hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794258f632c9efcfe981265f1e6c3bb9478a5291
913
py
Python
core/mobile_devices/tasks.py
jcaguirre89/django-mobile-app
ca3a178603ba80d846d97bf7b1f8b0cfe259ea53
[ "MIT" ]
64
2017-10-06T21:56:22.000Z
2022-03-26T07:35:44.000Z
core/mobile_devices/tasks.py
jcaguirre89/django-mobile-app
ca3a178603ba80d846d97bf7b1f8b0cfe259ea53
[ "MIT" ]
5
2018-02-16T12:17:35.000Z
2019-03-28T12:35:54.000Z
core/mobile_devices/tasks.py
jcaguirre89/django-mobile-app
ca3a178603ba80d846d97bf7b1f8b0cfe259ea53
[ "MIT" ]
13
2017-12-20T21:51:05.000Z
2021-02-02T18:03:34.000Z
import boto3 import logging from django.conf import settings from celery import shared_task @shared_task def register_device_on_sns(device): """ Registers your device on AWS SNS and attaches the ARN endpoint on the device object. The ARN endpoint is used when publishing push notifications. :param device: your device object, extending the AbstractMobileDevice. :return: - """ try: client = boto3.client('sns', region_name=settings.AWS_REGION) platform_arn = settings.AWS_IOS_APPLICATION_ARN if device.is_ios else settings.AWS_ANDROID_APPLICATION_ARN response = client.create_platform_endpoint( PlatformApplicationArn=platform_arn, Token=device.push_token, ) endpoint_arn = response.get('EndpointArn') device.arn_endpoint = endpoint_arn device.save() except Exception as e: logging.error(e)
33.814815
114
0.714129
79425c0a7e0ac0fbc71bf38112a35bf8c87242ae
10,377
py
Python
src/local/butler/py_unittest.py
fengjixuchui/clusterfuzz
ef89be3934936d1086b4a21bffca5506c8cb93be
[ "Apache-2.0" ]
null
null
null
src/local/butler/py_unittest.py
fengjixuchui/clusterfuzz
ef89be3934936d1086b4a21bffca5506c8cb93be
[ "Apache-2.0" ]
null
null
null
src/local/butler/py_unittest.py
fengjixuchui/clusterfuzz
ef89be3934936d1086b4a21bffca5506c8cb93be
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """py_unittest.py runs tests under src/appengine and butler/tests""" from __future__ import print_function from future import standard_library standard_library.install_aliases() from builtins import object from builtins import range import coverage # Coverage needs to be at the top of the page. See: go/why-top-cov COV = coverage.Coverage(config_file='.coveragerc') COV.start() import io import itertools import logging import multiprocessing import os import platform import signal import sys import time import traceback import unittest from local.butler import appengine from local.butler import common from src.python.config import local_config from src.python.metrics import logs APPENGINE_TEST_DIRECTORY = os.path.join('src', 'python', 'tests', 'appengine') CORE_TEST_DIRECTORY = os.path.join('src', 'python', 'tests', 'core') SLOW_TEST_THRESHOLD = 2 # In seconds. class TrackedTestResult(unittest.TextTestResult): """Result object that tracks slow-running tests.""" def __init__(self, *args, **kwargs): super(TrackedTestResult, self).__init__(*args, **kwargs) self.slow_tests = [] def startTest(self, test): self._start_time = time.time() super(TrackedTestResult, self).startTest(test) def addSuccess(self, test): elapsed_time = time.time() - self._start_time super(TrackedTestResult, self).addSuccess(test) if elapsed_time <= SLOW_TEST_THRESHOLD: return description = self.getDescription(test).splitlines()[0] self.slow_tests.append((elapsed_time, description)) class TrackedTestRunner(unittest.TextTestRunner): """TextTestRunner wrapper that reports additional information we collect.""" def __init__(self, *args, **kwargs): kwargs['resultclass'] = TrackedTestResult super(TrackedTestRunner, self).__init__(*args, **kwargs) def run(self, test): result = super(TrackedTestRunner, self).run(test) if not result.slow_tests: return result self.stream.writeln('\nSlow tests:') for elapsed_time, test_name in sorted(result.slow_tests, reverse=True): print('%6.2fs: %s' % (elapsed_time, test_name)) return result class MeasureCoverage(object): """Use with `with` statement for measuring test coverage.""" def __init__(self, enabled): self.enabled = enabled def __enter__(self): pass def __exit__(self, exc_type, value, _): COV.stop() if not self.enabled: return COV.html_report(directory='coverage') print('The tests cover %0.2f%% of the source code.' % COV.report(file=io.BytesIO())) print('The test coverage by lines can be seen at ./coverage/index.html') class TestResult(object): """Test results.""" def __init__(self, output, num_errors, num_failures, num_skipped, total_run): self.output = output self.num_errors = num_errors self.num_failures = num_failures self.num_skipped = num_skipped self.total_run = total_run def test_worker_init(): """Initialise test worker process.""" if platform.system() != 'Windows': # Prevent KeyboardInterrupt error output. signal.signal(signal.SIGINT, signal.SIG_IGN) def run_one_test_parallel(args): """Test worker.""" try: os.environ['PARALLEL_TESTS'] = '1' test_modules, suppress_output = args suite = unittest.loader.TestLoader().loadTestsFromNames(test_modules) # We use BufferedWriter as a hack to accept both unicode and str write # arguments. stream = io.BufferedWriter(io.BytesIO()) # Verbosity=0 since we cannot see real-time test execution order when tests # are executed in parallel. result = unittest.TextTestRunner( stream=stream, verbosity=0, buffer=suppress_output).run(suite) stream.flush() return TestResult(stream.raw.getvalue(), len(result.errors), len(result.failures), len(result.skipped), result.testsRun) except BaseException: # Print exception traceback here, as it will be lost otherwise. traceback.print_exc() raise def run_tests_single_core(args, test_directory, top_level_dir, enable_coverage): """Run tests (single CPU).""" suites = unittest.loader.TestLoader().discover( test_directory, pattern=args.pattern, top_level_dir=top_level_dir) with MeasureCoverage(enable_coverage): # Verbosity=2 since we want to see real-time test execution with test name # and result. result = TrackedTestRunner( verbosity=2, buffer=(not args.unsuppress_output)).run(suites) if result.errors or result.failures: sys.exit(1) def run_tests_parallel(args, test_directory, top_level_dir): """Run tests (multiple CPUs).""" suites = unittest.loader.TestLoader().discover( test_directory, pattern=args.pattern, top_level_dir=top_level_dir) test_classes = [] # pylint: disable=protected-access for suite in suites: for subsuite in suite._tests: # pylint: disable=protected-access # According to: # https://github.com/python/cpython/blob/2.7/Lib/unittest/loader.py#L24, # this is how we can get a ModuleImportFailure error. if subsuite.__class__.__name__ == 'ModuleImportFailure': unittest.TextTestRunner(verbosity=1).run(subsuite) raise Exception('A failure occurred while importing the module.') else: for test_class in subsuite._tests: # pylint: disable=protected-access test_classes.append((test_class.__module__, test_class.__class__.__name__)) test_classes = sorted(test_classes) test_modules = [] for module_path, _ in itertools.groupby(test_classes, key=lambda k: k[0]): test_modules.append(module_path) test_modules = sorted(test_modules) cpu_count = multiprocessing.cpu_count() pool = multiprocessing.Pool(cpu_count, test_worker_init) total_result = TestResult('', 0, 0, 0, 0) # partition tests test_args = [] tests_per_cpu = max(1, len(test_modules) // cpu_count) for i in range(0, len(test_modules), tests_per_cpu): group = test_modules[i:i + tests_per_cpu] test_args.append((group, not args.unsuppress_output)) results = pool.map_async(run_one_test_parallel, test_args) while True: try: # KeyboardInterrupt never gets raised unless we pass a timeout. results = results.get(timeout=600) break except KeyboardInterrupt: pool.terminate() pool.join() sys.exit(1) pool.close() pool.join() for result in results: if result.num_failures or result.num_errors: print(result.output) total_result.num_errors += result.num_errors total_result.num_failures += result.num_failures total_result.num_skipped += result.num_skipped total_result.total_run += result.total_run print('Ran %d tests (%d skipped, %d errors, %d failures).' % (total_result.total_run, total_result.num_skipped, total_result.num_errors, total_result.num_failures)) if total_result.num_errors or total_result.num_failures: sys.exit(1) def execute(args): """Run Python unit tests. For unittests involved appengine, sys.path needs certain modification.""" os.environ['PY_UNITTESTS'] = 'True' if os.getenv('INTEGRATION') or os.getenv('UNTRUSTED_RUNNER_TESTS'): # Set up per-user buckets used by integration tests. os.environ['CORPUS_BUCKET'] = common.test_bucket('TEST_CORPUS_BUCKET') os.environ['QUARANTINE_BUCKET'] = common.test_bucket( 'TEST_QUARANTINE_BUCKET') os.environ['BACKUP_BUCKET'] = common.test_bucket('TEST_BACKUP_BUCKET') os.environ['COVERAGE_BUCKET'] = common.test_bucket('TEST_COVERAGE_BUCKET') # Kill leftover instances of emulators and dev appserver. common.kill_leftover_emulators() # Don't use absolute paths to make it easier to compare results in tests. os.environ['CONFIG_DIR_OVERRIDE'] = os.path.join('.', 'configs', 'test') top_level_dir = os.path.join('src', 'python') if args.target == 'appengine': # Build template files. appengine.build_templates() test_directory = APPENGINE_TEST_DIRECTORY sys.path.insert(0, os.path.abspath(os.path.join('src', 'appengine'))) # Get additional App Engine third party imports. import dev_appserver sys.path.extend(dev_appserver.EXTRA_PATHS) # Loading appengine_config from the current project ensures that any # changes to configuration there are available to all tests (e.g. # sys.path modifications, namespaces, etc.) try: from src.appengine import appengine_config (appengine_config) # pylint: disable=pointless-statement except ImportError: print('Note: unable to import appengine_config.') elif args.target == 'core': test_directory = CORE_TEST_DIRECTORY else: # Config module tests. os.environ['CONFIG_DIR_OVERRIDE'] = args.config_dir test_directory = os.path.join(args.config_dir, 'modules') top_level_dir = None # Modules may use libs from our App Engine directory. sys.path.insert(0, os.path.abspath(os.path.join('src', 'appengine'))) # Fix paths again to get config modules added to the import path. from python.base import modules modules.fix_module_search_paths() # Set expected environment variables. local_config.ProjectConfig().set_environment() # Needed for NDB to work with cloud datastore emulator. os.environ['DATASTORE_USE_PROJECT_ID_AS_APP_ID'] = 'true' if args.verbose: logs.configure_for_tests() else: # Disable logging. logging.disable(logging.CRITICAL) enable_coverage = args.pattern is None if args.pattern is None: args.pattern = '*_test.py' if args.parallel: # TODO(tanin): Support coverage. run_tests_parallel(args, test_directory, top_level_dir) else: run_tests_single_core(args, test_directory, top_level_dir, enable_coverage)
32.735016
80
0.722078
79425ccfd1f75058d331c5d59c095c8d537889f4
3,801
py
Python
blinker-rel-0.8/tests/test_saferef.py
xinnjie/reading_source_code
a0c7965c33849608f1e9eeb6e175cc7a2866006c
[ "MIT" ]
null
null
null
blinker-rel-0.8/tests/test_saferef.py
xinnjie/reading_source_code
a0c7965c33849608f1e9eeb6e175cc7a2866006c
[ "MIT" ]
null
null
null
blinker-rel-0.8/tests/test_saferef.py
xinnjie/reading_source_code
a0c7965c33849608f1e9eeb6e175cc7a2866006c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # extracted from Louie, http://pylouie.org/ # updated for Python 3 # # Copyright (c) 2006 Patrick K. O'Brien, Mike C. Fletcher, # Matthew R. Scott # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # * Neither the name of the <ORGANIZATION> nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import unittest from blinker._saferef import safe_ref class _Sample1(object): def x(self): pass def _sample2(obj): pass class _Sample3(object): def __call__(self, obj): pass class TestSaferef(unittest.TestCase): # XXX: The original tests had a test for closure, and it had an # off-by-one problem, perhaps due to scope issues. It has been # removed from this test suite. def setUp(self): ts = [] ss = [] for x in range(100): t = _Sample1() ts.append(t) s = safe_ref(t.x, self._closure) ss.append(s) ts.append(_sample2) ss.append(safe_ref(_sample2, self._closure)) for x in range(30): t = _Sample3() ts.append(t) s = safe_ref(t, self._closure) ss.append(s) self.ts = ts self.ss = ss self.closure_count = 0 def tearDown(self): if hasattr(self, 'ts'): del self.ts if hasattr(self, 'ss'): del self.ss def test_In(self): """Test the `in` operator for safe references (cmp)""" for t in self.ts[:50]: assert safe_ref(t.x) in self.ss def test_Valid(self): """Test that the references are valid (return instance methods)""" for s in self.ss: assert s() def test_ShortCircuit(self): """Test that creation short-circuits to reuse existing references""" sd = {} for s in self.ss: sd[s] = 1 for t in self.ts: if hasattr(t, 'x'): assert sd.has_key(safe_ref(t.x)) else: assert sd.has_key(safe_ref(t)) def test_Representation(self): """Test that the reference object's representation works XXX Doesn't currently check the results, just that no error is raised """ repr(self.ss[-1]) def _closure(self, ref): """Dumb utility mechanism to increment deletion counter""" self.closure_count += 1
31.675
76
0.637201
79425dd3a6b516ee7f77df48a7408fa785f6bb50
220
py
Python
script/data_handler/DummyDataset.py
demetoir/MLtools
8c42fcd4cc71728333d9c116ade639fe57d50d37
[ "MIT" ]
null
null
null
script/data_handler/DummyDataset.py
demetoir/MLtools
8c42fcd4cc71728333d9c116ade639fe57d50d37
[ "MIT" ]
null
null
null
script/data_handler/DummyDataset.py
demetoir/MLtools
8c42fcd4cc71728333d9c116ade639fe57d50d37
[ "MIT" ]
null
null
null
from script.data_handler.Base.BaseDataset import BaseDataset class DummyDataset(BaseDataset): def load(self, path): pass def save(self): pass def transform(self): pass
