resources to each SQL statement, but supports the most number of concurrent SQL statements. returned: on success type: string sample: low_example dedicated: description: - The database service provides the least level of resources to each SQL statement, but supports the most number of concurrent SQL statements. returned: on success type: string sample: dedicated_example all_connection_strings: description: - Returns all connection strings that can be used to connect to the Autonomous Database. For more information, please see L(Predefined Database Service Names for Autonomous Transaction Processing,https://docs.oracle.com/en/cloud/paas/atp-cloud/atpug/connect-predefined.html#GUID-9747539B-FD46-44F1-8FF8-F5AC650F15BE) returned: on success type: dict sample: {} connection_urls: description: - "" returned: on success type: complex contains: sql_dev_web_url: description: - Oracle SQL Developer Web URL. returned: on success type: string sample: sql_dev_web_url_example apex_url: description: - Oracle Application Express (APEX) URL. returned: on success type: string sample: apex_url_example machine_learning_user_management_url: description: - Oracle Machine Learning user management URL. returned: on success type: string sample: machine_learning_user_management_url_example license_model: description: - The Oracle license model that applies to the Oracle Autonomous Database. Bring your own license (BYOL) allows you to apply your current on- premises Oracle software licenses to equivalent, highly automated Oracle PaaS and IaaS services in the cloud. License Included allows you to subscribe to new Oracle Database software licenses and the Database service. Note that when provisioning an Autonomous Database on L(dedicated Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adbddoverview.htm), this attribute must be null because the attribute is already set at the Autonomous Exadata Infrastructure level. When using L(shared Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adboverview.htm#AEI), if a value is not specified, the system will supply the value of `BRING_YOUR_OWN_LICENSE`. returned: on success type: string sample: LICENSE_INCLUDED used_data_storage_size_in_tbs: description: - The amount of storage that has been used, in terabytes. returned: on success type: int sample: 56 freeform_tags: description: - Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). - "Example: `{\\"Department\\": \\"Finance\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} defined_tags: description: - Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm). returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} subnet_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the subnet the resource is associated with. - "**Subnet Restrictions:** - For bare metal DB systems and for single node virtual machine DB systems, do not use a subnet that overlaps with 192.168.16.16/28. - For Exadata and virtual machine 2-node RAC systems, do not use a subnet that overlaps with 192.168.128.0/20. - For Autonomous Database, setting this will disable public secure access to the database." - These subnets are used by the Oracle Clusterware private interconnect on the database instance. Specifying an overlapping subnet will cause the private interconnect to malfunction. This restriction applies to both the client subnet and the backup subnet. returned: on success type: string sample: ocid1.subnet.oc1..xxxxxxEXAMPLExxxxxx nsg_ids: description: - "A list of the L(OCIDs,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the network security groups (NSGs) that this resource belongs to. Setting this to an empty array after the list is created removes the resource from all NSGs. For more information about NSGs, see L(Security Rules,https://docs.cloud.oracle.com/Content/Network/Concepts/securityrules.htm). **NsgIds restrictions:** - Autonomous Databases with private access require at least 1 Network Security Group (NSG). The nsgIds array cannot be empty." returned: on success type: list sample: [] private_endpoint: description: - The private endpoint for the resource. returned: on success type: string sample: private_endpoint_example private_endpoint_label: description: - The private endpoint label for the resource. Setting this to an empty string, after the private endpoint database gets created, will change the same private endpoint database to the public endpoint database. returned: on success type: string sample: private_endpoint_label_example private_endpoint_ip: description: - The private endpoint Ip address for the resource. returned: on success type: string sample: private_endpoint_ip_example db_version: description: - A valid Oracle Database version for Autonomous Database. returned: on success type: string sample: db_version_example is_preview: description: - Indicates if the Autonomous Database version is a preview version. returned: on success type: bool sample: true db_workload: description: - "The Autonomous Database workload type. The following values are valid:" - "- OLTP - indicates an Autonomous Transaction Processing database - DW - indicates an Autonomous Data Warehouse database - AJD - indicates an Autonomous JSON Database" returned: on success type: string sample: OLTP is_access_control_enabled: description: - Indicates if the database-level access control is enabled. If disabled, database access is defined by the network security rules. If enabled, database access is restricted to the IP addresses defined by the rules specified with the `whitelistedIps` property. While specifying `whitelistedIps` rules is optional, if database-level access control is enabled and no rules are specified, the database will become inaccessible. The rules can be added later using the `UpdateAutonomousDatabase` API operation or edit option in console. When creating a database clone, the desired access control setting should be specified. By default, database-level access control will be disabled for the clone. - This property is applicable only to Autonomous Databases on the Exadata Cloud@Customer platform. returned: on success type: bool sample: true whitelisted_ips: description: - The client IP access control list (ACL). This feature is available for autonomous databases on L(shared Exadata infrastructure,https://docs.cloud.oracle.com/Content/Database/Concepts/adboverview.htm#AEI) and on Exadata Cloud@Customer. Only clients connecting from an IP address included in the ACL may access the Autonomous Database instance. - "For shared Exadata infrastructure, this is an array of CIDR (Classless Inter-Domain Routing) notations for a subnet or VCN OCID. Use a semicolon (;) as a deliminator between the VCN-specific subnets or IPs. Example: `[\\"1.1.1.1\\",\\"1.1.1.0/24\\",\\"ocid1.vcn.oc1.sea.<unique_id>\\",\\"ocid1.vcn.oc1.sea.<unique_id1>;1.1.1.1\\",\\"ocid1.vcn.oc1.se a.<unique_id2>;1.1.0.0/16\\"]` For Exadata Cloud@Customer, this is an array of IP addresses or CIDR (Classless Inter-Domain Routing) notations. Example: `[\\"1.1.1.1\\",\\"1.1.1.0/24\\",\\"1.1.2.25\\"]`" - For an update operation, if you want to delete all the IPs in the ACL, use an array with a single empty string entry. returned: on success type: list sample: [] is_auto_scaling_enabled: description: - Indicates if auto scaling is enabled for the Autonomous Database CPU core count. returned: on success type: bool sample: true data_safe_status: description: - Status of the Data Safe registration for this Autonomous Database. returned: on success type: string sample: REGISTERING operations_insights_status: description: - Status of Operations Insights for this Autonomous Database. returned: on success type: string sample: ENABLING time_maintenance_begin: description: - The date and time when maintenance will begin. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 time_maintenance_end: description: - The date and time when maintenance will end. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 is_refreshable_clone: description: - Indicates whether the Autonomous Database is a refreshable clone. returned: on success type: bool sample: true time_of_last_refresh: description: - The date and time when last refresh happened. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 time_of_last_refresh_point: description: - The refresh point timestamp (UTC). The refresh point is the time to which the database was most recently refreshed. Data created after the refresh point is not included in the refresh. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 time_of_next_refresh: description: - The date and time of next refresh. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 open_mode: description: - The `DATABASE OPEN` mode. You can open the database in `READ_ONLY` or `READ_WRITE` mode. returned: on success type: string sample: READ_ONLY refreshable_status: description: - The refresh status of the clone. REFRESHING indicates that the clone is currently being refreshed with data from the source Autonomous Database. returned: on success type: string sample: REFRESHING refreshable_mode: description: - The refresh mode of the clone. AUTOMATIC indicates that the clone is automatically being refreshed with data from the source Autonomous Database. returned: on success type: string sample: AUTOMATIC source_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the source Autonomous Database that was cloned to create the current Autonomous Database. returned: on success type: string sample: ocid1.source.oc1..xxxxxxEXAMPLExxxxxx permission_level: description: - The Autonomous Database permission level. Restricted mode allows access only to admin users. returned: on success type: string sample: RESTRICTED time_of_last_switchover: description: - The timestamp of the last switchover operation for the Autonomous Database. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 time_of_last_failover: description: - The timestamp of the last failover operation. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 is_data_guard_enabled: description: - Indicates whether the Autonomous Database has Data Guard enabled. returned: on success type: bool sample: true failed_data_recovery_in_seconds: description: - Indicates the number of seconds of data loss for a Data Guard failover. returned: on success type: int sample: 56 standby_db: description: - "" returned: on success type: complex contains: lag_time_in_seconds: description: - The amount of time, in seconds, that the data of the standby database lags the data of the primary database. Can be used to determine the potential data loss in the event of a failover. returned: on success type: int sample: 56 lifecycle_state: description: - The current state of the Autonomous Database. returned: on success type: string sample: PROVISIONING lifecycle_details: description: - Additional information about the current lifecycle state. returned: on success type: string sample: lifecycle_details_example available_upgrade_versions: description: - List of Oracle Database versions available for a database upgrade. If there are no version upgrades available, this list is empty. returned: on success type: list sample: [] key_store_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the key store. returned: on success type: string sample: ocid1.keystore.oc1..xxxxxxEXAMPLExxxxxx key_store_wallet_name: description: - The wallet name for Oracle Key Vault. returned: on success type: string sample: key_store_wallet_name_example sample: { "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "lifecycle_state": "PROVISIONING", "lifecycle_details": "lifecycle_details_example", "db_name": "db_name_example", "is_free_tier": true, "system_tags": {}, "time_reclamation_of_free_autonomous_database": "2013-10-20T19:20:30+01:00", "time_deletion_of_free_autonomous_database": "2013-10-20T19:20:30+01:00", "backup_config": { "manual_backup_bucket_name": "manual_backup_bucket_name_example", "manual_backup_type": "NONE" }, "cpu_core_count": 56, "data_storage_size_in_tbs": 56, "infrastructure_type": "CLOUD", "is_dedicated": true, "autonomous_container_database_id": "ocid1.autonomouscontainerdatabase.oc1..xxxxxxEXAMPLExxxxxx", "time_created": "2013-10-20T19:20:30+01:00", "display_name": "display_name_example", "service_console_url": "service_console_url_example", "connection_strings": { "high": "high_example", "medium": "medium_example", "low": "low_example", "dedicated": "dedicated_example", "all_connection_strings": {} }, "connection_urls": { "sql_dev_web_url": "sql_dev_web_url_example", "apex_url": "apex_url_example", "machine_learning_user_management_url": "machine_learning_user_management_url_example" }, "license_model": "LICENSE_INCLUDED", "used_data_storage_size_in_tbs": 56, "freeform_tags": {'Department': 'Finance'}, "defined_tags": {'Operations': {'CostCenter': 'US'}}, "subnet_id": "ocid1.subnet.oc1..xxxxxxEXAMPLExxxxxx", "nsg_ids": [], "private_endpoint": "private_endpoint_example", "private_endpoint_label": "private_endpoint_label_example", "private_endpoint_ip": "private_endpoint_ip_example", "db_version": "db_version_example", "is_preview": true, "db_workload": "OLTP", "is_access_control_enabled": true, "whitelisted_ips": [], "is_auto_scaling_enabled": true, "data_safe_status": "REGISTERING", "operations_insights_status": "ENABLING", "time_maintenance_begin": "2013-10-20T19:20:30+01:00", "time_maintenance_end": "2013-10-20T19:20:30+01:00", "is_refreshable_clone": true, "time_of_last_refresh": "2013-10-20T19:20:30+01:00", "time_of_last_refresh_point": "2013-10-20T19:20:30+01:00", "time_of_next_refresh": "2013-10-20T19:20:30+01:00", "open_mode": "READ_ONLY", "refreshable_status": "REFRESHING", "refreshable_mode": "AUTOMATIC", "source_id": "ocid1.source.oc1..xxxxxxEXAMPLExxxxxx", "permission_level": "RESTRICTED", "time_of_last_switchover": "2013-10-20T19:20:30+01:00", "time_of_last_failover": "2013-10-20T19:20:30+01:00", "is_data_guard_enabled": true, "failed_data_recovery_in_seconds": 56, "standby_db": { "lag_time_in_seconds": 56, "lifecycle_state": "PROVISIONING", "lifecycle_details": "lifecycle_details_example" }, "available_upgrade_versions": [], "key_store_id": "ocid1.keystore.oc1..xxxxxxEXAMPLExxxxxx", "key_store_wallet_name": "key_store_wallet_name_example" } """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import ( oci_common_utils, oci_wait_utils, ) from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceHelperBase, get_custom_class, ) try: from oci.work_requests import WorkRequestClient from oci.database import DatabaseClient from oci.database.models import CreateAutonomousDatabaseBase from oci.database.models import UpdateAutonomousDatabaseDetails HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class AutonomousDatabaseHelperGen(OCIResourceHelperBase): """Supported operations: create, update, get, list and delete""" def __init__(self, *args, **kwargs): super(AutonomousDatabaseHelperGen, self).__init__(*args, **kwargs) self.work_request_client = WorkRequestClient( self.client._config, **self.client._kwargs ) def get_module_resource_id_param(self): return "autonomous_database_id" def get_module_resource_id(self): return self.module.params.get("autonomous_database_id") def get_get_fn(self): return self.client.get_autonomous_database def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_autonomous_database, autonomous_database_id=self.module.params.get("autonomous_database_id"), ) def get_required_kwargs_for_list(self): required_list_method_params = [ "compartment_id", ] return dict( (param, self.module.params[param]) for param in required_list_method_params ) def get_optional_kwargs_for_list(self): optional_list_method_params = ( ["autonomous_container_database_id", "display_name"] if self._use_name_as_identifier() else [ "autonomous_container_database_id", "db_workload", "db_version", "is_free_tier", "display_name", "is_refreshable_clone", "is_data_guard_enabled", ] ) return dict( (param, self.module.params[param]) for param in optional_list_method_params if self.module.params.get(param) is not None and ( self._use_name_as_identifier() or ( not self.module.params.get("key_by") or param in self.module.params.get("key_by") ) ) ) def list_resources(self): required_kwargs = self.get_required_kwargs_for_list() optional_kwargs = self.get_optional_kwargs_for_list() kwargs = oci_common_utils.merge_dicts(required_kwargs, optional_kwargs) return oci_common_utils.list_all_resources( self.client.list_autonomous_databases, **kwargs ) def get_create_model_class(self): return CreateAutonomousDatabaseBase def create_resource(self): create_details = self.get_create_model() return oci_wait_utils.call_and_wait( call_fn=self.client.create_autonomous_database, call_fn_args=(), call_fn_kwargs=dict(create_autonomous_database_details=create_details,), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation=oci_common_utils.CREATE_OPERATION_KEY, waiter_client=self.work_request_client, resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) def get_update_model_class(self): return UpdateAutonomousDatabaseDetails def update_resource(self): update_details = self.get_update_model() return oci_wait_utils.call_and_wait( call_fn=self.client.update_autonomous_database, call_fn_args=(), call_fn_kwargs=dict( autonomous_database_id=self.module.params.get("autonomous_database_id"), update_autonomous_database_details=update_details, ), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation=oci_common_utils.UPDATE_OPERATION_KEY, waiter_client=self.work_request_client, resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) def delete_resource(self): return oci_wait_utils.call_and_wait( call_fn=self.client.delete_autonomous_database, call_fn_args=(), call_fn_kwargs=dict( autonomous_database_id=self.module.params.get("autonomous_database_id"), ), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation=oci_common_utils.DELETE_OPERATION_KEY, waiter_client=self.work_request_client, resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) AutonomousDatabaseHelperCustom = get_custom_class("AutonomousDatabaseHelperCustom") class ResourceHelper(AutonomousDatabaseHelperCustom, AutonomousDatabaseHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec( supports_create=True, supports_wait=True ) module_args.update( dict( compartment_id=dict(type="str"), db_name=dict(type="str"), cpu_core_count=dict(type="int"), db_workload=dict(type="str", choices=["OLTP", "DW", "AJD"]), data_storage_size_in_tbs=dict(type="int"), is_free_tier=dict(type="bool"), admin_password=dict(type="str", no_log=True), display_name=dict(aliases=["name"], type="str"), license_model=dict( type="str", choices=["LICENSE_INCLUDED", "BRING_YOUR_OWN_LICENSE"] ), is_preview_version_with_service_terms_accepted=dict(type="bool"), is_auto_scaling_enabled=dict(type="bool"), is_dedicated=dict(type="bool"), autonomous_container_database_id=dict(type="str"), is_access_control_enabled=dict(type="bool"), whitelisted_ips=dict(type="list"), is_data_guard_enabled=dict(type="bool"), subnet_id=dict(type="str"), nsg_ids=dict(type="list"), private_endpoint_label=dict(type="str"), freeform_tags=dict(type="dict"), defined_tags=dict(type="dict"), db_version=dict(type="str"), source=dict( type="str", default="NONE", choices=[ "DATABASE", "CLONE_TO_REFRESHABLE", "BACKUP_FROM_ID", "BACKUP_FROM_TIMESTAMP", "NONE", ], ), source_id=dict(type="str"), clone_type=dict(type="str", choices=["FULL", "METADATA"]), refreshable_mode=dict(type="str", choices=["AUTOMATIC", "MANUAL"]), autonomous_database_backup_id=dict(type="str"), autonomous_database_id=dict(aliases=["id"], type="str"), timestamp=dict(type="str"), is_refreshable_clone=dict(type="bool"), open_mode=dict(type="str", choices=["READ_ONLY", "READ_WRITE"]), permission_level=dict(type="str", choices=["RESTRICTED", "UNRESTRICTED"]), state=dict(type="str", default="present", choices=["present", "absent"]), ) ) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_helper = ResourceHelper( module=module, resource_type="autonomous_database", service_client_class=DatabaseClient, namespace="database", ) result = dict(changed=False) if resource_helper.is_delete_using_name(): result = resource_helper.delete_using_name() elif resource_helper.is_delete(): result = resource_helper.delete() elif resource_helper.is_update_using_name(): result = resource_helper.update_using_name() elif resource_helper.is_update(): result = resource_helper.update() elif resource_helper.is_create(): result = resource_helper.create() module.exit_json(**result) if __name__ == "__main__": main()
47.917112
160
0.626156
794252279fa1684065e1622fa47ab7b08a979b08
96,851
py
Python
gaugette/fonts/verdana_24.py
wsiffer/Google-Bartender
37018d3efe33a84074a6dccbce9e82f20ef3c923
[ "MIT" ]
6
2020-07-30T00:21:29.000Z
2022-03-16T23:31:09.000Z
gaugette/fonts/verdana_24.py
antndeb/Google-Bartender
37018d3efe33a84074a6dccbce9e82f20ef3c923
[ "MIT" ]
null
null
null
gaugette/fonts/verdana_24.py
antndeb/Google-Bartender
37018d3efe33a84074a6dccbce9e82f20ef3c923
[ "MIT" ]
1
2022-03-16T23:39:29.000Z
2022-03-16T23:39:29.000Z
# coding=utf-8 # Module verdana_24 # generated from Verdana 18pt name = "Verdana 24" start_char = '!' end_char = chr(127) char_height = 24 space_width = 12 gap_width = 3 bitmaps = ( # @0 '!' (2 pixels wide) 0x00, # 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0xC0, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @24 '"' (7 pixels wide) 0xC6, # OO OO 0xC6, # OO OO 0xC6, # OO OO 0xC6, # OO OO 0xC6, # OO OO 0xC6, # OO OO 0xC6, # OO OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @48 '#' (15 pixels wide) 0x00, 0x00, # 0x02, 0x08, # O O 0x02, 0x08, # O O 0x04, 0x10, # O O 0x04, 0x10, # O O 0x04, 0x10, # O O 0x7F, 0xFE, # OOOOOOOOOOOOOO 0x04, 0x10, # O O 0x08, 0x20, # O O 0x08, 0x20, # O O 0x08, 0x20, # O O 0x08, 0x20, # O O 0xFF, 0xFC, # OOOOOOOOOOOOOO 0x10, 0x40, # O O 0x10, 0x40, # O O 0x10, 0x40, # O O 0x10, 0x40, # O O 0x20, 0x80, # O O 0x20, 0x80, # O O 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @96 '$' (11 pixels wide) 0x00, 0x00, # 0x04, 0x00, # O 0x04, 0x00, # O 0x04, 0x00, # O 0x1F, 0x80, # OOOOOO 0x7F, 0xC0, # OOOOOOOOO 0xE4, 0x40, # OOO O O 0xC4, 0x00, # OO O 0xC4, 0x00, # OO O 0xE4, 0x00, # OOO O 0x7C, 0x00, # OOOOO 0x3F, 0x80, # OOOOOOO 0x07, 0xC0, # OOOOO 0x04, 0x60, # O OO 0x04, 0x60, # O OO 0x04, 0x60, # O OO 0xC4, 0xE0, # OO O OOO 0xFF, 0xC0, # OOOOOOOOOO 0x7F, 0x00, # OOOOOOO 0x04, 0x00, # O 0x04, 0x00, # O 0x04, 0x00, # O 0x04, 0x00, # O 0x00, 0x00, # # @144 '%' (22 pixels wide) 0x00, 0x00, 0x00, # 0x3E, 0x03, 0x00, # OOOOO OO 0x7F, 0x02, 0x00, # OOOOOOO O 0xE3, 0x86, 0x00, # OOO OOO OO 0xC1, 0x84, 0x00, # OO OO O 0xC1, 0x8C, 0x00, # OO OO OO 0xC1, 0x88, 0x00, # OO OO O 0xC1, 0x98, 0x00, # OO OO OO 0xE3, 0x98, 0x00, # OOO OOO OO 0x7F, 0x31, 0xF0, # OOOOOOO OO OOOOO 0x3E, 0x33, 0xF8, # OOOOO OO OOOOOOO 0x00, 0x67, 0x1C, # OO OOO OOO 0x00, 0x66, 0x0C, # OO OO OO 0x00, 0x46, 0x0C, # O OO OO 0x00, 0xC6, 0x0C, # OO OO OO 0x00, 0x86, 0x0C, # O OO OO 0x01, 0x87, 0x1C, # OO OOO OOO 0x01, 0x03, 0xF8, # O OOOOOOO 0x03, 0x01, 0xF0, # OO OOOOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @216 '&' (17 pixels wide) 0x00, 0x00, 0x00, # 0x1F, 0x00, 0x00, # OOOOO 0x3F, 0x80, 0x00, # OOOOOOO 0x71, 0xC0, 0x00, # OOO OOO 0x60, 0xC0, 0x00, # OO OO 0x60, 0xC0, 0x00, # OO OO 0x60, 0xC0, 0x00, # OO OO 0x39, 0x80, 0x00, # OOO OO 0x1F, 0x0C, 0x00, # OOOOO OO 0x3E, 0x0C, 0x00, # OOOOO OO 0x63, 0x8C, 0x00, # OO OOO OO 0x41, 0xCC, 0x00, # O OOO OO 0xC0, 0xE8, 0x00, # OO OOO O 0xC0, 0x78, 0x00, # OO OOOO 0xC0, 0x38, 0x00, # OO OOO 0xE0, 0x3C, 0x00, # OOO OOOO 0x70, 0x6E, 0x00, # OOO OO OOO 0x3F, 0xC7, 0x00, # OOOOOOOO OOO 0x1F, 0x03, 0x80, # OOOOO OOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @288 ''' (2 pixels wide) 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @312 '(' (7 pixels wide) 0x0E, # OOO 0x1C, # OOO 0x18, # OO 0x30, # OO 0x30, # OO 0x60, # OO 0x60, # OO 0xE0, # OOO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xE0, # OOO 0x60, # OO 0x60, # OO 0x30, # OO 0x30, # OO 0x18, # OO 0x1C, # OOO 0x0E, # OOO # @336 ')' (7 pixels wide) 0xE0, # OOO 0x70, # OOO 0x30, # OO 0x18, # OO 0x18, # OO 0x0C, # OO 0x0C, # OO 0x0E, # OOO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x0E, # OOO 0x0C, # OO 0x0C, # OO 0x18, # OO 0x18, # OO 0x30, # OO 0x70, # OOO 0xE0, # OOO # @360 '*' (12 pixels wide) 0x06, 0x00, # OO 0x06, 0x00, # OO 0xC6, 0x30, # OO OO OO 0x76, 0xE0, # OOO OO OOO 0x1F, 0x80, # OOOOOO 0x06, 0x00, # OO 0x1F, 0x80, # OOOOOO 0x76, 0xE0, # OOO OO OOO 0xC6, 0x30, # OO OO OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @408 '+' (14 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @456 ',' (5 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x38, # OOO 0x30, # OO 0x70, # OOO 0x70, # OOO 0x60, # OO 0x60, # OO 0xC0, # OO 0xC0, # OO # @480 '-' (7 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0xFE, # OOOOOOO 0xFE, # OOOOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @504 '.' (3 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0xE0, # OOO 0xE0, # OOO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @528 '/' (10 pixels wide) 0x00, 0xC0, # OO 0x01, 0x80, # OO 0x01, 0x80, # OO 0x01, 0x80, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x60, 0x00, # OO 0x60, 0x00, # OO 0x60, 0x00, # OO 0xC0, 0x00, # OO 0x00, 0x00, # # @576 '0' (11 pixels wide) 0x00, 0x00, # 0x1F, 0x00, # OOOOO 0x3F, 0x80, # OOOOOOO 0x71, 0xC0, # OOO OOO 0x60, 0xC0, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0x60, 0xC0, # OO OO 0x71, 0xC0, # OOO OOO 0x3F, 0x80, # OOOOOOO 0x1F, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @624 '1' (10 pixels wide) 0x00, 0x00, # 0x0C, 0x00, # OO 0x1C, 0x00, # OOO 0xFC, 0x00, # OOOOOO 0xFC, 0x00, # OOOOOO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0xFF, 0xC0, # OOOOOOOOOO 0xFF, 0xC0, # OOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @672 '2' (11 pixels wide) 0x00, 0x00, # 0x3E, 0x00, # OOOOO 0xFF, 0x80, # OOOOOOOOO 0xC1, 0x80, # OO OO 0x80, 0xC0, # O OO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x01, 0xC0, # OOO 0x01, 0x80, # OO 0x03, 0x00, # OO 0x07, 0x00, # OOO 0x0E, 0x00, # OOO 0x1C, 0x00, # OOO 0x38, 0x00, # OOO 0x70, 0x00, # OOO 0xE0, 0x00, # OOO 0xFF, 0xE0, # OOOOOOOOOOO 0xFF, 0xE0, # OOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @720 '3' (11 pixels wide) 0x00, 0x00, # 0x3F, 0x00, # OOOOOO 0xFF, 0xC0, # OOOOOOOOOO 0xE0, 0xE0, # OOO OOO 0x80, 0x60, # O OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0xC0, # OO 0x0F, 0x00, # OOOO 0x0F, 0x80, # OOOOO 0x00, 0xC0, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x80, 0xE0, # O OOO 0xE1, 0xC0, # OOO OOO 0xFF, 0x80, # OOOOOOOOO 0x3F, 0x00, # OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @768 '4' (14 pixels wide) 0x00, 0x00, # 0x00, 0x60, # OO 0x00, 0xE0, # OOO 0x01, 0xE0, # OOOO 0x03, 0xE0, # OOOOO 0x07, 0x60, # OOO OO 0x0E, 0x60, # OOO OO 0x1C, 0x60, # OOO OO 0x38, 0x60, # OOO OO 0x30, 0x60, # OO OO 0x60, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @816 '5' (11 pixels wide) 0x00, 0x00, # 0x7F, 0xE0, # OOOOOOOOOO 0x7F, 0xE0, # OOOOOOOOOO 0x60, 0x00, # OO 0x60, 0x00, # OO 0x60, 0x00, # OO 0x60, 0x00, # OO 0x60, 0x00, # OO 0x7F, 0x00, # OOOOOOO 0x7F, 0xC0, # OOOOOOOOO 0x01, 0xC0, # OOO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0xE0, # OOO 0xC1, 0xC0, # OO OOO 0xFF, 0x80, # OOOOOOOOO 0x7F, 0x00, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @864 '6' (11 pixels wide) 0x00, 0x00, # 0x07, 0x80, # OOOO 0x1F, 0x80, # OOOOOO 0x38, 0x00, # OOO 0x70, 0x00, # OOO 0x60, 0x00, # OO 0x60, 0x00, # OO 0xC0, 0x00, # OO 0xDF, 0x00, # OO OOOOO 0xFF, 0xC0, # OOOOOOOOOO 0xE0, 0xC0, # OOO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0x60, 0x60, # OO OO 0x70, 0xC0, # OOO OO 0x3F, 0x80, # OOOOOOO 0x1F, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @912 '7' (12 pixels wide) 0x00, 0x00, # 0xFF, 0xF0, # OOOOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x00, 0x60, # OO 0x00, 0x60, # OO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x01, 0x80, # OO 0x03, 0x80, # OOO 0x03, 0x00, # OO 0x07, 0x00, # OOO 0x06, 0x00, # OO 0x0E, 0x00, # OOO 0x0C, 0x00, # OO 0x1C, 0x00, # OOO 0x18, 0x00, # OO 0x38, 0x00, # OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @960 '8' (11 pixels wide) 0x00, 0x00, # 0x1F, 0x00, # OOOOO 0x7F, 0xC0, # OOOOOOOOO 0x60, 0xE0, # OO OOO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xE0, 0xC0, # OOO OO 0x79, 0x80, # OOOO OO 0x3F, 0x00, # OOOOOO 0x63, 0x80, # OO OOO 0x60, 0xC0, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xE0, 0x60, # OOO OO 0x70, 0xC0, # OOO OO 0x7F, 0x80, # OOOOOOOO 0x1F, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1008 '9' (11 pixels wide) 0x00, 0x00, # 0x1F, 0x00, # OOOOO 0x3F, 0x80, # OOOOOOO 0x61, 0xC0, # OO OOO 0xE0, 0xC0, # OOO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0x60, 0xE0, # OO OOO 0x7F, 0xE0, # OOOOOOOOOO 0x1F, 0x60, # OOOOO OO 0x00, 0x60, # OO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x01, 0xC0, # OOO 0x23, 0x80, # O OOO 0x3F, 0x00, # OOOOOO 0x3E, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1056 ':' (3 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0xE0, # OOO 0xE0, # OOO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0xE0, # OOO 0xE0, # OOO 0xE0, # OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @1080 ';' (5 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x70, # OOO 0x70, # OOO 0x70, # OOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x38, # OOO 0x30, # OO 0x70, # OOO 0x70, # OOO 0x60, # OO 0x60, # OO 0xC0, # OO 0xC0, # OO # @1104 '<' (14 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x0C, # OO 0x00, 0x3C, # OOOO 0x01, 0xF0, # OOOOO 0x07, 0xC0, # OOOOO 0x1F, 0x00, # OOOOO 0x78, 0x00, # OOOO 0xE0, 0x00, # OOO 0x78, 0x00, # OOOO 0x1F, 0x00, # OOOOO 0x07, 0xC0, # OOOOO 0x01, 0xF0, # OOOOO 0x00, 0x3C, # OOOO 0x00, 0x0C, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1152 '=' (14 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1200 '>' (14 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xC0, 0x00, # OO 0xF0, 0x00, # OOOO 0x3E, 0x00, # OOOOO 0x0F, 0x80, # OOOOO 0x03, 0xE0, # OOOOO 0x00, 0x78, # OOOO 0x00, 0x1C, # OOO 0x00, 0x78, # OOOO 0x03, 0xE0, # OOOOO 0x0F, 0x80, # OOOOO 0x3E, 0x00, # OOOOO 0xF0, 0x00, # OOOO 0xC0, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1248 '?' (10 pixels wide) 0x00, 0x00, # 0x7E, 0x00, # OOOOOO 0xFF, 0x80, # OOOOOOOOO 0x81, 0xC0, # O OOO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x00, 0xC0, # OO 0x01, 0xC0, # OOO 0x01, 0x80, # OO 0x07, 0x00, # OOO 0x1E, 0x00, # OOOO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x18, 0x00, # OO 0x18, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1296 '@' (20 pixels wide) 0x00, 0x00, 0x00, # 0x01, 0xFC, 0x00, # OOOOOOO 0x07, 0xFF, 0x00, # OOOOOOOOOOO 0x1E, 0x07, 0x80, # OOOO OOOO 0x38, 0x01, 0xC0, # OOO OOO 0x30, 0xF6, 0xE0, # OO OOOO OO OOO 0x61, 0xFE, 0x60, # OO OOOOOOOO OO 0x63, 0x86, 0x70, # OO OOO OO OOO 0xC7, 0x06, 0x30, # OO OOO OO OO 0xC6, 0x06, 0x30, # OO OO OO OO 0xC6, 0x06, 0x30, # OO OO OO OO 0xC6, 0x06, 0x30, # OO OO OO OO 0xC6, 0x06, 0x30, # OO OO OO OO 0xC6, 0x06, 0x30, # OO OO OO OO 0x63, 0x0E, 0x60, # OO OO OOO OO 0x63, 0xFF, 0xE0, # OO OOOOOOOOOOOOO 0x31, 0xF7, 0xE0, # OO OOOOO OOOOOO 0x38, 0x00, 0x00, # OOO 0x1E, 0x00, 0x00, # OOOO 0x07, 0xFE, 0x00, # OOOOOOOOOO 0x01, 0xFE, 0x00, # OOOOOOOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @1368 'A' (16 pixels wide) 0x00, 0x00, # 0x03, 0xC0, # OOOO 0x03, 0xC0, # OOOO 0x03, 0xC0, # OOOO 0x06, 0x60, # OO OO 0x06, 0x60, # OO OO 0x0E, 0x30, # OOO OO 0x0C, 0x30, # OO OO 0x0C, 0x30, # OO OO 0x18, 0x18, # OO OO 0x18, 0x18, # OO OO 0x18, 0x18, # OO OO 0x3F, 0xFC, # OOOOOOOOOOOO 0x3F, 0xFC, # OOOOOOOOOOOO 0x30, 0x0C, # OO OO 0x60, 0x06, # OO OO 0x60, 0x06, # OO OO 0x60, 0x06, # OO OO 0xC0, 0x03, # OO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1416 'B' (13 pixels wide) 0x00, 0x00, # 0xFF, 0xC0, # OOOOOOOOOO 0xFF, 0xE0, # OOOOOOOOOOO 0xC0, 0x70, # OO OOO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x60, # OO OO 0xFF, 0xC0, # OOOOOOOOOO 0xFF, 0xE0, # OOOOOOOOOOO 0xC0, 0x70, # OO OOO 0xC0, 0x18, # OO OO 0xC0, 0x18, # OO OO 0xC0, 0x18, # OO OO 0xC0, 0x18, # OO OO 0xC0, 0x38, # OO OOO 0xC0, 0x70, # OO OOO 0xFF, 0xE0, # OOOOOOOOOOO 0xFF, 0xC0, # OOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1464 'C' (15 pixels wide) 0x00, 0x00, # 0x03, 0xF8, # OOOOOOO 0x1F, 0xFE, # OOOOOOOOOOOO 0x3C, 0x0E, # OOOO OOO 0x70, 0x02, # OOO O 0x60, 0x00, # OO 0x60, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xE0, 0x00, # OOO 0x60, 0x00, # OO 0x70, 0x02, # OOO O 0x3C, 0x0E, # OOOO OOO 0x1F, 0xFE, # OOOOOOOOOOOO 0x07, 0xF0, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1512 'D' (16 pixels wide) 0x00, 0x00, # 0xFF, 0xC0, # OOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0xC0, 0x78, # OO OOOO 0xC0, 0x1C, # OO OOO 0xC0, 0x0E, # OO OOO 0xC0, 0x06, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x06, # OO OO 0xC0, 0x06, # OO OO 0xC0, 0x1C, # OO OOO 0xC0, 0x78, # OO OOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0xFF, 0xC0, # OOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1560 'E' (12 pixels wide) 0x00, 0x00, # 0xFF, 0xF0, # OOOOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xFF, 0xF0, # OOOOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xFF, 0xF0, # OOOOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1608 'F' (12 pixels wide) 0x00, 0x00, # 0xFF, 0xF0, # OOOOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xFF, 0xE0, # OOOOOOOOOOO 0xFF, 0xE0, # OOOOOOOOOOO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1656 'G' (16 pixels wide) 0x00, 0x00, # 0x03, 0xF8, # OOOOOOO 0x0F, 0xFF, # OOOOOOOOOOOO 0x3C, 0x07, # OOOO OOO 0x30, 0x01, # OO O 0x60, 0x00, # OO 0x60, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x7F, # OO OOOOOOO 0xC0, 0x7F, # OO OOOOOOO 0xC0, 0x03, # OO OO 0x60, 0x03, # OO OO 0x60, 0x03, # OO OO 0x70, 0x03, # OOO OO 0x3C, 0x07, # OOOO OOO 0x0F, 0xFF, # OOOOOOOOOOOO 0x03, 0xF8, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1704 'H' (14 pixels wide) 0x00, 0x00, # 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1752 'I' (6 pixels wide) 0x00, # 0xFC, # OOOOOO 0xFC, # OOOOOO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0x30, # OO 0xFC, # OOOOOO 0xFC, # OOOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @1776 'J' (8 pixels wide) 0x00, # 0x3F, # OOOOOO 0x3F, # OOOOOO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x03, # OO 0x87, # O OOO 0xFE, # OOOOOOO 0xFC, # OOOOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @1800 'K' (15 pixels wide) 0x00, 0x00, # 0xC0, 0x0C, # OO OO 0xC0, 0x18, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x60, # OO OO 0xC1, 0xC0, # OO OOO 0xC3, 0x80, # OO OOO 0xC7, 0x00, # OO OOO 0xCE, 0x00, # OO OOO 0xDC, 0x00, # OO OOO 0xFE, 0x00, # OOOOOOO 0xE7, 0x00, # OOO OOO 0xC3, 0x80, # OO OOO 0xC1, 0xC0, # OO OOO 0xC0, 0xE0, # OO OOO 0xC0, 0x70, # OO OOO 0xC0, 0x38, # OO OOO 0xC0, 0x1C, # OO OOO 0xC0, 0x0E, # OO OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1848 'L' (11 pixels wide) 0x00, 0x00, # 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xFF, 0xE0, # OOOOOOOOOOO 0xFF, 0xE0, # OOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1896 'M' (16 pixels wide) 0x00, 0x00, # 0xE0, 0x07, # OOO OOO 0xF0, 0x0F, # OOOO OOOO 0xF0, 0x0F, # OOOO OOOO 0xD8, 0x1B, # OO OO OO OO 0xD8, 0x1B, # OO OO OO OO 0xCC, 0x33, # OO OO OO OO 0xCC, 0x33, # OO OO OO OO 0xCE, 0x63, # OO OOO OO OO 0xC6, 0x63, # OO OO OO OO 0xC7, 0xC3, # OO OOOOO OO 0xC3, 0xC3, # OO OOOO OO 0xC3, 0x83, # OO OOO OO 0xC1, 0x83, # OO OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0xC0, 0x03, # OO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1944 'N' (14 pixels wide) 0x00, 0x00, # 0xF0, 0x0C, # OOOO OO 0xF0, 0x0C, # OOOO OO 0xF8, 0x0C, # OOOOO OO 0xDC, 0x0C, # OO OOO OO 0xDC, 0x0C, # OO OOO OO 0xCE, 0x0C, # OO OOO OO 0xC6, 0x0C, # OO OO OO 0xC7, 0x0C, # OO OOO OO 0xC3, 0x0C, # OO OO OO 0xC3, 0x8C, # OO OOO OO 0xC1, 0xCC, # OO OOO OO 0xC1, 0xCC, # OO OOO OO 0xC0, 0xEC, # OO OOO OO 0xC0, 0x6C, # OO OO OO 0xC0, 0x7C, # OO OOOOO 0xC0, 0x3C, # OO OOOO 0xC0, 0x3C, # OO OOOO 0xC0, 0x1C, # OO OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @1992 'O' (17 pixels wide) 0x00, 0x00, 0x00, # 0x07, 0xF0, 0x00, # OOOOOOO 0x1F, 0xFC, 0x00, # OOOOOOOOOOO 0x3C, 0x1E, 0x00, # OOOO OOOO 0x70, 0x07, 0x00, # OOO OOO 0x60, 0x03, 0x00, # OO OO 0xE0, 0x03, 0x80, # OOO OOO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xE0, 0x03, 0x80, # OOO OOO 0x60, 0x03, 0x00, # OO OO 0x70, 0x07, 0x00, # OOO OOO 0x3C, 0x1E, 0x00, # OOOO OOOO 0x1F, 0xFC, 0x00, # OOOOOOOOOOO 0x07, 0xF0, 0x00, # OOOOOOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @2064 'P' (11 pixels wide) 0x00, 0x00, # 0xFF, 0x00, # OOOOOOOO 0xFF, 0x80, # OOOOOOOOO 0xC1, 0xC0, # OO OOO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0xE0, # OO OOO 0xC1, 0xC0, # OO OOO 0xFF, 0x80, # OOOOOOOOO 0xFE, 0x00, # OOOOOOO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2112 'Q' (17 pixels wide) 0x00, 0x00, 0x00, # 0x07, 0xF0, 0x00, # OOOOOOO 0x1F, 0xFC, 0x00, # OOOOOOOOOOO 0x3C, 0x1E, 0x00, # OOOO OOOO 0x70, 0x07, 0x00, # OOO OOO 0x60, 0x03, 0x00, # OO OO 0xE0, 0x03, 0x80, # OOO OOO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xC0, 0x01, 0x80, # OO OO 0xE0, 0x03, 0x00, # OOO OO 0x60, 0x03, 0x00, # OO OO 0x70, 0x07, 0x00, # OOO OOO 0x3C, 0x1E, 0x00, # OOOO OOOO 0x1F, 0xFC, 0x00, # OOOOOOOOOOO 0x07, 0xF0, 0x00, # OOOOOOO 0x00, 0x30, 0x00, # OO 0x00, 0x30, 0x00, # OO 0x00, 0x18, 0x00, # OO 0x00, 0x1F, 0x80, # OOOOOO 0x00, 0x0F, 0x80, # OOOOO # @2184 'R' (14 pixels wide) 0x00, 0x00, # 0xFF, 0x00, # OOOOOOOO 0xFF, 0xC0, # OOOOOOOOOO 0xC0, 0xC0, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0xE0, # OO OOO 0xC1, 0xC0, # OO OOO 0xFF, 0x80, # OOOOOOOOO 0xFF, 0x00, # OOOOOOOO 0xC3, 0x80, # OO OOO 0xC1, 0x80, # OO OO 0xC0, 0xC0, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x70, # OO OOO 0xC0, 0x38, # OO OOO 0xC0, 0x1C, # OO OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2232 'S' (13 pixels wide) 0x00, 0x00, # 0x1F, 0xC0, # OOOOOOO 0x3F, 0xF0, # OOOOOOOOOO 0x70, 0x70, # OOO OOO 0xC0, 0x10, # OO O 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xE0, 0x00, # OOO 0x78, 0x00, # OOOO 0x3F, 0xC0, # OOOOOOOO 0x0F, 0xF0, # OOOOOOOO 0x00, 0x78, # OOOO 0x00, 0x18, # OO 0x00, 0x18, # OO 0x00, 0x18, # OO 0x80, 0x18, # O OO 0xE0, 0x70, # OOO OOO 0xFF, 0xE0, # OOOOOOOOOOO 0x3F, 0x80, # OOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2280 'T' (14 pixels wide) 0x00, 0x00, # 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2328 'U' (14 pixels wide) 0x00, 0x00, # 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0xC0, 0x0C, # OO OO 0x60, 0x18, # OO OO 0x70, 0x38, # OOO OOO 0x3F, 0xF0, # OOOOOOOOOO 0x0F, 0xC0, # OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2376 'V' (16 pixels wide) 0x00, 0x00, # 0xC0, 0x03, # OO OO 0x60, 0x06, # OO OO 0x60, 0x06, # OO OO 0x60, 0x06, # OO OO 0x30, 0x0C, # OO OO 0x30, 0x0C, # OO OO 0x30, 0x0C, # OO OO 0x18, 0x18, # OO OO 0x18, 0x18, # OO OO 0x18, 0x18, # OO OO 0x0C, 0x30, # OO OO 0x0C, 0x30, # OO OO 0x0E, 0x70, # OOO OOO 0x06, 0x60, # OO OO 0x06, 0x60, # OO OO 0x03, 0xC0, # OOOO 0x03, 0xC0, # OOOO 0x03, 0xC0, # OOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2424 'W' (22 pixels wide) 0x00, 0x00, 0x00, # 0xC0, 0x30, 0x0C, # OO OO OO 0xC0, 0x78, 0x0C, # OO OOOO OO 0x60, 0x78, 0x18, # OO OOOO OO 0x60, 0x78, 0x18, # OO OOOO OO 0x60, 0x78, 0x18, # OO OOOO OO 0x70, 0xCC, 0x38, # OOO OO OO OOO 0x30, 0xCC, 0x30, # OO OO OO OO 0x30, 0xCC, 0x30, # OO OO OO OO 0x30, 0xCC, 0x30, # OO OO OO OO 0x38, 0x86, 0x70, # OOO O OO OOO 0x19, 0x86, 0x60, # OO OO OO OO 0x19, 0x86, 0x60, # OO OO OO OO 0x19, 0x86, 0x60, # OO OO OO OO 0x0D, 0x03, 0xE0, # OO O OOOOO 0x0F, 0x03, 0xC0, # OOOO OOOO 0x0F, 0x03, 0xC0, # OOOO OOOO 0x0F, 0x03, 0xC0, # OOOO OOOO 0x06, 0x01, 0xC0, # OO OOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @2496 'X' (14 pixels wide) 0x00, 0x00, # 0xE0, 0x1C, # OOO OOO 0x60, 0x18, # OO OO 0x30, 0x30, # OO OO 0x38, 0x70, # OOO OOO 0x18, 0x60, # OO OO 0x0C, 0xC0, # OO OO 0x0E, 0xC0, # OOO OO 0x07, 0x80, # OOOO 0x07, 0x80, # OOOO 0x07, 0x80, # OOOO 0x07, 0x80, # OOOO 0x0C, 0xC0, # OO OO 0x0C, 0xE0, # OO OOO 0x18, 0x60, # OO OO 0x38, 0x70, # OOO OOO 0x30, 0x30, # OO OO 0x60, 0x18, # OO OO 0xE0, 0x1C, # OOO OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2544 'Y' (14 pixels wide) 0x00, 0x00, # 0xE0, 0x1C, # OOO OOO 0x60, 0x18, # OO OO 0x70, 0x38, # OOO OOO 0x30, 0x30, # OO OO 0x18, 0x60, # OO OO 0x1C, 0xE0, # OOO OOO 0x0C, 0xC0, # OO OO 0x0F, 0xC0, # OOOOOO 0x07, 0x80, # OOOO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2592 'Z' (14 pixels wide) 0x00, 0x00, # 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0x00, 0x1C, # OOO 0x00, 0x38, # OOO 0x00, 0x70, # OOO 0x00, 0x60, # OO 0x00, 0xC0, # OO 0x01, 0x80, # OO 0x03, 0x80, # OOO 0x07, 0x00, # OOO 0x06, 0x00, # OO 0x0C, 0x00, # OO 0x18, 0x00, # OO 0x38, 0x00, # OOO 0x70, 0x00, # OOO 0xE0, 0x00, # OOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0xFF, 0xFC, # OOOOOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2640 '[' (6 pixels wide) 0xFC, # OOOOOO 0xFC, # OOOOOO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xFC, # OOOOOO 0xFC, # OOOOOO # @2664 '\' (10 pixels wide) 0xC0, 0x00, # OO 0x60, 0x00, # OO 0x60, 0x00, # OO 0x60, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x30, 0x00, # OO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x18, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x03, 0x00, # OO 0x01, 0x80, # OO 0x01, 0x80, # OO 0x01, 0x80, # OO 0x00, 0xC0, # OO 0x00, 0x00, # # @2712 ']' (6 pixels wide) 0xFC, # OOOOOO 0xFC, # OOOOOO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0x0C, # OO 0xFC, # OOOOOO 0xFC, # OOOOOO # @2736 '^' (15 pixels wide) 0x00, 0x00, # 0x03, 0x80, # OOO 0x03, 0x80, # OOO 0x06, 0xC0, # OO OO 0x0C, 0x60, # OO OO 0x1C, 0x70, # OOO OOO 0x18, 0x30, # OO OO 0x30, 0x18, # OO OO 0x60, 0x0C, # OO OO 0xE0, 0x0E, # OOO OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2784 '_' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xFF, 0xFE, # OOOOOOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # # @2832 '`' (5 pixels wide) 0xE0, # OOO 0x70, # OOO 0x30, # OO 0x18, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @2856 'a' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x3F, 0x80, # OOOOOOO 0x7F, 0xC0, # OOOOOOOOO 0x40, 0xE0, # O OOO 0x00, 0x60, # OO 0x0F, 0xE0, # OOOOOOO 0x3F, 0xE0, # OOOOOOOOO 0x70, 0x60, # OOO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xE1, 0xE0, # OOO OOOO 0x7F, 0xE0, # OOOOOOOOOO 0x3E, 0x60, # OOOOO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2904 'b' (12 pixels wide) 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xCF, 0x80, # OO OOOOO 0xFF, 0xC0, # OOOOOOOOOO 0xF0, 0xE0, # OOOO OOO 0xC0, 0x70, # OO OOO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x60, # OO OO 0xE0, 0xE0, # OOO OOO 0xFF, 0xC0, # OOOOOOOOOO 0xDF, 0x00, # OO OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @2952 'c' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x0F, 0x80, # OOOOO 0x3F, 0xE0, # OOOOOOOOO 0x70, 0x60, # OOO OO 0x60, 0x20, # OO O 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0x60, 0x20, # OO O 0x70, 0x60, # OOO OO 0x3F, 0xE0, # OOOOOOOOO 0x0F, 0x80, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3000 'd' (12 pixels wide) 0x00, 0x30, # OO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x0F, 0xB0, # OOOOO OO 0x3F, 0xF0, # OOOOOOOOOO 0x70, 0x30, # OOO OO 0x60, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xE0, 0x30, # OOO OO 0x70, 0xF0, # OOO OOOO 0x3F, 0xF0, # OOOOOOOOOO 0x1F, 0x30, # OOOOO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3048 'e' (12 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x0F, 0x80, # OOOOO 0x3F, 0xE0, # OOOOOOOOO 0x70, 0x60, # OOO OO 0x60, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xFF, 0xF0, # OOOOOOOOOOOO 0xFF, 0xF0, # OOOOOOOOOOOO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0x60, 0x10, # OO O 0x70, 0x70, # OOO OOO 0x3F, 0xF0, # OOOOOOOOOO 0x0F, 0xC0, # OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3096 'f' (8 pixels wide) 0x1F, # OOOOO 0x3F, # OOOOOO 0x30, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0xFE, # OOOOOOO 0xFE, # OOOOOOO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @3120 'g' (12 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x0F, 0xB0, # OOOOO OO 0x3F, 0xF0, # OOOOOOOOOO 0x70, 0x70, # OOO OOO 0x60, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xE0, 0x30, # OOO OO 0x70, 0xF0, # OOO OOOO 0x3F, 0xF0, # OOOOOOOOOO 0x1F, 0x30, # OOOOO OO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x60, 0xE0, # OO OOO 0x7F, 0xC0, # OOOOOOOOO 0x7F, 0x80, # OOOOOOOO # @3168 'h' (11 pixels wide) 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xCF, 0x80, # OO OOOOO 0xFF, 0xC0, # OOOOOOOOOO 0xF0, 0xE0, # OOOO OOO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3216 'i' (2 pixels wide) 0x00, # 0xC0, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @3240 'j' (7 pixels wide) 0x00, # 0x06, # OO 0x06, # OO 0x00, # 0x00, # 0x00, # 0x3E, # OOOOO 0x3E, # OOOOO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x06, # OO 0x0E, # OOO 0xFC, # OOOOOO 0xF8, # OOOOO # @3264 'k' (12 pixels wide) 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x60, # OO OO 0xC0, 0xC0, # OO OO 0xC1, 0x80, # OO OO 0xC3, 0x00, # OO OO 0xC6, 0x00, # OO OO 0xCC, 0x00, # OO OO 0xDC, 0x00, # OO OOO 0xEE, 0x00, # OOO OOO 0xC7, 0x00, # OO OOO 0xC3, 0x80, # OO OOO 0xC1, 0xC0, # OO OOO 0xC0, 0xE0, # OO OOO 0xC0, 0x70, # OO OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3312 'l' (2 pixels wide) 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @3336 'm' (18 pixels wide) 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0xCF, 0x0F, 0x00, # OO OOOO OOOO 0xFF, 0xBF, 0x80, # OOOOOOOOO OOOOOOO 0xF1, 0xF1, 0xC0, # OOOO OOOOO OOO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xC0, 0xC0, # OO OO OO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @3408 'n' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xCF, 0x80, # OO OOOOO 0xFF, 0xC0, # OOOOOOOOOO 0xF0, 0xE0, # OOOO OOO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3456 'o' (13 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x0F, 0x80, # OOOOO 0x3F, 0xE0, # OOOOOOOOO 0x70, 0x70, # OOO OOO 0x60, 0x30, # OO OO 0xC0, 0x18, # OO OO 0xC0, 0x18, # OO OO 0xC0, 0x18, # OO OO 0xC0, 0x18, # OO OO 0xC0, 0x18, # OO OO 0x60, 0x30, # OO OO 0x70, 0x70, # OOO OOO 0x3F, 0xE0, # OOOOOOOOO 0x0F, 0x80, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3504 'p' (12 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xCF, 0x80, # OO OOOOO 0xFF, 0xC0, # OOOOOOOOOO 0xF0, 0xE0, # OOOO OOO 0xC0, 0x70, # OO OOO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0xE0, # OO OOO 0xFF, 0xC0, # OOOOOOOOOO 0xDF, 0x00, # OO OOOOO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0xC0, 0x00, # OO # @3552 'q' (12 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x0F, 0xB0, # OOOOO OO 0x3F, 0xF0, # OOOOOOOOOO 0x70, 0x70, # OOO OOO 0x60, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xC0, 0x30, # OO OO 0xE0, 0x30, # OOO OO 0x70, 0xF0, # OOO OOOO 0x3F, 0xF0, # OOOOOOOOOO 0x1F, 0x30, # OOOOO OO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x00, 0x30, # OO 0x00, 0x30, # OO # @3600 'r' (8 pixels wide) 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # 0xCF, # OO OOOO 0xDF, # OO OOOOO 0xF0, # OOOO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @3624 's' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x1F, 0x80, # OOOOOO 0x7F, 0xC0, # OOOOOOOOO 0xE0, 0x40, # OOO O 0xC0, 0x00, # OO 0xC0, 0x00, # OO 0x7C, 0x00, # OOOOO 0x3F, 0x80, # OOOOOOO 0x03, 0xE0, # OOOOO 0x00, 0x60, # OO 0x80, 0x60, # O OO 0xE0, 0xE0, # OOO OOO 0xFF, 0xC0, # OOOOOOOOOO 0x3F, 0x00, # OOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3672 't' (7 pixels wide) 0x00, # 0x00, # 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0xFE, # OOOOOOO 0xFE, # OOOOOOO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x60, # OO 0x70, # OOO 0x3E, # OOOOO 0x1E, # OOOO 0x00, # 0x00, # 0x00, # 0x00, # 0x00, # # @3696 'u' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xC0, 0x60, # OO OO 0xE1, 0xE0, # OOO OOOO 0x7F, 0xE0, # OOOOOOOOOO 0x3E, 0x60, # OOOOO OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3744 'v' (12 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xC0, 0x30, # OO OO 0x60, 0x60, # OO OO 0x60, 0x60, # OO OO 0x60, 0x60, # OO OO 0x30, 0xC0, # OO OO 0x30, 0xC0, # OO OO 0x39, 0xC0, # OOO OOO 0x19, 0x80, # OO OO 0x19, 0x80, # OO OO 0x0F, 0x00, # OOOO 0x0F, 0x00, # OOOO 0x0F, 0x00, # OOOO 0x06, 0x00, # OO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3792 'w' (18 pixels wide) 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0xC0, 0xC0, 0xC0, # OO OO OO 0xC0, 0xE0, 0xC0, # OO OOO OO 0x61, 0xE1, 0x80, # OO OOOO OO 0x61, 0xE1, 0x80, # OO OOOO OO 0x61, 0x31, 0x80, # OO O OO OO 0x73, 0x31, 0x80, # OOO OO OO OO 0x33, 0x33, 0x00, # OO OO OO OO 0x32, 0x1B, 0x00, # OO O OO OO 0x36, 0x1B, 0x00, # OO OO OO OO 0x1E, 0x1A, 0x00, # OOOO OO O 0x1C, 0x0E, 0x00, # OOO OOO 0x1C, 0x0E, 0x00, # OOO OOO 0x1C, 0x0E, 0x00, # OOO OOO 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # 0x00, 0x00, 0x00, # # @3864 'x' (12 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xE0, 0x70, # OOO OOO 0x70, 0xE0, # OOO OOO 0x30, 0xC0, # OO OO 0x19, 0x80, # OO OO 0x1F, 0x80, # OOOOOO 0x0F, 0x00, # OOOO 0x06, 0x00, # OO 0x0F, 0x00, # OOOO 0x1F, 0x80, # OOOOOO 0x19, 0x80, # OO OO 0x30, 0xC0, # OO OO 0x70, 0xE0, # OOO OOO 0xE0, 0x70, # OOO OOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @3912 'y' (12 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xC0, 0x30, # OO OO 0x60, 0x60, # OO OO 0x60, 0x60, # OO OO 0x70, 0xE0, # OOO OOO 0x30, 0xC0, # OO OO 0x30, 0xC0, # OO OO 0x19, 0x80, # OO OO 0x19, 0x80, # OO OO 0x1F, 0x80, # OOOOOO 0x0F, 0x00, # OOOO 0x0F, 0x00, # OOOO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x0E, 0x00, # OOO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x18, 0x00, # OO 0x18, 0x00, # OO # @3960 'z' (11 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0xFF, 0xE0, # OOOOOOOOOOO 0xFF, 0xE0, # OOOOOOOOOOO 0x00, 0xE0, # OOO 0x01, 0xC0, # OOO 0x03, 0x80, # OOO 0x07, 0x00, # OOO 0x0E, 0x00, # OOO 0x1C, 0x00, # OOO 0x38, 0x00, # OOO 0x70, 0x00, # OOO 0xE0, 0x00, # OOO 0xFF, 0xE0, # OOOOOOOOOOO 0xFF, 0xE0, # OOOOOOOOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @4008 '{' (11 pixels wide) 0x01, 0xE0, # OOOO 0x03, 0xE0, # OOOOO 0x07, 0x00, # OOO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x0C, 0x00, # OO 0x1C, 0x00, # OOO 0xF0, 0x00, # OOOO 0xF0, 0x00, # OOOO 0x1C, 0x00, # OOO 0x0C, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x06, 0x00, # OO 0x07, 0x00, # OOO 0x03, 0xE0, # OOOOO 0x01, 0xE0, # OOOO # @4056 '|' (2 pixels wide) 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO 0xC0, # OO # @4080 '}' (11 pixels wide) 0xF0, 0x00, # OOOO 0xF8, 0x00, # OOOOO 0x1C, 0x00, # OOO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x06, 0x00, # OO 0x07, 0x00, # OOO 0x01, 0xE0, # OOOO 0x01, 0xE0, # OOOO 0x07, 0x00, # OOO 0x06, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x0C, 0x00, # OO 0x1C, 0x00, # OOO 0xF8, 0x00, # OOOOO 0xF0, 0x00, # OOOO # @4128 '~' (15 pixels wide) 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x3C, 0x06, # OOOO OO 0x7E, 0x06, # OOOOOO OO 0x63, 0x06, # OO OO OO 0xC1, 0x8C, # OO OO OO 0xC0, 0xFC, # OO OOOOOO 0xC0, 0x78, # OO OOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # # @4176 '°' (9 pixels wide) 0x00, 0x00, # 0x3E, 0x00, # OOOOO 0x7F, 0x00, # OOOOOOO 0xE3, 0x80, # OOO OOO 0xC1, 0x80, # OO OO 0xC1, 0x80, # OO OO 0xC1, 0x80, # OO OO 0xE3, 0x80, # OOO OOO 0x7F, 0x00, # OOOOOOO 0x3E, 0x00, # OOOOO 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # 0x00, 0x00, # ) descriptors = ( (2,0),# ! (7,24),# " (15,48),# # (11,96),# $ (22,144),# % (17,216),# & (2,288),# ' (7,312),# ( (7,336),# ) (12,360),# * (14,408),# + (5,456),# , (7,480),# - (3,504),# . (10,528),# / (11,576),# 0 (10,624),# 1 (11,672),# 2 (11,720),# 3 (14,768),# 4 (11,816),# 5 (11,864),# 6 (12,912),# 7 (11,960),# 8 (11,1008),# 9 (3,1056),# : (5,1080),# ; (14,1104),# < (14,1152),# = (14,1200),# > (10,1248),# ? (20,1296),# @ (16,1368),# A (13,1416),# B (15,1464),# C (16,1512),# D (12,1560),# E (12,1608),# F (16,1656),# G (14,1704),# H (6,1752),# I (8,1776),# J (15,1800),# K (11,1848),# L (16,1896),# M (14,1944),# N (17,1992),# O (11,2064),# P (17,2112),# Q (14,2184),# R (13,2232),# S (14,2280),# T (14,2328),# U (16,2376),# V (22,2424),# W (14,2496),# X (14,2544),# Y (14,2592),# Z (6,2640),# [ (10,2664),# \ (6,2712),# ] (15,2736),# ^ (15,2784),# _ (5,2832),# ` (11,2856),# a (12,2904),# b (11,2952),# c (12,3000),# d (12,3048),# e (8,3096),# f (12,3120),# g (11,3168),# h (2,3216),# i (7,3240),# j (12,3264),# k (2,3312),# l (18,3336),# m (11,3408),# n (13,3456),# o (12,3504),# p (12,3552),# q (8,3600),# r (11,3624),# s (7,3672),# t (11,3696),# u (12,3744),# v (18,3792),# w (12,3864),# x (12,3912),# y (11,3960),# z (11,4008),# { (2,4056),# | (11,4080),# } (15,4128),# ~ (9,4176),# ° ) kerning = ( (2,2,2,2,2,2,2,2,1,2,2,1,2,2,0,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,0,1,2,2,2,2,2,2,2,2,2,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,), (7,7,6,7,7,6,7,6,7,7,1,2,0,4,1,7,7,7,7,3,6,6,7,7,7,7,6,0,0,7,7,6,3,7,6,7,7,7,6,7,7,5,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,4,0,7,5,7,3,3,3,7,3,7,7,5,7,7,7,7,3,7,3,7,4,7,7,7,7,7,7,7,2,7,7,0,7,), (15,15,14,15,15,14,15,14,12,13,11,10,11,12,10,15,12,13,13,14,14,14,13,15,15,15,14,13,11,15,13,14,12,15,14,15,15,15,14,15,13,11,15,15,15,15,15,15,15,15,15,13,15,13,14,13,13,13,15,13,13,12,0,12,13,15,14,14,14,15,14,15,15,13,15,15,15,15,14,15,14,15,12,15,15,15,15,15,15,15,14,15,13,14,15,), (11,10,10,11,10,11,10,11,7,7,9,9,9,11,9,11,10,11,11,11,11,11,8,11,10,11,9,9,11,11,8,11,10,11,11,11,11,11,10,11,10,11,11,11,11,11,11,11,11,11,11,6,11,8,9,9,7,11,11,8,7,7,6,6,11,11,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,10,11,10,10,10,10,11,10,11,7,11,10,), (22,16,22,22,19,22,20,22,18,16,22,20,22,22,20,22,21,22,22,22,22,22,19,22,20,22,20,22,22,22,19,22,21,22,22,22,22,22,22,22,21,22,22,22,22,22,22,22,22,22,22,16,22,18,19,20,16,22,22,18,18,20,7,17,22,22,22,22,22,21,22,22,22,17,22,22,22,22,22,22,22,22,22,21,22,20,21,20,20,22,22,22,18,22,18,), (17,10,15,16,14,14,15,16,13,14,14,16,14,17,15,14,17,17,16,14,16,14,15,15,15,17,16,14,14,16,14,14,17,17,14,17,17,17,14,17,17,17,17,17,17,17,14,17,14,17,16,11,14,11,12,17,11,17,17,11,13,14,2,12,15,17,14,14,14,16,14,17,17,12,17,17,17,17,14,17,14,17,16,14,15,13,14,17,13,17,14,17,13,14,13,), (2,2,1,2,2,1,2,1,2,2,0,0,0,0,0,2,2,2,2,0,1,1,2,2,2,2,1,0,0,2,2,1,0,2,1,2,2,2,1,2,2,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0,2,0,2,0,0,0,2,0,2,2,0,2,2,2,2,0,2,0,2,0,2,2,2,2,2,2,2,0,2,2,0,2,), (6,7,2,3,4,3,7,3,7,5,2,7,2,4,6,3,4,5,5,2,5,3,6,4,4,4,7,2,2,3,5,2,3,6,3,6,6,6,3,6,6,4,6,6,6,6,3,6,3,6,4,6,6,6,6,6,6,6,7,7,7,2,5,7,3,7,2,2,2,4,6,7,6,7,7,7,3,3,2,7,2,3,3,4,3,3,3,3,4,3,2,7,7,2,4,), (7,6,7,7,7,7,6,7,3,7,7,5,7,7,5,7,6,7,7,7,7,7,4,7,7,7,6,7,7,7,5,7,6,7,7,7,7,7,7,7,6,7,7,7,7,7,7,7,7,7,7,4,7,5,5,6,4,7,7,4,4,7,4,3,7,7,7,7,7,7,7,7,7,5,7,7,7,7,7,7,7,7,7,7,7,6,7,6,6,7,7,7,4,7,7,), (12,12,8,12,12,10,12,12,10,12,7,7,7,9,7,12,11,12,12,10,11,12,12,11,12,12,11,7,12,9,12,12,8,12,12,12,12,12,12,12,12,10,12,12,12,12,12,12,12,12,11,12,12,11,12,11,11,12,12,11,8,11,0,10,11,12,11,11,11,11,11,12,12,9,12,12,12,12,11,12,11,12,12,11,12,11,11,10,11,11,7,12,9,10,11,), (14,8,10,13,12,13,12,14,9,9,14,9,14,11,10,14,10,9,8,14,8,14,8,13,13,11,9,14,8,8,11,14,11,14,14,14,14,14,14,14,12,8,14,14,14,14,14,14,14,14,10,8,14,11,12,9,8,9,14,10,10,8,0,9,12,14,14,14,14,13,14,14,14,9,14,14,14,14,14,14,14,14,14,13,14,12,13,11,12,9,14,14,9,14,8,), (4,0,2,5,0,4,3,5,2,0,0,3,0,5,3,4,4,5,5,0,5,4,2,4,3,5,3,0,0,5,1,3,4,5,3,5,5,5,3,5,4,5,5,5,5,5,3,5,3,5,5,0,4,0,1,4,0,5,5,0,2,0,3,0,5,5,4,4,4,4,4,5,5,2,5,5,5,5,4,5,4,5,5,4,5,1,2,4,1,5,0,5,2,0,0,), (7,0,3,6,5,6,5,7,2,2,7,2,7,4,3,7,3,2,0,7,0,7,1,6,6,4,2,7,0,0,4,7,4,7,7,7,7,7,7,7,5,1,7,7,7,7,7,7,7,7,3,1,7,4,5,2,1,2,7,3,3,0,0,2,5,7,7,7,7,6,7,7,7,2,7,7,7,7,7,7,7,7,7,6,7,5,6,4,5,2,7,7,2,7,0,), (3,0,1,3,0,2,1,3,0,0,0,2,0,3,1,2,3,3,3,0,3,2,1,2,1,3,2,0,0,3,0,1,3,3,1,3,3,3,1,3,3,3,3,3,3,3,1,3,1,3,3,0,2,0,0,3,0,3,3,0,0,0,0,0,3,3,2,2,2,2,2,3,3,0,3,3,3,3,2,3,2,3,3,2,3,0,0,3,0,3,0,3,0,0,0,), (9,10,7,8,9,8,10,7,10,9,6,5,6,7,2,8,9,9,9,6,8,7,9,8,8,8,7,6,7,8,9,7,4,9,7,9,9,9,7,9,9,7,9,9,9,9,8,9,8,9,8,9,9,9,9,9,9,9,10,10,10,7,3,10,6,10,6,6,6,8,6,10,9,6,10,10,8,8,6,8,6,8,7,8,8,8,8,8,8,8,6,10,10,6,9,), (11,11,11,11,11,11,11,11,7,11,11,8,11,10,8,11,10,10,10,11,10,11,9,11,11,11,10,11,11,11,10,11,9,11,11,11,11,11,11,11,9,10,11,11,11,11,11,11,11,11,11,9,11,9,10,8,9,10,11,9,8,11,0,7,11,11,11,11,11,11,11,11,11,9,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,8,11,11,), (10,6,8,10,6,8,8,9,6,6,6,9,6,10,8,8,10,10,10,6,10,8,8,9,8,10,9,6,6,10,7,8,10,10,7,10,10,10,6,10,10,10,10,10,10,10,7,10,7,10,10,6,8,6,6,10,6,10,10,5,6,6,0,5,9,10,8,8,8,9,8,10,10,5,10,10,10,10,8,10,8,10,10,8,9,6,7,10,6,10,6,10,6,6,6,), (11,10,9,11,10,9,10,10,7,10,8,10,8,11,9,10,11,11,11,8,11,10,9,10,10,11,10,8,10,11,9,10,11,11,10,11,11,11,10,11,11,11,11,11,11,11,10,11,10,11,11,9,10,9,9,11,8,11,11,8,7,9,0,7,10,11,9,9,9,10,9,11,11,8,11,11,11,11,9,11,9,11,11,10,10,10,10,11,10,11,8,11,7,8,10,), (11,11,11,11,11,11,11,11,8,10,11,8,11,10,8,11,11,11,11,11,10,11,10,11,11,11,10,11,11,11,11,11,10,11,11,11,11,11,11,11,10,10,11,11,11,11,11,11,11,11,11,10,11,10,10,9,10,10,11,10,8,9,0,8,11,11,11,11,11,11,11,11,11,9,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,8,11,11,), (14,11,14,11,11,14,12,14,10,11,11,10,11,11,11,14,11,11,11,14,11,14,11,14,11,11,10,13,14,11,11,14,12,14,14,14,14,14,14,14,12,11,14,14,14,14,14,14,14,14,11,11,14,11,11,11,11,11,14,10,11,11,0,10,14,14,14,14,14,13,14,14,14,9,14,14,14,14,14,14,14,14,12,13,14,12,12,11,11,11,14,14,11,14,11,), (11,11,11,10,10,11,11,11,10,11,11,8,11,10,8,11,9,11,11,11,10,11,11,11,9,10,8,11,11,10,11,11,10,11,11,11,11,11,11,11,11,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,10,11,10,0,10,11,11,11,11,11,10,11,11,11,6,11,11,11,11,11,11,11,11,11,10,11,9,10,8,9,10,11,11,11,11,10,), (11,9,11,10,9,11,9,11,8,9,11,8,11,10,8,11,9,10,11,11,10,11,9,11,9,10,8,11,11,10,9,11,10,11,11,11,11,11,11,11,9,10,11,11,11,11,11,11,11,11,11,9,11,9,9,9,9,10,11,8,9,10,0,8,11,11,11,11,11,10,11,11,11,6,11,11,11,11,11,11,11,11,11,10,11,9,10,8,9,10,11,11,9,11,8,), (12,12,10,11,12,11,12,10,11,12,9,7,9,9,6,11,12,12,12,8,11,11,12,12,12,11,10,8,10,11,12,10,7,12,11,12,12,12,10,12,12,10,12,12,12,12,11,12,11,12,12,12,12,12,12,12,12,12,12,11,12,9,0,11,9,12,9,9,9,11,9,12,12,9,12,12,11,11,9,11,9,11,10,11,11,11,11,11,11,11,8,12,12,8,12,), (11,11,11,11,11,11,11,11,8,10,10,8,10,10,8,11,11,11,11,11,10,11,10,11,11,11,10,10,11,11,11,11,10,11,11,11,11,11,11,11,10,10,11,11,11,11,11,11,11,11,11,10,11,10,10,9,10,10,11,10,8,8,0,8,11,11,11,11,11,11,11,11,11,9,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,8,11,11,), (11,11,11,11,11,11,11,11,7,11,11,7,11,9,7,11,10,10,10,11,10,11,9,11,11,11,10,11,11,11,10,11,9,11,11,11,11,11,11,11,9,9,11,11,11,11,11,11,11,11,11,9,11,9,10,8,9,9,11,9,8,11,0,7,10,11,11,11,11,11,11,11,11,9,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,8,11,11,), (3,3,2,3,3,2,3,3,0,3,0,2,0,3,1,3,3,3,3,1,3,3,1,3,3,3,2,0,3,3,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,3,1,2,3,0,3,3,1,0,2,0,0,3,3,2,2,2,3,2,3,3,1,3,3,3,3,2,3,2,3,3,3,3,3,3,3,3,3,0,3,0,1,3,), (4,4,3,5,4,4,4,5,2,4,0,3,0,5,3,4,4,5,5,2,5,4,2,4,4,5,3,0,4,5,1,4,4,5,4,5,5,5,4,5,4,5,5,5,5,5,4,5,4,5,5,0,4,2,3,4,1,5,5,2,2,3,3,0,5,5,4,4,4,4,4,5,5,2,5,5,5,5,4,5,4,5,5,4,5,4,4,4,4,5,0,5,2,2,4,), (14,14,13,14,14,13,14,14,10,11,8,12,7,14,12,14,14,14,14,10,14,13,11,14,14,14,13,5,10,14,11,13,13,14,13,14,14,14,13,14,14,14,14,14,14,14,14,14,14,14,14,8,14,12,13,13,11,14,14,12,10,11,0,9,14,14,13,13,13,14,13,14,14,12,14,14,14,14,13,14,13,14,14,14,14,14,14,14,14,14,9,14,10,8,14,), (14,7,11,14,14,14,12,14,9,14,8,9,7,11,11,14,10,12,10,14,13,14,10,14,14,14,13,11,14,10,11,14,12,14,14,14,14,14,14,14,12,8,14,14,14,14,14,14,14,14,13,8,14,11,12,11,10,12,14,11,10,14,0,9,14,14,14,14,14,13,14,14,14,9,14,14,14,14,14,14,14,14,14,13,14,13,13,12,13,12,11,14,10,14,13,), (14,7,13,12,11,13,12,14,9,9,14,9,14,11,10,14,10,9,7,14,10,14,8,13,12,11,9,14,11,5,11,14,11,14,14,14,14,14,14,14,12,8,14,14,14,14,14,14,14,14,9,8,14,10,11,9,8,9,14,10,10,11,0,9,12,14,14,14,14,13,14,14,14,9,14,14,14,14,14,14,14,14,13,13,14,12,13,10,12,9,14,14,8,14,9,), (10,10,9,10,10,9,10,10,7,9,7,5,7,7,5,10,10,10,10,7,9,10,9,10,10,10,9,6,9,10,10,9,6,10,10,10,10,10,10,10,9,7,10,10,10,10,10,10,10,10,10,9,10,9,9,8,9,9,10,9,7,8,0,7,9,10,8,8,8,10,8,10,10,8,10,10,10,10,8,10,8,10,9,10,10,10,10,10,10,10,5,10,7,7,10,), (20,19,20,20,20,20,19,20,16,20,20,17,20,19,17,20,18,19,19,20,19,20,16,20,20,20,19,20,20,19,17,20,18,20,20,20,20,20,20,20,18,19,20,20,20,20,20,20,20,20,20,16,20,18,18,17,16,19,20,17,16,20,5,15,20,20,20,20,20,20,20,20,20,18,20,20,20,20,20,20,20,20,20,20,20,19,20,19,19,20,20,20,16,20,20,), (16,12,14,15,12,15,14,15,12,12,13,15,13,16,14,14,16,16,15,14,15,14,14,15,14,16,15,13,14,15,13,14,16,16,14,16,16,16,14,16,16,16,16,16,16,16,14,16,14,16,15,10,14,10,11,16,10,16,16,10,12,13,1,11,15,16,14,15,14,15,15,16,16,11,16,16,16,16,14,16,15,16,15,14,15,12,13,16,12,16,14,16,12,14,12,), (13,12,13,12,12,13,12,13,9,11,13,10,13,12,10,13,12,12,13,13,12,13,11,13,12,12,11,13,13,12,12,13,12,13,13,13,13,13,13,13,11,12,13,13,13,13,13,13,13,13,13,11,13,11,11,11,11,12,13,11,10,11,0,9,13,13,13,13,13,12,13,13,13,10,13,13,13,13,13,13,13,13,13,12,13,12,12,12,12,12,13,13,10,13,12,), (15,15,13,15,15,15,15,15,13,15,9,13,8,15,13,14,15,15,15,9,15,14,15,15,15,15,13,8,3,15,15,14,14,15,14,15,15,15,14,15,15,15,15,15,15,15,14,15,14,15,15,15,15,14,15,14,14,15,15,14,13,11,0,13,15,15,14,15,14,14,15,15,15,10,15,15,15,15,14,15,15,15,15,14,15,11,12,14,11,15,10,15,13,3,15,), (16,15,16,16,16,16,15,16,12,16,16,11,16,13,12,16,14,14,14,16,15,16,12,16,16,16,15,16,16,15,13,16,14,16,16,16,16,16,16,16,14,13,16,16,16,16,16,16,16,16,16,12,16,14,14,12,12,13,16,13,12,16,1,11,15,16,16,16,16,16,16,16,16,14,16,16,16,16,16,16,16,16,16,16,16,15,16,15,15,16,16,16,12,16,16,), (12,12,10,12,12,10,12,12,11,12,6,11,5,12,10,12,12,12,12,10,12,12,12,11,12,12,11,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,11,12,12,0,11,11,12,11,11,11,11,11,12,12,7,12,12,12,12,11,12,11,12,12,11,12,11,11,12,11,12,8,12,12,11,11,), (12,12,7,11,11,10,12,11,11,12,5,7,5,9,6,11,9,12,12,9,11,11,12,11,11,11,10,8,11,7,12,11,8,12,11,12,12,12,11,12,12,10,12,12,12,12,11,12,11,12,10,12,12,12,12,12,12,12,12,11,12,11,0,11,10,12,10,10,10,10,10,12,12,7,12,12,11,11,10,11,10,11,11,11,11,10,10,9,10,4,7,12,12,10,11,), (16,16,16,16,16,16,16,16,14,16,16,14,16,16,14,16,16,16,16,16,16,16,16,16,16,16,14,16,16,16,16,16,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,15,16,15,15,16,16,15,13,12,1,14,16,16,16,16,16,15,16,16,16,11,16,16,16,16,16,16,16,16,16,15,16,14,15,15,14,16,16,16,13,16,16,), (14,14,14,14,14,14,14,14,13,14,14,13,14,14,12,14,14,14,14,14,14,14,14,14,14,14,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,13,14,14,0,13,14,14,14,14,14,14,14,14,14,12,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,), (6,6,4,6,5,4,6,5,5,6,4,5,4,6,4,4,6,6,6,4,6,4,6,5,4,6,5,4,4,6,6,4,6,6,4,6,6,6,4,6,6,6,6,6,6,6,4,6,4,6,6,6,6,6,6,6,6,6,6,5,6,4,0,5,5,6,4,4,4,5,4,6,6,2,6,6,6,6,4,6,4,6,6,5,5,4,4,6,4,6,4,6,6,4,5,), (8,8,8,8,8,8,8,8,7,8,8,6,8,8,6,8,8,8,8,8,8,8,8,8,8,8,7,8,8,8,8,8,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,7,8,8,0,7,8,8,8,8,8,8,8,8,8,6,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,), (15,14,13,14,12,12,14,14,13,13,8,14,8,15,13,12,15,15,14,10,14,12,14,13,13,15,14,8,11,14,13,12,15,15,11,15,15,15,11,15,15,15,15,15,15,15,11,15,11,15,14,14,14,14,14,15,14,15,15,13,14,8,0,13,13,15,12,12,12,14,12,15,15,10,15,15,15,15,12,15,12,15,14,12,13,10,12,15,10,15,10,15,14,10,12,), (11,4,9,11,5,9,9,10,7,2,5,10,4,11,9,9,11,11,11,2,11,9,9,10,9,11,10,2,2,11,8,9,11,11,8,11,11,11,7,11,11,11,11,11,11,11,8,11,8,11,11,5,9,5,7,11,5,11,11,5,7,2,0,6,10,11,9,9,9,10,9,11,11,6,11,11,11,11,9,11,9,11,11,9,10,7,8,11,6,11,6,11,7,2,2,), (16,16,16,16,16,16,16,16,15,16,16,15,16,16,14,16,16,16,16,16,16,16,16,16,16,16,15,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,15,16,16,1,15,16,16,16,16,16,16,16,16,16,14,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,), (14,14,14,14,14,14,14,14,13,14,14,13,14,14,12,14,14,14,14,14,14,14,14,14,14,14,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,13,14,14,0,13,14,14,14,14,14,14,14,14,14,12,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,), (17,17,17,17,17,17,17,17,13,17,17,13,17,15,14,17,16,16,16,17,16,17,14,17,17,17,16,17,17,17,15,17,15,17,17,17,17,17,17,17,15,15,17,17,17,17,17,17,17,17,17,14,17,15,16,14,14,15,17,15,13,17,2,12,17,17,17,17,17,17,17,17,17,15,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,13,17,17,), (11,11,10,11,11,10,11,11,8,11,9,6,9,8,6,11,11,11,11,9,10,11,9,11,11,11,10,8,11,11,10,11,7,11,11,11,11,11,11,11,9,7,11,11,11,11,11,11,11,11,11,9,11,10,10,9,9,9,11,9,8,10,0,7,10,11,10,10,10,11,10,11,11,9,11,11,11,11,10,11,10,11,11,11,11,11,11,11,11,11,7,11,8,9,11,), (17,17,17,17,17,17,17,17,17,17,17,17,17,15,17,17,16,16,16,17,16,17,14,17,17,17,17,17,17,17,15,17,15,17,17,17,17,17,17,17,15,15,17,17,17,17,17,17,17,17,17,14,17,15,16,14,14,15,17,15,17,17,13,12,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,), (14,11,12,13,11,11,12,13,10,11,9,13,9,14,12,11,14,14,13,9,13,11,12,12,12,14,13,8,11,13,11,11,14,14,11,14,14,14,11,14,14,14,14,14,14,14,11,14,11,14,13,10,11,10,10,14,9,14,14,9,10,10,0,9,12,14,11,11,11,13,11,14,14,9,14,14,14,14,11,14,11,14,13,11,12,11,11,14,11,14,9,14,10,9,11,), (13,12,13,12,12,13,12,13,10,12,13,10,13,12,10,13,12,12,13,13,12,13,12,13,12,12,10,13,13,12,12,13,12,13,13,13,13,13,13,13,12,12,13,13,13,13,13,13,13,13,13,12,13,11,12,11,11,12,13,11,10,10,0,10,13,13,13,13,13,12,13,13,13,8,13,13,13,13,13,13,13,13,13,12,13,11,12,10,11,12,13,13,10,13,12,), (14,14,8,9,13,12,14,11,13,14,8,9,8,11,7,12,11,14,14,8,13,11,14,13,12,11,9,8,8,8,14,9,8,14,11,14,14,14,10,14,14,12,14,14,14,14,11,14,11,14,12,14,14,14,14,14,14,14,14,13,14,8,0,13,8,14,8,8,8,12,8,14,14,9,14,14,8,8,8,8,8,8,8,13,8,8,8,8,8,8,9,14,14,8,13,), (14,14,14,14,14,14,14,14,13,14,14,11,14,13,11,14,14,14,14,14,13,14,14,14,14,14,13,14,14,14,14,14,12,14,14,14,14,14,14,14,14,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,13,14,14,0,13,14,14,14,14,14,14,14,14,14,12,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,), (16,16,13,14,15,14,16,14,15,15,13,11,13,13,9,14,15,15,15,12,15,14,16,15,15,14,13,12,13,14,15,13,10,16,14,16,16,16,14,16,16,14,16,16,16,16,14,16,14,16,15,16,16,16,16,16,16,16,16,15,16,13,1,15,13,16,13,13,13,14,13,16,16,12,16,16,14,14,13,14,13,14,13,14,14,14,14,14,14,14,12,16,16,12,15,), (22,22,20,21,21,20,22,20,21,22,20,17,20,19,16,21,21,22,22,19,21,20,22,21,21,21,20,19,20,21,22,20,18,22,20,22,22,22,20,22,22,20,22,22,22,22,21,22,21,22,21,22,22,22,22,22,22,22,22,21,22,20,7,21,19,22,20,20,20,21,20,22,22,19,22,22,21,21,20,21,20,21,20,21,21,21,21,21,21,21,19,22,22,19,21,), (14,14,12,13,12,12,14,13,13,13,9,13,9,14,12,11,14,14,13,11,13,11,14,12,12,14,13,9,11,13,13,11,14,14,11,14,14,14,11,14,14,14,14,14,14,14,11,14,11,14,13,14,14,14,14,14,14,14,14,13,14,9,0,13,12,14,11,12,11,13,12,14,14,9,14,14,14,14,11,14,12,14,13,12,12,10,11,14,10,14,10,14,14,11,12,), (14,14,10,11,13,12,14,11,13,13,8,9,8,11,7,12,13,13,13,8,13,11,14,12,12,11,10,8,10,11,13,10,8,14,11,14,14,14,11,14,14,12,14,14,14,14,11,14,11,14,12,14,14,14,14,14,14,14,14,13,14,9,0,13,9,14,9,9,9,12,9,14,14,9,14,14,11,11,9,11,9,11,10,12,11,11,11,11,11,11,8,14,14,8,13,), (14,14,12,14,14,13,14,13,13,14,8,13,8,14,12,13,14,14,14,7,14,12,14,13,13,14,13,7,9,14,14,12,14,14,12,14,14,14,12,14,14,14,14,14,14,14,12,14,12,14,14,14,14,14,14,14,14,14,14,13,14,9,0,13,13,14,12,12,12,13,12,14,14,9,14,14,14,14,12,14,12,14,14,13,13,11,11,14,11,14,9,14,14,8,14,), (6,6,2,2,4,3,6,3,6,2,2,6,2,3,6,3,2,4,4,2,5,2,6,3,3,3,6,2,2,2,5,2,2,6,2,6,6,6,2,6,6,4,6,6,6,6,2,6,2,6,3,6,6,6,6,6,6,6,6,6,6,2,2,6,2,6,2,2,2,4,5,6,6,6,6,6,2,2,2,6,2,2,2,2,2,2,2,2,3,2,2,6,6,2,4,), (8,4,6,8,5,7,8,8,9,5,6,10,6,8,10,7,8,8,8,7,8,7,6,7,6,8,10,6,7,8,5,7,8,8,7,8,8,8,6,8,8,8,8,8,8,8,7,8,7,8,8,3,7,3,4,8,3,8,10,2,10,5,9,5,8,8,7,7,7,7,9,8,8,10,8,8,8,8,7,10,7,8,8,7,8,4,5,8,7,8,6,10,10,7,5,), (6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,), (15,12,11,15,14,13,13,15,10,14,9,10,8,12,10,15,11,11,11,13,14,15,9,13,14,14,13,12,15,12,10,15,12,15,15,15,15,15,15,15,13,9,15,15,15,15,15,15,15,15,13,9,15,12,13,10,10,9,15,12,11,15,0,10,13,15,14,14,14,14,14,15,15,11,15,15,15,15,14,15,14,15,15,14,15,14,14,12,14,13,11,15,10,14,13,), (13,8,0,10,0,0,13,12,13,3,1,14,8,12,14,4,5,4,4,1,4,4,3,4,4,12,14,1,1,1,5,0,0,2,0,0,3,3,0,1,9,7,0,4,0,1,0,4,4,1,2,1,1,0,0,1,1,1,15,8,11,0,15,10,4,3,4,3,3,7,14,4,13,11,3,13,0,4,2,15,5,7,4,8,4,3,0,3,11,4,10,15,12,0,6,), (5,5,0,0,5,4,5,3,3,4,0,0,0,2,0,4,5,5,5,0,4,3,4,4,4,2,0,0,0,0,5,2,0,5,3,5,5,5,3,5,4,2,5,5,5,5,3,5,3,5,4,4,5,4,4,4,4,4,5,4,4,0,0,3,0,5,0,0,0,4,0,5,4,0,5,5,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,5,4,0,5,), (11,9,11,11,11,11,9,11,7,11,11,10,11,11,9,11,11,11,11,11,11,11,9,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,5,11,8,9,11,7,11,11,8,7,11,0,6,11,11,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,10,11,10,10,11,10,11,11,11,7,11,10,), (12,9,12,12,11,12,10,12,7,11,12,9,12,11,9,12,10,11,11,12,11,12,8,12,11,11,10,12,12,11,9,12,10,12,12,12,12,12,12,12,10,11,12,12,12,12,12,12,12,12,11,6,12,9,10,9,7,11,12,9,8,12,0,7,12,12,12,12,12,11,12,12,12,8,12,12,12,12,12,12,12,12,12,11,12,11,11,9,11,11,12,12,7,12,10,), (11,9,9,11,11,11,9,11,7,11,5,9,4,11,9,11,11,11,11,9,11,11,8,11,11,11,10,8,11,11,8,11,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,5,11,9,9,10,7,11,11,8,7,11,0,6,11,11,10,11,10,11,11,11,11,9,11,11,11,11,10,11,11,11,11,11,11,10,11,10,10,11,7,11,7,10,11,), (12,12,12,12,12,12,12,12,12,12,12,11,12,12,10,12,12,12,12,12,12,12,12,12,12,12,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,0,12,12,12,12,12,12,12,12,12,12,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,), (12,9,12,12,11,12,10,12,8,11,12,10,12,12,10,12,12,12,12,12,12,12,9,12,11,12,10,12,12,12,9,12,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,6,12,9,10,11,7,12,12,9,8,12,0,7,12,12,12,12,12,11,12,12,12,9,12,12,12,12,12,12,12,12,12,11,12,11,11,11,11,12,12,12,8,12,11,), (8,8,6,7,7,6,8,7,8,6,3,3,3,5,2,7,4,6,6,4,7,7,8,7,7,7,6,3,3,7,7,6,3,8,7,8,8,8,7,8,8,6,8,8,8,8,7,8,7,8,7,8,8,8,8,8,8,8,8,8,8,5,0,8,6,8,5,5,5,7,5,8,8,5,8,8,7,7,5,7,5,7,6,7,7,7,7,7,7,7,3,8,8,3,7,), (12,12,12,12,12,12,12,12,9,12,12,11,12,12,11,12,12,12,12,12,12,12,10,12,12,12,11,12,12,12,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,6,12,10,11,12,9,12,12,10,10,12,11,7,12,12,12,12,12,12,12,12,12,10,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,10,12,12,), (11,9,11,11,11,11,9,11,7,11,11,10,11,11,9,11,11,11,11,11,11,11,9,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,5,11,8,9,11,7,11,11,8,7,11,0,6,11,11,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,10,11,10,10,11,10,11,11,11,7,11,10,), (2,2,2,2,2,2,2,2,1,2,2,1,2,2,0,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,0,1,2,2,2,2,2,2,2,2,2,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,), (7,7,7,7,7,7,7,7,6,7,7,6,7,7,6,7,7,7,7,7,7,7,7,7,7,7,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,6,7,7,7,6,7,7,7,7,7,7,7,7,7,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,), (12,11,10,11,11,10,11,11,8,9,7,11,7,12,10,11,12,12,11,7,11,10,10,11,11,12,11,6,9,11,9,10,12,12,10,12,12,12,10,12,12,12,12,12,12,12,11,12,11,12,11,6,11,9,10,12,8,12,12,9,8,8,0,7,10,12,9,9,9,11,9,12,12,9,12,12,12,12,9,12,9,12,11,11,11,11,11,12,11,12,7,12,8,7,11,), (2,2,2,2,2,2,2,2,2,2,2,1,2,2,0,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,2,2,2,2,2,2,2,2,2,2,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,), (18,16,18,18,18,18,16,18,14,18,18,17,18,18,16,18,18,18,18,18,18,18,16,18,18,18,17,18,18,18,15,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,12,18,15,16,18,14,18,18,15,14,18,3,13,18,18,18,18,18,17,18,18,18,15,18,18,18,18,18,18,18,18,18,17,18,17,17,18,17,18,18,18,14,18,17,), (11,9,11,11,11,11,9,11,7,11,11,10,11,11,9,11,11,11,11,11,11,11,9,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,5,11,8,9,11,7,11,11,8,7,11,0,6,11,11,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,10,11,10,10,11,10,11,11,11,7,11,10,), (13,9,13,12,12,13,11,13,8,12,13,10,13,12,10,13,11,12,12,13,12,13,9,13,12,12,11,13,13,12,10,13,11,13,13,13,13,13,13,13,11,12,13,13,13,13,13,13,13,13,12,7,13,10,11,10,8,12,13,9,9,12,0,8,13,13,13,13,13,12,13,13,13,9,13,13,13,13,13,13,13,13,13,12,13,11,12,10,11,12,13,13,8,13,11,), (12,9,12,12,11,12,10,12,7,11,12,9,12,11,9,12,10,11,11,12,11,12,8,12,11,11,10,12,12,11,9,12,10,12,12,12,12,12,12,12,10,11,12,12,12,12,12,12,12,12,11,6,12,9,10,9,7,11,12,9,8,12,2,7,12,12,12,12,12,11,12,12,12,8,12,12,12,12,12,12,12,12,12,11,12,11,11,9,11,11,12,12,7,12,10,), (12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,10,12,12,12,12,12,12,12,9,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,6,12,10,11,12,9,12,12,10,12,12,12,7,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,), (8,8,7,8,8,7,8,8,4,7,2,3,2,5,3,8,4,2,2,5,7,8,0,8,8,8,7,2,4,8,1,7,4,8,8,8,8,8,8,8,6,2,8,8,8,8,8,8,8,8,8,2,8,6,7,4,5,2,8,6,4,6,0,3,7,8,6,6,6,8,6,8,8,6,8,8,8,8,6,8,6,8,7,8,8,8,8,8,8,8,3,8,4,2,8,), (11,9,9,11,10,11,9,11,7,10,6,9,6,11,9,11,10,11,11,11,11,11,8,11,10,11,9,8,11,11,8,11,10,11,11,11,11,11,10,11,10,11,11,11,11,11,11,11,11,11,11,5,11,8,8,9,6,11,11,7,7,9,0,6,11,11,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,10,11,9,10,9,9,11,9,11,7,11,10,), (7,7,6,7,7,6,7,7,3,6,3,6,3,7,5,7,7,7,7,4,7,7,5,7,7,7,6,3,3,7,4,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,3,7,5,6,7,4,7,7,5,3,5,0,2,6,7,5,5,5,7,5,7,7,5,7,7,7,7,5,7,5,7,7,7,7,7,7,7,7,7,3,7,3,3,7,), (11,11,11,11,11,11,11,11,7,11,11,10,11,11,9,11,11,11,11,11,11,11,9,11,11,11,10,11,11,11,8,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,5,11,9,10,11,8,11,11,9,7,11,0,6,11,11,11,11,11,11,11,11,11,9,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,7,11,11,), (12,12,11,12,12,11,12,11,8,11,10,7,10,9,6,12,8,8,8,10,11,11,5,12,12,12,11,10,11,12,7,11,8,12,11,12,12,12,11,12,10,8,12,12,12,12,12,12,12,12,12,6,12,10,11,8,9,8,12,10,8,11,0,7,10,12,10,10,10,12,10,12,12,10,12,12,12,12,10,12,10,12,11,12,12,12,12,12,12,12,10,12,8,10,12,), (18,18,17,18,18,17,18,18,14,17,17,14,17,15,13,18,15,15,15,17,17,18,13,18,18,18,17,17,17,18,14,17,15,18,18,18,18,18,18,18,16,15,18,18,18,18,18,18,18,18,18,12,18,16,17,15,15,15,18,16,14,17,3,13,17,18,17,17,17,18,17,18,18,16,18,18,18,18,17,18,17,18,17,18,18,18,18,18,18,18,17,18,14,17,18,), (12,12,11,12,12,11,12,11,8,10,9,11,9,12,10,12,12,12,11,8,11,11,10,12,12,12,11,8,10,12,9,11,12,12,11,12,12,12,11,12,12,12,12,12,12,12,12,12,12,12,12,6,12,10,11,12,9,12,12,10,8,9,0,7,10,12,9,9,9,12,9,12,12,10,12,12,12,12,9,12,9,12,11,12,12,12,12,12,12,12,8,12,8,8,12,), (12,12,11,12,12,11,12,11,8,11,10,7,10,9,6,12,8,8,8,10,11,11,5,12,12,12,11,10,11,12,7,11,8,12,11,12,12,12,11,12,10,8,12,12,12,12,12,12,12,12,12,6,12,10,11,8,9,8,12,10,8,11,6,7,10,12,10,10,10,12,10,12,12,10,12,12,12,12,10,12,10,12,11,12,12,12,12,12,12,12,10,12,8,10,12,), (11,11,10,11,11,10,11,11,7,11,9,10,9,11,9,11,11,11,11,9,11,11,9,11,11,11,10,8,11,11,8,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,5,11,9,10,11,8,11,11,9,7,10,0,6,10,11,10,10,10,11,10,11,11,9,11,11,11,11,10,11,10,11,11,11,11,11,11,11,11,11,8,11,7,9,11,), (11,11,6,7,9,8,11,8,11,8,6,11,6,8,11,8,7,9,9,6,10,7,11,8,8,8,11,5,7,7,10,7,7,11,7,11,11,11,7,11,11,9,11,11,11,11,7,11,7,11,8,11,11,11,11,11,11,11,11,11,11,6,8,11,7,11,6,7,6,9,10,11,11,11,11,11,7,7,6,11,7,7,7,7,7,7,7,7,8,7,5,11,11,6,9,), (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,), (11,6,11,9,6,11,9,11,6,6,11,6,11,8,7,11,7,7,6,11,6,11,6,11,8,8,6,11,8,6,8,11,9,11,11,11,11,11,11,11,9,6,11,11,11,11,11,11,11,11,6,6,11,7,8,7,5,7,11,7,7,7,6,6,10,11,11,11,11,10,11,11,11,6,11,11,11,11,11,11,11,11,10,10,11,9,10,7,9,7,11,11,5,11,6,), (15,8,14,15,15,14,13,15,10,15,15,10,15,12,11,15,11,10,11,14,14,15,9,14,15,15,14,14,15,11,12,15,12,15,15,15,15,15,15,15,13,9,15,15,15,15,15,15,15,15,14,9,15,12,13,10,11,10,15,12,11,15,0,10,14,15,15,15,15,14,15,15,15,10,15,15,15,15,15,15,15,15,15,14,15,14,14,13,14,10,14,15,11,14,14,), (9,9,8,9,9,8,9,9,6,8,3,4,2,6,4,9,9,9,9,6,8,9,8,9,9,9,8,4,8,9,9,8,5,9,9,9,9,9,9,9,8,6,9,9,9,9,9,9,9,9,9,8,9,8,8,7,8,8,9,8,7,7,0,6,8,9,7,7,7,9,7,9,9,7,9,9,9,9,7,9,7,9,8,9,9,9,9,9,9,9,4,9,7,6,9,), ) # End of font
36.111484
292
0.417497
79425453dcbb4c0d5645db8be440c0f6d4e0ef17
168,302
py
Python
Lib/test/test_buffer.py
tai271828/RustPython
9fb70707c4803f9f6d79dd4c8077bd16f0a9be45
[ "CC-BY-4.0", "MIT" ]
11,058
2018-05-29T07:40:06.000Z
2022-03-31T11:38:42.000Z
Lib/test/test_buffer.py
tai271828/RustPython
9fb70707c4803f9f6d79dd4c8077bd16f0a9be45
[ "CC-BY-4.0", "MIT" ]
2,105
2018-06-01T10:07:16.000Z
2022-03-31T14:56:42.000Z
Lib/test/test_buffer.py
tai271828/RustPython
9fb70707c4803f9f6d79dd4c8077bd16f0a9be45
[ "CC-BY-4.0", "MIT" ]
914
2018-07-27T09:36:14.000Z
2022-03-31T19:56:34.000Z