16.923077
61
0.618182
79425eaee4e0a674b6eac56fe055f75ab788686d
5,835
py
Python
src/data/dataClean.py
ReubenGitHub/MachineLearning-Vehicle-Emissions
5a6d5366d15cb918de5464c48e0067efceda4149
[ "Apache-2.0" ]
null
null
null
src/data/dataClean.py
ReubenGitHub/MachineLearning-Vehicle-Emissions
5a6d5366d15cb918de5464c48e0067efceda4149
[ "Apache-2.0" ]
null
null
null
src/data/dataClean.py
ReubenGitHub/MachineLearning-Vehicle-Emissions
5a6d5366d15cb918de5464c48e0067efceda4149
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Reuben Owen-Williams # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mysql.connector from mysql.connector import Error from dbLogin import configprivate import pandas as pd import numpy as np """ Manipulates the "uk_gov_data" table to produce both sparse ("uk_gov_data_sparse") and dense ("uk_gov_data_dense") tables to address the points identified in dataInitialiseAnalyse.py. """ def create_database_connection(host_name, user_name, user_password, database): """ Returns a connection to the database "vehicles" in the local MySQL server. """ connection = None try: connection = mysql.connector.connect( host=host_name, user=user_name, passwd=user_password, database=database ) print("MySQL Database connection successful") except Error as err: print(f"Error: '{err}'") return connection def create_table(connection, query): """ Creates a table in the "vehicles" database in the local MySQL server. """ cursor = connection.cursor() try: cursor.execute(query) print("Table created successfully") except Error as err: print(f"Error: '{err}'") def insert_table(connection, query, df): """ Performs queries, e.g. INSERT, in the "vehicles" database. """ cursor = connection.cursor() try: for i in range(0, df.shape[0]): cursor.execute(query, tuple(df.iloc[i].values.flatten().tolist())) connection.commit() print("Table edited successfully") except Error as err: print(f"Error: '{err}'") def main(): """ Manipulates the "uk_gov_data" table to produce both sparse ("uk_gov_data_sparse") and dense ("uk_gov_data_dense") tables to address the points identified in dataInitialiseAnalyse.py. """ connection = create_database_connection("localhost", configprivate.username, configprivate.password, "vehicles") # Read the UK gov data from the "vehicles" database using pandas. Convert "car_id" from int64 (a numpy type) to float as MySQL cannot convert: # https://stackoverflow.com/questions/56731036/interfaceerror-failed-executing-the-operation-python-type-numpy-int64-cannot-b govData = pd.read_sql("SELECT * FROM uk_gov_data", connection) govData = govData.astype(dtype = {"car_id": float}, copy=True) # Create the table "uk_gov_data_sparse". create_govtablesparse_query = """ USE vehicles; CREATE TABLE uk_gov_data_sparse LIKE uk_gov_data; """ create_table(connection, create_govtablesparse_query) # (4) Replace "Electric - Not Applicable" in "transmission_type" with "Automatic" when "fuel" = "Petrol". govData.loc[(govData["fuel"] == "Petrol")&(govData["transmission_type"] == "Electric - Not Applicable"),"transmission_type"] = "Automatic" # (7) Replace "powertrain" and "co2_emission_gPERkm" when "model" = "Evoque, 20MY" and "powertrain" = "Hybrid Electric Vehicle (HEV)". indices = govData[ (govData["powertrain"]=="Hybrid Electric Vehicle (HEV)") & (govData["model"]=="Evoque, 20MY") ].index govData.loc[indices,"powertrain"] = "Plug-in Hybrid Electric Vehicle (PHEV)" govData.loc[indices[0],"co2_emissions_gPERkm"] = 32 govData.loc[indices[1],"co2_emissions_gPERkm"] = 38 # (7) Replace "co2_emissions_gPERkm" with "22" when "description" = "RAV4 Design 2.5 Plug-in Hybrid". govData.loc[govData["description"] == "RAV4 Design 2.5 Plug-in Hybrid","co2_emissions_gPERkm"] = 22 # Populate the (relatively speaking) sparse table "uk_gov_data_sparse". connection = create_database_connection("localhost", configprivate.username, configprivate.password, "vehicles") govDataSparseImport = govData.replace({np.nan: None}, inplace=False) query = """INSERT INTO uk_gov_data_sparse VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" insert_table(connection, query, govDataSparseImport) # Save this cleaned sparse data as a csv to "data\intermediate". govDataSparseImport.to_csv('./data/intermediate/uk_gov_data_sparse.csv', index=False, encoding="ISO-8859-1") # (1) Now to create the dense data set, replace nulls in "transmission" with "Auto". govData["transmission"].replace({np.nan: "Auto"}, inplace=True) # (2) Replace nulls in "engine_size_cm3" with 0. govData["engine_size_cm3"].replace({np.nan: 0}, inplace=True) # (3) Replace nulls in "power_ps" with 0. govData["power_ps"].replace({np.nan: 0}, inplace=True) # Create the table "uk_gov_data_dense". create_govtabledense_query = """ USE vehicles; CREATE TABLE uk_gov_data_dense LIKE uk_gov_data; """ create_table(connection, create_govtabledense_query) # Populate the dense table "uk_gov_data_dense". connection = create_database_connection("localhost", configprivate.username, configprivate.password, "vehicles") govDataDenseImport = govData query = """INSERT INTO uk_gov_data_dense VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" insert_table(connection, query, govDataDenseImport) # Save this cleaned dense data as a csv to "data\intermediate". govDataDenseImport.to_csv('./data/intermediate/uk_gov_data_dense.csv', index=False, encoding="ISO-8859-1") main()
45.232558
186
0.696315
7942606e49d3a33460e5c37e3f853860b425dc88
2,335
py
Python
library/regenerate_shadow.py
ashithwilson/deepslate
13e1ce8e5cdcf2df8932387f98fdec55d39345d7
[ "Unlicense", "MIT" ]
null
null
null
library/regenerate_shadow.py
ashithwilson/deepslate
13e1ce8e5cdcf2df8932387f98fdec55d39345d7
[ "Unlicense", "MIT" ]
null
null
null
library/regenerate_shadow.py
ashithwilson/deepslate
13e1ce8e5cdcf2df8932387f98fdec55d39345d7
[ "Unlicense", "MIT" ]
null
null
null
#To regenerate missing shadow file enteries: this will re-add missing shadow entries with default values.(customer need to reset the password for the missing emails) Use it only as a final resort #warning: This will re-add missing sahdow enteries with deafult value. import os,argparse import subprocess from os.path import expanduser parser=argparse.ArgumentParser( description="To regenerate shadow file with a deafult value. This will only create shadow entry for missing email address with default value. so user to reset his password to use his passord" ) parser.add_argument('user', help="cPanel user name") args=parser.parse_args() home=expanduser("~"+args.user) dir=os.listdir(home+"/etc") str=[] pt=[] print("\033[92m") for i in dir: try: with open(home+"/etc/"+i+"/shadow","r") as file: for k in file: str.append(k.split(':')[0]+"@"+i) #print(str) except: pass for i in os.listdir(home+"/mail"): if '@' in i: pt.append(i.split('.')[1].replace('_','.')) #with open("test","r") as file2: # for kj in file2: # pt.append(kj.split()[0]) #print(pt) print("====================") print("Enteries in mail directory: \n") print(pt) print("Enteries in shadow file : \n") print(str) new_array=(list(set(pt)-set(str))) if len(new_array) == 0: print("\033[0m") print("Enteries in mail directories is subset of shadow enteries : Nothing to do here") quit() print("\033[93m") print("The shadow entry of following accounts are missing") print("=====================") print("\033[0m") for i in new_array: print i #print(new_array "\n") print("\033[93m") txt = raw_input("Do you need to proceed with restoration: (yes|no) ") print("\033[0m") if txt == "yes": print("Backing up all shadow files") os.chdir(home) subprocess.call("t=$RANDOM;for i in $(find . -iname 'shadow');do cp $i $i'_backup_'$t;done",shell=True) for i in new_array: print(i) r=i.split('@')[0] m=i.split('@')[1] print(r+"\n"+m) with open(home+"/etc/"+m+"/shadow","ab+") as file: file.write(r+":\$6\$roottn\$lCukmfCJGtLN.vP9WSQlpcTSNYNHKz81YAmbxW/iuZ7cZD4AYt7AjnX.FR1F/lC2SSM3P5hfQsM811Qgk85iN/:16249:::::") file.write("\n") elif txt == "no": quit()
35.378788
195
0.626552
7942607698102324d3ff9f7d60cbdcf8ff5560f3
1,339
py
Python
python/rest-client-samples/ocr/ocr_vat_invoice.py
798000648/ais-sdk
6831d8fa02143b856481706998a0eb9278da2ccd
[ "Apache-2.0" ]
1
2020-06-06T08:52:47.000Z
2020-06-06T08:52:47.000Z
python/rest-client-samples/ocr/ocr_vat_invoice.py
798000648/ais-sdk
6831d8fa02143b856481706998a0eb9278da2ccd
[ "Apache-2.0" ]
null
null
null
python/rest-client-samples/ocr/ocr_vat_invoice.py
798000648/ais-sdk
6831d8fa02143b856481706998a0eb9278da2ccd
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- import urllib2 import json import ssl from urllib2 import HTTPError, URLError # # access ocr vat invoice # def ocr_vat_invoice(token, url): _url = 'https://ais.cn-north-1.myhuaweicloud.com/v1.0/ocr/vat-invoice' _data = { "image":"", "url":url, "side":"front" } kreq = urllib2.Request( url = _url) kreq.add_header('Content-Type', 'application/json') kreq.add_header('X-Auth-Token', token ) kreq.add_data(json.dumps(_data)) resp = None status_code = None try: # # Here we use the unvertified-ssl-context, Because in FunctionStage # the client CA-validation have some problem, so we must do this. # _context = ssl._create_unverified_context() r = urllib2.urlopen(kreq, context=_context) # # We use HTTPError and URLError,because urllib2 can't process the 4XX & # 500 error in the single urlopen function. # # If you use a modern, high-level designed HTTP client lib, Yeah, I mean requests, # there is no this problem. # except HTTPError, e: resp = e.read() status_code = e.code except URLError, e: resp = e.read() status_code = e.code else: status_code = r.code resp = r.read() return resp
25.75
87
0.606423
794260790bcff798aa15a387de233b603d7cf358
3,213
py
Python
Sprites-Full/Animales/movAnimales.py
alejoso76/Computaci-n-gr-fica
474a498a328b8951aa0bfa1db2d0d1f3d8cc914b
[ "MIT" ]
null
null
null
Sprites-Full/Animales/movAnimales.py
alejoso76/Computaci-n-gr-fica
474a498a328b8951aa0bfa1db2d0d1f3d8cc914b
[ "MIT" ]
null
null
null
Sprites-Full/Animales/movAnimales.py
alejoso76/Computaci-n-gr-fica
474a498a328b8951aa0bfa1db2d0d1f3d8cc914b
[ "MIT" ]
null
null
null
import pygame import math ANCHO=640 ALTO=480 def mostrarPos(): pos=pygame.mouse.get_pos() return pos if __name__ == '__main__': pygame.init() pantalla=pygame.display.set_mode([ANCHO, ALTO]) #Crea la ventana #Carga la imagen a una variable fondo=pygame.image.load('animals.png') infoFondo=fondo.get_rect() print infoFondo ancho_imagen=infoFondo[2] alto_imagen=infoFondo[3] print "Ancho = ",ancho_imagen print "Alto = ",alto_imagen print 'Funciona' fin=False pos_x=0 pos_y=0 i=0 alto_corte=alto_imagen/8 ancho_corte=ancho_imagen/12 x=0 y=0 movR=[] movL=[] movU=[] movD=[] posGato=[50,50] dir='R' #Ancho:30, alto:40 for i in range(3): cuadro=fondo.subsurface(i*ancho_corte,2*alto_corte,ancho_corte, alto_corte) movR.append(cuadro) for i in range(3): cuadro=fondo.subsurface(i*ancho_corte,1*alto_corte,ancho_corte, alto_corte) movL.append(cuadro) for i in range(3): cuadro=fondo.subsurface(i*ancho_corte,3*alto_corte,ancho_corte, alto_corte) movU.append(cuadro) for i in range(3): cuadro=fondo.subsurface(i*ancho_corte,0*alto_corte,ancho_corte, alto_corte) movD.append(cuadro) pantalla.blit(movR[0], posGato) pygame.display.flip() reloj=pygame.time.Clock() while not fin: for event in pygame.event.get(): if event.type == pygame.QUIT: fin=True if event.type == pygame.KEYDOWN: if event.key==pygame.K_LEFT: dir='L' var_x=-2 posGato[0]+=var_x pantalla.fill([0,0,0]) pantalla.blit(movL[i], posGato) pygame.display.flip() i+=1 if i>=3: i=0 if event.key==pygame.K_RIGHT: dir='R' var_x=2 posGato[0]+=var_x pantalla.fill([0,0,0]) pantalla.blit(movR[i], posGato) pygame.display.flip() i+=1 if i>=3: i=0 if event.key==pygame.K_UP: dir='U' var_y=-2 posGato[1]+=var_y pantalla.fill([0,0,0]) pantalla.blit(movU[i], posGato) pygame.display.flip() i+=1 if i>=3: i=0 if event.key==pygame.K_DOWN: dir='D' var_y=+2 posGato[1]+=var_y pantalla.fill([0,0,0]) pantalla.blit(movD[i], posGato) pygame.display.flip() i+=1 if i>=3: i=0 if event.type==pygame.KEYUP: #Variaciones var_x=0 var_y=0 #pantalla.blit(movR[i], posGato) pygame.display.flip() reloj.tick(15)
23.625
83
0.472144
794260f71d0968c9aabe4a8ae7e4642663d07bba
1,172
py
Python
04-spark/MaxTemperatures.py
raphaeldeaquino/pos-ia-bd
112ee6c685cce1234ee732682fad9bd8733c3b29
[ "Apache-2.0" ]
null
null
null
04-spark/MaxTemperatures.py
raphaeldeaquino/pos-ia-bd
112ee6c685cce1234ee732682fad9bd8733c3b29
[ "Apache-2.0" ]
null
null
null
04-spark/MaxTemperatures.py
raphaeldeaquino/pos-ia-bd
112ee6c685cce1234ee732682fad9bd8733c3b29
[ "Apache-2.0" ]
null
null
null
import findspark findspark.init() from pyspark.sql import SparkSession def parse_line(line): fields = line.split(',') station_id = fields[0] entry_type = fields[2] temperature = float(fields[3]) * 0.1 * (9.0 / 5.0) + 32.0 return station_id, entry_type, temperature # Find the maximum temperature by weather station if __name__ == "__main__": spark = (SparkSession .builder .appName("MaxTemperatures") .getOrCreate()) # Read each line of input data lines = spark.sparkContext.textFile("data/1800.csv") # Convert to (stationID, entryType, temperature) tuples parsedLines = lines.map(parse_line) # Filter out all but TMAX entries maxTemps = parsedLines.filter(lambda x: "TMAX" in x[1]) # Convert to (stationID, temperature) stationTemps = maxTemps.map(lambda x: (x[0], x[2])) # Reduce by stationID retaining the minimum temperature found maxTemps = stationTemps.reduceByKey(lambda x, y: max(x, y)) # Collect, format, and print the results results = maxTemps.collect() for result in results: print(result[0] + "\t{:.2f}F".format(result[1]))
27.904762
65
0.659556
794261002360745a1a7384904c6f9efdc2e74445
2,267
py
Python
config/urls.py
Sinha-Ujjawal/django-starter
042a50c917fa9123dd899cf6aafaf916e23e4521
[ "MIT" ]
null
null
null
config/urls.py
Sinha-Ujjawal/django-starter
042a50c917fa9123dd899cf6aafaf916e23e4521
[ "MIT" ]
null
null
null
config/urls.py
Sinha-Ujjawal/django-starter
042a50c917fa9123dd899cf6aafaf916e23e4521
[ "MIT" ]
null
null
null
"""your_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, URLPattern from django.urls.conf import include from django.conf import settings from django.conf.urls.static import static from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi schema_view = get_schema_view( openapi.Info( title="your_project API", default_version="v1.0.0", description="your_project is a ...", # TODO terms_of_service="https://www.google.com/policies/terms/", contact=openapi.Contact(url="https://github.com/Sinha-Ujjawal"), # license=openapi.License(name="MIT License"), TODO ), public=True, permission_classes=(permissions.AllowAny,), ) def path_with_base(base_url: str): """Returns a function that adds a given prefix to all the paths generated from returned function """ def _inner(route: str, *args, **kwargs) -> URLPattern: return path(f"{base_url}/{route}", *args, **kwargs) return _inner base_path = path_with_base("your_project") urlpatterns = [ base_path( "playground/", schema_view.with_ui("swagger", cache_timeout=0), name="schema-swagger-ui", ), base_path( "docs/", schema_view.with_ui("redoc", cache_timeout=0), name="schema-redoc", ), base_path("admin/", admin.site.urls), base_path("auth/", include("your_project.authentication.urls")), base_path("users/", include("your_project.users.urls")), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
31.054795
82
0.692545
794261ecea91ffdd00c1a5198786b24922fea59b
4,176
py
Python
venidium/types/spend_bundle.py
Venidium-Network/venidium-blockchain
600af545018e2cc03c808315239d57c74cffd57d
[ "Apache-2.0" ]
7
2021-06-29T22:23:55.000Z
2022-02-09T04:32:46.000Z
venidium/types/spend_bundle.py
Venidium-Network/venidium-blockchain
600af545018e2cc03c808315239d57c74cffd57d
[ "Apache-2.0" ]
2
2021-09-13T03:23:59.000Z
2022-01-12T20:20:27.000Z
venidium/types/spend_bundle.py
Venidium-Network/venidium-blockchain
600af545018e2cc03c808315239d57c74cffd57d
[ "Apache-2.0" ]
null
null
null
import dataclasses import warnings from dataclasses import dataclass from typing import List from blspy import AugSchemeMPL, G2Element from venidium.consensus.default_constants import DEFAULT_CONSTANTS from venidium.types.blockchain_format.coin import Coin from venidium.types.blockchain_format.sized_bytes import bytes32 from venidium.util.streamable import Streamable, dataclass_from_dict, recurse_jsonify, streamable from venidium.wallet.util.debug_spend_bundle import debug_spend_bundle from .coin_spend import CoinSpend @dataclass(frozen=True) @streamable class SpendBundle(Streamable): """ This is a list of coins being spent along with their solution programs, and a single aggregated signature. This is the object that most closely corresponds to a bitcoin transaction (although because of non-interactive signature aggregation, the boundaries between transactions are more flexible than in bitcoin). """ coin_spends: List[CoinSpend] aggregated_signature: G2Element @property def coin_solutions(self): return self.coin_spends @classmethod def aggregate(cls, spend_bundles) -> "SpendBundle": coin_spends: List[CoinSpend] = [] sigs: List[G2Element] = [] for bundle in spend_bundles: coin_spends += bundle.coin_spends sigs.append(bundle.aggregated_signature) aggregated_signature = AugSchemeMPL.aggregate(sigs) return cls(coin_spends, aggregated_signature) def additions(self) -> List[Coin]: items: List[Coin] = [] for coin_spend in self.coin_spends: items.extend(coin_spend.additions()) return items def removals(self) -> List[Coin]: """This should be used only by wallet""" return [_.coin for _ in self.coin_spends] def fees(self) -> int: """Unsafe to use for fees validation!!!""" amount_in = sum(_.amount for _ in self.removals()) amount_out = sum(_.amount for _ in self.additions()) return amount_in - amount_out def name(self) -> bytes32: return self.get_hash() def debug(self, agg_sig_additional_data=DEFAULT_CONSTANTS.AGG_SIG_ME_ADDITIONAL_DATA): debug_spend_bundle(self, agg_sig_additional_data) def not_ephemeral_additions(self): all_removals = self.removals() all_additions = self.additions() result: List[Coin] = [] for add in all_additions: if add in all_removals: continue result.append(add) return result # Note that `coin_spends` used to have the bad name `coin_solutions`. # Some API still expects this name. For now, we accept both names. # # TODO: continue this deprecation. Eventually, all code below here should be removed. # 1. set `exclude_modern_keys` to `False` (and manually set to `True` where necessary) # 2. set `include_legacy_keys` to `False` (and manually set to `False` where necessary) # 3. remove all references to `include_legacy_keys=True` # 4. remove all code below this point @classmethod def from_json_dict(cls, json_dict): if "coin_solutions" in json_dict: if "coin_spends" not in json_dict: json_dict = dict( aggregated_signature=json_dict["aggregated_signature"], coin_spends=json_dict["coin_solutions"] ) warnings.warn("`coin_solutions` is now `coin_spends` in `SpendBundle.from_json_dict`") else: raise ValueError("JSON contains both `coin_solutions` and `coin_spends`, just use `coin_spends`") return dataclass_from_dict(cls, json_dict) def to_json_dict(self, include_legacy_keys: bool = True, exclude_modern_keys: bool = True): if include_legacy_keys is False and exclude_modern_keys is True: raise ValueError("`coin_spends` not included in legacy or modern outputs") d = dataclasses.asdict(self) if include_legacy_keys: d["coin_solutions"] = d["coin_spends"] if exclude_modern_keys: del d["coin_spends"] return recurse_jsonify(d)
37.963636
115
0.688218
7942626d8c83fb226f9701569741c2ca19a8f0dc
666
py
Python
manage.py
cebanauskes/ida_images
708eb44274b28d53f9b0422fbf3711d85ac62a6b
[ "MIT" ]
null
null
null
manage.py
cebanauskes/ida_images
708eb44274b28d53f9b0422fbf3711d85ac62a6b
[ "MIT" ]
null
null
null
manage.py
cebanauskes/ida_images
708eb44274b28d53f9b0422fbf3711d85ac62a6b
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ida_images.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.956522
74
0.68018
7942634272079fc9638d55a79f254b5e7ffb0c86
14,972
py
Python
djangae/db/backends/appengine/indexing.py
martinogden/djangae
22610a636556c98a68200ebbeb6f1f57da42d617
[ "BSD-3-Clause" ]
null
null
null
djangae/db/backends/appengine/indexing.py
martinogden/djangae
22610a636556c98a68200ebbeb6f1f57da42d617
[ "BSD-3-Clause" ]
null
null
null
djangae/db/backends/appengine/indexing.py
martinogden/djangae
22610a636556c98a68200ebbeb6f1f57da42d617
[ "BSD-3-Clause" ]
null
null
null
import logging import yaml import os import datetime import re from djangae.sandbox import allow_mode_write from django.conf import settings _special_indexes = {} _last_loaded_time = None MAX_COLUMNS_PER_SPECIAL_INDEX = getattr(settings, "DJANGAE_MAX_COLUMNS_PER_SPECIAL_INDEX", 3) CHARACTERS_PER_COLUMN = [31, 44, 54, 63, 71, 79, 85, 91, 97, 103] def _get_index_file(): from djangae.utils import find_project_root index_file = os.path.join(find_project_root(), "djangaeidx.yaml") return index_file def _get_table_from_model(model_class): return model_class._meta.db_table.encode("utf-8") def load_special_indexes(): global _special_indexes global _last_loaded_time index_file = _get_index_file() if not os.path.exists(index_file): # No file, no special index logging.debug("Not loading any special indexes") return mtime = os.path.getmtime(index_file) if _last_loaded_time and _last_loaded_time == mtime: return # Load any existing indexes with open(index_file, "r") as stream: data = yaml.load(stream) _special_indexes = data _last_loaded_time = mtime logging.debug("Loaded special indexes for {0} models".format(len(_special_indexes))) def special_index_exists(model_class, field_name, index_type): table = _get_table_from_model(model_class) return index_type in _special_indexes.get(table, {}).get(field_name, []) def special_indexes_for_model(model_class): classes = [ model_class ] + model_class._meta.parents.keys() result = {} for klass in classes: result.update(_special_indexes.get(_get_table_from_model(klass), {})) return result def special_indexes_for_column(model_class, column): return special_indexes_for_model(model_class).get(column, []) def write_special_indexes(): index_file = _get_index_file() with allow_mode_write(): with open(index_file, "w") as stream: stream.write(yaml.dump(_special_indexes)) def add_special_index(model_class, field_name, index_type, value=None): from djangae.utils import on_production, in_testing from django.conf import settings indexer = REQUIRES_SPECIAL_INDEXES[index_type] index_type = indexer.prepare_index_type(index_type, value) field_name = field_name.encode("utf-8") # Make sure we are working with strings load_special_indexes() if special_index_exists(model_class, field_name, index_type): return if on_production() or (in_testing() and not getattr(settings, "GENERATE_SPECIAL_INDEXES_DURING_TESTING", False)): raise RuntimeError( "There is a missing index in your djangaeidx.yaml - \n\n{0}:\n\t{1}: [{2}]".format( _get_table_from_model(model_class), field_name, index_type ) ) _special_indexes.setdefault( _get_table_from_model(model_class), {} ).setdefault(field_name, []).append(str(index_type)) write_special_indexes() class Indexer(object): def validate_can_be_indexed(self, value, negated): """Return True if the value is indexable, False otherwise""" raise NotImplementedError() def prep_value_for_database(self, value, index): raise NotImplementedError() def prep_value_for_query(self, value): raise NotImplementedError() def indexed_column_name(self, field_column, value, index): raise NotImplementedError() def prep_query_operator(self, op): return "exact" def prepare_index_type(self, index_type, value): return index_type def unescape(self, value): value = value.replace("\\_", "_") value = value.replace("\\%", "%") value = value.replace("\\\\", "\\") return value class IExactIndexer(Indexer): def validate_can_be_indexed(self, value, negated): return len(value) < 500 def prep_value_for_database(self, value, index): if value is None: return None if isinstance(value, (int, long)): value = str(value) return value.lower() def prep_value_for_query(self, value): return value.lower() def indexed_column_name(self, field_column, value, index): return "_idx_iexact_{0}".format(field_column) class DayIndexer(Indexer): def validate_can_be_indexed(self, value, negated): return isinstance(value, (datetime.datetime, datetime.date)) def prep_value_for_database(self, value, index): if value: return value.day return None def prep_value_for_query(self, value): if isinstance(value, (int, long)): return value if isinstance(value, basestring): value = datetime.datetime.strptime(value, "%Y-%m-%d %H:%M:%S") return value.day def indexed_column_name(self, field_column, value, index): return "_idx_day_{0}".format(field_column) class YearIndexer(Indexer): def validate_can_be_indexed(self, value, negated): return isinstance(value, (datetime.datetime, datetime.date)) def prep_value_for_database(self, value, index): if value: return value.year return None def prep_value_for_query(self, value): if isinstance(value, (int, long)): return value if isinstance(value, basestring): value = datetime.datetime.strptime(value, "%Y-%m-%d %H:%M:%S") return value.year def indexed_column_name(self, field_column, value, index): return "_idx_year_{0}".format(field_column) class MonthIndexer(Indexer): def validate_can_be_indexed(self, value, negated): return isinstance(value, (datetime.datetime, datetime.date)) def prep_value_for_database(self, value, index): if value: return value.month return None def prep_value_for_query(self, value): if isinstance(value, (int, long)): return value if isinstance(value, basestring): value = datetime.datetime.strptime(value, "%Y-%m-%d %H:%M:%S") return value.month def indexed_column_name(self, field_column, value, index): return "_idx_month_{0}".format(field_column) class WeekDayIndexer(Indexer): def validate_can_be_indexed(self, value, negated): return isinstance(value, (datetime.datetime, datetime.date)) def prep_value_for_database(self, value, index): if value: zero_based_weekday = value.weekday() if zero_based_weekday == 6: # Sunday return 1 # Django treats the week as starting at Sunday, but 1 based else: return zero_based_weekday + 2 return None def prep_value_for_query(self, value): return value def indexed_column_name(self, field_column, value, index): return "_idx_week_day_{0}".format(field_column) class ContainsIndexer(Indexer): def number_of_permutations(self, value): return sum(range(len(value)+1)) def validate_can_be_indexed(self, value, negated): if negated: return False return isinstance(value, basestring) and len(value) <= 500 def prep_value_for_database(self, value, index): result = [] if value: # If this a date or a datetime, or something that supports isoformat, then use that if hasattr(value, "isoformat"): value = value.isoformat() if self.number_of_permutations(value) > MAX_COLUMNS_PER_SPECIAL_INDEX*500: raise ValueError("Can't index for contains query, this value is too long and has too many permutations. \ You can increase the DJANGAE_MAX_COLUMNS_PER_SPECIAL_INDEX setting to fix that. Use with caution.") if len(value) > CHARACTERS_PER_COLUMN[-1]: raise ValueError("Can't index for contains query, this value can be maximum {0} characters long.".format(CHARACTERS_PER_COLUMN[-1])) length = len(value) result = list(set([value[i:j + 1] for i in xrange(length) for j in xrange(i, length)])) return result or None def prep_value_for_query(self, value): if hasattr(value, "isoformat"): value = value.isoformat() else: value = unicode(value) value = self.unescape(value) if value.startswith("%") and value.endswith("%"): value = value[1:-1] return value def indexed_column_name(self, field_column, value, index): # This we use when we actually query to return the right field for a given # value length length = len(value) column_number = 0 for x in CHARACTERS_PER_COLUMN: if length > x: column_number += 1 return "_idx_contains_{0}_{1}".format(field_column, column_number) class IContainsIndexer(ContainsIndexer): def prep_value_for_database(self, value, index): if value is None: return None result = super(IContainsIndexer, self).prep_value_for_database(value.lower(), index) return result if result else None def indexed_column_name(self, field_column, value, index): column_name = super(IContainsIndexer, self).indexed_column_name(field_column, value, index) return column_name.replace('_idx_contains_', '_idx_icontains_') def prep_value_for_query(self, value): return super(IContainsIndexer, self).prep_value_for_query(value).lower() class EndsWithIndexer(Indexer): """ dbindexer originally reversed the string and did a startswith on it. However, this is problematic as it uses an inequality and therefore limits the queries you can perform. Instead, we store all permutations of the last characters in a list field. Then we can just do an exact lookup on the value. Which isn't as nice, but is more flexible. """ def validate_can_be_indexed(self, value, negated): if negated: return False return isinstance(value, basestring) and len(value) < 500 def prep_value_for_database(self, value, index): results = [] for i in xrange(len(value)): results.append(value[i:]) return results or None def prep_value_for_query(self, value): value = self.unescape(value) if value.startswith("%"): value = value[1:] return value def indexed_column_name(self, field_column, value, index): return "_idx_endswith_{0}".format(field_column) class IEndsWithIndexer(EndsWithIndexer): """ Same as above, just all lower cased """ def prep_value_for_database(self, value, index): if value is None: return None result = super(IEndsWithIndexer, self).prep_value_for_database(value.lower(), index) return result or None def prep_value_for_query(self, value): return super(IEndsWithIndexer, self).prep_value_for_query(value.lower()) def indexed_column_name(self, field_column, value, index): return "_idx_iendswith_{0}".format(field_column) class StartsWithIndexer(Indexer): """ Although we can do a startswith natively, doing it this way allows us to use more queries (E.g. we save an exclude) """ def validate_can_be_indexed(self, value, negated): if negated: return False return isinstance(value, basestring) and len(value) < 500 def prep_value_for_database(self, value, index): if isinstance(value, datetime.datetime): value = value.strftime("%Y-%m-%d %H:%M:%S") results = [] for i in xrange(1, len(value) + 1): results.append(value[:i]) if not results: return None return results def prep_value_for_query(self, value): value = self.unescape(value) if value.endswith("%"): value = value[:-1] return value def indexed_column_name(self, field_column, value, index): return "_idx_startswith_{0}".format(field_column) class IStartsWithIndexer(StartsWithIndexer): """ Same as above, just all lower cased """ def prep_value_for_database(self, value, index): return super(IStartsWithIndexer, self).prep_value_for_database(value.lower(), index) def prep_value_for_query(self, value): return super(IStartsWithIndexer, self).prep_value_for_query(value.lower()) def indexed_column_name(self, field_column, value, index): return "_idx_istartswith_{0}".format(field_column) class RegexIndexer(Indexer): def prepare_index_type(self, index_type, value): """ If we're dealing with RegexIndexer, we create a new index for each regex pattern. Indexes are called regex__pattern. """ return 'regex__{}'.format(value.encode("utf-8").encode('hex')) def validate_can_be_indexed(self, value, negated): if negated: return False return isinstance(value, bool) def get_pattern(self, index): try: return index.split('__')[1].decode('hex').decode("utf-8") except IndexError: return '' def check_if_match(self, value, index, flags=0): pattern = self.get_pattern(index) if value: if hasattr(value, '__iter__'): # is a list, tuple or set? if any([bool(re.search(pattern, x, flags)) for x in value]): return True else: if isinstance(value, (int, long)): value = str(value) return bool(re.search(pattern, value, flags)) return False def prep_value_for_database(self, value, index): return self.check_if_match(value, index) def prep_value_for_query(self, value): return True def indexed_column_name(self, field_column, value, index): return "_idx_regex_{0}_{1}".format(field_column, self.get_pattern(index).encode("utf-8").encode('hex')) class IRegexIndexer(RegexIndexer): def prepare_index_type(self, index_type, value): return 'iregex__{}'.format(value.encode('hex')) def prep_value_for_database(self, value, index): return self.check_if_match(value, index, flags=re.IGNORECASE) def indexed_column_name(self, field_column, value, index): return "_idx_iregex_{0}_{1}".format(field_column, self.get_pattern(index).encode('hex')) REQUIRES_SPECIAL_INDEXES = { "iexact": IExactIndexer(), "contains": ContainsIndexer(), "icontains": IContainsIndexer(), "day" : DayIndexer(), "month" : MonthIndexer(), "year": YearIndexer(), "week_day": WeekDayIndexer(), "endswith": EndsWithIndexer(), "iendswith": IEndsWithIndexer(), "startswith": StartsWithIndexer(), "istartswith": IStartsWithIndexer(), "regex": RegexIndexer(), "iregex": IRegexIndexer(), }
32.689956
148
0.661435
7942635ae16530fe848af3ddbf212ce93ea61086
853
py
Python
quickstartup/qs_pages/models.py
shahabaz/quickstartup
e351138580d3b332aa309d5d98d562a1ebef5c2c
[ "MIT" ]
13
2015-06-10T03:29:15.000Z
2021-10-01T22:06:48.000Z
quickstartup/qs_pages/models.py
shahabaz/quickstartup
e351138580d3b332aa309d5d98d562a1ebef5c2c
[ "MIT" ]
47
2015-06-10T03:26:18.000Z
2021-09-22T17:35:24.000Z
quickstartup/qs_pages/models.py
shahabaz/quickstartup
e351138580d3b332aa309d5d98d562a1ebef5c2c
[ "MIT" ]
3
2015-07-07T23:55:39.000Z
2020-04-18T10:34:53.000Z
from django.db import models from django.template import loader from django.utils.translation import gettext_lazy as _ class Page(models.Model): slug = models.SlugField(max_length=255, blank=True, unique=True, db_index=True, help_text=_("URL Path. Example: about for /about/")) template_name = models.CharField(max_length=255, help_text=_("Template filename. Example: website/about.html")) login_required = models.BooleanField(default=False) @property def path(self): return "/{}/".format(self.slug) if self.slug else "/" def __str__(self): return self.path def __repr__(self): return "<Page: {}>".format(self.path) def get_absolute_url(self): return self.path @property def template(self): return loader.get_template(self.template_name)
30.464286
115
0.675264
7942637a79580286b2f7d45b6ad6cab483ba70f3
674
py
Python
retinaface/pre_trained_models.py
LiveFly/retinaface
939ae81bbf4ae9333fa14743962dcf99d8db1840
[ "MIT" ]
1
2020-11-05T11:20:16.000Z
2020-11-05T11:20:16.000Z
retinaface/pre_trained_models.py
LiveFly/retinaface
939ae81bbf4ae9333fa14743962dcf99d8db1840
[ "MIT" ]
null
null
null
retinaface/pre_trained_models.py
LiveFly/retinaface
939ae81bbf4ae9333fa14743962dcf99d8db1840
[ "MIT" ]
null
null
null
from collections import namedtuple from torch.utils import model_zoo from retinaface.predict_single import Model model = namedtuple("model", ["url", "model"]) models = { "resnet50_2020-07-20": model( url="https://github.com/ternaus/retinaface/releases/download/0.01/retinaface_resnet50_2020-07-20-f168fae3c.zip", # noqa: E501 model=Model, ) } def get_model(model_name: str, max_size: int, device: str = "cpu") -> Model: model = models[model_name].model(max_size=max_size, device=device) state_dict = model_zoo.load_url(models[model_name].url, progress=True, map_location="cpu") model.load_state_dict(state_dict) return model
28.083333
134
0.722552
794263b863b93679c3d1a78a91ae69bbc5fad4b9
1,874
py
Python
caproto/tests/test_create_many_channels.py
mattclarke/caproto
4c3912cfde270f90f75f8c8ee5868e9da1a5095a
[ "BSD-3-Clause" ]
4
2017-02-06T17:46:50.000Z
2017-04-28T18:08:23.000Z
caproto/tests/test_create_many_channels.py
mattclarke/caproto
4c3912cfde270f90f75f8c8ee5868e9da1a5095a
[ "BSD-3-Clause" ]
65
2017-02-11T17:23:23.000Z
2018-03-14T00:03:11.000Z
caproto/tests/test_create_many_channels.py
mattclarke/caproto
4c3912cfde270f90f75f8c8ee5868e9da1a5095a
[ "BSD-3-Clause" ]
2
2017-02-11T04:21:55.000Z
2017-03-08T18:47:23.000Z
import logging import pytest import curio import caproto as ca from .conftest import default_setup_module as setup_module # noqa from .conftest import default_teardown_module as teardown_module # noqa from . import conftest @pytest.mark.parametrize('backend', ['curio', 'trio']) def test_create_many_channels(ioc, backend): logging.getLogger('caproto.{}.client'.format(backend)).setLevel('DEBUG') async def client_test(context): if context is None: context = await conftest.get_curio_context() return await context.create_many_channels(*pvnames, wait_for_connection=True) pvnames = list(ioc.pvs.values()) if backend == 'curio': channels = curio.run(client_test, None) elif backend == 'trio': channels = conftest.run_with_trio_context(client_test) print('got channels:', channels) connected_channels = [ch for ch in channels.values() if ch.channel.states[ca.CLIENT] is ca.CONNECTED] assert len(connected_channels) == len(pvnames) print('done') @pytest.mark.parametrize('backend', ['curio', 'trio']) def test_create_many_channels_with_bad_pv(ioc, backend): async def client_test(context): if context is None: context = await conftest.get_curio_context() return await context.create_many_channels(*pvnames, wait_for_connection=True, move_on_after=2) pvnames = list(ioc.pvs.values()) + ['_NONEXISTENT_PVNAME_'] if backend == 'curio': channels = curio.run(client_test, None) elif backend == 'trio': channels = conftest.run_with_trio_context(client_test) assert '_NONEXISTENT_PVNAME_' not in channels assert len(channels) == len(pvnames) - 1
35.358491
76
0.645678
794263de5d51313dcc44eb9c8469f00dbf079907
4,242
py
Python
src/emotion/utils/file_reading.py
Thanatoz-1/EmotionStimuli
f7774cf77ec2a66949949905ed70d62117179666
[ "BSD-3-Clause" ]
null
null
null
src/emotion/utils/file_reading.py
Thanatoz-1/EmotionStimuli
f7774cf77ec2a66949949905ed70d62117179666
[ "BSD-3-Clause" ]
2
2021-07-28T10:38:03.000Z
2021-07-31T10:37:09.000Z
src/emotion/utils/file_reading.py
Thanatoz-1/EmotionStimuli
f7774cf77ec2a66949949905ed70d62117179666
[ "BSD-3-Clause" ]
null
null
null
__author__ = "Maximilian Wegge" import random, json, copy class Data: """The Data object stores the unaltered data from a file and performs preprocessing steps such as splitting into subsets and converting the annotations' format. """ def __init__( self, filename: str, roles: list = ["cause", "cue", "experiencer", "target"], corpora: list = ["eca", "emotion-stimulus", "reman", "gne"], splits: list = [1], ) -> None: """Initialize the Data object. Read data from file and split it into subsets. Args: filename (str): name of file containing the data. roles (list, optional): Specifies which emotion roles to read from the file. Defaults to ["cause", "cue", "experiencer", "target"]. corpora (list, optional): Specifies which corpus/corpora to load from the file. Defaults to ["eca", "emotion-stimulus", "reman", "gne"]. splits (list, optional): Specifies the size of subsets the data is split into. Defaults to [1]. """ self.data = [] self.splits = splits # metadata: amount/size of subsets. self.split_data = [] self.ReadFile(filename, roles, corpora) self.SplitData() def ReadFile(self, filename: str, allow_roles: list, allow_corpora: list) -> None: """Load relevant data from file and store it in Data object. Args: filename (str): name of file containing the data. allow_roles (list): Specifies which emotion roles to read from the file. If there are no annotations for the given emotion roles, annotations of only 'O' are created. allow_corpora ([type]): Specifies which corpus/corpora to load from file. """ self.data.clear() with open(filename, "r") as file: all_data = json.load(file) for instance in all_data: if instance["dataset"] in allow_corpora: relevant_annots = {} for role in allow_roles: if role in instance["annotations"]: relevant_annots[role] = instance["annotations"][role] else: relevant_annots[role] = len(instance["tokens"]) * ["O"] instance["annotations"] = relevant_annots self.data.append(instance) else: pass return None def SplitData(self) -> None: """Split the data loaded from file into subsets and store these subsets in the Data object. """ self.split_data.clear() # to preserve the original order of the data, # shuffle a copy of the data only. cpy_data = copy.deepcopy(self.data) random.seed(10) random.shuffle(cpy_data) not_split = copy.deepcopy(cpy_data) for splt in self.splits: splt_point = int(splt * len(cpy_data)) self.split_data.append(not_split[:splt_point]) not_split = not_split[splt_point:] return None def conv2brown(self): """Convert the format of each annotation to the format of the brown corpus: [ (this, "O"), ("is", "O"), ("a", "B), ("sentence", "I"), (".", ".") ] """ # The unaltered data is spreserved as only the annotations # contained in the subsets are converted. for splt in self.split_data: for instance in splt: tokens = instance["tokens"] orig = instance["annotations"] brown = {} for label in orig: brown[label] = [] for tup in zip(tokens, orig[label]): # Set tag for full stop (".") to "." # (necessary for training and predicting). if tup[0] == ".": brown[label].append((tup[0], ".")) else: brown[label].append((tup[0].lower(), tup[1])) instance["annotations"] = brown
36.568966