# # The ndarray object from _testbuffer.c is a complete implementation of # a PEP-3118 buffer provider. It is independent from NumPy's ndarray # and the tests don't require NumPy. # # If NumPy is present, some tests check both ndarray implementations # against each other. # # Most ndarray tests also check that memoryview(ndarray) behaves in # the same way as the original. Thus, a substantial part of the # memoryview tests is now in this module. # # Written and designed by Stefan Krah for Python 3.3. # import contextlib import unittest from test import support from itertools import permutations, product from random import randrange, sample, choice import warnings import sys, array, io, os from decimal import Decimal from fractions import Fraction try: from _testbuffer import * except ImportError: ndarray = None try: import struct except ImportError: struct = None try: import ctypes except ImportError: ctypes = None try: with support.EnvironmentVarGuard() as os.environ, \ warnings.catch_warnings(): from numpy import ndarray as numpy_array except ImportError: numpy_array = None SHORT_TEST = True # ====================================================================== # Random lists by format specifier # ====================================================================== # Native format chars and their ranges. NATIVE = { '?':0, 'c':0, 'b':0, 'B':0, 'h':0, 'H':0, 'i':0, 'I':0, 'l':0, 'L':0, 'n':0, 'N':0, 'f':0, 'd':0, 'P':0 } # NumPy does not have 'n' or 'N': if numpy_array: del NATIVE['n'] del NATIVE['N'] if struct: try: # Add "qQ" if present in native mode. struct.pack('Q', 2**64-1) NATIVE['q'] = 0 NATIVE['Q'] = 0 except struct.error: pass # Standard format chars and their ranges. STANDARD = { '?':(0, 2), 'c':(0, 1<<8), 'b':(-(1<<7), 1<<7), 'B':(0, 1<<8), 'h':(-(1<<15), 1<<15), 'H':(0, 1<<16), 'i':(-(1<<31), 1<<31), 'I':(0, 1<<32), 'l':(-(1<<31), 1<<31), 'L':(0, 1<<32), 'q':(-(1<<63), 1<<63), 'Q':(0, 1<<64), 'f':(-(1<<63), 1<<63), 'd':(-(1<<1023), 1<<1023) } def native_type_range(fmt): """Return range of a native type.""" if fmt == 'c': lh = (0, 256) elif fmt == '?': lh = (0, 2) elif fmt == 'f': lh = (-(1<<63), 1<<63) elif fmt == 'd': lh = (-(1<<1023), 1<<1023) else: for exp in (128, 127, 64, 63, 32, 31, 16, 15, 8, 7): try: struct.pack(fmt, (1<<exp)-1) break except struct.error: pass lh = (-(1<<exp), 1<<exp) if exp & 1 else (0, 1<<exp) return lh fmtdict = { '':NATIVE, '@':NATIVE, '<':STANDARD, '>':STANDARD, '=':STANDARD, '!':STANDARD } if struct: for fmt in fmtdict['@']: fmtdict['@'][fmt] = native_type_range(fmt) MEMORYVIEW = NATIVE.copy() ARRAY = NATIVE.copy() for k in NATIVE: if not k in "bBhHiIlLfd": del ARRAY[k] BYTEFMT = NATIVE.copy() for k in NATIVE: if not k in "Bbc": del BYTEFMT[k] fmtdict['m'] = MEMORYVIEW fmtdict['@m'] = MEMORYVIEW fmtdict['a'] = ARRAY fmtdict['b'] = BYTEFMT fmtdict['@b'] = BYTEFMT # Capabilities of the test objects: MODE = 0 MULT = 1 cap = { # format chars # multiplier 'ndarray': (['', '@', '<', '>', '=', '!'], ['', '1', '2', '3']), 'array': (['a'], ['']), 'numpy': ([''], ['']), 'memoryview': (['@m', 'm'], ['']), 'bytefmt': (['@b', 'b'], ['']), } def randrange_fmt(mode, char, obj): """Return random item for a type specified by a mode and a single format character.""" x = randrange(*fmtdict[mode][char]) if char == 'c': x = bytes([x]) if obj == 'numpy' and x == b'\x00': # http://projects.scipy.org/numpy/ticket/1925 x = b'\x01' if char == '?': x = bool(x) if char == 'f' or char == 'd': x = struct.pack(char, x) x = struct.unpack(char, x)[0] return x def gen_item(fmt, obj): """Return single random item.""" mode, chars = fmt.split('#') x = [] for c in chars: x.append(randrange_fmt(mode, c, obj)) return x[0] if len(x) == 1 else tuple(x) def gen_items(n, fmt, obj): """Return a list of random items (or a scalar).""" if n == 0: return gen_item(fmt, obj) lst = [0] * n for i in range(n): lst[i] = gen_item(fmt, obj) return lst def struct_items(n, obj): mode = choice(cap[obj][MODE]) xfmt = mode + '#' fmt = mode.strip('amb') nmemb = randrange(2, 10) # number of struct members for _ in range(nmemb): char = choice(tuple(fmtdict[mode])) multiplier = choice(cap[obj][MULT]) xfmt += (char * int(multiplier if multiplier else 1)) fmt += (multiplier + char) items = gen_items(n, xfmt, obj) item = gen_item(xfmt, obj) return fmt, items, item def randitems(n, obj='ndarray', mode=None, char=None): """Return random format, items, item.""" if mode is None: mode = choice(cap[obj][MODE]) if char is None: char = choice(tuple(fmtdict[mode])) multiplier = choice(cap[obj][MULT]) fmt = mode + '#' + char * int(multiplier if multiplier else 1) items = gen_items(n, fmt, obj) item = gen_item(fmt, obj) fmt = mode.strip('amb') + multiplier + char return fmt, items, item def iter_mode(n, obj='ndarray'): """Iterate through supported mode/char combinations.""" for mode in cap[obj][MODE]: for char in fmtdict[mode]: yield randitems(n, obj, mode, char) def iter_format(nitems, testobj='ndarray'): """Yield (format, items, item) for all possible modes and format characters plus one random compound format string.""" for t in iter_mode(nitems, testobj): yield t if testobj != 'ndarray': return yield struct_items(nitems, testobj) def is_byte_format(fmt): return 'c' in fmt or 'b' in fmt or 'B' in fmt def is_memoryview_format(fmt): """format suitable for memoryview""" x = len(fmt) return ((x == 1 or (x == 2 and fmt[0] == '@')) and fmt[x-1] in MEMORYVIEW) NON_BYTE_FORMAT = [c for c in fmtdict['@'] if not is_byte_format(c)] # ====================================================================== # Multi-dimensional tolist(), slicing and slice assignments # ====================================================================== def atomp(lst): """Tuple items (representing structs) are regarded as atoms.""" return not isinstance(lst, list) def listp(lst): return isinstance(lst, list) def prod(lst): """Product of list elements.""" if len(lst) == 0: return 0 x = lst[0] for v in lst[1:]: x *= v return x def strides_from_shape(ndim, shape, itemsize, layout): """Calculate strides of a contiguous array. Layout is 'C' or 'F' (Fortran).""" if ndim == 0: return () if layout == 'C': strides = list(shape[1:]) + [itemsize] for i in range(ndim-2, -1, -1): strides[i] *= strides[i+1] else: strides = [itemsize] + list(shape[:-1]) for i in range(1, ndim): strides[i] *= strides[i-1] return strides def _ca(items, s): """Convert flat item list to the nested list representation of a multidimensional C array with shape 's'.""" if atomp(items): return items if len(s) == 0: return items[0] lst = [0] * s[0] stride = len(items) // s[0] if s[0] else 0 for i in range(s[0]): start = i*stride lst[i] = _ca(items[start:start+stride], s[1:]) return lst def _fa(items, s): """Convert flat item list to the nested list representation of a multidimensional Fortran array with shape 's'.""" if atomp(items): return items if len(s) == 0: return items[0] lst = [0] * s[0] stride = s[0] for i in range(s[0]): lst[i] = _fa(items[i::stride], s[1:]) return lst def carray(items, shape): if listp(items) and not 0 in shape and prod(shape) != len(items): raise ValueError("prod(shape) != len(items)") return _ca(items, shape) def farray(items, shape): if listp(items) and not 0 in shape and prod(shape) != len(items): raise ValueError("prod(shape) != len(items)") return _fa(items, shape) def indices(shape): """Generate all possible tuples of indices.""" iterables = [range(v) for v in shape] return product(*iterables) def getindex(ndim, ind, strides): """Convert multi-dimensional index to the position in the flat list.""" ret = 0 for i in range(ndim): ret += strides[i] * ind[i] return ret def transpose(src, shape): """Transpose flat item list that is regarded as a multi-dimensional matrix defined by shape: dest...[k][j][i] = src[i][j][k]... """ if not shape: return src ndim = len(shape) sstrides = strides_from_shape(ndim, shape, 1, 'C') dstrides = strides_from_shape(ndim, shape[::-1], 1, 'C') dest = [0] * len(src) for ind in indices(shape): fr = getindex(ndim, ind, sstrides) to = getindex(ndim, ind[::-1], dstrides) dest[to] = src[fr] return dest def _flatten(lst): """flatten list""" if lst == []: return lst if atomp(lst): return [lst] return _flatten(lst[0]) + _flatten(lst[1:]) def flatten(lst): """flatten list or return scalar""" if atomp(lst): # scalar return lst return _flatten(lst) def slice_shape(lst, slices): """Get the shape of lst after slicing: slices is a list of slice objects.""" if atomp(lst): return [] return [len(lst[slices[0]])] + slice_shape(lst[0], slices[1:]) def multislice(lst, slices): """Multi-dimensional slicing: slices is a list of slice objects.""" if atomp(lst): return lst return [multislice(sublst, slices[1:]) for sublst in lst[slices[0]]] def m_assign(llst, rlst, lslices, rslices): """Multi-dimensional slice assignment: llst and rlst are the operands, lslices and rslices are lists of slice objects. llst and rlst must have the same structure. For a two-dimensional example, this is not implemented in Python: llst[0:3:2, 0:3:2] = rlst[1:3:1, 1:3:1] Instead we write: lslices = [slice(0,3,2), slice(0,3,2)] rslices = [slice(1,3,1), slice(1,3,1)] multislice_assign(llst, rlst, lslices, rslices) """ if atomp(rlst): return rlst rlst = [m_assign(l, r, lslices[1:], rslices[1:]) for l, r in zip(llst[lslices[0]], rlst[rslices[0]])] llst[lslices[0]] = rlst return llst def cmp_structure(llst, rlst, lslices, rslices): """Compare the structure of llst[lslices] and rlst[rslices].""" lshape = slice_shape(llst, lslices) rshape = slice_shape(rlst, rslices) if (len(lshape) != len(rshape)): return -1 for i in range(len(lshape)): if lshape[i] != rshape[i]: return -1 if lshape[i] == 0: return 0 return 0 def multislice_assign(llst, rlst, lslices, rslices): """Return llst after assigning: llst[lslices] = rlst[rslices]""" if cmp_structure(llst, rlst, lslices, rslices) < 0: raise ValueError("lvalue and rvalue have different structures") return m_assign(llst, rlst, lslices, rslices) # ====================================================================== # Random structures # ====================================================================== # # PEP-3118 is very permissive with respect to the contents of a # Py_buffer. In particular: # # - shape can be zero # - strides can be any integer, including zero # - offset can point to any location in the underlying # memory block, provided that it is a multiple of # itemsize. # # The functions in this section test and verify random structures # in full generality. A structure is valid iff it fits in the # underlying memory block. # # The structure 't' (short for 'tuple') is fully defined by: # # t = (memlen, itemsize, ndim, shape, strides, offset) # def verify_structure(memlen, itemsize, ndim, shape, strides, offset): """Verify that the parameters represent a valid array within the bounds of the allocated memory: char *mem: start of the physical memory block memlen: length of the physical memory block offset: (char *)buf - mem """ if offset % itemsize: return False if offset < 0 or offset+itemsize > memlen: return False if any(v % itemsize for v in strides): return False if ndim <= 0: return ndim == 0 and not shape and not strides if 0 in shape: return True imin = sum(strides[j]*(shape[j]-1) for j in range(ndim) if strides[j] <= 0) imax = sum(strides[j]*(shape[j]-1) for j in range(ndim) if strides[j] > 0) return 0 <= offset+imin and offset+imax+itemsize <= memlen def get_item(lst, indices): for i in indices: lst = lst[i] return lst def memory_index(indices, t): """Location of an item in the underlying memory.""" memlen, itemsize, ndim, shape, strides, offset = t p = offset for i in range(ndim): p += strides[i]*indices[i] return p def is_overlapping(t): """The structure 't' is overlapping if at least one memory location is visited twice while iterating through all possible tuples of indices.""" memlen, itemsize, ndim, shape, strides, offset = t visited = 1<<memlen for ind in indices(shape): i = memory_index(ind, t) bit = 1<<i if visited & bit: return True visited |= bit return False def rand_structure(itemsize, valid, maxdim=5, maxshape=16, shape=()): """Return random structure: (memlen, itemsize, ndim, shape, strides, offset) If 'valid' is true, the returned structure is valid, otherwise invalid. If 'shape' is given, use that instead of creating a random shape. """ if not shape: ndim = randrange(maxdim+1) if (ndim == 0): if valid: return itemsize, itemsize, ndim, (), (), 0 else: nitems = randrange(1, 16+1) memlen = nitems * itemsize offset = -itemsize if randrange(2) == 0 else memlen return memlen, itemsize, ndim, (), (), offset minshape = 2 n = randrange(100) if n >= 95 and valid: minshape = 0 elif n >= 90: minshape = 1 shape = [0] * ndim for i in range(ndim): shape[i] = randrange(minshape, maxshape+1) else: ndim = len(shape) maxstride = 5 n = randrange(100) zero_stride = True if n >= 95 and n & 1 else False strides = [0] * ndim strides[ndim-1] = itemsize * randrange(-maxstride, maxstride+1) if not zero_stride and strides[ndim-1] == 0: strides[ndim-1] = itemsize for i in range(ndim-2, -1, -1): maxstride *= shape[i+1] if shape[i+1] else 1 if zero_stride: strides[i] = itemsize * randrange(-maxstride, maxstride+1) else: strides[i] = ((1,-1)[randrange(2)] * itemsize * randrange(1, maxstride+1)) imin = imax = 0 if not 0 in shape: imin = sum(strides[j]*(shape[j]-1) for j in range(ndim) if strides[j] <= 0) imax = sum(strides[j]*(shape[j]-1) for j in range(ndim) if strides[j] > 0) nitems = imax - imin if valid: offset = -imin * itemsize memlen = offset + (imax+1) * itemsize else: memlen = (-imin + imax) * itemsize offset = -imin-itemsize if randrange(2) == 0 else memlen return memlen, itemsize, ndim, shape, strides, offset def randslice_from_slicelen(slicelen, listlen): """Create a random slice of len slicelen that fits into listlen.""" maxstart = listlen - slicelen start = randrange(maxstart+1) maxstep = (listlen - start) // slicelen if slicelen else 1 step = randrange(1, maxstep+1) stop = start + slicelen * step s = slice(start, stop, step) _, _, _, control = slice_indices(s, listlen) if control != slicelen: raise RuntimeError return s def randslice_from_shape(ndim, shape): """Create two sets of slices for an array x with shape 'shape' such that shapeof(x[lslices]) == shapeof(x[rslices]).""" lslices = [0] * ndim rslices = [0] * ndim for n in range(ndim): l = shape[n] slicelen = randrange(1, l+1) if l > 0 else 0 lslices[n] = randslice_from_slicelen(slicelen, l) rslices[n] = randslice_from_slicelen(slicelen, l) return tuple(lslices), tuple(rslices) def rand_aligned_slices(maxdim=5, maxshape=16): """Create (lshape, rshape, tuple(lslices), tuple(rslices)) such that shapeof(x[lslices]) == shapeof(y[rslices]), where x is an array with shape 'lshape' and y is an array with shape 'rshape'.""" ndim = randrange(1, maxdim+1) minshape = 2 n = randrange(100) if n >= 95: minshape = 0 elif n >= 90: minshape = 1 all_random = True if randrange(100) >= 80 else False lshape = [0]*ndim; rshape = [0]*ndim lslices = [0]*ndim; rslices = [0]*ndim for n in range(ndim): small = randrange(minshape, maxshape+1) big = randrange(minshape, maxshape+1) if big < small: big, small = small, big # Create a slice that fits the smaller value. if all_random: start = randrange(-small, small+1) stop = randrange(-small, small+1) step = (1,-1)[randrange(2)] * randrange(1, small+2) s_small = slice(start, stop, step) _, _, _, slicelen = slice_indices(s_small, small) else: slicelen = randrange(1, small+1) if small > 0 else 0 s_small = randslice_from_slicelen(slicelen, small) # Create a slice of the same length for the bigger value. s_big = randslice_from_slicelen(slicelen, big) if randrange(2) == 0: rshape[n], lshape[n] = big, small rslices[n], lslices[n] = s_big, s_small else: rshape[n], lshape[n] = small, big rslices[n], lslices[n] = s_small, s_big return lshape, rshape, tuple(lslices), tuple(rslices) def randitems_from_structure(fmt, t): """Return a list of random items for structure 't' with format 'fmtchar'.""" memlen, itemsize, _, _, _, _ = t return gen_items(memlen//itemsize, '#'+fmt, 'numpy') def ndarray_from_structure(items, fmt, t, flags=0): """Return ndarray from the tuple returned by rand_structure()""" memlen, itemsize, ndim, shape, strides, offset = t return ndarray(items, shape=shape, strides=strides, format=fmt, offset=offset, flags=ND_WRITABLE|flags) def numpy_array_from_structure(items, fmt, t): """Return numpy_array from the tuple returned by rand_structure()""" memlen, itemsize, ndim, shape, strides, offset = t buf = bytearray(memlen) for j, v in enumerate(items): struct.pack_into(fmt, buf, j*itemsize, v) return numpy_array(buffer=buf, shape=shape, strides=strides, dtype=fmt, offset=offset) # ====================================================================== # memoryview casts # ====================================================================== def cast_items(exporter, fmt, itemsize, shape=None): """Interpret the raw memory of 'exporter' as a list of items with size 'itemsize'. If shape=None, the new structure is assumed to be 1-D with n * itemsize = bytelen. If shape is given, the usual constraint for contiguous arrays prod(shape) * itemsize = bytelen applies. On success, return (items, shape). If the constraints cannot be met, return (None, None). If a chunk of bytes is interpreted as NaN as a result of float conversion, return ('nan', None).""" bytelen = exporter.nbytes if shape: if prod(shape) * itemsize != bytelen: return None, shape elif shape == []: if exporter.ndim == 0 or itemsize != bytelen: return None, shape else: n, r = divmod(bytelen, itemsize) shape = [n] if r != 0: return None, shape mem = exporter.tobytes() byteitems = [mem[i:i+itemsize] for i in range(0, len(mem), itemsize)] items = [] for v in byteitems: item = struct.unpack(fmt, v)[0] if item != item: return 'nan', shape items.append(item) return (items, shape) if shape != [] else (items[0], shape) def gencastshapes(): """Generate shapes to test casting.""" for n in range(32): yield [n] ndim = randrange(4, 6) minshape = 1 if randrange(100) > 80 else 2 yield [randrange(minshape, 5) for _ in range(ndim)] ndim = randrange(2, 4) minshape = 1 if randrange(100) > 80 else 2 yield [randrange(minshape, 5) for _ in range(ndim)] # ====================================================================== # Actual tests # ====================================================================== def genslices(n): """Generate all possible slices for a single dimension.""" return product(range(-n, n+1), range(-n, n+1), range(-n, n+1)) def genslices_ndim(ndim, shape): """Generate all possible slice tuples for 'shape'.""" iterables = [genslices(shape[n]) for n in range(ndim)] return product(*iterables) def rslice(n, allow_empty=False): """Generate random slice for a single dimension of length n. If zero=True, the slices may be empty, otherwise they will be non-empty.""" minlen = 0 if allow_empty or n == 0 else 1 slicelen = randrange(minlen, n+1) return randslice_from_slicelen(slicelen, n) def rslices(n, allow_empty=False): """Generate random slices for a single dimension.""" for _ in range(5): yield rslice(n, allow_empty) def rslices_ndim(ndim, shape, iterations=5): """Generate random slice tuples for 'shape'.""" # non-empty slices for _ in range(iterations): yield tuple(rslice(shape[n]) for n in range(ndim)) # possibly empty slices for _ in range(iterations): yield tuple(rslice(shape[n], allow_empty=True) for n in range(ndim)) # invalid slices yield tuple(slice(0,1,0) for _ in range(ndim)) def rpermutation(iterable, r=None): pool = tuple(iterable) r = len(pool) if r is None else r yield tuple(sample(pool, r)) def ndarray_print(nd): """Print ndarray for debugging.""" try: x = nd.tolist() except (TypeError, NotImplementedError): x = nd.tobytes() if isinstance(nd, ndarray): offset = nd.offset flags = nd.flags else: offset = 'unknown' flags = 'unknown' print("ndarray(%s, shape=%s, strides=%s, suboffsets=%s, offset=%s, " "format='%s', itemsize=%s, flags=%s)" % (x, nd.shape, nd.strides, nd.suboffsets, offset, nd.format, nd.itemsize, flags)) sys.stdout.flush() ITERATIONS = 100 MAXDIM = 5 MAXSHAPE = 10 if SHORT_TEST: ITERATIONS = 10 MAXDIM = 3 MAXSHAPE = 4 genslices = rslices genslices_ndim = rslices_ndim permutations = rpermutation @unittest.skipUnless(struct, 'struct module required for this test.') @unittest.skipUnless(ndarray, 'ndarray object required for this test') class TestBufferProtocol(unittest.TestCase): def setUp(self): # The suboffsets tests need sizeof(void *). self.sizeof_void_p = get_sizeof_void_p() def verify(self, result, *, obj, itemsize, fmt, readonly, ndim, shape, strides, lst, sliced=False, cast=False): # Verify buffer contents against expected values. if shape: expected_len = prod(shape)*itemsize else: if not fmt: # array has been implicitly cast to unsigned bytes expected_len = len(lst) else: # ndim = 0 expected_len = itemsize # Reconstruct suboffsets from strides. Support for slicing # could be added, but is currently only needed for test_getbuf(). suboffsets = () if result.suboffsets: self.assertGreater(ndim, 0) suboffset0 = 0 for n in range(1, ndim): if shape[n] == 0: break if strides[n] <= 0: suboffset0 += -strides[n] * (shape[n]-1) suboffsets = [suboffset0] + [-1 for v in range(ndim-1)] # Not correct if slicing has occurred in the first dimension. stride0 = self.sizeof_void_p if strides[0] < 0: stride0 = -stride0 strides = [stride0] + list(strides[1:]) self.assertIs(result.obj, obj) self.assertEqual(result.nbytes, expected_len) self.assertEqual(result.itemsize, itemsize) self.assertEqual(result.format, fmt) self.assertIs(result.readonly, readonly) self.assertEqual(result.ndim, ndim) self.assertEqual(result.shape, tuple(shape)) if not (sliced and suboffsets): self.assertEqual(result.strides, tuple(strides)) self.assertEqual(result.suboffsets, tuple(suboffsets)) if isinstance(result, ndarray) or is_memoryview_format(fmt): rep = result.tolist() if fmt else result.tobytes() self.assertEqual(rep, lst) if not fmt: # array has been cast to unsigned bytes, return # the remaining tests won't work. # PyBuffer_GetPointer() is the definition how to access an item. # If PyBuffer_GetPointer(indices) is correct for all possible # combinations of indices, the buffer is correct. # # Also test tobytes() against the flattened 'lst', with all items # packed to bytes. if not cast: # casts chop up 'lst' in different ways b = bytearray() buf_err = None for ind in indices(shape): try: item1 = get_pointer(result, ind) item2 = get_item(lst, ind) if isinstance(item2, tuple): x = struct.pack(fmt, *item2) else: x = struct.pack(fmt, item2) b.extend(x) except BufferError: buf_err = True # re-exporter does not provide full buffer break self.assertEqual(item1, item2) if not buf_err: # test tobytes() self.assertEqual(result.tobytes(), b) # test hex() m = memoryview(result) h = "".join("%02x" % c for c in b) self.assertEqual(m.hex(), h) # lst := expected multi-dimensional logical representation # flatten(lst) := elements in C-order ff = fmt if fmt else 'B' flattened = flatten(lst) # Rules for 'A': if the array is already contiguous, return # the array unaltered. Otherwise, return a contiguous 'C' # representation. for order in ['C', 'F', 'A']: expected = result if order == 'F': if not is_contiguous(result, 'A') or \ is_contiguous(result, 'C'): # For constructing the ndarray, convert the # flattened logical representation to Fortran order. trans = transpose(flattened, shape) expected = ndarray(trans, shape=shape, format=ff, flags=ND_FORTRAN) else: # 'C', 'A' if not is_contiguous(result, 'A') or \ is_contiguous(result, 'F') and order == 'C': # The flattened list is already in C-order. expected = ndarray(flattened, shape=shape, format=ff) contig = get_contiguous(result, PyBUF_READ, order) self.assertEqual(contig.tobytes(), b) self.assertTrue(cmp_contig(contig, expected)) if ndim == 0: continue nmemb = len(flattened) ro = 0 if readonly else ND_WRITABLE ### See comment in test_py_buffer_to_contiguous for an ### explanation why these tests are valid. # To 'C' contig = py_buffer_to_contiguous(result, 'C', PyBUF_FULL_RO) self.assertEqual(len(contig), nmemb * itemsize) initlst = [struct.unpack_from(fmt, contig, n*itemsize) for n in range(nmemb)] if len(initlst[0]) == 1: initlst = [v[0] for v in initlst] y = ndarray(initlst, shape=shape, flags=ro, format=fmt) self.assertEqual(memoryview(y), memoryview(result)) contig_bytes = memoryview(result).tobytes() self.assertEqual(contig_bytes, contig) contig_bytes = memoryview(result).tobytes(order=None) self.assertEqual(contig_bytes, contig) contig_bytes = memoryview(result).tobytes(order='C') self.assertEqual(contig_bytes, contig) # To 'F' contig = py_buffer_to_contiguous(result, 'F', PyBUF_FULL_RO) self.assertEqual(len(contig), nmemb * itemsize) initlst = [struct.unpack_from(fmt, contig, n*itemsize) for n in range(nmemb)] if len(initlst[0]) == 1: initlst = [v[0] for v in initlst] y = ndarray(initlst, shape=shape, flags=ro|ND_FORTRAN, format=fmt) self.assertEqual(memoryview(y), memoryview(result)) contig_bytes = memoryview(result).tobytes(order='F') self.assertEqual(contig_bytes, contig) # To 'A' contig = py_buffer_to_contiguous(result, 'A', PyBUF_FULL_RO) self.assertEqual(len(contig), nmemb * itemsize) initlst = [struct.unpack_from(fmt, contig, n*itemsize) for n in range(nmemb)] if len(initlst[0]) == 1: initlst = [v[0] for v in initlst] f = ND_FORTRAN if is_contiguous(result, 'F') else 0 y = ndarray(initlst, shape=shape, flags=f|ro, format=fmt) self.assertEqual(memoryview(y), memoryview(result)) contig_bytes = memoryview(result).tobytes(order='A') self.assertEqual(contig_bytes, contig) if is_memoryview_format(fmt): try: m = memoryview(result) except BufferError: # re-exporter does not provide full information return ex = result.obj if isinstance(result, memoryview) else result def check_memoryview(m, expected_readonly=readonly): self.assertIs(m.obj, ex) self.assertEqual(m.nbytes, expected_len) self.assertEqual(m.itemsize, itemsize) self.assertEqual(m.format, fmt) self.assertEqual(m.readonly, expected_readonly) self.assertEqual(m.ndim, ndim) self.assertEqual(m.shape, tuple(shape)) if not (sliced and suboffsets): self.assertEqual(m.strides, tuple(strides)) self.assertEqual(m.suboffsets, tuple(suboffsets)) n = 1 if ndim == 0 else len(lst) self.assertEqual(len(m), n) rep = result.tolist() if fmt else result.tobytes() self.assertEqual(rep, lst) self.assertEqual(m, result) check_memoryview(m) with m.toreadonly() as mm: check_memoryview(mm, expected_readonly=True) m.tobytes() # Releasing mm didn't release m def verify_getbuf(self, orig_ex, ex, req, sliced=False): def simple_fmt(ex): return ex.format == '' or ex.format == 'B' def match(req, flag): return ((req&flag) == flag) if (# writable request to read-only exporter (ex.readonly and match(req, PyBUF_WRITABLE)) or # cannot