91
0.537011
794264835aaf13d9ef67f64a411711bd736edc8e
5,065
py
Python
broqer/op/filter_.py
semiversus/python-broqer
131a78b4e475c4134bc32e035b833c8b162cdff2
[ "MIT" ]
74
2018-04-13T11:29:16.000Z
2021-05-08T17:55:13.000Z
broqer/op/filter_.py
semiversus/python-broqer
131a78b4e475c4134bc32e035b833c8b162cdff2
[ "MIT" ]
36
2018-06-13T04:00:12.000Z
2022-03-01T12:13:38.000Z
broqer/op/filter_.py
semiversus/python-broqer
131a78b4e475c4134bc32e035b833c8b162cdff2
[ "MIT" ]
6
2019-04-17T17:33:11.000Z
2021-05-08T17:55:32.000Z
""" Filters values based on a ``predicate`` function Usage: >>> from broqer import Value, op, Sink >>> s = Value() >>> filtered_publisher = s | op.Filter(lambda v:v>0) >>> _disposable = filtered_publisher.subscribe(Sink(print)) >>> s.emit(1) 1 >>> s.emit(-1) >>> s.emit(0) >>> _disposable.dispose() Also possible with additional args and kwargs: >>> import operator >>> filtered_publisher = s | op.Filter(operator.and_, 0x01) >>> _disposable = filtered_publisher.subscribe(Sink(print)) >>> s.emit(100) >>> s.emit(101) 101 """ from functools import partial, wraps from typing import Any, Callable from broqer import NONE, Publisher from broqer.operator import Operator class Filter(Operator): """ Filter object applied to publisher :param predicate: function to evaluate the filtering :param \\*args: variable arguments to be used for evaluating predicate :param unpack: value from emits will be unpacked (\\*value) :param \\*\\*kwargs: keyword arguments to be used for evaluating predicate """ def __init__(self, predicate: Callable[[Any], bool], *args, unpack: bool = False, **kwargs) -> None: Operator.__init__(self) self._predicate = partial(predicate, *args, **kwargs) # type: Callable self._unpack = unpack def get(self) -> Any: if self._originator is None: raise ValueError('Operator is missing originator') if self._subscriptions: return self._state value = self._originator.get() # type: Any if self._unpack: # assert isinstance(value, (list, tuple)) if self._predicate(*value): return value elif self._predicate(value): return value return NONE def emit(self, value: Any, who: Publisher) -> None: if who is not self._originator: raise ValueError('Emit from non assigned publisher') if self._unpack: if self._predicate(*value): return Publisher.notify(self, value) elif self._predicate(value): return Publisher.notify(self, value) return None class EvalTrue(Operator): """ Emits all values which evaluates for True. This operator can be used in the pipline style (v | EvalTrue()) or as standalone operation (EvalTrue(v)). """ def __init__(self, publisher: Publisher = None) -> None: Operator.__init__(self) self._originator = publisher def get(self) -> Any: if self._subscriptions: return self._state assert isinstance(self._originator, Publisher) value = self._originator.get() # type: Any if bool(value): return value return NONE def emit(self, value: Any, who: Publisher) -> None: if who is not self._originator: raise ValueError('Emit from non assigned publisher') if bool(value): return Publisher.notify(self, value) return None class EvalFalse(Operator): """ Filters all emits which evaluates for False. This operator can be used in the pipline style (v | EvalFalse() or as standalone operation (EvalFalse(v)).""" def __init__(self, publisher: Publisher = None) -> None: Operator.__init__(self) self._originator = publisher def get(self) -> Any: if self._subscriptions: return self._state assert isinstance(self._originator, Publisher) value = self._originator.get() # type: Any if not bool(value): return value return NONE def emit(self, value: Any, who: Publisher) -> None: if who is not self._originator: raise ValueError('Emit from non assigned publisher') if not bool(value): return Publisher.notify(self, value) return None def build_filter(predicate: Callable[[Any], bool] = None, *, unpack: bool = False): """ Decorator to wrap a function to return a Filter operator. :param function: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_filter(predicate): return Filter(predicate, unpack=unpack) if predicate: return _build_filter(predicate) return _build_filter def build_filter_factory(predicate: Callable[[Any], bool] = None, *, unpack: bool = False): """ Decorator to wrap a function to return a factory for Filter operators. :param predicate: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_filter(predicate: Callable[[Any], bool]): @wraps(predicate) def _wrapper(*args, **kwargs) -> Filter: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') return Filter(predicate, *args, unpack=unpack, **kwargs) return _wrapper if predicate: return _build_filter(predicate) return _build_filter
28.455056
79
0.630405
7942649ac9d35aaa97e88de5fd8c110df328853b
1,565
py
Python
core-site/other-pages/blog-posts/0-projects/calendar-this-solution/calendar-this/solution/app/forms.py
Web-Dev-Collaborative/Web-Dev-Hub
16ad7cfbeb97b31c8510605033b91d75b63e527e
[ "MIT" ]
null
null
null
core-site/other-pages/blog-posts/0-projects/calendar-this-solution/calendar-this/solution/app/forms.py
Web-Dev-Collaborative/Web-Dev-Hub
16ad7cfbeb97b31c8510605033b91d75b63e527e
[ "MIT" ]
null
null
null
core-site/other-pages/blog-posts/0-projects/calendar-this-solution/calendar-this/solution/app/forms.py
Web-Dev-Collaborative/Web-Dev-Hub
16ad7cfbeb97b31c8510605033b91d75b63e527e
[ "MIT" ]
null
null
null
from datetime import datetime, timedelta from flask_wtf import FlaskForm from wtforms.fields import ( BooleanField, DateField, StringField, SubmitField, TextAreaField, TimeField ) from wtforms.widgets.html5 import DateInput, TimeInput from wtforms.validators import DataRequired, ValidationError def next_block(delta=0): def time(): now = datetime.now() return now - timedelta(minutes=now.minute % 15 - delta - 15, seconds=now.second) return time v = [DataRequired()] di = {'default': datetime.now, 'widget': DateInput()} sti = {'default': next_block(), 'widget': TimeInput()} eti = {'default': next_block(60), 'widget': TimeInput()} class AppointmentForm(FlaskForm): name = StringField("Name", v) start_date = DateField("Start date", v, **di) start_time = TimeField("Start time", v, **sti) end_date = DateField("End date", v, **di) end_time = TimeField("End time", v, **eti) description = TextAreaField("Description", v) private = BooleanField("Private?") submit = SubmitField("Create an appointment") def validate_end_date(form, field): start = datetime.combine(form.start_date.data, form.start_time.data) end = datetime.combine(field.data, form.end_time.data) if start >= end: msg = "End date/time must come after start date/time" raise ValidationError(msg) if form.start_date.data != form.end_date.data: msg = "End date must be the same as start date" raise ValidationError(msg)
36.395349
79
0.664537
79426548ebb9e0ea87ddacefe3c8bcc87ddadd63
12,426
py
Python
src/config/fabric-ansible/ansible-playbooks/filter_plugins/ztp_filters.py
atsgen/tf-controller
9321889cdd3d7108980cc88937b2e82956502cc5
[ "Apache-2.0" ]
null
null
null
src/config/fabric-ansible/ansible-playbooks/filter_plugins/ztp_filters.py
atsgen/tf-controller
9321889cdd3d7108980cc88937b2e82956502cc5
[ "Apache-2.0" ]
null
null
null
src/config/fabric-ansible/ansible-playbooks/filter_plugins/ztp_filters.py
atsgen/tf-controller
9321889cdd3d7108980cc88937b2e82956502cc5
[ "Apache-2.0" ]
1
2020-12-18T18:22:53.000Z
2020-12-18T18:22:53.000Z
#!/usr/bin/python # # Copyright (c) 2018 Juniper Networks, Inc. All rights reserved. # # This file contains code to gather IPAM config from the fabric management # virtual network # from builtins import object import logging import time from cfgm_common.exceptions import NoIdError from netaddr import IPNetwork from netifaces import AF_INET, ifaddresses, interfaces from pyroute2 import IPRoute from vnc_api.vnc_api import VncApi from job_manager.job_utils import JobVncApi # noqa class FilterModule(object): ZTP_EXCHANGE = 'device_ztp_exchange' ZTP_EXCHANGE_TYPE = 'direct' CONFIG_FILE_ROUTING_KEY = 'device_ztp.config.file' TFTP_FILE_ROUTING_KEY = 'device_ztp.tftp.file' ZTP_REQUEST_ROUTING_KEY = 'device_ztp.request' ZTP_RESPONSE_ROUTING_KEY = 'device_ztp.response.' def filters(self): return { 'ztp_dhcp_config': self.get_ztp_dhcp_config, 'ztp_tftp_config': self.get_ztp_tftp_config, 'create_tftp_file': self.create_tftp_file, 'delete_tftp_file': self.delete_tftp_file, 'create_dhcp_file': self.create_dhcp_file, 'delete_dhcp_file': self.delete_dhcp_file, 'restart_dhcp_server': self.restart_dhcp_server, 'read_dhcp_leases_using_count': self.read_dhcp_leases_using_count, 'read_dhcp_leases_using_info': self.read_dhcp_leases_using_info, 'read_only_dhcp_leases': self.read_only_dhcp_leases, 'remove_stale_pr_objects': self.remove_stale_pr_objects, } # Method to get interface name and configured ip address from # subnet/ip address from subnet. @classmethod def get_host_ip_and_name(cls, subnet): ip = IPRoute() lookup_ip = '' route_lst = ip.route('get', dst=(subnet['subnet']['ip_prefix'] + '/' + str(subnet['subnet']['ip_prefix_len']))) for tup in route_lst[0]['attrs'] or []: if tup[0] == 'RTA_PREFSRC': lookup_ip = str(tup[1]) for ifaceName in interfaces() or []: addresses = [i['addr'] for i in ifaddresses(ifaceName) .setdefault(AF_INET, [{'addr': 'No IP addr'}])] if (addresses[0]) == lookup_ip.decode('utf-8'): return lookup_ip, ifaceName @classmethod def get_ztp_dhcp_config(cls, job_ctx, fabric_uuid): dhcp_config = {} try: vncapi = VncApi(auth_type=VncApi._KEYSTONE_AUTHN_STRATEGY, auth_token=job_ctx.get('auth_token')) fabric = vncapi.fabric_read(id=fabric_uuid) fabric_dict = vncapi.obj_to_dict(fabric) # From here we get the 'management' type virtual network vn_uuid = None virtual_network_refs = fabric_dict.get( 'virtual_network_refs') or [] for virtual_net_ref in virtual_network_refs: if 'management' in virtual_net_ref['attr']['network_type']: vn_uuid = virtual_net_ref['uuid'] break if vn_uuid is None: raise NoIdError("Cannot find mgmt virtual network on fabric") virtual_net = vncapi.virtual_network_read(id=vn_uuid) virtual_net_dict = vncapi.obj_to_dict(virtual_net) # Get the IPAM attached to the virtual network ipam_refs = virtual_net_dict.get('network_ipam_refs') if ipam_refs: ipam_ref = ipam_refs[0] ipam = vncapi.network_ipam_read(id=ipam_ref['uuid']) ipam_dict = vncapi.obj_to_dict(ipam) ipam_subnets = ipam_dict.get('ipam_subnets') if ipam_subnets: dhcp_config['ipam_subnets'] = ipam_subnets.get('subnets') # To support multiple subnet and interface for DHCP, each dhcp # option is tagged with interface name. eg. # dhcp-option=set:eth0, <ip-range start> <ip-range end>. for subnet in dhcp_config['ipam_subnets']: intf_ip, intf_name = cls.get_host_ip_and_name(subnet) if intf_ip and intf_name: subnet.update({'intf_ip': intf_ip}) subnet.update({'intf_name': intf_name}) cidr = subnet['subnet']['ip_prefix'] +\ "/" + str(subnet['subnet']['ip_prefix_len']) ip = IPNetwork(cidr) if len(ip) > 0: subnet.update({'name': str(ip.ip).replace('.', '')}) # Get static ip configuration for physical routers pr_refs = fabric.get_physical_router_back_refs() or [] pr_uuids = [ref['uuid'] for ref in pr_refs] static_ips = {} for pr_uuid in pr_uuids: pr = vncapi.physical_router_read(id=pr_uuid) pr_dict = vncapi.obj_to_dict(pr) mac = pr_dict.get('physical_router_management_mac') ip = pr_dict.get('physical_router_management_ip') if mac and ip: static_ips[ip] = mac if static_ips: dhcp_config['static_ips'] = static_ips # Get user-specified static ip configuration static_host_ips = {} dynamic_hosts = [] job_input = job_ctx.get('job_input', {}) device_to_ztp = job_input.get('device_to_ztp', []) for dev in device_to_ztp: mgmt_ip = dev.get('mgmt_ip') sernum = dev.get('serial_number') if sernum: if mgmt_ip: static_host_ips[mgmt_ip] = sernum else: dynamic_hosts.append(sernum) if static_host_ips: dhcp_config['static_host_ips'] = static_host_ips if dynamic_hosts: dhcp_config['dynamic_hosts'] = dynamic_hosts except Exception as ex: logging.error( "Error getting ZTP DHCP configuration: {}".format(ex)) return dhcp_config # end get_ztp_dhcp_config @classmethod def get_ztp_tftp_config(cls, job_ctx, dev_password=None): tftp_config = {} if job_ctx: device_creds = job_ctx['job_input'].get('device_auth') if device_creds: password = device_creds['root_password'] tftp_config['password'] = password if dev_password: tftp_config['password'] = dev_password return tftp_config # end get_ztp_tftp_config @classmethod def create_tftp_file(cls, file_contents, file_name, fabric_name, job_ctx): return cls._publish_file(file_name, file_contents, 'create', cls.TFTP_FILE_ROUTING_KEY, fabric_name, job_ctx) # end create_tftp_file @classmethod def delete_tftp_file(cls, file_name, fabric_name, job_ctx): return cls._publish_file(file_name, '', 'delete', cls.TFTP_FILE_ROUTING_KEY, fabric_name, job_ctx) # end delete_tftp_file @classmethod def create_dhcp_file(cls, file_contents, file_name, fabric_name, job_ctx): return cls._publish_file(file_name, file_contents, 'create', cls.CONFIG_FILE_ROUTING_KEY, fabric_name, job_ctx) # end create_dhcp_file @classmethod def delete_dhcp_file(cls, file_name, fabric_name, job_ctx): return cls._publish_file(file_name, '', 'delete', cls.CONFIG_FILE_ROUTING_KEY, fabric_name, job_ctx) # end delete_dhcp_file @classmethod def read_dhcp_leases_using_count(cls, device_count, ipam_subnets, file_name, fabric_name, job_ctx): return cls.read_dhcp_leases(ipam_subnets, file_name, fabric_name, job_ctx, 'device_count', int(device_count)) # end read_dhcp_leases_using_count @classmethod def read_dhcp_leases_using_info(cls, device_to_ztp, ipam_subnets, file_name, fabric_name, job_ctx): return cls.read_dhcp_leases(ipam_subnets, file_name, fabric_name, job_ctx, 'device_to_ztp', device_to_ztp) # end read_dhcp_leases_using_info @classmethod def read_only_dhcp_leases(cls, device_to_ztp, ipam_subnets, file_name, fabric_name, job_ctx): return cls.read_dhcp_leases(ipam_subnets, file_name, fabric_name, job_ctx, 'device_to_ztp', device_to_ztp, action='read') # end read_only_dhcp_leases @classmethod def read_dhcp_leases(cls, ipam_subnets, file_name, fabric_name, job_ctx, payload_key, payload_value, action='create'): vnc_api = VncApi(auth_type=VncApi._KEYSTONE_AUTHN_STRATEGY, auth_token=job_ctx.get('auth_token'), timeout=600) headers = { 'fabric_name': fabric_name, 'file_name': file_name, 'action': action } payload = { 'ipam_subnets': ipam_subnets } payload[payload_key] = payload_value return vnc_api.amqp_request( exchange=cls.ZTP_EXCHANGE, exchange_type=cls.ZTP_EXCHANGE_TYPE, routing_key=cls.ZTP_REQUEST_ROUTING_KEY, response_key=cls.ZTP_RESPONSE_ROUTING_KEY + fabric_name, headers=headers, payload=payload) # end read_dhcp_leases @classmethod def restart_dhcp_server(cls, file_name, fabric_name, job_ctx): vnc_api = VncApi(auth_type=VncApi._KEYSTONE_AUTHN_STRATEGY, auth_token=job_ctx.get('auth_token')) headers = { 'fabric_name': fabric_name, 'file_name': file_name, 'action': 'delete' } vnc_api.amqp_publish(exchange=cls.ZTP_EXCHANGE, exchange_type=cls.ZTP_EXCHANGE_TYPE, routing_key=cls.ZTP_REQUEST_ROUTING_KEY, headers=headers, payload={}) return {'status': 'success'} # end restart_dhcp_server @classmethod def remove_stale_pr_objects(cls, job_ctx): """ Clean up stale temporary PR objects when ZTP workflow fails. """ filters = {} try: vnc_api = VncApi(auth_type=VncApi._KEYSTONE_AUTHN_STRATEGY, auth_token=job_ctx.get('auth_token')) except Exception as ex: logging.error("Error connecting to API server: {}".format(ex)) return True # A case was noticed where the object deletion is attempted # before it is even created. To avoid this, wait for a # couple of seconds before trying to delete the PR time.sleep(2) filters['physical_router_managed_state'] = "dhcp" pr_list = vnc_api.physical_routers_list( filters=filters).get('physical-routers') for pr in pr_list: vnc_api.physical_router_delete(id=pr['uuid']) logging.info("Router {} in dhcp state deleted".format( pr['fq_name'][-1])) return True # end remove_stale_pr_objects @classmethod def _publish_file(cls, name, contents, action, routing_key, fabric_name, job_ctx): vnc_api = VncApi(auth_type=VncApi._KEYSTONE_AUTHN_STRATEGY, auth_token=job_ctx.get('auth_token')) headers = { 'fabric_name': fabric_name, 'file_name': name, 'action': action } vnc_api.amqp_publish(exchange=cls.ZTP_EXCHANGE, exchange_type=cls.ZTP_EXCHANGE_TYPE, routing_key=routing_key, headers=headers, payload=contents) return {'status': 'success'} # end _publish_file
40.875
79
0.580235
794265ab97d7e3b84a214322bf4f6d471b577fca
1,972
py
Python
docs/conf.py
robarnold/bastille
38bb7faabf7f69051a9c088c17189c60769b07d7
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
robarnold/bastille
38bb7faabf7f69051a9c088c17189c60769b07d7
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
robarnold/bastille
38bb7faabf7f69051a9c088c17189c60769b07d7
[ "BSD-3-Clause" ]
null
null
null
import os on_rtd = os.environ.get('READTHEDOCS') == 'True' if on_rtd: html_theme = 'default' else: html_theme = 'sphinx_rtd_theme' # -- Project information ----------------------------------------------------- project = 'Bastille' copyright = '2018-2021, Christer Edwards' author = 'Christer Edwards' # The short X.Y version version = '0.9.20211225' # The full version, including alpha/beta/rc tags release = '0.9.20211225-beta' # -- General configuration --------------------------------------------------- extensions = [ ] templates_path = ['_templates'] source_suffix = ['.rst', '.md'] from recommonmark.parser import CommonMarkParser source_parsers = { '.md': CommonMarkParser, } master_doc = 'index' language = None exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] pygments_style = None # -- Options for HTML output ------------------------------------------------- html_static_path = ['_static'] # -- Options for HTMLHelp output --------------------------------------------- htmlhelp_basename = 'Bastilledoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { } latex_documents = [ (master_doc, 'Bastille.tex', 'Bastille Documentation', 'Christer Edwards', 'manual'), ] # -- Options for manual page output ------------------------------------------ man_pages = [ (master_doc, 'bastille', 'Bastille Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- texinfo_documents = [ (master_doc, 'Bastille', 'Bastille Documentation', author, 'Bastille', 'Bastille is an open-source system for automating deployment and management of containerized applications on FreeBSD.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- epub_title = project # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html']
24.65
144
0.564909
79426813e38fee68b9399a293ff47b1c3e4c1f56
6,712
py
Python
sqlserver_ado/ado_consts.py
BangC/django-mssql
998c7a0c94f2906bc79f6cf8b74a5a53420f3714
[ "MIT" ]
null
null
null
sqlserver_ado/ado_consts.py
BangC/django-mssql
998c7a0c94f2906bc79f6cf8b74a5a53420f3714
[ "MIT" ]
null
null
null
sqlserver_ado/ado_consts.py
BangC/django-mssql
998c7a0c94f2906bc79f6cf8b74a5a53420f3714
[ "MIT" ]
null
null
null
from __future__ import unicode_literals # ADO enumerated constants documented on MSDN: # http://msdn.microsoft.com/en-us/library/ms678353(VS.85).aspx # IsolationLevelEnum adXactUnspecified = -1 adXactBrowse = 0x100 adXactChaos = 0x10 adXactCursorStability = 0x1000 adXactIsolated = 0x100000 adXactReadCommitted = 0x1000 adXactReadUncommitted = 0x100 adXactRepeatableRead = 0x10000 adXactSerializable = 0x100000 # CursorLocationEnum adUseClient = 3 adUseServer = 2 # CursorTypeEnum adOpenDynamic = 2 adOpenForwardOnly = 0 adOpenKeyset = 1 adOpenStatic = 3 adOpenUnspecified = -1 # CommandTypeEnum adCmdText = 1 adCmdStoredProc = 4 # ParameterDirectionEnum adParamInput = 1 adParamInputOutput = 3 adParamOutput = 2 adParamReturnValue = 4 adParamUnknown = 0 # ObjectStateEnum adStateClosed = 0 adStateOpen = 1 adStateConnecting = 2 adStateExecuting = 4 adStateFetching = 8 # FieldAttributeEnum adFldMayBeNull = 0x40 # ConnectModeEnum adModeUnknown = 0 adModeRead = 1 adModeWrite = 2 adModeReadWrite = 3 adModeShareDenyRead = 4 adModeShareDenyWrite = 8 adModeShareExclusive = 12 adModeShareDenyNone = 16 adModeRecursive = 0x400000 # XactAttributeEnum adXactCommitRetaining = 131072 adXactAbortRetaining = 262144 ado_error_TIMEOUT = -2147217871 # DataTypeEnum - ADO Data types documented at: # http://msdn2.microsoft.com/en-us/library/ms675318.aspx adArray = 0x2000 adEmpty = 0x0 adBSTR = 0x8 adBigInt = 0x14 adBinary = 0x80 adBoolean = 0xb adChapter = 0x88 adChar = 0x81 adCurrency = 0x6 adDBDate = 0x85 adDBTime = 0x86 adDBTimeStamp = 0x87 adDate = 0x7 adDecimal = 0xe adDouble = 0x5 adError = 0xa adFileTime = 0x40 adGUID = 0x48 adIDispatch = 0x9 adIUnknown = 0xd adInteger = 0x3 adLongVarBinary = 0xcd adLongVarChar = 0xc9 adLongVarWChar = 0xcb adNumeric = 0x83 adPropVariant = 0x8a adSingle = 0x4 adSmallInt = 0x2 adTinyInt = 0x10 adUnsignedBigInt = 0x15 adUnsignedInt = 0x13 adUnsignedSmallInt = 0x12 adUnsignedTinyInt = 0x11 adUserDefined = 0x84 adVarBinary = 0xCC adVarChar = 0xC8 adVarNumeric = 0x8B adVarWChar = 0xCA adVariant = 0xC adWChar = 0x82 adTypeNames = { adBSTR: 'adBSTR', adBigInt: 'adBigInt', adBinary: 'adBinary', adBoolean: 'adBoolean', adChapter: 'adChapter', adChar: 'adChar', adCurrency: 'adCurrency', adDBDate: 'adDBDate', adDBTime: 'adDBTime', adDBTimeStamp: 'adDBTimeStamp', adDate: 'adDate', adDecimal: 'adDecimal', adDouble: 'adDouble', adEmpty: 'adEmpty', adError: 'adError', adFileTime: 'adFileTime', adGUID: 'adGUID', adIDispatch: 'adIDispatch', adIUnknown: 'adIUnknown', adInteger: 'adInteger', adLongVarBinary: 'adLongVarBinary', adLongVarChar: 'adLongVarChar', adLongVarWChar: 'adLongVarWChar', adNumeric: 'adNumeric', adPropVariant: 'adPropVariant', adSingle: 'adSingle', adSmallInt: 'adSmallInt', adTinyInt: 'adTinyInt', adUnsignedBigInt: 'adUnsignedBigInt', adUnsignedInt: 'adUnsignedInt', adUnsignedSmallInt: 'adUnsignedSmallInt', adUnsignedTinyInt: 'adUnsignedTinyInt', adUserDefined: 'adUserDefined', adVarBinary: 'adVarBinary', adVarChar: 'adVarChar', adVarNumeric: 'adVarNumeric', adVarWChar: 'adVarWChar', adVariant: 'adVariant', adWChar: 'adWChar', } def ado_type_name(ado_type): return adTypeNames.get(ado_type, 'unknown type ('+str(ado_type)+')') # Error codes to names adoErrors= { 0xe7b :'adErrBoundToCommand', 0xe94 :'adErrCannotComplete', 0xea4 :'adErrCantChangeConnection', 0xc94 :'adErrCantChangeProvider', 0xe8c :'adErrCantConvertvalue', 0xe8d :'adErrCantCreate', 0xea3 :'adErrCatalogNotSet', 0xe8e :'adErrColumnNotOnThisRow', 0xd5d :'adErrDataConversion', 0xe89 :'adErrDataOverflow', 0xe9a :'adErrDelResOutOfScope', 0xea6 :'adErrDenyNotSupported', 0xea7 :'adErrDenyTypeNotSupported', 0xcb3 :'adErrFeatureNotAvailable', 0xea5 :'adErrFieldsUpdateFailed', 0xc93 :'adErrIllegalOperation', 0xcae :'adErrInTransaction', 0xe87 :'adErrIntegrityViolation', 0xbb9 :'adErrInvalidArgument', 0xe7d :'adErrInvalidConnection', 0xe7c :'adErrInvalidParamInfo', 0xe82 :'adErrInvalidTransaction', 0xe91 :'adErrInvalidURL', 0xcc1 :'adErrItemNotFound', 0xbcd :'adErrNoCurrentRecord', 0xe83 :'adErrNotExecuting', 0xe7e :'adErrNotReentrant', 0xe78 :'adErrObjectClosed', 0xd27 :'adErrObjectInCollection', 0xd5c :'adErrObjectNotSet', 0xe79 :'adErrObjectOpen', 0xbba :'adErrOpeningFile', 0xe80 :'adErrOperationCancelled', 0xe96 :'adErrOutOfSpace', 0xe88 :'adErrPermissionDenied', 0xe9e :'adErrPropConflicting', 0xe9b :'adErrPropInvalidColumn', 0xe9c :'adErrPropInvalidOption', 0xe9d :'adErrPropInvalidValue', 0xe9f :'adErrPropNotAllSettable', 0xea0 :'adErrPropNotSet', 0xea1 :'adErrPropNotSettable', 0xea2 :'adErrPropNotSupported', 0xbb8 :'adErrProviderFailed', 0xe7a :'adErrProviderNotFound', 0xbbb :'adErrReadFile', 0xe93 :'adErrResourceExists', 0xe92 :'adErrResourceLocked', 0xe97 :'adErrResourceOutOfScope', 0xe8a :'adErrSchemaViolation', 0xe8b :'adErrSignMismatch', 0xe81 :'adErrStillConnecting', 0xe7f :'adErrStillExecuting', 0xe90 :'adErrTreePermissionDenied', 0xe8f :'adErrURLDoesNotExist', 0xe99 :'adErrURLNamedRowDoesNotExist', 0xe98 :'adErrUnavailable', 0xe84 :'adErrUnsafeOperation', 0xe95 :'adErrVolumeNotFound', 0xbbc :'adErrWriteFile' }
30.930876
72
0.601162
794268b1de1fd7e835c35f815b48bbc86df1aedc
16,337
py
Python
pymavlink-2.3.8/generator/mavgen_wlua.py
NicEscobar/InertialNavigation
85dffed6cf5c4063a097c3c9305f4ec92ce53623
[ "MIT" ]
10
2021-03-15T03:58:06.000Z
2021-12-30T15:33:38.000Z
pymavlink-2.3.8/generator/mavgen_wlua.py
NicEscobar/InertialNavigation
85dffed6cf5c4063a097c3c9305f4ec92ce53623
[ "MIT" ]
4
2021-05-03T16:58:53.000Z
2021-12-21T21:01:02.000Z
pymavlink-2.3.8/generator/mavgen_wlua.py
NicEscobar/InertialNavigation
85dffed6cf5c4063a097c3c9305f4ec92ce53623
[ "MIT" ]
9
2021-04-28T15:26:34.000Z
2021-12-21T20:41:30.000Z
#!/usr/bin/env python ''' parse a MAVLink protocol XML file and generate a Wireshark LUA dissector Copyright Holger Steinhaus 2012 Released under GNU GPL version 3 or later Instructions for use: 1. python -m pymavlink.tools.mavgen --lang=WLua mymavlink.xml -o ~/.wireshark/plugins/mymavlink.lua 2. convert binary stream int .pcap file format (see ../examples/mav2pcap.py) 3. open the pcap file in Wireshark ''' from __future__ import print_function from builtins import range import os import re from . import mavparse, mavtemplate t = mavtemplate.MAVTemplate() def lua_type(mavlink_type): # qnd typename conversion if (mavlink_type=='char'): lua_t = 'uint8' else: lua_t = mavlink_type.replace('_t', '') return lua_t def type_size(mavlink_type): # infer size of mavlink types re_int = re.compile('^(u?)int(8|16|32|64)_t$') int_parts = re_int.findall(mavlink_type) if len(int_parts): return (int(int_parts[0][1]) // 8) elif mavlink_type == 'float': return 4 elif mavlink_type == 'double': return 8 elif mavlink_type == 'char': return 1 else: raise Exception('unsupported MAVLink type - please fix me') def mavfmt(field): '''work out the struct format for a type''' map = { 'float' : 'f', 'double' : 'd', 'char' : 'c', 'int8_t' : 'b', 'uint8_t' : 'B', 'uint8_t_mavlink_version' : 'B', 'int16_t' : 'h', 'uint16_t' : 'H', 'int32_t' : 'i', 'uint32_t' : 'I', 'int64_t' : 'q', 'uint64_t' : 'Q', } if field.array_length: if field.type in ['char', 'int8_t', 'uint8_t']: return str(field.array_length)+'s' return str(field.array_length)+map[field.type] return map[field.type] def generate_preamble(outf): print("Generating preamble") t.write(outf, """ -- Wireshark dissector for the MAVLink protocol (please see http://qgroundcontrol.org/mavlink/start for details) unknownFrameBeginOffset = 0 local bit = require "bit32" mavlink_proto = Proto("mavlink_proto", "MAVLink protocol") f = mavlink_proto.fields -- from http://lua-users.org/wiki/TimeZone local function get_timezone() local now = os.time() return os.difftime(now, os.time(os.date("!