match explicit contiguity request (match(req, PyBUF_C_CONTIGUOUS) and not ex.c_contiguous) or (match(req, PyBUF_F_CONTIGUOUS) and not ex.f_contiguous) or (match(req, PyBUF_ANY_CONTIGUOUS) and not ex.contiguous) or # buffer needs suboffsets (not match(req, PyBUF_INDIRECT) and ex.suboffsets) or # buffer without strides must be C-contiguous (not match(req, PyBUF_STRIDES) and not ex.c_contiguous) or # PyBUF_SIMPLE|PyBUF_FORMAT and PyBUF_WRITABLE|PyBUF_FORMAT (not match(req, PyBUF_ND) and match(req, PyBUF_FORMAT))): self.assertRaises(BufferError, ndarray, ex, getbuf=req) return if isinstance(ex, ndarray) or is_memoryview_format(ex.format): lst = ex.tolist() else: nd = ndarray(ex, getbuf=PyBUF_FULL_RO) lst = nd.tolist() # The consumer may have requested default values or a NULL format. ro = False if match(req, PyBUF_WRITABLE) else ex.readonly fmt = ex.format itemsize = ex.itemsize ndim = ex.ndim if not match(req, PyBUF_FORMAT): # itemsize refers to the original itemsize before the cast. # The equality product(shape) * itemsize = len still holds. # The equality calcsize(format) = itemsize does _not_ hold. fmt = '' lst = orig_ex.tobytes() # Issue 12834 if not match(req, PyBUF_ND): ndim = 1 shape = orig_ex.shape if match(req, PyBUF_ND) else () strides = orig_ex.strides if match(req, PyBUF_STRIDES) else () nd = ndarray(ex, getbuf=req) self.verify(nd, obj=ex, itemsize=itemsize, fmt=fmt, readonly=ro, ndim=ndim, shape=shape, strides=strides, lst=lst, sliced=sliced) def test_ndarray_getbuf(self): requests = ( # distinct flags PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND, PyBUF_SIMPLE, PyBUF_C_CONTIGUOUS, PyBUF_F_CONTIGUOUS, PyBUF_ANY_CONTIGUOUS, # compound requests PyBUF_FULL, PyBUF_FULL_RO, PyBUF_RECORDS, PyBUF_RECORDS_RO, PyBUF_STRIDED, PyBUF_STRIDED_RO, PyBUF_CONTIG, PyBUF_CONTIG_RO, ) # items and format items_fmt = ( ([True if x % 2 else False for x in range(12)], '?'), ([1,2,3,4,5,6,7,8,9,10,11,12], 'b'), ([1,2,3,4,5,6,7,8,9,10,11,12], 'B'), ([(2**31-x) if x % 2 else (-2**31+x) for x in range(12)], 'l') ) # shape, strides, offset structure = ( ([], [], 0), ([1,3,1], [], 0), ([12], [], 0), ([12], [-1], 11), ([6], [2], 0), ([6], [-2], 11), ([3, 4], [], 0), ([3, 4], [-4, -1], 11), ([2, 2], [4, 1], 4), ([2, 2], [-4, -1], 8) ) # ndarray creation flags ndflags = ( 0, ND_WRITABLE, ND_FORTRAN, ND_FORTRAN|ND_WRITABLE, ND_PIL, ND_PIL|ND_WRITABLE ) # flags that can actually be used as flags real_flags = (0, PyBUF_WRITABLE, PyBUF_FORMAT, PyBUF_WRITABLE|PyBUF_FORMAT) for items, fmt in items_fmt: itemsize = struct.calcsize(fmt) for shape, strides, offset in structure: strides = [v * itemsize for v in strides] offset *= itemsize for flags in ndflags: if strides and (flags&ND_FORTRAN): continue if not shape and (flags&ND_PIL): continue _items = items if shape else items[0] ex1 = ndarray(_items, format=fmt, flags=flags, shape=shape, strides=strides, offset=offset) ex2 = ex1[::-2] if shape else None m1 = memoryview(ex1) if ex2: m2 = memoryview(ex2) if ex1.ndim == 0 or (ex1.ndim == 1 and shape and strides): self.assertEqual(m1, ex1) if ex2 and ex2.ndim == 1 and shape and strides: self.assertEqual(m2, ex2) for req in requests: for bits in real_flags: self.verify_getbuf(ex1, ex1, req|bits) self.verify_getbuf(ex1, m1, req|bits) if ex2: self.verify_getbuf(ex2, ex2, req|bits, sliced=True) self.verify_getbuf(ex2, m2, req|bits, sliced=True) items = [1,2,3,4,5,6,7,8,9,10,11,12] # ND_GETBUF_FAIL ex = ndarray(items, shape=[12], flags=ND_GETBUF_FAIL) self.assertRaises(BufferError, ndarray, ex) # Request complex structure from a simple exporter. In this # particular case the test object is not PEP-3118 compliant. base = ndarray([9], [1]) ex = ndarray(base, getbuf=PyBUF_SIMPLE) self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_WRITABLE) self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ND) self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_STRIDES) self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_C_CONTIGUOUS) self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_F_CONTIGUOUS) self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ANY_CONTIGUOUS) nd = ndarray(ex, getbuf=PyBUF_SIMPLE) # Issue #22445: New precise contiguity definition. for shape in [1,12,1], [7,0,7]: for order in 0, ND_FORTRAN: ex = ndarray(items, shape=shape, flags=order|ND_WRITABLE) self.assertTrue(is_contiguous(ex, 'F')) self.assertTrue(is_contiguous(ex, 'C')) for flags in requests: nd = ndarray(ex, getbuf=flags) self.assertTrue(is_contiguous(nd, 'F')) self.assertTrue(is_contiguous(nd, 'C')) def test_ndarray_exceptions(self): nd = ndarray([9], [1]) ndm = ndarray([9], [1], flags=ND_VAREXPORT) # Initialization of a new ndarray or mutation of an existing array. for c in (ndarray, nd.push, ndm.push): # Invalid types. self.assertRaises(TypeError, c, {1,2,3}) self.assertRaises(TypeError, c, [1,2,'3']) self.assertRaises(TypeError, c, [1,2,(3,4)]) self.assertRaises(TypeError, c, [1,2,3], shape={3}) self.assertRaises(TypeError, c, [1,2,3], shape=[3], strides={1}) self.assertRaises(TypeError, c, [1,2,3], shape=[3], offset=[]) self.assertRaises(TypeError, c, [1], shape=[1], format={}) self.assertRaises(TypeError, c, [1], shape=[1], flags={}) self.assertRaises(TypeError, c, [1], shape=[1], getbuf={}) # ND_FORTRAN flag is only valid without strides. self.assertRaises(TypeError, c, [1], shape=[1], strides=[1], flags=ND_FORTRAN) # ND_PIL flag is only valid with ndim > 0. self.assertRaises(TypeError, c, [1], shape=[], flags=ND_PIL) # Invalid items. self.assertRaises(ValueError, c, [], shape=[1]) self.assertRaises(ValueError, c, ['XXX'], shape=[1], format="L") # Invalid combination of items and format. self.assertRaises(struct.error, c, [1000], shape=[1], format="B") self.assertRaises(ValueError, c, [1,(2,3)], shape=[2], format="B") self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="QL") # Invalid ndim. n = ND_MAX_NDIM+1 self.assertRaises(ValueError, c, [1]*n, shape=[1]*n) # Invalid shape. self.assertRaises(ValueError, c, [1], shape=[-1]) self.assertRaises(ValueError, c, [1,2,3], shape=['3']) self.assertRaises(OverflowError, c, [1], shape=[2**128]) # prod(shape) * itemsize != len(items) self.assertRaises(ValueError, c, [1,2,3,4,5], shape=[2,2], offset=3) # Invalid strides. self.assertRaises(ValueError, c, [1,2,3], shape=[3], strides=['1']) self.assertRaises(OverflowError, c, [1], shape=[1], strides=[2**128]) # Invalid combination of strides and shape. self.assertRaises(ValueError, c, [1,2], shape=[2,1], strides=[1]) # Invalid combination of strides and format. self.assertRaises(ValueError, c, [1,2,3,4], shape=[2], strides=[3], format="L") # Invalid offset. self.assertRaises(ValueError, c, [1,2,3], shape=[3], offset=4) self.assertRaises(ValueError, c, [1,2,3], shape=[1], offset=3, format="L") # Invalid format. self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="") self.assertRaises(struct.error, c, [(1,2,3)], shape=[1], format="@#$") # Striding out of the memory bounds. items = [1,2,3,4,5,6,7,8,9,10] self.assertRaises(ValueError, c, items, shape=[2,3], strides=[-3, -2], offset=5) # Constructing consumer: format argument invalid. self.assertRaises(TypeError, c, bytearray(), format="Q") # Constructing original base object: getbuf argument invalid. self.assertRaises(TypeError, c, [1], shape=[1], getbuf=PyBUF_FULL) # Shape argument is mandatory for original base objects. self.assertRaises(TypeError, c, [1]) # PyBUF_WRITABLE request to read-only provider. self.assertRaises(BufferError, ndarray, b'123', getbuf=PyBUF_WRITABLE) # ND_VAREXPORT can only be specified during construction. nd = ndarray([9], [1], flags=ND_VAREXPORT) self.assertRaises(ValueError, nd.push, [1], [1], flags=ND_VAREXPORT) # Invalid operation for consumers: push/pop nd = ndarray(b'123') self.assertRaises(BufferError, nd.push, [1], [1]) self.assertRaises(BufferError, nd.pop) # ND_VAREXPORT not set: push/pop fail with exported buffers nd = ndarray([9], [1]) nd.push([1], [1]) m = memoryview(nd) self.assertRaises(BufferError, nd.push, [1], [1]) self.assertRaises(BufferError, nd.pop) m.release() nd.pop() # Single remaining buffer: pop fails self.assertRaises(BufferError, nd.pop) del nd # get_pointer() self.assertRaises(TypeError, get_pointer, {}, [1,2,3]) self.assertRaises(TypeError, get_pointer, b'123', {}) nd = ndarray(list(range(100)), shape=[1]*100) self.assertRaises(ValueError, get_pointer, nd, [5]) nd = ndarray(list(range(12)), shape=[3,4]) self.assertRaises(ValueError, get_pointer, nd, [2,3,4]) self.assertRaises(ValueError, get_pointer, nd, [3,3]) self.assertRaises(ValueError, get_pointer, nd, [-3,3]) self.assertRaises(OverflowError, get_pointer, nd, [1<<64,3]) # tolist() needs format ex = ndarray([1,2,3], shape=[3], format='L') nd = ndarray(ex, getbuf=PyBUF_SIMPLE) self.assertRaises(ValueError, nd.tolist) # memoryview_from_buffer() ex1 = ndarray([1,2,3], shape=[3], format='L') ex2 = ndarray(ex1) nd = ndarray(ex2) self.assertRaises(TypeError, nd.memoryview_from_buffer) nd = ndarray([(1,)*200], shape=[1], format='L'*200) self.assertRaises(TypeError, nd.memoryview_from_buffer) n = ND_MAX_NDIM nd = ndarray(list(range(n)), shape=[1]*n) self.assertRaises(ValueError, nd.memoryview_from_buffer) # get_contiguous() nd = ndarray([1], shape=[1]) self.assertRaises(TypeError, get_contiguous, 1, 2, 3, 4, 5) self.assertRaises(TypeError, get_contiguous, nd, "xyz", 'C') self.assertRaises(OverflowError, get_contiguous, nd, 2**64, 'C') self.assertRaises(TypeError, get_contiguous, nd, PyBUF_READ, 961) self.assertRaises(UnicodeEncodeError, get_contiguous, nd, PyBUF_READ, '\u2007') self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'Z') self.assertRaises(ValueError, get_contiguous, nd, 255, 'A') # cmp_contig() nd = ndarray([1], shape=[1]) self.assertRaises(TypeError, cmp_contig, 1, 2, 3, 4, 5) self.assertRaises(TypeError, cmp_contig, {}, nd) self.assertRaises(TypeError, cmp_contig, nd, {}) # is_contiguous() nd = ndarray([1], shape=[1]) self.assertRaises(TypeError, is_contiguous, 1, 2, 3, 4, 5) self.assertRaises(TypeError, is_contiguous, {}, 'A') self.assertRaises(TypeError, is_contiguous, nd, 201) def test_ndarray_linked_list(self): for perm in permutations(range(5)): m = [0]*5 nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT) m[0] = memoryview(nd) for i in range(1, 5): nd.push([1,2,3], shape=[3]) m[i] = memoryview(nd) for i in range(5): m[perm[i]].release() self.assertRaises(BufferError, nd.pop) del nd def test_ndarray_format_scalar(self): # ndim = 0: scalar for fmt, scalar, _ in iter_format(0): itemsize = struct.calcsize(fmt) nd = ndarray(scalar, shape=(), format=fmt) self.verify(nd, obj=None, itemsize=itemsize, fmt=fmt, readonly=True, ndim=0, shape=(), strides=(), lst=scalar) def test_ndarray_format_shape(self): # ndim = 1, shape = [n] nitems = randrange(1, 10) for fmt, items, _ in iter_format(nitems): itemsize = struct.calcsize(fmt) for flags in (0, ND_PIL): nd = ndarray(items, shape=[nitems], format=fmt, flags=flags) self.verify(nd, obj=None, itemsize=itemsize, fmt=fmt, readonly=True, ndim=1, shape=(nitems,), strides=(itemsize,), lst=items) def test_ndarray_format_strides(self): # ndim = 1, strides nitems = randrange(1, 30) for fmt, items, _ in iter_format(nitems): itemsize = struct.calcsize(fmt) for step in range(-5, 5): if step == 0: continue shape = [len(items[::step])] strides = [step*itemsize] offset = itemsize*(nitems-1) if step < 0 else 0 for flags in (0, ND_PIL): nd = ndarray(items, shape=shape, strides=strides, format=fmt, offset=offset, flags=flags) self.verify(nd, obj=None, itemsize=itemsize, fmt=fmt, readonly=True, ndim=1, shape=shape, strides=strides, lst=items[::step]) def test_ndarray_fortran(self): items = [1,2,3,4,5,6,7,8,9,10,11,12] ex = ndarray(items, shape=(3, 4), strides=(1, 3)) nd = ndarray(ex, getbuf=PyBUF_F_CONTIGUOUS|PyBUF_FORMAT) self.assertEqual(nd.tolist(), farray(items, (3, 4))) def test_ndarray_multidim(self): for ndim in range(5): shape_t = [randrange(2, 10) for _ in range(ndim)] nitems = prod(shape_t) for shape in permutations(shape_t): fmt, items, _ = randitems(nitems) itemsize = struct.calcsize(fmt) for flags in (0, ND_PIL): if ndim == 0 and flags == ND_PIL: continue # C array nd = ndarray(items, shape=shape, format=fmt, flags=flags) strides = strides_from_shape(ndim, shape, itemsize, 'C') lst = carray(items, shape) self.verify(nd, obj=None, itemsize=itemsize, fmt=fmt, readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst) if is_memoryview_format(fmt): # memoryview: reconstruct strides ex = ndarray(items, shape=shape, format=fmt) nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT) self.assertTrue(nd.strides == ()) mv = nd.memoryview_from_buffer() self.verify(mv, obj=None, itemsize=itemsize, fmt=fmt, readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst) # Fortran array nd = ndarray(items, shape=shape, format=fmt, flags=flags|ND_FORTRAN) strides = strides_from_shape(ndim, shape, itemsize, 'F') lst = farray(items, shape) self.verify(nd, obj=None, itemsize=itemsize, fmt=fmt, readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst) def test_ndarray_index_invalid(self): # not writable nd = ndarray([1], shape=[1]) self.assertRaises(TypeError, nd.__setitem__, 1, 8) mv = memoryview(nd) self.assertEqual(mv, nd) self.assertRaises(TypeError, mv.__setitem__, 1, 8) # cannot be deleted nd = ndarray([1], shape=[1], flags=ND_WRITABLE) self.assertRaises(TypeError, nd.__delitem__, 1) mv = memoryview(nd) self.assertEqual(mv, nd) self.assertRaises(TypeError, mv.__delitem__, 1) # overflow nd = ndarray([1], shape=[1], flags=ND_WRITABLE) self.assertRaises(OverflowError, nd.__getitem__, 1<<64) self.assertRaises(OverflowError, nd.__setitem__, 1<<64, 8) mv = memoryview(nd) self.assertEqual(mv, nd) self.assertRaises(IndexError, mv.__getitem__, 1<<64) self.assertRaises(IndexError, mv.__setitem__, 1<<64, 8) # format items = [1,2,3,4,5,6,7,8] nd = ndarray(items, shape=[len(items)], format="B", flags=ND_WRITABLE) self.assertRaises(struct.error, nd.__setitem__, 2, 300) self.assertRaises(ValueError, nd.__setitem__, 1, (100, 200)) mv = memoryview(nd) self.assertEqual(mv, nd) self.assertRaises(ValueError, mv.__setitem__, 2, 300) self.assertRaises(TypeError, mv.__setitem__, 1, (100, 200)) items = [(1,2), (3,4), (5,6)] nd = ndarray(items, shape=[len(items)], format="LQ", flags=ND_WRITABLE) self.assertRaises(ValueError, nd.__setitem__, 2, 300) self.assertRaises(struct.error, nd.__setitem__, 1, (b'\x001', 200)) def test_ndarray_index_scalar(self): # scalar nd = ndarray(1, shape=(), flags=ND_WRITABLE) mv = memoryview(nd) self.assertEqual(mv, nd) x = nd[()]; self.assertEqual(x, 1) x = nd[...]; self.assertEqual(x.tolist(), nd.tolist()) x = mv[()]; self.assertEqual(x, 1) x = mv[...]; self.assertEqual(x.tolist(), nd.tolist()) self.assertRaises(TypeError, nd.__getitem__, 0) self.assertRaises(TypeError, mv.__getitem__, 0) self.assertRaises(TypeError, nd.__setitem__, 0, 8) self.assertRaises(TypeError, mv.__setitem__, 0, 8) self.assertEqual(nd.tolist(), 1) self.assertEqual(mv.tolist(), 1) nd[()] = 9; self.assertEqual(nd.tolist(), 9) mv[()] = 9; self.assertEqual(mv.tolist(), 9) nd[...] = 5; self.assertEqual(nd.tolist(), 5) mv[...] = 5; self.assertEqual(mv.tolist(), 5) def test_ndarray_index_null_strides(self): ex = ndarray(list(range(2*4)), shape=[2, 4], flags=ND_WRITABLE) nd = ndarray(ex, getbuf=PyBUF_CONTIG) # Sub-views are only possible for full exporters. self.assertRaises(BufferError, nd.__getitem__, 1) # Same for slices. self.assertRaises(BufferError, nd.__getitem__, slice(3,5,1)) def test_ndarray_index_getitem_single(self): # getitem for fmt, items, _ in iter_format(5): nd = ndarray(items, shape=[5], format=fmt) for i in range(-5, 5): self.assertEqual(nd[i], items[i]) self.assertRaises(IndexError, nd.__getitem__, -6) self.assertRaises(IndexError, nd.__getitem__, 5) if is_memoryview_format(fmt): mv = memoryview(nd) self.assertEqual(mv, nd) for i in range(-5, 5): self.assertEqual(mv[i], items[i]) self.assertRaises(IndexError, mv.__getitem__, -6) self.assertRaises(IndexError, mv.__getitem__, 5) # getitem with null strides for fmt, items, _ in iter_format(5): ex = ndarray(items, shape=[5], flags=ND_WRITABLE, format=fmt) nd = ndarray(ex, getbuf=PyBUF_CONTIG|PyBUF_FORMAT) for i in range(-5, 5): self.assertEqual(nd[i], items[i]) if is_memoryview_format(fmt): mv = nd.memoryview_from_buffer() self.assertIs(mv.__eq__(nd), NotImplemented) for i in range(-5, 5): self.assertEqual(mv[i], items[i]) # getitem with null format items = [1,2,3,4,5] ex = ndarray(items, shape=[5]) nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO) for i in range(-5, 5): self.assertEqual(nd[i], items[i]) # getitem with null shape/strides/format items = [1,2,3,4,5] ex = ndarray(items, shape=[5]) nd = ndarray(ex, getbuf=PyBUF_SIMPLE) for i in range(-5, 5): self.assertEqual(nd[i], items[i]) def test_ndarray_index_setitem_single(self): # assign single value for fmt, items, single_item in iter_format(5): nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE) for i in range(5): items[i] = single_item nd[i] = single_item self.assertEqual(nd.tolist(), items) self.assertRaises(IndexError, nd.__setitem__, -6, single_item) self.assertRaises(IndexError, nd.__setitem__, 5, single_item) if not is_memoryview_format(fmt): continue nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE) mv = memoryview(nd) self.assertEqual(mv, nd) for i in range(5): items[i] = single_item mv[i] = single_item self.assertEqual(mv.tolist(), items) self.assertRaises(IndexError, mv.__setitem__, -6, single_item) self.assertRaises(IndexError, mv.__setitem__, 5, single_item) # assign single value: lobject = robject for fmt, items, single_item in iter_format(5): nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE) for i in range(-5, 4): items[i] = items[i+1] nd[i] = nd[i+1] self.assertEqual(nd.tolist(), items) if not is_memoryview_format(fmt): continue nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE) mv = memoryview(nd) self.assertEqual(mv, nd) for i in range(-5, 4): items[i] = items[i+1] mv[i] = mv[i+1] self.assertEqual(mv.tolist(), items) def test_ndarray_index_getitem_multidim(self): shape_t = (2, 3, 5) nitems = prod(shape_t) for shape in permutations(shape_t): fmt, items, _ = randitems(nitems) for flags in (0, ND_PIL): # C array nd = ndarray(items, shape=shape, format=fmt, flags=flags) lst = carray(items, shape) for i in range(-shape[0], shape[0]): self.assertEqual(lst[i], nd[i].tolist()) for j in range(-shape[1], shape[1]): self.assertEqual(lst[i][j], nd[i][j].tolist()) for k in range(-shape[2], shape[2]): self.assertEqual(lst[i][j][k], nd[i][j][k]) # Fortran array nd = ndarray(items, shape=shape, format=fmt, flags=flags|ND_FORTRAN) lst = farray(items, shape) for i in range(-shape[0], shape[0]): self.assertEqual(lst[i], nd[i].tolist()) for j in range(-shape[1], shape[1]): self.assertEqual(lst[i][j], nd[i][j].tolist()) for k in range(shape[2], shape[2]): self.assertEqual(lst[i][j][k], nd[i][j][k]) def test_ndarray_sequence(self): nd = ndarray(1, shape=()) self.assertRaises(TypeError, eval, "1 in nd", locals()) mv = memoryview(nd) self.assertEqual(mv, nd) self.assertRaises(TypeError, eval, "1 in mv", locals()) for fmt, items, _ in iter_format(5): nd = ndarray(items, shape=[5], format=fmt) for i, v in enumerate(nd): self.assertEqual(v, items[i]) self.assertTrue(v in nd) if is_memoryview_format(fmt): mv = memoryview(nd) for i, v in enumerate(mv): self.assertEqual(v, items[i]) self.assertTrue(v in mv) def test_ndarray_slice_invalid(self): items = [1,2,3,4,5,6,7,8] # rvalue is not an exporter xl = ndarray(items, shape=[8], flags=ND_WRITABLE) ml = memoryview(xl) self.assertRaises(TypeError, xl.__setitem__, slice(0,8,1), items) self.assertRaises(TypeError, ml.__setitem__, slice(0,8,1), items) # rvalue is not a full exporter xl = ndarray(items, shape=[8], flags=ND_WRITABLE) ex = ndarray(items, shape=[8], flags=ND_WRITABLE) xr = ndarray(ex, getbuf=PyBUF_ND) self.assertRaises(BufferError, xl.__setitem__, slice(0,8,1), xr) # zero step nd = ndarray(items, shape=[8], format="L", flags=ND_WRITABLE) mv = memoryview(nd) self.assertRaises(ValueError, nd.__getitem__, slice(0,1,0)) self.assertRaises(ValueError, mv.__getitem__, slice(0,1,0)) nd = ndarray(items, shape=[2,4], format="L", flags=ND_WRITABLE) mv = memoryview(nd) self.assertRaises(ValueError, nd.__getitem__, (slice(0,1,1), slice(0,1,0))) self.assertRaises(ValueError, nd.__getitem__, (slice(0,1,0), slice(0,1,1))) self.assertRaises(TypeError, nd.__getitem__, "@%$") self.assertRaises(TypeError, nd.__getitem__, ("@%$", slice(0,1,1))) self.assertRaises(TypeError, nd.__getitem__, (slice(0,1,1), {})) # memoryview: not implemented self.assertRaises(NotImplementedError, mv.__getitem__, (slice(0,1,1), slice(0,1,0))) self.assertRaises(TypeError, mv.__getitem__, "@%$") # differing format xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE) xr = ndarray(items, shape=[8], format="b") ml = memoryview(xl) mr = memoryview(xr) self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8]) self.assertEqual(xl.tolist(), items) self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8]) self.assertEqual(ml.tolist(), items) # differing itemsize xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE) yr = ndarray(items, shape=[8], format="L") ml = memoryview(xl) mr = memoryview(xr) self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8]) self.assertEqual(xl.tolist(), items) self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8]) self.assertEqual(ml.tolist(), items) # differing ndim xl = ndarray(items, shape=[2, 4], format="b", flags=ND_WRITABLE) xr = ndarray(items, shape=[8], format="b") ml = memoryview(xl) mr = memoryview(xr) self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8]) self.assertEqual(xl.tolist(), [[1,2,3,4], [5,6,7,8]]) self.assertRaises(NotImplementedError, ml.__setitem__, slice(0,1,1), mr[7:8]) # differing shape xl = ndarray(items, shape=[8], format="b", flags=ND_WRITABLE) xr = ndarray(items, shape=[8], format="b") ml = memoryview(xl) mr = memoryview(xr) self.assertRaises(ValueError, xl.__setitem__, slice(0,2,1), xr[7:8]) self.assertEqual(xl.tolist(), items) self.assertRaises(ValueError, ml.__setitem__, slice(0,2,1), mr[7:8]) self.assertEqual(ml.tolist(), items) # _testbuffer.c module functions self.assertRaises(TypeError, slice_indices, slice(0,1,2), {}) self.assertRaises(TypeError, slice_indices, "###########", 1) self.assertRaises(ValueError, slice_indices, slice(0,1,0), 4) x = ndarray(items, shape=[8], format="b", flags=ND_PIL) self.assertRaises(TypeError, x.add_suboffsets) ex = ndarray(items, shape=[8], format="B") x = ndarray(ex, getbuf=PyBUF_SIMPLE) self.assertRaises(TypeError, x.add_suboffsets) def test_ndarray_slice_zero_shape(self): items = [1,2,3,4,5,6,7,8,9,10,11,12] x = ndarray(items, shape=[12], format="L", flags=ND_WRITABLE) y = ndarray(items, shape=[12], format="L") x[4:4] = y[9:9] self.assertEqual(x.tolist(), items) ml = memoryview(x) mr = memoryview(y) self.assertEqual(ml, x) self.assertEqual(ml, y) ml[4:4] = mr[9:9] self.assertEqual(ml.tolist(), items) x = ndarray(items, shape=[3, 4], format="L", flags=ND_WRITABLE) y = ndarray(items, shape=[4, 3], format="L") x[1:2, 2:2] = y[1:2, 3:3] self.assertEqual(x.tolist(), carray(items, [3, 4])) def test_ndarray_slice_multidim(self): shape_t = (2, 3, 5) ndim = len(shape_t) nitems = prod(shape_t) for shape in permutations(shape_t): fmt, items, _ = randitems(nitems) itemsize = struct.calcsize(fmt) for flags in (0, ND_PIL): nd = ndarray(items, shape=shape, format=fmt, flags=flags) lst = carray(items, shape) for slices in rslices_ndim(ndim, shape): listerr = None try: sliced = multislice(lst, slices) except Exception as e: listerr = e.__class__ nderr = None try: ndsliced = nd[slices] except Exception as e: nderr = e.__class__ if nderr or listerr: self.assertIs(nderr, listerr) else: self.assertEqual(ndsliced.tolist(), sliced) def test_ndarray_slice_redundant_suboffsets(self): shape_t = (2, 3, 5, 2) ndim = len(shape_t) nitems = prod(shape_t) for shape in permutations(shape_t): fmt, items, _ = randitems(nitems) itemsize = struct.calcsize(fmt) nd = ndarray(items, shape=shape, format=fmt) nd.add_suboffsets() ex = ndarray(items, shape=shape, format=fmt) ex.add_suboffsets() mv = memoryview(ex) lst = carray(items, shape) for slices in rslices_ndim(ndim, shape): listerr = None try: sliced = multislice(lst, slices) except Exception as e: listerr = e.__class__ nderr = None try: ndsliced = nd[slices] except Exception as e: nderr = e.__class__ if nderr or listerr: self.assertIs(nderr, listerr) else: self.assertEqual(ndsliced.tolist(), sliced) def test_ndarray_slice_assign_single(self): for fmt, items, _ in iter_format(5): for lslice in genslices(5): for rslice in genslices(5): for flags in (0, ND_PIL): f = flags|ND_WRITABLE nd = ndarray(items, shape=[5], format=fmt, flags=f) ex = ndarray(items, shape=[5], format=fmt, flags=f) mv = memoryview(ex) lsterr = None diff_structure = None lst = items[:] try: lval = lst[lslice] rval = lst[rslice] lst[lslice] = lst[rslice] diff_structure = len(lval) != len(rval) except Exception as e: lsterr = e.__class__ nderr = None try: nd[lslice] = nd[rslice] except Exception as e: nderr = e.__class__ if diff_structure: # ndarray cannot change shape self.assertIs(nderr, ValueError) else: self.assertEqual(nd.tolist(), lst) self.assertIs(nderr, lsterr) if not is_memoryview_format(fmt): continue mverr = None try: mv[lslice] = mv[rslice] except Exception as e: mverr = e.__class__ if diff_structure: # memoryview cannot change shape self.assertIs(mverr, ValueError) else: self.assertEqual(mv.tolist(), lst) self.assertEqual(mv, nd) self.assertIs(mverr, lsterr) self.verify(mv, obj=ex, itemsize=nd.itemsize, fmt=fmt, readonly=False, ndim=nd.ndim, shape=nd.shape, strides=nd.strides, lst=nd.tolist()) def test_ndarray_slice_assign_multidim(self): shape_t = (2, 3, 5) ndim = len(shape_t) nitems = prod(shape_t) for shape in permutations(shape_t): fmt, items, _ = randitems(nitems) for flags in (0, ND_PIL): for _ in range(ITERATIONS): lslices, rslices = randslice_from_shape(ndim, shape) nd = ndarray(items, shape=shape, format=fmt, flags=flags|ND_WRITABLE) lst = carray(items, shape) listerr = None try: result = multislice_assign(lst, lst, lslices, rslices) except Exception as e: listerr = e.