*t", now))) end local signature_time_ref = get_timezone() + os.time{year=2015, month=1, day=1, hour=0} payload_fns = {} """ ) def generate_body_fields(outf): t.write(outf, """ f.magic = ProtoField.uint8("mavlink_proto.magic", "Magic value / version", base.HEX) f.length = ProtoField.uint8("mavlink_proto.length", "Payload length") f.incompatibility_flag = ProtoField.uint8("mavlink_proto.incompatibility_flag", "Incompatibility flag") f.compatibility_flag = ProtoField.uint8("mavlink_proto.compatibility_flag", "Compatibility flag") f.sequence = ProtoField.uint8("mavlink_proto.sequence", "Packet sequence") f.sysid = ProtoField.uint8("mavlink_proto.sysid", "System id", base.HEX) f.compid = ProtoField.uint8("mavlink_proto.compid", "Component id", base.HEX) f.msgid = ProtoField.uint24("mavlink_proto.msgid", "Message id", base.HEX) f.payload = ProtoField.uint8("mavlink_proto.payload", "Payload", base.DEC, messageName) f.crc = ProtoField.uint16("mavlink_proto.crc", "Message CRC", base.HEX) f.signature_link = ProtoField.uint8("mavlink_proto.signature_link", "Link id", base.DEC) f.signature_time = ProtoField.absolute_time("mavlink_proto.signature_time", "Time") f.signature_signature = ProtoField.bytes("mavlink_proto.signature_signature", "Signature") f.rawheader = ProtoField.bytes("mavlink_proto.rawheader", "Unparsable header fragment") f.rawpayload = ProtoField.bytes("mavlink_proto.rawpayload", "Unparsable payload") """) def generate_msg_table(outf, msgs): t.write(outf, """ messageName = { """) for msg in msgs: assert isinstance(msg, mavparse.MAVType) t.write(outf, """ [${msgid}] = '${msgname}', """, {'msgid':msg.id, 'msgname':msg.name}) t.write(outf, """ } """) def generate_msg_fields(outf, msg): assert isinstance(msg, mavparse.MAVType) for f in msg.fields: assert isinstance(f, mavparse.MAVField) mtype = f.type ltype = lua_type(mtype) count = f.array_length if f.array_length>0 else 1 # string is no array, but string of chars if mtype == 'char' and count > 1: count = 1 ltype = 'string' for i in range(0,count): if count>1: array_text = '[' + str(i) + ']' index_text = '_' + str(i) else: array_text = '' index_text = '' t.write(outf, """ f.${fmsg}_${fname}${findex} = ProtoField.${ftype}("mavlink_proto.${fmsg}_${fname}${findex}", "${fname}${farray} (${ftype})") """, {'fmsg':msg.name, 'ftype':ltype, 'fname':f.name, 'findex':index_text, 'farray':array_text}) t.write(outf, '\n\n') def generate_field_dissector(outf, msg, field): assert isinstance(field, mavparse.MAVField) mtype = field.type size = type_size(mtype) ltype = lua_type(mtype) count = field.array_length if field.array_length>0 else 1 # string is no array but string of chars if mtype == 'char': size = count count = 1 # handle arrays, but not strings for i in range(0,count): if count>1: index_text = '_' + str(i) else: index_text = '' t.write(outf, """ if (truncated) then tree:add_le(f.${fmsg}_${fname}${findex}, 0) elseif (offset + ${fbytes} <= limit) then tree:add_le(f.${fmsg}_${fname}${findex}, buffer(offset, ${fbytes})) offset = offset + ${fbytes} elseif (offset < limit) then tree:add_le(f.${fmsg}_${fname}${findex}, buffer(offset, limit - offset)) offset = limit truncated = true else tree:add_le(f.${fmsg}_${fname}${findex}, 0) truncated = true end """, {'fname':field.name, 'ftype':mtype, 'fmsg': msg.name, 'fbytes':size, 'findex':index_text}) def generate_payload_dissector(outf, msg): assert isinstance(msg, mavparse.MAVType) t.write(outf, """ -- dissect payload of message type ${msgname} function payload_fns.payload_${msgid}(buffer, tree, msgid, offset, limit) local truncated = false """, {'msgid':msg.id, 'msgname':msg.name}) for f in msg.ordered_fields: generate_field_dissector(outf, msg, f) t.write(outf, """ return offset end """) def generate_packet_dis(outf): t.write(outf, """ -- dissector function function mavlink_proto.dissector(buffer,pinfo,tree) local offset = 0 local msgCount = 0 -- loop through the buffer to extract all the messages in the buffer while (offset < buffer:len()) do msgCount = msgCount + 1 local subtree = tree:add (mavlink_proto, buffer(), "MAVLink Protocol ("..buffer:len()..")") -- decode protocol version first local version = buffer(offset,1):uint() local protocolString = "" while (true) do if (version == 0xfe) then protocolString = "MAVLink 1.0" break elseif (version == 0xfd) then protocolString = "MAVLink 2.0" break elseif (version == 0x55) then protocolString = "MAVLink 0.9" break else protocolString = "unknown" -- some unknown data found, record the begin offset if (unknownFrameBeginOffset == 0) then unknownFrameBeginOffset = offset end offset = offset + 1 if (offset < buffer:len()) then version = buffer(offset,1):uint() else -- no magic value found in the whole buffer. print the raw data and exit if (unknownFrameBeginOffset ~= 0) then if (msgCount == 1) then pinfo.cols.info:set("Unknown message") else pinfo.cols.info:append(" Unknown message") end size = offset - unknownFrameBeginOffset subtree:add(f.rawpayload, buffer(unknownFrameBeginOffset,size)) unknownFrameBeginOffset = 0 end return end end end if (unknownFrameBeginOffset ~= 0) then pinfo.cols.info:append("Unknown message") size = offset - unknownFrameBeginOffset subtree:add(f.rawpayload, buffer(unknownFrameBeginOffset,size)) unknownFrameBeginOffset = 0 -- jump to next loop break end -- some Wireshark decoration pinfo.cols.protocol = protocolString -- HEADER ---------------------------------------- local msgid local length local incompatibility_flag if (version == 0xfe) then if (buffer:len() - 2 - offset > 6) then -- normal header local header = subtree:add("Header") header:add(f.magic, buffer(offset,1), version) offset = offset + 1 length = buffer(offset,1) header:add(f.length, length) offset = offset + 1 local sequence = buffer(offset,1) header:add(f.sequence, sequence) offset = offset + 1 local sysid = buffer(offset,1) header:add(f.sysid, sysid) offset = offset + 1 local compid = buffer(offset,1) header:add(f.compid, compid) offset = offset + 1 pinfo.cols.src = "System: "..tostring(sysid:uint())..', Component: '..tostring(compid:uint()) msgid = buffer(offset,1):uint() header:add(f.msgid, buffer(offset,1), msgid) offset = offset + 1 else -- handle truncated header local hsize = buffer:len() - 2 - offset subtree:add(f.rawheader, buffer(offset, hsize)) offset = offset + hsize end elseif (version == 0xfd) then if (buffer:len() - 2 - offset > 10) then -- normal header local header = subtree:add("Header") header:add(f.magic, buffer(offset,1), version) offset = offset + 1 length = buffer(offset,1) header:add(f.length, length) offset = offset + 1 incompatibility_flag = buffer(offset,1):uint() header:add(f.incompatibility_flag, buffer(offset,1), incompatibility_flag) offset = offset + 1 local compatibility_flag = buffer(offset,1) header:add(f.compatibility_flag, compatibility_flag) offset = offset + 1 local sequence = buffer(offset,1) header:add(f.sequence, sequence) offset = offset + 1 local sysid = buffer(offset,1) header:add(f.sysid, sysid) offset = offset + 1 local compid = buffer(offset,1) header:add(f.compid, compid) offset = offset + 1 pinfo.cols.src = "System: "..tostring(sysid:uint())..', Component: '..tostring(compid:uint()) msgid = buffer(offset,3):le_uint() header:add(f.msgid, buffer(offset,3), msgid) offset = offset + 3 else -- handle truncated header local hsize = buffer:len() - 2 - offset subtree:add(f.rawheader, buffer(offset, hsize)) offset = offset + hsize end end -- BODY ---------------------------------------- -- dynamically call the type-specific payload dissector local msgnr = msgid local dissect_payload_fn = "payload_"..tostring(msgnr) local fn = payload_fns[dissect_payload_fn] local limit = buffer:len() - 2 if (length) then length = length:uint() else length = 0 end if (offset + length < limit) then limit = offset + length end if (fn == nil) then pinfo.cols.info:append ("Unknown message type ") subtree:add_expert_info(PI_MALFORMED, PI_ERROR, "Unknown message type") size = buffer:len() - 2 - offset subtree:add(f.rawpayload, buffer(offset,size)) offset = offset + size else local payload = subtree:add(f.payload, msgid) pinfo.cols.dst:set(messageName[msgid]) if (msgCount == 1) then -- first message should over write the TCP/UDP info pinfo.cols.info = messageName[msgid] else pinfo.cols.info:append(" "..messageName[msgid]) end fn(buffer, payload, msgid, offset, limit) offset = limit end -- CRC ---------------------------------------- local crc = buffer(offset,2) subtree:add_le(f.crc, crc) offset = offset + 2 -- SIGNATURE ---------------------------------- if (version == 0xfd and incompatibility_flag == 0x01) then local signature = subtree:add("Signature") local link = buffer(offset,1) signature:add(f.signature_link, link) offset = offset + 1 local signature_time = buffer(offset,6):le_uint64() local time_secs = signature_time / 100000 local time_nsecs = (signature_time - (time_secs * 100000)) * 10000 signature:add(f.signature_time, buffer(offset,6), NSTime.new(signature_time_ref + time_secs:tonumber(), time_nsecs:tonumber())) offset = offset + 6 local signature_signature = buffer(offset,6) signature:add(f.signature_signature, signature_signature) offset = offset + 6 end end end """) def generate_epilog(outf): print("Generating epilog") t.write(outf, """ -- bind protocol dissector to USER0 linktype wtap_encap = DissectorTable.get("wtap_encap") wtap_encap:add(wtap.USER0, mavlink_proto) -- bind protocol dissector to port 14550 and 14580 local udp_dissector_table = DissectorTable.get("udp.port") udp_dissector_table:add(14550, mavlink_proto) udp_dissector_table:add(14580, mavlink_proto) """) def generate(basename, xml): '''generate complete python implemenation''' if basename.endswith('.lua'): filename = basename else: filename = basename + '.lua' msgs = [] enums = [] filelist = [] for x in xml: msgs.extend(x.message) enums.extend(x.enum) filelist.append(os.path.basename(x.filename)) for m in msgs: if xml[0].little_endian: m.fmtstr = '<' else: m.fmtstr = '>' for f in m.ordered_fields: m.fmtstr += mavfmt(f) m.order_map = [ 0 ] * len(m.fieldnames) for i in range(0, len(m.fieldnames)): m.order_map[i] = m.ordered_fieldnames.index(m.fieldnames[i]) print("Generating %s" % filename) outf = open(filename, "w") generate_preamble(outf) generate_msg_table(outf, msgs) generate_body_fields(outf) for m in msgs: generate_msg_fields(outf, m) for m in msgs: generate_payload_dissector(outf, m) generate_packet_dis(outf) # generate_enums(outf, enums) # generate_message_ids(outf, msgs) # generate_classes(outf, msgs) # generate_mavlink_class(outf, msgs, xml[0]) # generate_methods(outf, msgs) generate_epilog(outf) outf.close() print("Generated %s OK" % filename)
32.543825
139
0.565587
794269026da92ff690a3e57a3e3ff56b30943a3c
4,070
py
Python
bot.py
peterkagey/OEISbot
b2b5abe82f74aa331d7cc9fd6a7531617136a5c5
[ "MIT" ]
null
null
null
bot.py
peterkagey/OEISbot
b2b5abe82f74aa331d7cc9fd6a7531617136a5c5
[ "MIT" ]
null
null
null
bot.py
peterkagey/OEISbot
b2b5abe82f74aa331d7cc9fd6a7531617136a5c5
[ "MIT" ]
null
null
null
from __future__ import print_function import praw import re import urllib.request import json from praw.models import MoreComments import sys test = False if len(sys.argv) > 1 and sys.argv[1] == "test": test=True print("TEST MODE") class FoundOne(BaseException): pass def read_url(url): with urllib.request.urlopen(url) as r: data = r.read() return data.decode('utf-8') def save_list(seen, _id): print(seen) with open("/home/pi/OEISbot/seen/"+_id, "w") as f: return json.dump(seen, f) def open_list(_id): try: with open("/home/pi/OEISbot/seen/" + _id) as f: return json.load(f) except: return [] def escape(text): text = "\\^".join(text.split("^")) text = "\\*".join(text.split("*")) return text def deduplicate(target_list): unique_values = [] [unique_values.append(x) for x in target_list if x not in unique_values] return unique_values def a_numbers_in_text(body): valid_prefix = "(?:[\s\/'\"\-\+\*]|^)" optional_opening_parens = "[\[\(\{]*" a_number = "A(\d{6})" valid_suffix = "(?:[\s\(\)\[\]]|$)" a_number_regex_pattern = valid_prefix + optional_opening_parens + a_number + valid_suffix all_matches = re.findall(a_number_regex_pattern, body) return deduplicate(all_matches) def look_for_A(id_, text, comment): seen = open_list(id_) re_s = a_numbers_in_text(text) if test: print(re_s) post_me = [] for seq_n in re_s: if seq_n not in seen: post_me.append(markup(seq_n)) seen.append(seq_n) if len(post_me) > 0: post_me.append(me()) comment(escape(joiner().join(post_me))) save_list(seen, id_) raise FoundOne def load_search(terms): src = read_url("http://oeis.org/search?fmt=data&q="+terms) ls = re.findall("href=(?:'|\")/A([0-9]{6})(?:'|\")", src) try: tot = int(re.findall("of ([0-9]+) results found", src)[0]) except: tot = 0 return ls, tot def markup(seq_n): pattern = re.compile("%N (.*?)<", re.DOTALL|re.M) desc = read_url("http://oeis.org/A" + seq_n + "/internal") desc = pattern.findall(desc)[0].strip("\n") pattern = re.compile("%S (.*?)<", re.DOTALL|re.M) seq = read_url("http://oeis.org/A" + seq_n + "/internal") seq = pattern.findall(seq)[0].strip("\n") new_com = "[A" + seq_n + "](http://oeis.org/A" + seq_n + "/): " new_com += desc + "\n\n" new_com += seq + "..." return new_com def me(): return "I am OEISbot. I was programmed by /u/mscroggs. " \ "[How I work](http://mscroggs.co.uk/blog/20). " \ "You can test me and suggest new features at /r/TestingOEISbot/." def joiner(): return "\n\n- - - -\n\n" r = praw.Reddit("DEFAULT", user_agent="OEIS sequence poster") #access_i = r.refresh_access_information(refresh_token=r.refresh_token) #r.set_access_credentials(**access_i) auth = r.user subs = ["TestingOEISbot","math","mathpuzzles","casualmath","theydidthemath", "learnmath","mathbooks","cheatatmathhomework","matheducation", "puremathematics","mathpics","mathriddles","askmath", "recreationalmath","OEIS","mathclubs","maths"] if test: subs = ["TestingOEISbot"] try: for sub in subs: print(sub) subreddit = r.subreddit(sub) for submission in subreddit.hot(limit = 10): if test: print(submission.title) look_for_A(submission.id, submission.title + "|" + submission.selftext, submission.url, submission.reply) for comment in submission.comments: if ( not isinstance(comment, MoreComments) and comment.author is not None and comment.author.name != "OEISbot" ): look_for_A(submission.id, comment.body, comment.reply) except FoundOne: pass
29.708029
93
0.58059
79426a5401f8ed89449902b829e52830c67edc03
1,206
py
Python
setup.py
kozakHolota/pytest-html-reporter
29aea2297a1613d3d2be1cfe54500473add8bd01
[ "MIT" ]
null
null
null
setup.py
kozakHolota/pytest-html-reporter
29aea2297a1613d3d2be1cfe54500473add8bd01
[ "MIT" ]