__class__ nderr = None try: nd[lslices] = nd[rslices] except Exception as e: nderr = e.__class__ if nderr or listerr: self.assertIs(nderr, listerr) else: self.assertEqual(nd.tolist(), result) def test_ndarray_random(self): # construction of valid arrays for _ in range(ITERATIONS): for fmt in fmtdict['@']: itemsize = struct.calcsize(fmt) t = rand_structure(itemsize, True, maxdim=MAXDIM, maxshape=MAXSHAPE) self.assertTrue(verify_structure(*t)) items = randitems_from_structure(fmt, t) x = ndarray_from_structure(items, fmt, t) xlist = x.tolist() mv = memoryview(x) if is_memoryview_format(fmt): mvlist = mv.tolist() self.assertEqual(mvlist, xlist) if t[2] > 0: # ndim > 0: test against suboffsets representation. y = ndarray_from_structure(items, fmt, t, flags=ND_PIL) ylist = y.tolist() self.assertEqual(xlist, ylist) mv = memoryview(y) if is_memoryview_format(fmt): self.assertEqual(mv, y) mvlist = mv.tolist() self.assertEqual(mvlist, ylist) if numpy_array: shape = t[3] if 0 in shape: continue # http://projects.scipy.org/numpy/ticket/1910 z = numpy_array_from_structure(items, fmt, t) self.verify(x, obj=None, itemsize=z.itemsize, fmt=fmt, readonly=False, ndim=z.ndim, shape=z.shape, strides=z.strides, lst=z.tolist()) def test_ndarray_random_invalid(self): # exceptions during construction of invalid arrays for _ in range(ITERATIONS): for fmt in fmtdict['@']: itemsize = struct.calcsize(fmt) t = rand_structure(itemsize, False, maxdim=MAXDIM, maxshape=MAXSHAPE) self.assertFalse(verify_structure(*t)) items = randitems_from_structure(fmt, t) nderr = False try: x = ndarray_from_structure(items, fmt, t) except Exception as e: nderr = e.__class__ self.assertTrue(nderr) if numpy_array: numpy_err = False try: y = numpy_array_from_structure(items, fmt, t) except Exception as e: numpy_err = e.__class__ if 0: # http://projects.scipy.org/numpy/ticket/1910 self.assertTrue(numpy_err) def test_ndarray_random_slice_assign(self): # valid slice assignments for _ in range(ITERATIONS): for fmt in fmtdict['@']: itemsize = struct.calcsize(fmt) lshape, rshape, lslices, rslices = \ rand_aligned_slices(maxdim=MAXDIM, maxshape=MAXSHAPE) tl = rand_structure(itemsize, True, shape=lshape) tr = rand_structure(itemsize, True, shape=rshape) self.assertTrue(verify_structure(*tl)) self.assertTrue(verify_structure(*tr)) litems = randitems_from_structure(fmt, tl) ritems = randitems_from_structure(fmt, tr) xl = ndarray_from_structure(litems, fmt, tl) xr = ndarray_from_structure(ritems, fmt, tr) xl[lslices] = xr[rslices] xllist = xl.tolist() xrlist = xr.tolist() ml = memoryview(xl) mr = memoryview(xr) self.assertEqual(ml.tolist(), xllist) self.assertEqual(mr.tolist(), xrlist) if tl[2] > 0 and tr[2] > 0: # ndim > 0: test against suboffsets representation. yl = ndarray_from_structure(litems, fmt, tl, flags=ND_PIL) yr = ndarray_from_structure(ritems, fmt, tr, flags=ND_PIL) yl[lslices] = yr[rslices] yllist = yl.tolist() yrlist = yr.tolist() self.assertEqual(xllist, yllist) self.assertEqual(xrlist, yrlist) ml = memoryview(yl) mr = memoryview(yr) self.assertEqual(ml.tolist(), yllist) self.assertEqual(mr.tolist(), yrlist) if numpy_array: if 0 in lshape or 0 in rshape: continue # http://projects.scipy.org/numpy/ticket/1910 zl = numpy_array_from_structure(litems, fmt, tl) zr = numpy_array_from_structure(ritems, fmt, tr) zl[lslices] = zr[rslices] if not is_overlapping(tl) and not is_overlapping(tr): # Slice assignment of overlapping structures # is undefined in NumPy. self.verify(xl, obj=None, itemsize=zl.itemsize, fmt=fmt, readonly=False, ndim=zl.ndim, shape=zl.shape, strides=zl.strides, lst=zl.tolist()) self.verify(xr, obj=None, itemsize=zr.itemsize, fmt=fmt, readonly=False, ndim=zr.ndim, shape=zr.shape, strides=zr.strides, lst=zr.tolist()) def test_ndarray_re_export(self): items = [1,2,3,4,5,6,7,8,9,10,11,12] nd = ndarray(items, shape=[3,4], flags=ND_PIL) ex = ndarray(nd) self.assertTrue(ex.flags & ND_PIL) self.assertIs(ex.obj, nd) self.assertEqual(ex.suboffsets, (0, -1)) self.assertFalse(ex.c_contiguous) self.assertFalse(ex.f_contiguous) self.assertFalse(ex.contiguous) def test_ndarray_zero_shape(self): # zeros in shape for flags in (0, ND_PIL): nd = ndarray([1,2,3], shape=[0], flags=flags) mv = memoryview(nd) self.assertEqual(mv, nd) self.assertEqual(nd.tolist(), []) self.assertEqual(mv.tolist(), []) nd = ndarray([1,2,3], shape=[0,3,3], flags=flags) self.assertEqual(nd.tolist(), []) nd = ndarray([1,2,3], shape=[3,0,3], flags=flags) self.assertEqual(nd.tolist(), [[], [], []]) nd = ndarray([1,2,3], shape=[3,3,0], flags=flags) self.assertEqual(nd.tolist(), [[[], [], []], [[], [], []], [[], [], []]]) def test_ndarray_zero_strides(self): # zero strides for flags in (0, ND_PIL): nd = ndarray([1], shape=[5], strides=[0], flags=flags) mv = memoryview(nd) self.assertEqual(mv, nd) self.assertEqual(nd.tolist(), [1, 1, 1, 1, 1]) self.assertEqual(mv.tolist(), [1, 1, 1, 1, 1]) def test_ndarray_offset(self): nd = ndarray(list(range(20)), shape=[3], offset=7) self.assertEqual(nd.offset, 7) self.assertEqual(nd.tolist(), [7,8,9]) def test_ndarray_memoryview_from_buffer(self): for flags in (0, ND_PIL): nd = ndarray(list(range(3)), shape=[3], flags=flags) m = nd.memoryview_from_buffer() self.assertEqual(m, nd) def test_ndarray_get_pointer(self): for flags in (0, ND_PIL): nd = ndarray(list(range(3)), shape=[3], flags=flags) for i in range(3): self.assertEqual(nd[i], get_pointer(nd, [i])) def test_ndarray_tolist_null_strides(self): ex = ndarray(list(range(20)), shape=[2,2,5]) nd = ndarray(ex, getbuf=PyBUF_ND|PyBUF_FORMAT) self.assertEqual(nd.tolist(), ex.tolist()) m = memoryview(ex) self.assertEqual(m.tolist(), ex.tolist()) def test_ndarray_cmp_contig(self): self.assertFalse(cmp_contig(b"123", b"456")) x = ndarray(list(range(12)), shape=[3,4]) y = ndarray(list(range(12)), shape=[4,3]) self.assertFalse(cmp_contig(x, y)) x = ndarray([1], shape=[1], format="B") self.assertTrue(cmp_contig(x, b'\x01')) self.assertTrue(cmp_contig(b'\x01', x)) def test_ndarray_hash(self): a = array.array('L', [1,2,3]) nd = ndarray(a) self.assertRaises(ValueError, hash, nd) # one-dimensional b = bytes(list(range(12))) nd = ndarray(list(range(12)), shape=[12]) self.assertEqual(hash(nd), hash(b)) # C-contiguous nd = ndarray(list(range(12)), shape=[3,4]) self.assertEqual(hash(nd), hash(b)) nd = ndarray(list(range(12)), shape=[3,2,2]) self.assertEqual(hash(nd), hash(b)) # Fortran contiguous b = bytes(transpose(list(range(12)), shape=[4,3])) nd = ndarray(list(range(12)), shape=[3,4], flags=ND_FORTRAN) self.assertEqual(hash(nd), hash(b)) b = bytes(transpose(list(range(12)), shape=[2,3,2])) nd = ndarray(list(range(12)), shape=[2,3,2], flags=ND_FORTRAN) self.assertEqual(hash(nd), hash(b)) # suboffsets b = bytes(list(range(12))) nd = ndarray(list(range(12)), shape=[2,2,3], flags=ND_PIL) self.assertEqual(hash(nd), hash(b)) # non-byte formats nd = ndarray(list(range(12)), shape=[2,2,3], format='L') self.assertEqual(hash(nd), hash(nd.tobytes())) def test_py_buffer_to_contiguous(self): # The requests are used in _testbuffer.c:py_buffer_to_contiguous # to generate buffers without full information for testing. requests = ( # distinct flags PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND, PyBUF_SIMPLE, # compound requests PyBUF_FULL, PyBUF_FULL_RO, PyBUF_RECORDS, PyBUF_RECORDS_RO, PyBUF_STRIDED, PyBUF_STRIDED_RO, PyBUF_CONTIG, PyBUF_CONTIG_RO, ) # no buffer interface self.assertRaises(TypeError, py_buffer_to_contiguous, {}, 'F', PyBUF_FULL_RO) # scalar, read-only request nd = ndarray(9, shape=(), format="L", flags=ND_WRITABLE) for order in ['C', 'F', 'A']: for request in requests: b = py_buffer_to_contiguous(nd, order, request) self.assertEqual(b, nd.tobytes()) # zeros in shape nd = ndarray([1], shape=[0], format="L", flags=ND_WRITABLE) for order in ['C', 'F', 'A']: for request in requests: b = py_buffer_to_contiguous(nd, order, request) self.assertEqual(b, b'') nd = ndarray(list(range(8)), shape=[2, 0, 7], format="L", flags=ND_WRITABLE) for order in ['C', 'F', 'A']: for request in requests: b = py_buffer_to_contiguous(nd, order, request) self.assertEqual(b, b'') ### One-dimensional arrays are trivial, since Fortran and C order ### are the same. # one-dimensional for f in [0, ND_FORTRAN]: nd = ndarray([1], shape=[1], format="h", flags=f|ND_WRITABLE) ndbytes = nd.tobytes() for order in ['C', 'F', 'A']: for request in requests: b = py_buffer_to_contiguous(nd, order, request) self.assertEqual(b, ndbytes) nd = ndarray([1, 2, 3], shape=[3], format="b", flags=f|ND_WRITABLE) ndbytes = nd.tobytes() for order in ['C', 'F', 'A']: for request in requests: b = py_buffer_to_contiguous(nd, order, request) self.assertEqual(b, ndbytes) # one-dimensional, non-contiguous input nd = ndarray([1, 2, 3], shape=[2], strides=[2], flags=ND_WRITABLE) ndbytes = nd.tobytes() for order in ['C', 'F', 'A']: for request in [PyBUF_STRIDES, PyBUF_FULL]: b = py_buffer_to_contiguous(nd, order, request) self.assertEqual(b, ndbytes) nd = nd[::-1] ndbytes = nd.tobytes() for order in ['C', 'F', 'A']: for request in requests: try: b = py_buffer_to_contiguous(nd, order, request) except BufferError: continue self.assertEqual(b, ndbytes) ### ### Multi-dimensional arrays: ### ### The goal here is to preserve the logical representation of the ### input array but change the physical representation if necessary. ### ### _testbuffer example: ### ==================== ### ### C input array: ### -------------- ### >>> nd = ndarray(list(range(12)), shape=[3, 4]) ### >>> nd.tolist() ### [[0, 1, 2, 3], ### [4, 5, 6, 7], ### [8, 9, 10, 11]] ### ### Fortran output: ### --------------- ### >>> py_buffer_to_contiguous(nd, 'F', PyBUF_FULL_RO) ### >>> b'\x00\x04\x08\x01\x05\t\x02\x06\n\x03\x07\x0b' ### ### The return value corresponds to this input list for ### _testbuffer's ndarray: ### >>> nd = ndarray([0,4,8,1,5,9,2,6,10,3,7,11], shape=[3,4], ### flags=ND_FORTRAN) ### >>> nd.tolist() ### [[0, 1, 2, 3], ### [4, 5, 6, 7], ### [8, 9, 10, 11]] ### ### The logical array is the same, but the values in memory are now ### in Fortran order. ### ### NumPy example: ### ============== ### _testbuffer's ndarray takes lists to initialize the memory. ### Here's the same sequence in NumPy: ### ### C input: ### -------- ### >>> nd = ndarray(buffer=bytearray(list(range(12))), ### shape=[3, 4], dtype='B') ### >>> nd ### array([[ 0, 1, 2, 3], ### [ 4, 5, 6, 7], ### [ 8, 9, 10, 11]], dtype=uint8) ### ### Fortran output: ### --------------- ### >>> fortran_buf = nd.tostring(order='F') ### >>> fortran_buf ### b'\x00\x04\x08\x01\x05\t\x02\x06\n\x03\x07\x0b' ### ### >>> nd = ndarray(buffer=fortran_buf, shape=[3, 4], ### dtype='B', order='F') ### ### >>> nd ### array([[ 0, 1, 2, 3], ### [ 4, 5, 6, 7], ### [ 8, 9, 10, 11]], dtype=uint8) ### # multi-dimensional, contiguous input lst = list(range(12)) for f in [0, ND_FORTRAN]: nd = ndarray(lst, shape=[3, 4], flags=f|ND_WRITABLE) if numpy_array: na = numpy_array(buffer=bytearray(lst), shape=[3, 4], dtype='B', order='C' if f == 0 else 'F') # 'C' request if f == ND_FORTRAN: # 'F' to 'C' x = ndarray(transpose(lst, [4, 3]), shape=[3, 4], flags=ND_WRITABLE) expected = x.tobytes() else: expected = nd.tobytes() for request in requests: try: b = py_buffer_to_contiguous(nd, 'C', request) except BufferError: continue self.assertEqual(b, expected) # Check that output can be used as the basis for constructing # a C array that is logically identical to the input array. y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE) self.assertEqual(memoryview(y), memoryview(nd)) if numpy_array: self.assertEqual(b, na.tostring(order='C')) # 'F' request if f == 0: # 'C' to 'F' x = ndarray(transpose(lst, [3, 4]), shape=[4, 3], flags=ND_WRITABLE) else: x = ndarray(lst, shape=[3, 4], flags=ND_WRITABLE) expected = x.tobytes() for request in [PyBUF_FULL, PyBUF_FULL_RO, PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND]: try: b = py_buffer_to_contiguous(nd, 'F', request) except BufferError: continue self.assertEqual(b, expected) # Check that output can be used as the basis for constructing # a Fortran array that is logically identical to the input array. y = ndarray([v for v in b], shape=[3, 4], flags=ND_FORTRAN|ND_WRITABLE) self.assertEqual(memoryview(y), memoryview(nd)) if numpy_array: self.assertEqual(b, na.tostring(order='F')) # 'A' request if f == ND_FORTRAN: x = ndarray(lst, shape=[3, 4], flags=ND_WRITABLE) expected = x.tobytes() else: expected = nd.tobytes() for request in [PyBUF_FULL, PyBUF_FULL_RO, PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND]: try: b = py_buffer_to_contiguous(nd, 'A', request) except BufferError: continue self.assertEqual(b, expected) # Check that output can be used as the basis for constructing # an array with order=f that is logically identical to the input # array. y = ndarray([v for v in b], shape=[3, 4], flags=f|ND_WRITABLE) self.assertEqual(memoryview(y), memoryview(nd)) if numpy_array: self.assertEqual(b, na.tostring(order='A')) # multi-dimensional, non-contiguous input nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_PIL) # 'C' b = py_buffer_to_contiguous(nd, 'C', PyBUF_FULL_RO) self.assertEqual(b, nd.tobytes()) y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE) self.assertEqual(memoryview(y), memoryview(nd)) # 'F' b = py_buffer_to_contiguous(nd, 'F', PyBUF_FULL_RO) x = ndarray(transpose(lst, [3, 4]), shape=[4, 3], flags=ND_WRITABLE) self.assertEqual(b, x.tobytes()) y = ndarray([v for v in b], shape=[3, 4], flags=ND_FORTRAN|ND_WRITABLE) self.assertEqual(memoryview(y), memoryview(nd)) # 'A' b = py_buffer_to_contiguous(nd, 'A', PyBUF_FULL_RO) self.assertEqual(b, nd.tobytes()) y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE) self.assertEqual(memoryview(y), memoryview(nd)) def test_memoryview_construction(self): items_shape = [(9, []), ([1,2,3], [3]), (list(range(2*3*5)), [2,3,5])] # NumPy style, C-contiguous: for items, shape in items_shape: # From PEP-3118 compliant exporter: ex = ndarray(items, shape=shape) m = memoryview(ex) self.assertTrue(m.c_contiguous) self.assertTrue(m.contiguous) ndim = len(shape) strides = strides_from_shape(ndim, shape, 1, 'C') lst = carray(items, shape) self.verify(m, obj=ex, itemsize=1, fmt='B', readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst) # From memoryview: m2 = memoryview(m) self.verify(m2, obj=ex, itemsize=1, fmt='B', readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst) # PyMemoryView_FromBuffer(): no strides nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT) self.assertEqual(nd.strides, ()) m = nd.memoryview_from_buffer() self.verify(m, obj=None, itemsize=1, fmt='B', readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst) # PyMemoryView_FromBuffer(): no format, shape, strides nd = ndarray(ex, getbuf=PyBUF_SIMPLE) self.assertEqual(nd.format, '') self.assertEqual(nd.shape, ()) self.assertEqual(nd.strides, ()) m = nd.memoryview_from_buffer() lst = [items] if ndim == 0 else items self.verify(m, obj=None, itemsize=1, fmt='B', readonly=True, ndim=1, shape=[ex.nbytes], strides=(1,), lst=lst) # NumPy style, Fortran contiguous: for items, shape in items_shape: # From PEP-3118 compliant exporter: ex = ndarray(items, shape=shape, flags=ND_FORTRAN) m = memoryview(ex) self.assertTrue(m.f_contiguous) self.assertTrue(m.contiguous) ndim = len(shape) strides = strides_from_shape(ndim, shape, 1, 'F') lst = farray(items, shape) self.verify(m, obj=ex, itemsize=1, fmt='B', readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst) # From memoryview: m2 = memoryview(m) self.verify(m2, obj=ex, itemsize=1, fmt='B', readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst) # PIL style: for items, shape in items_shape[1:]: # From PEP-3118 compliant exporter: ex = ndarray(items, shape=shape, flags=ND_PIL) m = memoryview(ex) ndim = len(shape) lst = carray(items, shape) self.verify(m, obj=ex, itemsize=1, fmt='B', readonly=True, ndim=ndim, shape=shape, strides=ex.strides, lst=lst) # From memoryview: m2 = memoryview(m) self.verify(m2, obj=ex, itemsize=1, fmt='B', readonly=True, ndim=ndim, shape=shape, strides=ex.strides, lst=lst) # Invalid number of arguments: self.assertRaises(TypeError, memoryview, b'9', 'x') # Not a buffer provider: self.assertRaises(TypeError, memoryview, {}) # Non-compliant buffer provider: ex = ndarray([1,2,3], shape=[3]) nd = ndarray(ex, getbuf=PyBUF_SIMPLE) self.assertRaises(BufferError, memoryview, nd) nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT) self.assertRaises(BufferError, memoryview, nd) # ndim > 64 nd = ndarray([1]*128, shape=[1]*128, format='L') self.assertRaises(ValueError, memoryview, nd) self.assertRaises(ValueError, nd.memoryview_from_buffer) self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'C') self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'F') self.assertRaises(ValueError, get_contiguous, nd[::-1], PyBUF_READ, 'C') def test_memoryview_cast_zero_shape(self): # Casts are undefined if buffer is multidimensional and shape # contains zeros. These arrays are regarded as C-contiguous by # Numpy and PyBuffer_GetContiguous(), so they are not caught by # the test for C-contiguity in memory_cast(). items = [1,2,3] for shape in ([0,3,3], [3,0,3], [0,3,3]): ex = ndarray(items, shape=shape) self.assertTrue(ex.c_contiguous) msrc = memoryview(ex) self.assertRaises(TypeError, msrc.cast, 'c') # Monodimensional empty view can be cast (issue #19014). for fmt, _, _ in iter_format(1, 'memoryview'): msrc = memoryview(b'') m = msrc.cast(fmt) self.assertEqual(m.tobytes(), b'') self.assertEqual(m.tolist(), []) check_sizeof = support.check_sizeof def test_memoryview_sizeof(self): check = self.check_sizeof vsize = support.calcvobjsize base_struct = 'Pnin 2P2n2i5P P' per_dim = '3n' items = list(range(8)) check(memoryview(b''), vsize(base_struct + 1 * per_dim)) a = ndarray(items, shape=[2, 4], format="b") check(memoryview(a), vsize(base_struct + 2 * per_dim)) a = ndarray(items, shape=[2, 2, 2], format="b") check(memoryview(a), vsize(base_struct + 3 * per_dim)) def test_memoryview_struct_module(self): class INT(object): def __init__(self, val): self.val = val def __int__(self): return self.val class IDX(object): def __init__(self, val): self.val = val def __index__(self): return self.val def f(): return 7 values = [INT(9), IDX(9), 2.2+3j, Decimal("-21.1"), 12.2, Fraction(5, 2), [1,2,3], {4,5,6}, {7:8}, (), (9,), True, False, None, NotImplemented, b'a', b'abc', bytearray(b'a'), bytearray(b'abc'), 'a', 'abc', r'a', r'abc', f, lambda x: x] for fmt, items, item in iter_format(10, 'memoryview'): ex = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE) nd = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE) m = memoryview(ex) struct.pack_into(fmt, nd, 0, item) m[0] = item self.assertEqual(m[0], nd[0]) itemsize = struct.calcsize(fmt) if 'P' in fmt: continue for v in values: struct_err = None try: struct.pack_into(fmt, nd, itemsize, v) except struct.error: struct_err = struct.error mv_err = None try: m[1] = v except (TypeError, ValueError) as e: mv_err = e.__class__ if struct_err or mv_err: self.assertIsNot(struct_err, None) self.assertIsNot(mv_err, None) else: self.assertEqual(m[1], nd[1]) def test_memoryview_cast_zero_strides(self): # Casts are undefined if strides contains zeros. These arrays are # (sometimes!) regarded as C-contiguous by Numpy, but not by # PyBuffer_GetContiguous(). ex = ndarray([1,2,3], shape=[3], strides=[0]) self.assertFalse(ex.c_contiguous) msrc = memoryview(ex) self.assertRaises(TypeError, msrc.cast, 'c') def test_memoryview_cast_invalid(self): # invalid format for sfmt in NON_BYTE_FORMAT: sformat = '@' + sfmt if randrange(2) else sfmt ssize = struct.calcsize(sformat) for dfmt in NON_BYTE_FORMAT: dformat = '@' + dfmt if randrange(2) else dfmt dsize = struct.calcsize(dformat) ex = ndarray(list(range(32)), shape=[32//ssize], format=sformat) msrc = memoryview(ex) self.assertRaises(TypeError, msrc.cast, dfmt, [32//dsize]) for sfmt, sitems, _ in iter_format(1): ex = ndarray(sitems, shape=[1], format=sfmt) msrc = memoryview(ex) for dfmt, _, _ in iter_format(1): if not is_memoryview_format(dfmt): self.assertRaises(ValueError, msrc.cast, dfmt, [32//dsize]) else: if not is_byte_format(sfmt) and not is_byte_format(dfmt): self.assertRaises(TypeError, msrc.cast, dfmt, [32//dsize]) # invalid shape size_h = struct.calcsize('h') size_d = struct.calcsize('d') ex = ndarray(list(range(2*2*size_d)), shape=[2,2,size_d], format='h') msrc = memoryview(ex) self.assertRaises(TypeError, msrc.cast, shape=[2,2,size_h], format='d') ex = ndarray(list(range(120)), shape=[1,2,3,4,5]) m = memoryview(ex) # incorrect number of args self.assertRaises(TypeError, m.cast) self.assertRaises(TypeError, m.cast, 1, 2, 3) # incorrect dest format type self.assertRaises(TypeError, m.cast, {}) # incorrect dest format self.assertRaises(ValueError, m.cast, "X") self.assertRaises(ValueError, m.cast, "@X") self.assertRaises(ValueError, m.cast, "@XY") # dest format not implemented self.assertRaises(ValueError, m.cast, "=B") self.assertRaises(ValueError, m.cast, "!L") self.assertRaises(ValueError, m.cast, "<P") self.assertRaises(ValueError, m.cast, ">l") self.assertRaises(ValueError, m.cast, "BI") self.assertRaises(ValueError, m.cast, "xBI") # src format not implemented ex = ndarray([(1,2), (3,4)], shape=[2], format="II") m = memoryview(ex) self.assertRaises(NotImplementedError, m.__getitem__, 0) self.assertRaises(NotImplementedError, m.__setitem__, 0, 8) self.assertRaises(NotImplementedError, m.tolist) # incorrect shape type ex = ndarray(list(range(120)), shape=[1,2,3,4,5]) m = memoryview(ex) self.assertRaises(TypeError, m.cast, "B", shape={}) # incorrect shape elements ex = ndarray(list(range(120)), shape=[2*3*4*5]) m = memoryview(ex) self.assertRaises(OverflowError, m.cast, "B", shape=[2**64]) self.assertRaises(ValueError, m.cast, "B", shape=[-1]) self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,-1]) self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,0]) self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5,6,7,'x']) # N-D -> N-D cast ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3,5,7,11]) m = memoryview(ex) self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5]) # cast with ndim > 64 nd = ndarray(list(range(128)), shape=[128], format='I') m = memoryview(nd) self.assertRaises(ValueError, m.cast, 'I', [1]*128) # view->len not a multiple of itemsize ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11]) m = memoryview(ex) self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5]) # product(shape) * itemsize != buffer size ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11]) m = memoryview(ex) self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5]) # product(shape) * itemsize overflow nd = ndarray(list(range(128)), shape=[128], format='I') m1 = memoryview(nd) nd = ndarray(list(range(128)), shape=[128], format='B') m2 = memoryview(nd) if sys.maxsize == 2**63-1: self.assertRaises(TypeError, m1.cast, 'B', [7, 7, 73, 127, 337, 92737, 649657]) self.assertRaises(ValueError, m1.cast, 'B', [2**20, 2**20, 2**10, 2**10, 2**3]) self.assertRaises(ValueError, m2.cast, 'I', [2**20, 2**20, 2**10, 2**10, 2**1]) else: self.assertRaises(TypeError, m1.cast, 'B', [1, 2147483647]) self.assertRaises(ValueError, m1.cast, 'B', [2**10, 2**10, 2**5, 2**5, 2**1]) self.assertRaises(ValueError, m2.cast, 'I', [2**10, 2**10, 2**5, 2**3, 2**1]) def test_memoryview_cast(self): bytespec = ( ('B', lambda ex: list(ex.tobytes())), ('b', lambda ex: [x-256 if x > 127 else x for x in list(ex.tobytes())]), ('c', lambda ex: [bytes(chr(x), 'latin-1') for x in list(ex.tobytes())]), ) def iter_roundtrip(ex, m, items, fmt): srcsize = struct.calcsize(fmt) for bytefmt, to_bytelist in bytespec: m2 = m.cast(bytefmt) lst = to_bytelist(ex) self.verify(m2, obj=ex, itemsize=1, fmt=bytefmt, readonly=False, ndim=1, shape=[31*srcsize], strides=(1,), lst=lst, cast=True) m3 = m2.cast(fmt) self.assertEqual(m3, ex) lst = ex.tolist() self.verify(m3, obj=ex, itemsize=srcsize, fmt=fmt, readonly=False, ndim=1, shape=[31], strides=(srcsize,), lst=lst, cast=True) # cast from ndim = 0 to ndim = 1 srcsize = struct.calcsize('I') ex = ndarray(9, shape=[], format='I') destitems, destshape = cast_items(ex, 'B', 1) m = memoryview(ex) m2 = m.cast('B') self.verify(m2, obj=ex, itemsize=1, fmt='B', readonly=True, ndim=1, shape=destshape, strides=(1,), lst=destitems, cast=True) # cast from ndim = 1 to ndim = 0 destsize = struct.calcsize('I') ex = ndarray([9]*destsize, shape=[destsize], format='B') destitems, destshape = cast_items(ex, 'I', destsize, shape=[]) m = memoryview(ex) m2 = m.cast('I', shape=[]) self.verify(m2, obj=ex, itemsize=destsize, fmt='I', readonly=True, ndim=0, shape=(), strides=(), lst=destitems, cast=True) # array.array: roundtrip to/from bytes for fmt, items, _ in iter_format(31, 'array'): ex = array.array(fmt, items) m = memoryview(ex) iter_roundtrip(ex, m, items, fmt) # ndarray: roundtrip to/from bytes for fmt, items, _ in iter_format(31, 'memoryview'): ex = ndarray(items, shape=[31], format=fmt, flags=ND_WRITABLE) m = memoryview(ex) iter_roundtrip(ex, m, items, fmt) def test_memoryview_cast_1D_ND(self): # Cast between C-contiguous buffers. At least one buffer must # be 1D, at least one format must be 'c', 'b' or 'B'. for _tshape in gencastshapes(): for char in fmtdict['@']: # Casts to _Bool are undefined if the source contains values # other than 0 or 1. if char == "?": continue tfmt = ('', '@')[randrange(2)] + char tsize = struct.calcsize(tfmt) n = prod(_tshape) * tsize obj = 'memoryview' if is_byte_format(tfmt) else 'bytefmt' for fmt, items, _ in iter_format(n, obj): size = struct.calcsize(fmt) shape = [n] if n > 0 else [] tshape = _tshape + [size] ex = ndarray(items, shape=shape, format=fmt) m = memoryview(ex) titems, tshape = cast_items(ex, tfmt, tsize, shape=tshape) if titems is None: self.assertRaises(TypeError, m.cast, tfmt, tshape) continue if titems == 'nan': continue # NaNs in lists are a recipe for trouble. # 1D -> ND nd = ndarray(titems, shape=tshape, format=tfmt) m2 = m.cast(tfmt, shape=tshape) ndim = len(tshape) strides = nd.strides lst = nd.tolist() self.verify(m2, obj=ex, itemsize=tsize, fmt=tfmt, readonly=True, ndim=ndim, shape=tshape, strides=strides, lst=lst, cast=True) # ND -> 1D m3 = m2.cast(fmt) m4 = m2.cast(fmt, shape=shape) ndim = len(shape) strides = ex.strides lst = ex.tolist() self.verify(m3, obj=ex, itemsize=size, fmt=fmt, readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst, cast=True) self.verify(m4, obj=ex, itemsize=size, fmt=fmt, readonly=True, ndim=ndim, shape=shape, strides=strides, lst=lst, cast=True) if ctypes: # format: "T{>l:x:>d:y:}" class BEPoint(ctypes.BigEndianStructure): _fields_ = [("x", ctypes.c_long), ("y", ctypes.c_double)] point = BEPoint(100, 200.1) m1 = memoryview(point) m2 = m1.cast('B') self.assertEqual(m2.obj, point) self.assertEqual(m2.itemsize, 1) self.assertIs(m2.readonly, False) self.assertEqual(m2.ndim, 1) self.assertEqual(m2.shape, (m2.nbytes,)) self.assertEqual(m2.strides, (1,)) self.assertEqual(m2.suboffsets, ()) x = ctypes.c_double(1.2) m1 = memoryview(x) m2 = m1.cast('c') self.assertEqual(m2.obj, x) self.assertEqual(m2.itemsize, 1) self.assertIs(m2.readonly, False) self.assertEqual(m2.ndim, 1) self.assertEqual(m2.shape, (m2.nbytes,)) self.assertEqual(m2.strides, (1,)) self.assertEqual(m2.suboffsets, ()) def test_memoryview_tolist(self): # Most tolist() tests are in self.verify() etc. a = array.array('h', list(range(-6, 6))) m = memoryview(a) self.assertEqual(m, a) self.assertEqual(m.tolist(), a.tolist()) a = a[2::3] m = m[2::3] self.assertEqual(m, a) self.assertEqual(m.tolist(), a.tolist()) ex = ndarray(list(range(2*3*5*7*11)), shape=[11,2,7,3,5], format='L') m = memoryview(ex) self.assertEqual(m.tolist(), ex.tolist()) ex = ndarray([(2, 5), (7, 11)], shape=[2], format='lh') m = memoryview(ex) self.assertRaises(NotImplementedError, m.tolist) ex = ndarray([b'12345'], shape=[1], format="s") m = memoryview(ex) self.assertRaises(NotImplementedError, m.tolist) ex = ndarray([b"a",b"b",b"c",b"d",b"e",b"f"], shape=[2,3], format='s') m = memoryview(ex) self.assertRaises(NotImplementedError, m.tolist) def test_memoryview_repr(self): m = memoryview(bytearray(9)) r = m.__repr__() self.assertTrue(r.startswith("<memory")) m.release() r = m.__repr__() self.assertTrue(r.startswith("<released")) def test_memoryview_sequence(self): for fmt in ('d', 'f'): inf = float(3e400) ex = array.array(fmt, [1.0, inf, 3.0]) m = memoryview(ex) self.assertIn(1.0, m) self.assertIn(5e700, m) self.assertIn(3.0, m) ex = ndarray(9.0, [], format='f') m = memoryview(ex) self.assertRaises(TypeError, eval, "9.0 in m", locals()) @contextlib.contextmanager def assert_out_of_bounds_error(self, dim): with self.assertRaises(IndexError) as cm: yield self.assertEqual(str(cm.exception), "index out of bounds on dimension %d" % (dim,)) def test_memoryview_index(self): # ndim = 0 ex = ndarray(12.5, shape=[], format='d') m = memoryview(ex) self.assertEqual(m[()], 12.5) self.assertEqual(m[...], m) self.assertEqual(m[...], ex) self.assertRaises(TypeError, m.__getitem__, 0) ex = ndarray((1,2,3), shape=[], format='iii') m = memoryview(ex) self.assertRaises(NotImplementedError, m.__getitem__, ()) # range ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE) m = memoryview(ex) self.assertRaises(IndexError, m.__getitem__, 2**64) self.assertRaises(TypeError, m.__getitem__, 2.0) self.assertRaises(TypeError, m.__getitem__, 0.0) # out of bounds self.assertRaises(IndexError, m.__getitem__, -8) self.assertRaises(IndexError, m.__getitem__, 8) # multi-dimensional ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE) m = memoryview(ex) self.assertEqual(m[0, 0], 0) self.assertEqual(m[2, 0], 8) self.assertEqual(m[2, 3], 11) self.assertEqual(m[-1, -1], 11) self.assertEqual(m[-3, -4], 0) # out of bounds for index in (3, -4): with self.assert_out_of_bounds_error(dim=1): m[index, 0] for index in (4, -5): with self.assert_out_of_bounds_error(dim=2): m[0, index] self.assertRaises(IndexError, m.__getitem__, (2**64, 0)) self.assertRaises(IndexError, m.__getitem__, (0, 2**64)) self.assertRaises(TypeError, m.__getitem__, (0, 0, 0)) self.assertRaises(TypeError, m.__getitem__, (0.0, 0.0)) # Not implemented: multidimensional sub-views self.assertRaises(NotImplementedError, m.__getitem__, ()) self.assertRaises(NotImplementedError, m.__getitem__, 0) def test_memoryview_assign(self): # ndim = 0 ex = ndarray(12.5, shape=[], format='f', flags=ND_WRITABLE) m = memoryview(ex) m[()] = 22.5 self.assertEqual(m[()], 22.5) m[...] = 23.5 self.assertEqual(m[()], 23.5) self.assertRaises(TypeError, m.__setitem__, 0, 24.7) # read-only ex = ndarray(list(range(7)), shape=[7]) m = memoryview(ex) self.assertRaises(TypeError, m.__setitem__, 2, 10) # range ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE) m = memoryview(ex) self.assertRaises(IndexError, m.__setitem__, 2**64, 9) self.assertRaises(TypeError, m.__setitem__, 2.0, 10) self.assertRaises(TypeError, m.__setitem__, 0.0, 11) # out of bounds self.assertRaises(IndexError, m.__setitem__, -8, 20) self.assertRaises(IndexError, m.__setitem__, 8, 25) # pack_single() success: for fmt in fmtdict['@']: if fmt == 'c' or fmt == '?': continue ex = ndarray([1,2,3], shape=[3], format=fmt, flags=ND_WRITABLE) m = memoryview(ex) i = randrange(-3, 3) m[i] = 8 self.assertEqual(m[i], 8) self.assertEqual(m[i], ex[i]) ex = ndarray([b'1', b'2', b'3'], shape=[3], format='c', flags=ND_WRITABLE) m = memoryview(ex) m[2] = b'9' self.assertEqual(m[2], b'9') ex = ndarray([True, False, True], shape=[3], format='?', flags=ND_WRITABLE) m = memoryview(ex) m[1] = True self.assertIs(m[1], True) # pack_single() exceptions: nd = ndarray([b'x'], shape=[1], format='c', flags=ND_WRITABLE) m = memoryview(nd) self.assertRaises(TypeError, m.__setitem__, 0, 100) ex = ndarray(list(range(120)), shape=[1,2,3,4,5], flags=ND_WRITABLE) m1 = memoryview(ex) for fmt, _range in fmtdict['@'].items(): if (fmt == '?'): # PyObject_IsTrue() accepts anything continue if fmt == 'c': # special case tested above continue m2 = m1.cast(fmt) lo, hi = _range if fmt == 'd' or fmt == 'f': lo, hi = -2**1024, 2**1024 if fmt != 'P': # PyLong_AsVoidPtr() accepts negative numbers self.assertRaises(ValueError, m2.__setitem__, 0, lo-1) self.assertRaises(TypeError, m2.__setitem__, 0, "xyz") self.assertRaises(ValueError, m2.__setitem__, 0, hi) # invalid item m2 = m1.cast('c') self.assertRaises(ValueError, m2.__setitem__, 0, b'\xff\xff') # format not implemented ex = ndarray(list(range(1)), shape=[1], format="xL", flags=ND_WRITABLE) m = memoryview(ex) self.assertRaises(NotImplementedError, m.__setitem__, 0, 1) ex = ndarray([b'12345'], shape=[1], format="s", flags=ND_WRITABLE) m = memoryview(ex) self.assertRaises(NotImplementedError, m.__setitem__, 0, 1) # multi-dimensional ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE) m = memoryview(ex) m[0,1] = 42 self.assertEqual(ex[0][1], 42) m[-1,-1] = 43 self.assertEqual(ex[2][3], 43) # errors for index in (3, -4): with self.assert_out_of_bounds_error(dim=1): m[index, 0] = 0 for index in (4, -5): with self.assert_out_of_bounds_error(dim=2): m[0, index] = 0 self.assertRaises(IndexError, m.__setitem__, (2**64, 0), 0) self.assertRaises(IndexError, m.__setitem__, (0, 2**64), 0) self.assertRaises(TypeError, m.__setitem__, (0, 0, 0), 0) self.assertRaises(TypeError, m.__setitem__, (0.0, 0.0), 0) # Not implemented: multidimensional sub-views self.assertRaises(NotImplementedError, m.__setitem__, 0, [2, 3]) def test_memoryview_slice(self): ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE) m = memoryview(ex) # zero step self.assertRaises(ValueError, m.__getitem__, slice(0,2,0)) self.assertRaises(ValueError, m.__setitem__, slice(0,2,0), bytearray([1,2])) # 0-dim slicing (identity function) self.assertRaises(NotImplementedError, m.__getitem__, ()) # multidimensional slices ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE) m = memoryview(ex) self.assertRaises(NotImplementedError, m.__getitem__, (slice(0,2,1), slice(0,2,1))) self.assertRaises(NotImplementedError, m.__setitem__, (slice(0,2,1), slice(0,2,1)), bytearray([1,2])) # invalid slice tuple self.assertRaises(TypeError, m.__getitem__, (slice(0,2,1), {})) self.assertRaises(TypeError, m.__setitem__, (slice(0,2,1), {}), bytearray([1,2])) # rvalue is not an exporter self.assertRaises(TypeError, m.__setitem__, slice(0,1,1), [1]) # non-contiguous slice assignment for flags in (0, ND_PIL): ex1 = ndarray(list(range(12)), shape=[12], strides=[-1], offset=11, flags=ND_WRITABLE|flags) ex2 = ndarray(list(range(24)), shape=[12], strides=[2], flags=flags) m1 = memoryview(ex1) m2 = memoryview(ex2) ex1[2:5] = ex1[2:5] m1[2:5] = m2[2:5] self.assertEqual(m1, ex1) self.assertEqual(m2, ex2) ex1[1:3][::-1] = ex2[0:2][::1] m1[1:3][::-1] = m2[0:2][::1] self.assertEqual(m1, ex1) self.assertEqual(m2, ex2) ex1[4:1:-2][::-1] = ex1[1:4:2][::1] m1[4:1:-2][::-1] = m1[1:4:2][::1] self.assertEqual(m1, ex1) self.assertEqual(m2, ex2) def test_memoryview_array(self): def cmptest(testcase, a, b, m, singleitem): for i, _ in enumerate(a): ai = a[i] mi = m[i] testcase.assertEqual(ai, mi) a[i] = singleitem if singleitem != ai: testcase.assertNotEqual(a, m) testcase.assertNotEqual(a, b) else: testcase.assertEqual(a, m) testcase.assertEqual(a, b) m[i] = singleitem testcase.assertEqual(a, m) testcase.assertEqual(b, m) a[i] = ai m[i] = mi for n in range(1, 5): for fmt, items, singleitem in iter_format(n, 'array'): for lslice in genslices(n): for rslice in genslices(n): a = array.array(fmt, items) b = array.array(fmt, items) m = memoryview(b) self.assertEqual(m, a) self.assertEqual(m.tolist(), a.tolist()) self.assertEqual(m.tobytes(), a.tobytes()) self.assertEqual(len(m), len(a)) cmptest(self, a, b, m, singleitem) array_err = None have_resize = None try: al = a[lslice] ar = a[rslice] a[lslice] = a[rslice] have_resize = len(al) != len(ar) except Exception as e: array_err = e.__class__ m_err = None try: m[lslice] = m[rslice] except Exception as e: m_err = e.__class__ if have_resize: # memoryview cannot change shape self.assertIs(m_err, ValueError) elif m_err or array_err: self.assertIs(m_err, array_err) else: self.assertEqual(m, a) self.assertEqual(m.tolist(), a.tolist()) self.assertEqual(m.tobytes(), a.tobytes()) cmptest(self, a, b, m, singleitem) def test_memoryview_compare_special_cases(self): a = array.array('L', [1, 2, 3]) b = array.array('L', [1, 2, 7]) # Ordering comparisons raise: v = memoryview(a) w = memoryview(b) for attr in ('__lt__', '__le__', '__gt__', '__ge__'): self.assertIs(getattr(v, attr)(w), NotImplemented) self.assertIs(getattr(a, attr)(v), NotImplemented) # Released views compare equal to themselves: v = memoryview(a) v.release() self.assertEqual(v, v) self.assertNotEqual(v, a) self.assertNotEqual(a, v) v = memoryview(a) w = memoryview(a) w.release() self.assertNotEqual(v, w) self.assertNotEqual(w, v) # Operand does not implement the buffer protocol: v = memoryview(a) self.assertNotEqual(v, [1, 2, 3]) # NaNs nd = ndarray([(0, 0)], shape=[1], format='l x d x', flags=ND_WRITABLE) nd[0] = (-1, float('nan')) self.assertNotEqual(memoryview(nd), nd) # Depends on issue #15625: the struct module does not understand 'u'. a = array.array('u', 'xyz') v = memoryview(a) self.assertNotEqual(a, v) self.assertNotEqual(v, a) # Some ctypes format strings are unknown to the struct module. if ctypes: # format: "T{>l:x:>l:y:}" class BEPoint(ctypes.BigEndianStructure): _fields_ = [("x", ctypes.c_long), ("y", ctypes.c_long)] point = BEPoint(100, 200) a = memoryview(point) b = memoryview(point) self.assertNotEqual(a, b) self.assertNotEqual(a, point) self.assertNotEqual(point, a) self.assertRaises(NotImplementedError, a.tolist) def test_memoryview_compare_ndim_zero(self): nd1 = ndarray(1729, shape=[], format='@L') nd2 = ndarray(1729, shape=[], format='L', flags=ND_WRITABLE) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, w) self.assertEqual(w, v) self.assertEqual(v, nd2) self.assertEqual(nd2, v) self.assertEqual(w, nd1) self.assertEqual(nd1, w) self.assertFalse(v.__ne__(w)) self.assertFalse(w.__ne__(v)) w[()] = 1728 self.assertNotEqual(v, w) self.assertNotEqual(w, v) self.assertNotEqual(v, nd2) self.assertNotEqual(nd2, v) self.assertNotEqual(w, nd1) self.assertNotEqual(nd1, w) self.assertFalse(v.__eq__(w)) self.assertFalse(w.__eq__(v)) nd = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL) ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL) m = memoryview(ex) self.assertEqual(m, nd) m[9] = 100 self.assertNotEqual(m, nd) # struct module: equal nd1 = ndarray((1729, 1.2, b'12345'), shape=[], format='Lf5s') nd2 = ndarray((1729, 1.2, b'12345'), shape=[], format='hf5s', flags=ND_WRITABLE) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, w) self.assertEqual(w, v) self.assertEqual(v, nd2) self.assertEqual(nd2, v) self.assertEqual(w, nd1) self.assertEqual(nd1, w) # struct module: not equal nd1 = ndarray((1729, 1.2, b'12345'), shape=[], format='Lf5s') nd2 = ndarray((-1729, 1.2, b'12345'), shape=[], format='hf5s', flags=ND_WRITABLE) v = memoryview(nd1) w = memoryview(nd2) self.assertNotEqual(v, w) self.assertNotEqual(w, v) self.assertNotEqual(v, nd2) self.assertNotEqual(nd2, v) self.assertNotEqual(w, nd1) self.assertNotEqual(nd1, w) self.assertEqual(v, nd1) self.assertEqual(w, nd2) def test_memoryview_compare_ndim_one(self): # contiguous nd1 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h') nd2 = ndarray([-529, 576, -625, 676, 729], shape=[5], format='@h') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # contiguous, struct module nd1 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='<i') nd2 = ndarray([-529, 576, -625, 676, 729], shape=[5], format='>h') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # non-contiguous nd1 = ndarray([-529, -625, -729], shape=[3], format='@h') nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd2[::2]) self.assertEqual(w[::2], nd1) self.assertEqual(v, w[::2]) self.assertEqual(v[::-1], w[::-2]) # non-contiguous, struct module nd1 = ndarray([-529, -625, -729], shape=[3], format='!h') nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='<l') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd2[::2]) self.assertEqual(w[::2], nd1) self.assertEqual(v, w[::2]) self.assertEqual(v[::-1], w[::-2]) # non-contiguous, suboffsets nd1 = ndarray([-529, -625, -729], shape=[3], format='@h') nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h', flags=ND_PIL) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd2[::2]) self.assertEqual(w[::2], nd1) self.assertEqual(v, w[::2]) self.assertEqual(v[::-1], w[::-2]) # non-contiguous, suboffsets, struct module nd1 = ndarray([-529, -625, -729], shape=[3], format='h 0c') nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='> h', flags=ND_PIL) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd2[::2]) self.assertEqual(w[::2], nd1) self.assertEqual(v, w[::2]) self.assertEqual(v[::-1], w[::-2]) def test_memoryview_compare_zero_shape(self): # zeros in shape nd1 = ndarray([900, 961], shape=[0], format='@h') nd2 = ndarray([-900, -961], shape=[0], format='@h') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) # zeros in shape, struct module nd1 = ndarray([900, 961], shape=[0], format='= h0c') nd2 = ndarray([-900, -961], shape=[0], format='@ i') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) def test_memoryview_compare_zero_strides(self): # zero strides nd1 = ndarray([900, 900, 900, 900], shape=[4], format='@L') nd2 = ndarray([900], shape=[4], strides=[0], format='L') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) # zero strides, struct module nd1 = ndarray([(900, 900)]*4, shape=[4], format='@ Li') nd2 = ndarray([(900, 900)], shape=[4], strides=[0], format='!L h') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) def test_memoryview_compare_random_formats(self): # random single character native formats n = 10 for char in fmtdict['@m']: fmt, items, singleitem = randitems(n, 'memoryview', '@', char) for flags in (0, ND_PIL): nd = ndarray(items, shape=[n], format=fmt, flags=flags) m = memoryview(nd) self.assertEqual(m, nd) nd = nd[::-3] m = memoryview(nd) self.assertEqual(m, nd) # random formats n = 10 for _ in range(100): fmt, items, singleitem = randitems(n) for flags in (0, ND_PIL): nd = ndarray(items, shape=[n], format=fmt, flags=flags) m = memoryview(nd) self.assertEqual(m, nd) nd = nd[::-3] m = memoryview(nd) self.assertEqual(m, nd) def test_memoryview_compare_multidim_c(self): # C-contiguous, different values nd1 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='@h') nd2 = ndarray(list(range(0, 30)), shape=[3, 2, 5], format='@h') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # C-contiguous, different values, struct module nd1 = ndarray([(0, 1, 2)]*30, shape=[3, 2, 5], format='=f q xxL') nd2 = ndarray([(-1.2, 1, 2)]*30, shape=[3, 2, 5], format='< f 2Q') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # C-contiguous, different shape nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L') nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='L') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # C-contiguous, different shape, struct module nd1 = ndarray([(0, 1, 2)]*21, shape=[3, 7], format='! b B xL') nd2 = ndarray([(0, 1, 2)]*21, shape=[7, 3], format='= Qx l xxL') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # C-contiguous, different format, struct module nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L') nd2 = ndarray(list(range(30)), shape=[2, 3, 5], format='l') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) def test_memoryview_compare_multidim_fortran(self): # Fortran-contiguous, different values nd1 = ndarray(list(range(-15, 15)), shape=[5, 2, 3], format='@h', flags=ND_FORTRAN) nd2 = ndarray(list(range(0, 30)), shape=[5, 2, 3], format='@h', flags=ND_FORTRAN) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # Fortran-contiguous, different values, struct module nd1 = ndarray([(2**64-1, -1)]*6, shape=[2, 3], format='=Qq', flags=ND_FORTRAN) nd2 = ndarray([(-1, 2**64-1)]*6, shape=[2, 3], format='=qQ', flags=ND_FORTRAN) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # Fortran-contiguous, different shape nd1 = ndarray(list(range(-15, 15)), shape=[2, 3, 5], format='l', flags=ND_FORTRAN) nd2 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='l', flags=ND_FORTRAN) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # Fortran-contiguous, different shape, struct module nd1 = ndarray(list(range(-15, 15)), shape=[2, 3, 5], format='0ll', flags=ND_FORTRAN) nd2 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='l', flags=ND_FORTRAN) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # Fortran-contiguous, different format, struct module nd1 = ndarray(list(range(30)), shape=[5, 2, 3], format='@h', flags=ND_FORTRAN) nd2 = ndarray(list(range(30)), shape=[5, 2, 3], format='@b', flags=ND_FORTRAN) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) def test_memoryview_compare_multidim_mixed(self): # mixed C/Fortran contiguous lst1 = list(range(-15, 15)) lst2 = transpose(lst1, [3, 2, 5]) nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l') nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, w) # mixed C/Fortran contiguous, struct module lst1 = [(-3.3, -22, b'x')]*30 lst1[5] = (-2.2, -22, b'x') lst2 = transpose(lst1, [3, 2, 5]) nd1 = ndarray(lst1, shape=[3, 2, 5], format='d b c') nd2 = ndarray(lst2, shape=[3, 2, 5], format='d h c', flags=ND_FORTRAN) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, w) # different values, non-contiguous ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I') nd1 = ex1[3:1:-1, ::-2] ex2 = ndarray(list(range(40)), shape=[5, 8], format='I') nd2 = ex2[1:3:1, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # same values, non-contiguous, struct module ex1 = ndarray([(2**31-1, -2**31)]*22, shape=[11, 2], format='=ii') nd1 = ex1[3:1:-1, ::-2] ex2 = ndarray([(2**31-1, -2**31)]*22, shape=[11, 2], format='>ii') nd2 = ex2[1:3:1, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) # different shape ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b') nd1 = ex1[1:3:, ::-2] nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b') nd2 = ex2[1:3:, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # different shape, struct module ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='B') nd1 = ex1[1:3:, ::-2] nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b') nd2 = ex2[1:3:, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # different format, struct module ex1 = ndarray([(2, b'123')]*30, shape=[5, 3, 2], format='b3s') nd1 = ex1[1:3:, ::-2] nd2 = ndarray([(2, b'123')]*30, shape=[5, 3, 2], format='i3s') nd2 = ex2[1:3:, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) def test_memoryview_compare_multidim_zero_shape(self): # zeros in shape nd1 = ndarray(list(range(30)), shape=[0, 3, 2], format='i') nd2 = ndarray(list(range(30)), shape=[5, 0, 2], format='@i') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # zeros in shape, struct module nd1 = ndarray(list(range(30)), shape=[0, 3, 2], format='i') nd2 = ndarray(list(range(30)), shape=[5, 0, 2], format='@i') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) def test_memoryview_compare_multidim_zero_strides(self): # zero strides nd1 = ndarray([900]*80, shape=[4, 5, 4], format='@L') nd2 = ndarray([900], shape=[4, 5, 4], strides=[0, 0, 0], format='L') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) self.assertEqual(v.tolist(), w.tolist()) # zero strides, struct module nd1 = ndarray([(1, 2)]*10, shape=[2, 5], format='=lQ') nd2 = ndarray([(1, 2)], shape=[2, 5], strides=[0, 0], format='<lQ') v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) def test_memoryview_compare_multidim_suboffsets(self): # suboffsets ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I') nd1 = ex1[3:1:-1, ::-2] ex2 = ndarray(list(range(40)), shape=[5, 8], format='I', flags=ND_PIL) nd2 = ex2[1:3:1, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # suboffsets, struct module ex1 = ndarray([(2**64-1, -1)]*40, shape=[5, 8], format='=Qq', flags=ND_WRITABLE) ex1[2][7] = (1, -2) nd1 = ex1[3:1:-1, ::-2] ex2 = ndarray([(2**64-1, -1)]*40, shape=[5, 8], format='>Qq', flags=ND_PIL|ND_WRITABLE) ex2[2][7] = (1, -2) nd2 = ex2[1:3:1, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) # suboffsets, different shape ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b', flags=ND_PIL) nd1 = ex1[1:3:, ::-2] nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b') nd2 = ex2[1:3:, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # suboffsets, different shape, struct module ex1 = ndarray([(2**8-1, -1)]*40, shape=[2, 3, 5], format='Bb', flags=ND_PIL|ND_WRITABLE) nd1 = ex1[1:2:, ::-2] ex2 = ndarray([(2**8-1, -1)]*40, shape=[3, 2, 5], format='Bb') nd2 = ex2[1:2:, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # suboffsets, different format ex1 = ndarray(list(range(30)), shape=[5, 3, 2], format='i', flags=ND_PIL) nd1 = ex1[1:3:, ::-2] ex2 = ndarray(list(range(30)), shape=[5, 3, 2], format='@I', flags=ND_PIL) nd2 = ex2[1:3:, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, nd2) self.assertEqual(w, nd1) self.assertEqual(v, w) # suboffsets, different format, struct module ex1 = ndarray([(b'hello', b'', 1)]*27, shape=[3, 3, 3], format='5s0sP', flags=ND_PIL|ND_WRITABLE) ex1[1][2][2] = (b'sushi', b'', 1) nd1 = ex1[1:3:, ::-2] ex2 = ndarray([(b'hello', b'', 1)]*27, shape=[3, 3, 3], format='5s0sP', flags=ND_PIL|ND_WRITABLE) ex1[1][2][2] = (b'sushi', b'', 1) nd2 = ex2[1:3:, ::-2] v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertNotEqual(v, nd2) self.assertNotEqual(w, nd1) self.assertNotEqual(v, w) # initialize mixed C/Fortran + suboffsets lst1 = list(range(-15, 15)) lst2 = transpose(lst1, [3, 2, 5]) nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l', flags=ND_PIL) nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN|ND_PIL) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, w) # initialize mixed C/Fortran + suboffsets, struct module lst1 = [(b'sashimi', b'sliced', 20.05)]*30 lst1[11] = (b'ramen', b'spicy', 9.45) lst2 = transpose(lst1, [3, 2, 5]) nd1 = ndarray(lst1, shape=[3, 2, 5], format='< 10p 9p d', flags=ND_PIL) nd2 = ndarray(lst2, shape=[3, 2, 5], format='> 10p 9p d', flags=ND_FORTRAN|ND_PIL) v = memoryview(nd1) w = memoryview(nd2) self.assertEqual(v, nd1) self.assertEqual(w, nd2) self.assertEqual(v, w) def test_memoryview_compare_not_equal(self): # items not equal for byteorder in ['=', '<', '>', '!']: x = ndarray([2**63]*120, shape=[3,5,2,2,2], format=byteorder+'Q') y = ndarray([2**63]*120, shape=[3,5,2,2,2], format=byteorder+'Q', flags=ND_WRITABLE|ND_FORTRAN) y[2][3][1][1][1] = 1 a = memoryview(x) b = memoryview(y) self.assertEqual(a, x) self.assertEqual(b, y) self.assertNotEqual(a, b) self.assertNotEqual(a, y) self.assertNotEqual(b, x) x = ndarray([(2**63, 2**31, 2**15)]*120, shape=[3,5,2,2,2], format=byteorder+'QLH') y = ndarray([(2**63, 2**31, 2**15)]*120, shape=[3,5,2,2,2], format=byteorder+'QLH', flags=ND_WRITABLE|ND_FORTRAN) y[2][3][1][1][1] = (1, 1, 1) a = memoryview(x) b = memoryview(y) self.assertEqual(a, x) self.assertEqual(b, y) self.assertNotEqual(a, b) self.assertNotEqual(a, y) self.assertNotEqual(b, x) def test_memoryview_check_released(self): a = array.array('d', [1.1, 2.2, 3.3]) m = memoryview(a) m.release() # PyMemoryView_FromObject() self.assertRaises(ValueError, memoryview, m) # memoryview.cast() self.assertRaises(ValueError, m.cast, 'c') # getbuffer() self.assertRaises(ValueError, ndarray, m) # memoryview.tolist() self.assertRaises(ValueError, m.tolist) # memoryview.tobytes() self.assertRaises(ValueError, m.tobytes) # sequence self.assertRaises(ValueError, eval, "1.0 in m", locals()) # subscript self.assertRaises(ValueError, m.__getitem__, 0) # assignment self.assertRaises(ValueError, m.__setitem__, 0, 1) for attr in ('obj', 'nbytes', 'readonly', 'itemsize', 'format', 'ndim', 'shape', 'strides', 'suboffsets', 'c_contiguous', 'f_contiguous', 'contiguous'): self.assertRaises(ValueError, m.__getattribute__, attr) # richcompare b = array.array('d', [1.1, 2.2, 3.3]) m1 = memoryview(a) m2 = memoryview(b) self.assertEqual(m1, m2) m1.release() self.assertNotEqual(m1, m2) self.assertNotEqual(m1, a) self.assertEqual(m1, m1) def test_memoryview_tobytes(self): # Many implicit tests are already in self.verify(). t = (-529, 576, -625, 676, -729) nd = ndarray(t, shape=[5], format='@h') m = memoryview(nd) self.assertEqual(m, nd) self.assertEqual(m.tobytes(), nd.tobytes()) nd = ndarray([t], shape=[1], format='>hQiLl') m = memoryview(nd) self.assertEqual(m, nd) self.assertEqual(m.tobytes(), nd.tobytes()) nd = ndarray([t for _ in range(12)], shape=[2,2,3], format='=hQiLl') m = memoryview(nd) self.assertEqual(m, nd) self.assertEqual(m.tobytes(), nd.tobytes()) nd = ndarray([t for _ in range(120)], shape=[5,2,2,3,2], format='<hQiLl') m = memoryview(nd) self.assertEqual(m, nd) self.assertEqual(m.tobytes(), nd.tobytes()) # Unknown formats are handled: tobytes() purely depends on itemsize. if ctypes: # format: "T{>l:x:>l:y:}" class BEPoint(ctypes.BigEndianStructure): _fields_ = [("x", ctypes.c_long), ("y", ctypes.c_long)] point = BEPoint(100, 200) a = memoryview(point) self.assertEqual(a.tobytes(), bytes(point)) def test_memoryview_get_contiguous(self): # Many implicit tests are already in self.verify(). # no buffer interface self.assertRaises(TypeError, get_contiguous, {}, PyBUF_READ, 'F') # writable request to read-only object self.assertRaises(BufferError, get_contiguous, b'x', PyBUF_WRITE, 'C') # writable request to non-contiguous object nd = ndarray([1, 2, 3], shape=[2], strides=[2]) self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'A') # scalar, read-only request from read-only exporter nd = ndarray(9, shape=(), format="L") for order in ['C', 'F', 'A']: m = get_contiguous(nd, PyBUF_READ, order) self.assertEqual(m, nd) self.assertEqual(m[()], 9) # scalar, read-only request from writable exporter nd = ndarray(9, shape=(), format="L", flags=ND_WRITABLE) for order in ['C', 'F', 'A']: m = get_contiguous(nd, PyBUF_READ, order) self.assertEqual(m, nd) self.assertEqual(m[()], 9) # scalar, writable request for order in ['C', 'F', 'A']: nd[()] = 9 m = get_contiguous(nd, PyBUF_WRITE, order) self.assertEqual(m, nd) self.assertEqual(m[()], 9) m[()] = 10 self.assertEqual(m[()], 10) self.assertEqual(nd[()], 10) # zeros in shape nd = ndarray([1], shape=[0], format="L", flags=ND_WRITABLE) for order in ['C', 'F', 'A']: m = get_contiguous(nd, PyBUF_READ, order) self.assertRaises(IndexError, m.__getitem__, 0) self.assertEqual(m, nd) self.assertEqual(m.tolist(), []) nd = ndarray(list(range(8)), shape=[2, 0, 7], format="L", flags=ND_WRITABLE) for order in ['C', 'F', 'A']: m = get_contiguous(nd, PyBUF_READ, order) self.assertEqual(ndarray(m).tolist(), [[], []]) # one-dimensional nd = ndarray([1], shape=[1], format="h", flags=ND_WRITABLE) for order in ['C', 'F', 'A']: m = get_contiguous(nd, PyBUF_WRITE, order) self.assertEqual(m, nd) self.assertEqual(m.tolist(), nd.tolist()) nd = ndarray([1, 2, 3], shape=[3], format="b", flags=ND_WRITABLE) for order in ['C', 'F', 'A']: m = get_contiguous(nd, PyBUF_WRITE, order) self.assertEqual(m, nd) self.assertEqual(m.tolist(), nd.tolist()) # one-dimensional, non-contiguous nd = ndarray([1, 2, 3], shape=[2], strides=[2], flags=ND_WRITABLE) for order in ['C', 'F', 'A']: m = get_contiguous(nd, PyBUF_READ, order) self.assertEqual(m, nd) self.assertEqual(m.tolist(), nd.tolist()) self.assertRaises(TypeError, m.__setitem__, 1, 20) self.assertEqual(m[1], 3) self.assertEqual(nd[1], 3) nd = nd[::-1] for order in ['C', 'F', 'A']: m = get_contiguous(nd, PyBUF_READ, order) self.assertEqual(m, nd) self.assertEqual(m.tolist(), nd.tolist()) self.assertRaises(TypeError, m.__setitem__, 1, 20) self.assertEqual(m[1], 1) self.assertEqual(nd[1], 1) # multi-dimensional, contiguous input nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE) for order in ['C', 'A']: m = get_contiguous(nd, PyBUF_WRITE, order) self.assertEqual(ndarray(m).tolist(), nd.tolist()) self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'F') m = get_contiguous(nd, PyBUF_READ, order) self.assertEqual(ndarray(m).tolist(), nd.tolist()) nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_FORTRAN) for order in ['F', 'A']: m = get_contiguous(nd, PyBUF_WRITE, order) self.assertEqual(ndarray(m).tolist(), nd.tolist()) self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'C') m = get_contiguous(nd, PyBUF_READ, order) self.assertEqual(ndarray(m).tolist(), nd.tolist()) # multi-dimensional, non-contiguous input nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_PIL) for order in ['C', 'F', 'A']: self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, order) m = get_contiguous(nd, PyBUF_READ, order) self.assertEqual(ndarray(m).tolist(), nd.tolist()) # flags nd = ndarray([1,2,3,4,5], shape=[3], strides=[2]) m = get_contiguous(nd, PyBUF_READ, 'C') self.assertTrue(m.c_contiguous) def test_memoryview_serializing(self): # C-contiguous size = struct.calcsize('i') a = array.array('i', [1,2,3,4,5]) m = memoryview(a) buf = io.BytesIO(m) b = bytearray(5*size) buf.readinto(b) self.assertEqual(m.tobytes(), b) # C-contiguous, multi-dimensional size = struct.calcsize('L') nd = ndarray(list(range(12)), shape=[2,3,2], format="L") m = memoryview(nd) buf = io.BytesIO(m) b = bytearray(2*3*2*size) buf.readinto(b) self.assertEqual(m.tobytes(), b) # Fortran contiguous, multi-dimensional #size = struct.calcsize('L') #nd = ndarray(list(range(12)), shape=[2,3,2], format="L", # flags=ND_FORTRAN) #m = memoryview(nd) #buf = io.BytesIO(m) #b = bytearray(2*3*2*size) #buf.readinto(b) #self.assertEqual(m.tobytes(), b) def test_memoryview_hash(self): # bytes exporter b = bytes(list(range(12))) m = memoryview(b) self.assertEqual(hash(b), hash(m)) # C-contiguous mc = m.cast('c', shape=[3,4]) self.assertEqual(hash(mc), hash(b)) # non-contiguous mx = m[::-2] b = bytes(list(range(12))[::-2]) self.assertEqual(hash(mx), hash(b)) # Fortran contiguous nd = ndarray(list(range(30)), shape=[3,2,5], flags=ND_FORTRAN) m = memoryview(nd) self.assertEqual(hash(m), hash(nd)) # multi-dimensional slice nd = ndarray(list(range(30)), shape=[3,2,5]) x = nd[::2, ::, ::-1] m = memoryview(x) self.assertEqual(hash(m), hash(x)) # multi-dimensional slice with suboffsets nd = ndarray(list(range(30)), shape=[2,5,3], flags=ND_PIL) x = nd[::2, ::, ::-1] m = memoryview(x) self.assertEqual(hash(m), hash(x)) # equality-hash invariant x = ndarray(list(range(12)), shape=[12], format='B') a = memoryview(x) y = ndarray(list(range(12)), shape=[12], format='b') b = memoryview(y) self.assertEqual(a, b) self.assertEqual(hash(a), hash(b)) # non-byte formats nd = ndarray(list(range(12)), shape=[2,2,3], format='L') m = memoryview(nd) self.assertRaises(ValueError, m.__hash__) nd = ndarray(list(range(-6, 6)), shape=[2,2,3], format='h') m = memoryview(nd) self.assertRaises(ValueError, m.__hash__) nd = ndarray(list(range(12)), shape=[2,2,3], format='= L') m = memoryview(nd) self.assertRaises(ValueError, m.__hash__) nd = ndarray(list(range(-6, 6)), shape=[2,2,3], format='< h') m = memoryview(nd) self.assertRaises(ValueError, m.__hash__) def test_memoryview_release(self): # Create re-exporter from getbuffer(memoryview), then release the view. a = bytearray([1,2,3]) m = memoryview(a) nd = ndarray(m) # re-exporter self.assertRaises(BufferError, m.release) del nd m.release() a = bytearray([1,2,3]) m = memoryview(a) nd1 = ndarray(m, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) nd2 = ndarray(nd1, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) self.assertIs(nd2.obj, m) self.assertRaises(BufferError, m.release) del nd1, nd2 m.release() # chained views a = bytearray([1,2,3]) m1 = memoryview(a) m2 = memoryview(m1) nd = ndarray(m2) # re-exporter m1.release() self.assertRaises(BufferError, m2.release) del nd m2.release() a = bytearray([1,2,3]) m1 = memoryview(a) m2 = memoryview(m1) nd1 = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) nd2 = ndarray(nd1, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) self.assertIs(nd2.obj, m2) m1.release() self.assertRaises(BufferError, m2.release) del nd1, nd2 m2.release() # Allow changing layout while buffers are exported. nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT) m1 = memoryview(nd) nd.push([4,5,6,7,8], shape=[5]) # mutate nd m2 = memoryview(nd) x = memoryview(m1) self.assertEqual(x.tolist(), m1.tolist()) y = memoryview(m2) self.assertEqual(y.tolist(), m2.tolist()) self.assertEqual(y.tolist(), nd.tolist()) m2.release() y.release() nd.pop() # pop the current view self.assertEqual(x.tolist(), nd.tolist()) del nd m1.release() x.release() # If multiple memoryviews share the same managed buffer, implicit # release() in the context manager's __exit__() method should still # work. def catch22(b): with memoryview(b) as m2: pass x = bytearray(b'123') with memoryview(x) as m1: catch22(m1) self.assertEqual(m1[0], ord(b'1')) x = ndarray(list(range(12)), shape=[2,2,3], format='l') y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) self.assertIs(z.obj, x) with memoryview(z) as m: catch22(m) self.assertEqual(m[0:1].tolist(), [[[0, 1, 2], [3, 4, 5]]]) # Test garbage collection. for flags in (0, ND_REDIRECT): x = bytearray(b'123') with memoryview(x) as m1: del x y = ndarray(m1, getbuf=PyBUF_FULL_RO, flags=flags) with memoryview(y) as m2: del y z = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=flags) with memoryview(z) as m3: del z catch22(m3) catch22(m2) catch22(m1) self.assertEqual(m1[0], ord(b'1')) self.assertEqual(m2[1], ord(b'2')) self.assertEqual(m3[2], ord(b'3')) del m3 del m2 del m1 x = bytearray(b'123') with memoryview(x) as m1: del x y = ndarray(m1, getbuf=PyBUF_FULL_RO, flags=flags) with memoryview(y) as m2: del y z = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=flags) with memoryview(z) as m3: del z catch22(m1) catch22(m2) catch22(m3) self.assertEqual(m1[0], ord(b'1')) self.assertEqual(m2[1], ord(b'2')) self.assertEqual(m3[2], ord(b'3')) del m1, m2, m3 # memoryview.release() fails if the view has exported buffers. x = bytearray(b'123') with self.assertRaises(BufferError): with memoryview(x) as m: ex = ndarray(m) m[0] == ord(b'1') def test_memoryview_redirect(self): nd = ndarray([1.0 * x for x in range(12)], shape=[12], format='d') a = array.array('d', [1.0 * x for x in range(12)]) for x in (nd, a): y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) m = memoryview(z) self.assertIs(y.obj, x) self.assertIs(z.obj, x) self.assertIs(m.obj, x) self.assertEqual(m, x) self.assertEqual(m, y) self.assertEqual(m, z) self.assertEqual(m[1:3], x[1:3]) self.assertEqual(m[1:3], y[1:3]) self.assertEqual(m[1:3], z[1:3]) del y, z self.assertEqual(m[1:3], x[1:3]) def test_memoryview_from_static_exporter(self): fmt = 'B' lst = [0,1,2,3,4,5,6,7,8,9,10,11] # exceptions self.assertRaises(TypeError, staticarray, 1, 2, 3) # view.obj==x x = staticarray() y = memoryview(x) self.verify(y, obj=x, itemsize=1, fmt=fmt, readonly=True, ndim=1, shape=[12], strides=[1], lst=lst) for i in range(12): self.assertEqual(y[i], i) del x del y x = staticarray() y = memoryview(x) del y del x x = staticarray() y = ndarray(x, getbuf=PyBUF_FULL_RO) z = ndarray(y, getbuf=PyBUF_FULL_RO) m = memoryview(z) self.assertIs(y.obj, x) self.assertIs(m.obj, z) self.verify(m, obj=z, itemsize=1, fmt=fmt, readonly=True, ndim=1, shape=[12], strides=[1], lst=lst) del x, y, z, m x = staticarray() y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) m = memoryview(z) self.assertIs(y.obj, x) self.assertIs(z.obj, x) self.assertIs(m.obj, x) self.verify(m, obj=x, itemsize=1, fmt=fmt, readonly=True, ndim=1, shape=[12], strides=[1], lst=lst) del x, y, z, m # view.obj==NULL x = staticarray(legacy_mode=True) y = memoryview(x) self.verify(y, obj=None, itemsize=1, fmt=fmt, readonly=True, ndim=1, shape=[12], strides=[1], lst=lst) for i in range(12): self.assertEqual(y[i], i) del x del y x = staticarray(legacy_mode=True) y = memoryview(x) del y del x x = staticarray(legacy_mode=True) y = ndarray(x, getbuf=PyBUF_FULL_RO) z = ndarray(y, getbuf=PyBUF_FULL_RO) m = memoryview(z) self.assertIs(y.obj, None) self.assertIs(m.obj, z) self.verify(m, obj=z, itemsize=1, fmt=fmt, readonly=True, ndim=1, shape=[12], strides=[1], lst=lst) del x, y, z, m x = staticarray(legacy_mode=True) y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT) m = memoryview(z) # Clearly setting view.obj==NULL is inferior, since it # messes up the redirection chain: self.assertIs(y.obj, None) self.assertIs(z.obj, y) self.assertIs(m.obj, y) self.verify(m, obj=y, itemsize=1, fmt=fmt, readonly=True, ndim=1, shape=[12], strides=[1], lst=lst) del x, y, z, m def test_memoryview_getbuffer_undefined(self): # getbufferproc does not adhere to the new documentation nd = ndarray([1,2,3], [3], flags=ND_GETBUF_FAIL|ND_GETBUF_UNDEFINED) self.assertRaises(BufferError, memoryview, nd) def test_issue_7385(self): x = ndarray([1,2,3], shape=[3], flags=ND_GETBUF_FAIL) self.assertRaises(BufferError, memoryview, x) if __name__ == "__main__": unittest.main()
38.042948
88
0.512109
794254654f00f6fd4b817c6016e9d9c1874f374e
224
py
Python
espaloma/mm/__init__.py
jstaker7/espaloma
d80d280acd608dc04c93966afe15cc3cb74f65a8
[ "MIT" ]
null
null
null
espaloma/mm/__init__.py
jstaker7/espaloma
d80d280acd608dc04c93966afe15cc3cb74f65a8
[ "MIT" ]
null
null
null
espaloma/mm/__init__.py
jstaker7/espaloma
d80d280acd608dc04c93966afe15cc3cb74f65a8
[ "MIT" ]
null
null
null
import espaloma import espaloma.mm import espaloma.mm.angle import espaloma.mm.bond import espaloma.mm.energy import espaloma.mm.functional import espaloma.mm.geometry import espaloma.mm.nonbonded import espaloma.mm.torsion
22.4
29
0.852679
794254acb1899534fd14c75d1c2a9d6d0668358b
2,189
py
Python
runtime/image_classification/models/vgg16/gpus=4_straight/stage2.py
vibhatha/pipedream
af6b811f5d01a68e9eb91065e5242fc1a075f279
[ "MIT" ]
null
null
null
runtime/image_classification/models/vgg16/gpus=4_straight/stage2.py
vibhatha/pipedream
af6b811f5d01a68e9eb91065e5242fc1a075f279
[ "MIT" ]
null
null
null
runtime/image_classification/models/vgg16/gpus=4_straight/stage2.py
vibhatha/pipedream
af6b811f5d01a68e9eb91065e5242fc1a075f279
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch class Stage2(torch.nn.Module): def __init__(self): super(Stage2, self).__init__() self.layer1 = torch.nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.layer2 = torch.nn.ReLU(inplace=True) self.layer3 = torch.nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.layer4 = torch.nn.ReLU(inplace=True) self.layer5 = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) self.layer6 = torch.nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.layer7 = torch.nn.ReLU(inplace=True) self.layer8 = torch.nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.layer9 = torch.nn.ReLU(inplace=True) self.layer10 = torch.nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.layer11 = torch.nn.ReLU(inplace=True) self._initialize_weights() def forward(self, input0): out0 = input0.clone() out1 = self.layer1(out0) out2 = self.layer2(out1) out3 = self.layer3(out2) out4 = self.layer4(out3) out5 = self.layer5(out4) out6 = self.layer6(out5) out7 = self.layer7(out6) out8 = self.layer8(out7) out9 = self.layer9(out8) out10 = self.layer10(out9) out11 = self.layer11(out10) return out11 def _initialize_weights(self): for m in self.modules(): if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.BatchNorm2d): torch.nn.init.constant_(m.weight, 1) torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.Linear): torch.nn.init.normal_(m.weight, 0, 0.01) torch.nn.init.constant_(m.bias, 0)
43.78
106
0.582458
794254cc0c48cf27ffad58761d0ddc2b0742ac55
7,227
py
Python
refnx/analysis/test/NISTModels.py
brotwasme/refnx2019
8b62f7668d196c0ec443b47ea669573417a682e6
[ "BSD-3-Clause" ]
null
null
null
refnx/analysis/test/NISTModels.py
brotwasme/refnx2019
8b62f7668d196c0ec443b47ea669573417a682e6
[ "BSD-3-Clause" ]
null
null
null
refnx/analysis/test/NISTModels.py
brotwasme/refnx2019
8b62f7668d196c0ec443b47ea669573417a682e6
[ "BSD-3-Clause" ]
null
null
null
import os import numpy as np from numpy import exp, sin, cos, arctan, array, pi from numpy.testing import assert_allclose, assert_ from refnx.analysis import (CurveFitter, Objective, Parameter, Parameters, Model) thisdir, thisfile = os.path.split(__file__) NIST_DIR = os.path.join(thisdir, 'NIST_STRD') def ndig(a, b): "precision for NIST values" return np.round(-np.log10((np.abs(np.abs(a) - np.abs(b)) + 1.e-15) / np.abs(b))) def read_params(params): return np.array(params) def Bennett5(x, b): b = read_params(b) return b[0] * (b[1] + x)**(-1 / b[2]) def BoxBOD(x, b): b = read_params(b) return b[0] * (1 - exp(-b[1] * x)) def Chwirut(x, b): b = read_params(b) return exp(-b[0] * x) / (b[1] + b[2] * x) def DanWood(x, b): b = read_params(b) return b[0] * x**b[1] def ENSO(x, b): b = read_params(b) return (b[0] + (b[1] * cos(2 * pi * x / 12) + b[2] * sin(2 * pi * x / 12) + b[4] * cos(2 * pi * x / b[3]) + b[5] * sin(2 * pi * x / b[3]) + b[7] * cos(2 * pi * x / b[6]) + b[8] * sin(2 * pi * x / b[6]))) def Eckerle4(x, b): b = read_params(b) return (b[0] / b[1]) * exp(-0.5 * ((x - b[2]) / b[1])**2) def Gauss(x, b): b = read_params(b) return b[0] * exp(-b[1] * x) + (b[2] * exp(-(x - b[3])**2 / b[4]**2) + b[5] * exp(-(x - b[6])**2 / b[7]**2)) def Hahn1(x, b): b = read_params(b) return ((b[0] + b[1] * x + b[2] * x**2 + b[3] * x**3) / (1 + b[4] * x + b[5] * x**2 + b[6] * x**3)) def Kirby(x, b): b = read_params(b) return (b[0] + b[1] * x + b[2] * x**2) / (1 + b[3] * x + b[4] * x**2) def Lanczos(x, b): b = read_params(b) return (b[0] * exp(-b[1] * x) + b[2] * exp(-b[3] * x) + b[4] * exp(-b[5] * x)) def MGH09(x, b): b = read_params(b) return b[0] * (x**2 + x * b[1]) / (x**2 + x * b[2] + b[3]) def MGH10(x, b): b = read_params(b) return b[0] * exp(b[1] / (x + b[2])) def MGH17(x, b): b = read_params(b) return b[0] + b[1] * exp(-x * b[3]) + b[2] * exp(-x * b[4]) def Misra1a(x, b): b = read_params(b) return b[0] * (1 - exp(-b[1] * x)) def Misra1b(x, b): b = read_params(b) return b[0] * (1 - (1 + 0.5 * b[1] * x)**(-2)) def Misra1c(x, b): b = read_params(b) return b[0] * (1 - (1 + 2 * b[1] * x)**(-.5)) def Misra1d(x, b): b = read_params(b) return b[0] * b[1] * x * ((1 + b[1] * x)**(-1)) def Nelson(x, b): b = read_params(b) x1 = x[:, 0] x2 = x[:, 1] return b[0] - b[1] * x1 * exp(-b[2] * x2) def Rat42(x, b): b = read_params(b) return b[0] / (1 + exp(b[1] - b[2] * x)) def Rat43(x, b): b = read_params(b) return b[0] / ((1 + exp(b[1] - b[2] * x))**(1 / b[3])) def Roszman1(x, b): b = read_params(b) return b[0] - b[1] * x - arctan(b[2] / (x - b[3])) / pi def Thurber(x, b): b = read_params(b) return ((b[0] + b[1] * x + b[2] * x**2 + b[3] * x**3) / (1 + b[4] * x + b[5] * x**2 + b[6] * x**3)) # Model name fcn, #fitting params, dim of x NIST_Models = {'Bennett5': (Bennett5, 3, 1), 'BoxBOD': (BoxBOD, 2, 1), 'Chwirut1': (Chwirut, 3, 1), 'Chwirut2': (Chwirut, 3, 1), 'DanWood': (DanWood, 2, 1), 'ENSO': (ENSO, 9, 1), 'Eckerle4': (Eckerle4, 3, 1), 'Gauss1': (Gauss, 8, 1), 'Gauss2': (Gauss, 8, 1), 'Gauss3': (Gauss, 8, 1), 'Hahn1': (Hahn1, 7, 1), 'Kirby2': (Kirby, 5, 1), 'Lanczos1': (Lanczos, 6, 1), 'Lanczos2': (Lanczos, 6, 1), 'Lanczos3': (Lanczos, 6, 1), 'MGH09': (MGH09, 4, 1), 'MGH10': (MGH10, 3, 1), 'MGH17': (MGH17, 5, 1), 'Misra1a': (Misra1a, 2, 1), 'Misra1b': (Misra1b, 2, 1), 'Misra1c': (Misra1c, 2, 1), 'Misra1d': (Misra1d, 2, 1), 'Nelson': (Nelson, 3, 2), 'Rat42': (Rat42, 3, 1), 'Rat43': (Rat43, 4, 1), 'Roszman1': (Roszman1, 4, 1), 'Thurber': (Thurber, 7, 1)} def NIST_runner(dataset, method='least_squares', chi_atol=1e-5, val_rtol=1e-2, err_rtol=5e-3): NIST_dataset = ReadNistData(dataset) x, y = (NIST_dataset['x'], NIST_dataset['y']) if dataset == 'Nelson': y = np.log(y) params = NIST_dataset['start'] fitfunc = NIST_Models[dataset][0] model = Model(params, fitfunc) objective = Objective(model, (x, y)) fitter = CurveFitter(objective) result = fitter.fit(method=method) assert_allclose(objective.chisqr(), NIST_dataset['sum_squares'], atol=chi_atol) certval = NIST_dataset['cert_values'] assert_allclose(result.x, certval, rtol=val_rtol) if 'stderr' in result: certerr = NIST_dataset['cert_stderr'] assert_allclose(result.stderr, certerr, rtol=err_rtol) def ReadNistData(dataset, start='start2'): """ NIST STRD data is in a simple, fixed format with line numbers being significant! """ with open(os.path.join(NIST_DIR, "%s.dat" % dataset), 'r') as finp: lines = [l[:-1] for l in finp.readlines()] model_lines = lines[30:39] param_lines = lines[40:58] data_lines = lines[60:] words = model_lines[1].strip().split() nparams = int(words[0]) start1 = np.zeros(nparams) start2 = np.zeros(nparams) certval = np.zeros(nparams) certerr = np.zeros(nparams) for i, text in enumerate(param_lines[:nparams]): [s1, s2, val, err] = [float(x) for x in text.split('=')[1].split()] start1[i] = s1 start2[i] = s2 certval[i] = val certerr[i] = err for t in param_lines[nparams:]: t = t.strip() if ':' not in t: continue val = float(t.split(':')[1]) if t.startswith('Residual Sum of Squares'): sum_squares = val elif t.startswith('Residual Standard Deviation'): std_dev = val elif t.startswith('Degrees of Freedom'): nfree = int(val) elif t.startswith('Number of Observations'): ndata = int(val) y, x = [], [] for d in data_lines: vals = [float(i) for i in d.strip().split()] y.append(vals[0]) if len(vals) > 2: x.append(vals[1:]) else: x.append(vals[1]) y = array(y) x = array(x) params = Parameters() for i in range(nparams): pname = 'p%i' % (i + 1) if start == 'start2': pval = start2[i] elif start == 'start1': pval = start1[i] p = Parameter(pval, name=pname, vary=True) params.append(p) out = {'y': y, 'x': x, 'nparams': nparams, 'ndata': ndata, 'nfree': nfree, 'start': params, 'sum_squares': sum_squares, 'std_dev': std_dev, 'cert_values': certval, 'cert_stderr': certerr} return out
26.569853
76
0.479314
794254e8d9a6a8b9392368c0aaec5786677332d9
1,031
py
Python
Python/yolo-cards-detection-augmenter/main.py
ablaszkiewicz/university
dd477b78a6adddbadc404a2082daa9c92c846a86
[ "MIT" ]
null
null
null
Python/yolo-cards-detection-augmenter/main.py
ablaszkiewicz/university
dd477b78a6adddbadc404a2082daa9c92c846a86
[ "MIT" ]
null
null
null
Python/yolo-cards-detection-augmenter/main.py
ablaszkiewicz/university
dd477b78a6adddbadc404a2082daa9c92c846a86
[ "MIT" ]
1
2021-04-08T14:54:10.000Z
2021-04-08T14:54:10.000Z
from image_operations import * import glob import os iterations = 70 # objects_files = glob.glob('dataset_original/*') objects_files = ["9_H", "10_H", "J_H", "Q_H", "K_H", "A_H", "9_S", "10_S", "J_S", "Q_S", "K_S", "A_S", "9_C", "10_C", "J_C", "Q_C", "K_C", "A_C", "9_D", "10_D", "J_D", "Q_D", "K_D", "A_D"] objects = [os.path.splitext(os.path.basename(path))[0] for path in objects_files] backgrounds_files = glob.glob('backgrounds/*') backgrounds = [os.path.splitext(os.path.basename(path))[0] for path in backgrounds_files] print(objects) total_length = len(backgrounds) * iterations counter = 0 for background_file_name in backgrounds: for i in range(iterations): image = ImageAugmenter(objects, background_file_name, 0) image.save(i) counter += 1 print("Progress:", counter, "/", total_length) # for i in range(54): # # if i == 53: # # print(i) # # continue # # print(i, '\\n', end='', sep='') # print(i)
30.323529
89
0.592629
7942552ed4d335b34094039e4fb7443652d0a7b4
337
py
Python
common/SoupUtils.py
loveflycforever/TypeY
a002dc46be1d6f458abfbc27c3e5763ae739487f
[ "MIT" ]
null
null
null
common/SoupUtils.py
loveflycforever/TypeY
a002dc46be1d6f458abfbc27c3e5763ae739487f
[ "MIT" ]
null
null
null
common/SoupUtils.py
loveflycforever/TypeY
a002dc46be1d6f458abfbc27c3e5763ae739487f
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup def strippedTagString(tag): return tag.get_text().replace('\n', '').replace(' ', '') def selectStrippedStrings(soup, selector, index=0): return soup.select(selector)[index].stripped_strings def selectFindAll(soup, selector, tag, index=0): return soup.select(selector)[index].find_all(tag)
24.071429
60
0.727003
794256a008fbdd15ed6a60be1202abd34c7713c2
700
py
Python
Trees/DFS_PostExample.py
yabur/LeetCode_Practice
d002dedf8f6694b9d313c8facf0d39e688decb15
[ "MIT" ]
null
null
null
Trees/DFS_PostExample.py
yabur/LeetCode_Practice
d002dedf8f6694b9d313c8facf0d39e688decb15
[ "MIT" ]
null
null
null
Trees/DFS_PostExample.py
yabur/LeetCode_Practice
d002dedf8f6694b9d313c8facf0d39e688decb15
[ "MIT" ]
null
null
null
class TreeNode: def __init__(self): """ Constructor Args: name (string) space (int) """ self.name = name self.space = space List = [] # child # PostOrder Example # Amount of disk usage node uses # def helper(self, node): if node not in self: return 0 du = node.space() # pre order initilazing for child in node.children: du = du + helper(child) return du # post order result if __name__ == '__main__': L = [5,6,3,67,89,4] newBook = TreeNode.dfs(L, 3) print(newBook)
21.212121
50
0.464286
794258c92765b9f28ae980a50eb26f2acf6bd136
258
py
Python
main/service/crypto_stats_service.py
gbdevw/python-fastapi-and-r
06992857575519e1d1e7ffe72090758fb201b698
[ "Apache-2.0" ]
1
2021-12-03T05:27:23.000Z
2021-12-03T05:27:23.000Z
main/service/crypto_stats_service.py
gbdevw/python-fastapi-and-r
06992857575519e1d1e7ffe72090758fb201b698
[ "Apache-2.0" ]
null
null
null
main/service/crypto_stats_service.py
gbdevw/python-fastapi-and-r
06992857575519e1d1e7ffe72090758fb201b698
[ "Apache-2.0" ]
1
2021-12-11T06:55:32.000Z
2021-12-11T06:55:32.000Z
from main.entities.crypto_stats import CryptoStats class CryptoStatsService: """Interface for the CryptoStatsService : Service which provides crypto stats""" async def get_crypto_stats (self, product_id: str = 'btc-usd') -> CryptoStats: pass
43
84
0.751938