null
null
null
setup.py
kozakHolota/pytest-html-reporter
29aea2297a1613d3d2be1cfe54500473add8bd01
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import codecs from setuptools import setup, find_packages def read(fname): file_path = os.path.join(os.path.dirname(__file__), fname) return codecs.open(file_path, encoding="utf-8").read() setup( name="pytest-html-reporter", version="0.2.9", author="Prashanth Sams", author_email="[email protected]", maintainer="Prashanth Sams", maintainer_email="[email protected]", license="MIT", url="https://github.com/prashanth-sams/pytest-html-reporter", description="Generates a static html report based on pytest framework", long_description=read("README.rst"), keywords=["pytest", "py.test", "html", "reporter", "report"], packages=find_packages(), python_requires=">=3.5", install_requires=["pytest", "Pillow"], classifiers=[ "Framework :: Pytest", "Topic :: Software Development :: Testing", "Programming Language :: Python", "Operating System :: OS Independent", "License :: OSI Approved :: MIT License", ], entry_points={ "pytest11": [ "reporter = pytest_html_reporter.plugin", ], }, )
28.714286
75
0.640133
79426aba52983da561bfc17d3be6a7224fdd7fd8
14,231
py
Python
artifacts/old_dataset_versions/minimal_commits_v02/pennylane/pennylane#481_B/before/_qubit_device.py
MattePalte/Bugs-Quantum-Computing-Platforms
0c1c805fd5dfce465a8955ee3faf81037023a23e
[ "MIT" ]
3
2021-11-08T11:46:42.000Z
2021-12-27T10:13:38.000Z
artifacts/old_dataset_versions/minimal_commits/pennylane/pennylane#481/before/_qubit_device.py
MattePalte/Bugs-Quantum-Computing-Platforms
0c1c805fd5dfce465a8955ee3faf81037023a23e
[ "MIT" ]
2
2021-11-09T14:57:09.000Z
2022-01-12T12:35:58.000Z
artifacts/old_dataset_versions/original_commits_v02/pennylane/pennylane#481_B/before/_qubit_device.py
MattePalte/Bugs-Quantum-Computing-Platforms
0c1c805fd5dfce465a8955ee3faf81037023a23e
[ "MIT" ]
null
null
null
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module contains the :class:`QubitDevice` abstract base class. """ # For now, arguments may be different from the signatures provided in Device # e.g. instead of expval(self, observable, wires, par) have expval(self, observable) # pylint: disable=arguments-differ, abstract-method, no-value-for-parameter,too-many-instance-attributes import abc import numpy as np from pennylane.operation import Sample, Variance, Expectation, Probability from pennylane.qnodes import QuantumFunctionError from pennylane import Device class QubitDevice(Device): """Abstract base class for PennyLane qubit devices. The following abstract methods **must** be defined: * :meth:`~.probability`: returns the probability or marginal probability from the device after circuit execution. :meth:`~.marginal_prob` may be used here. * :meth:`~.apply`: append circuit operations, compile the circuit (if applicable), and perform the quantum computation. Where relevant, devices that generate their own samples (such as hardware) should overwrite the following methods: * :meth:`~.generate_samples`: Generate samples from the device from the exact or approximate probability distribution. This device contains common utility methods for qubit-based devices. These do not need to be overwritten. Utility methods include: * :meth:`~.expval`, :meth:`~.var`, :meth:`~.sample`: return expectation values, variances, and samples of observables after the circuit has been rotated into the observable eigenbasis. Args: wires (int): number of subsystems in the quantum state represented by the device shots (int): number of circuit evaluations/random samples used to estimate expectation values of observables analytic (bool): If ``True``, the device calculates probability, expectation values, and variances analytically. If ``False``, a finite number of samples set by the argument ``shots`` are used to estimate these quantities. """ # pylint: disable=too-many-public-methods _asarray = staticmethod(np.asarray) def __init__(self, wires=1, shots=1000, analytic=True): super().__init__(wires=wires, shots=shots) self.analytic = analytic """bool: If ``True``, the device supports exact calculation of expectation values, variances, and probabilities. If ``False``, samples are used to estimate the statistical quantities above.""" self._wires_measured = set() """set[int]: wires acted on by quantum operations and observables""" self._samples = None """None or array[int]: stores the samples generated by the device *after* rotation to diagonalize the observables.""" @classmethod def capabilities(cls): """Get the capabilities of the plugin. Devices that inherit from this class automatically have the following items in their capabilities dictionary: * ``"model": "qubit"`` * ``"tensor_observables": True`` Returns: dict[str->*]: results """ capabilities = cls._capabilities capabilities.update(model="qubit", tensor_observables=True) return capabilities def reset(self): """Reset the backend state. After the reset, the backend should be as if it was just constructed. Most importantly the quantum state is reset to its initial value. """ self._wires_measured = set() self._samples = None def execute(self, circuit): """Execute a queue of quantum operations on the device and then measure the given observables. For plugin developers: instead of overwriting this, consider implementing a suitable subset of * :meth:`apply` * :meth:`~.generate_samples` * :meth:`~.probability` Args: circuit (~.CircuitGraph): circuit to execute on the device Raises: QuantumFunctionError: if the value of :attr:`~.Observable.return_type` is not supported Returns: array[float]: measured value(s) """ self.check_validity(circuit.operations, circuit.observables) # apply all circuit operations self.apply(circuit.operations, circuit.diagonalizing_gates) # determine the wires that are measured by the circuit self._wires_measured = QubitDevice.active_wires(circuit.observables) # generate computational basis samples if (not self.analytic) or circuit.is_sampled: self.generate_samples() # compute the required statistics results = self.statistics(circuit.observables) # Ensures that a combination with sample does not put # expvals and vars in superfluous arrays all_sampled = all(obs.return_type is Sample for obs in circuit.observables) if circuit.is_sampled and not all_sampled: return self._asarray(results, dtype="object") return self._asarray(results) @abc.abstractmethod def apply(self, operations, rotations=None, **kwargs): """Apply quantum operations, rotate the circuit into the measurement basis, and compile and execute the quantum circuit. This method recieves a list of quantum operations queued by the QNode, and should be responsible for: * Constructing the quantum program * (Optional) Rotating the quantum circuit using the rotation operations provided. This diagonalizes the circuit so that arbitrary observables can be measured in the computational basis. * Compile the circuit * Execute the quantum circuit Both arguments are provided as lists of PennyLane :class:`~.Operation` instances. Useful properties include :attr:`~.Operation.name`, :attr:`~.Operation.wires`, and :attr:`~.Operation.parameters`: >>> op = qml.RX(0.2, wires=[0]) >>> op.name # returns the operation name "RX" >>> op.wires # returns a list of wires [0] >>> op.parameters # returns a list of parameters [0.2] Args: operations (list[~.Operation]): operations to apply to the device rotations (list[~.Operation]): operations that rotate the circuit pre-measurement into the eigenbasis of the observables. """ @staticmethod def active_wires(operators): """Returns the wires acted on by a set of operators. Args: operators (list[~.Operation]): operators for which we are gathering the active wires Returns: set[int]: the set of wires activated by the specified operators """ wires = [] for op in operators: for wire in op.wires: if isinstance(wire, int): wires.append(wire) else: wires.extend(wire) return set(wires) def statistics(self, observables): """Process measurement results from circuit execution and return statistics. This includes returning expectation values, variance, samples and probabilities. Args: observables (List[:class:`Observable`]): the observables to be measured Raises: QuantumFunctionError: if the value of :attr:`~.Observable.return_type` is not supported Returns: Union[float, List[float]]: the corresponding statistics """ results = [] for obs in observables: # Pass instances directly if obs.return_type is Expectation: results.append(self.expval(obs)) elif obs.return_type is Variance: results.append(self.var(obs)) elif obs.return_type is Sample: results.append(np.array(self.sample(obs))) elif obs.return_type is Probability: results.append(self.probability(wires=obs.wires)) elif obs.return_type is not None: raise QuantumFunctionError( "Unsupported return type specified for observable {}".format(obs.name) ) return results def generate_samples(self): """Generate computational basis samples. If the device contains a sample return type, or the device is running in non-analytic mode, ``dev.shots`` number of computational basis samples are generated and stored within the :attr:`~._samples` attribute. .. warning:: This method should be overwritten on devices that generate their own computational basis samples. """ number_of_states = 2 ** len(self._wires_measured) rotated_prob = self.probability(self._wires_measured) samples = self.sample_basis_states(number_of_states, rotated_prob) self._samples = QubitDevice.states_to_binary(samples, number_of_states) def sample_basis_states(self, number_of_states, state_probability): """Sample from the computational basis states based on the state probability. This is an auxiliary method to the generate_samples method. Args: number_of_states (int): the number of basis states to sample from Returns: List[int]: the sampled basis states """ basis_states = np.arange(number_of_states) return np.random.choice(basis_states, self.shots, p=state_probability) @staticmethod def states_to_binary(samples, number_of_states): """Convert basis states from base 10 to binary representation. This is an auxiliary method to the generate_samples method. Args: samples (List[int]): samples of basis states in base 10 representation number_of_states (int): the number of basis states to sample from Returns: List[int]: basis states in binary representation """ powers_of_two = 1 << np.arange(number_of_states) states_sampled_base_ten = samples[:, None] & powers_of_two return (states_sampled_base_ten > 0).astype(int) @property def state(self): """Returns the state vector of the circuit prior to measurement. .. note:: Only state vector simulators support this property. Please see the plugin documentation for more details. """ raise NotImplementedError @abc.abstractmethod def probability(self, wires=None): """Return the (marginal) probability of each computational basis state from the last run of the device. If no wires are specified, then all the basis states representable by the device are considered and no marginalization takes place. Args: wires (Sequence[int]): Sequence of wires to return marginal probabilities for. Wires not provided are traced out of the system. Returns: List[float]: list of the probabilities """ def marginal_prob(self, prob, wires=None): """Return the marginal probability of the computational basis states by summing the probabiliites on the non-specified wires. If no wires are specified, then all the basis states representable by the device are considered and no marginalization takes place. Args: prob: The probabilities to return the marginal probabilities for wires (Sequence[int]): Sequence of wires to return marginal probabilities for. Wires not provided are traced out of the system. Returns: array[float]: array of the resulting marginal probabilities. """ wires = list(wires or range(self.num_wires)) wires = np.hstack(wires) inactive_wires = list(set(range(self.num_wires)) - set(wires)) prob = prob.reshape([2] * self.num_wires) return np.apply_over_axes(np.sum, prob, inactive_wires).flatten() def expval(self, observable): wires = observable.wires if self.analytic: # exact expectation value eigvals = observable.eigvals prob = self.probability(wires=wires) return (eigvals @ prob).real # estimate the ev return np.mean(self.sample(observable)) def var(self, observable): wires = observable.wires if self.analytic: # exact variance value eigvals = observable.eigvals prob = self.probability(wires=wires) return (eigvals ** 2) @ prob - (eigvals @ prob).real ** 2 # estimate the variance return np.var(self.sample(observable)) def sample(self, observable): wires = observable.wires name = observable.name if isinstance(name, str) and name in {"PauliX", "PauliY", "PauliZ", "Hadamard"}: # Process samples for observables with eigenvalues {1, -1} return 1 - 2 * self._samples[:, wires[0]] # Replace the basis state in the computational basis with the correct eigenvalue. # Extract only the columns of the basis samples required based on ``wires``. wires = np.hstack(wires) samples = self._samples[:, np.array(wires)] unraveled_indices = [2] * len(wires) indices = np.ravel_multi_index(samples.T, unraveled_indices) return observable.eigvals[indices]
36.963636
104
0.651676
79426bd58c427c8e4f0fd50831915065d3dfb32e
18,336
py
Python
discovery-provider/src/eth_indexing/event_scanner.py
atticwip/audius-protocol
9758e849fae01508fa1d27675741228b11533e6e
[ "Apache-2.0" ]
4
2021-12-24T14:16:05.000Z
2022-01-13T22:41:33.000Z
discovery-provider/src/eth_indexing/event_scanner.py
SNOmad1/audius-protocol
3d5fc2bf688265eb529060f1f3234ef2b95ed231
[ "Apache-2.0" ]
null
null
null
discovery-provider/src/eth_indexing/event_scanner.py
SNOmad1/audius-protocol
3d5fc2bf688265eb529060f1f3234ef2b95ed231
[ "Apache-2.0" ]
null
null
null
import datetime import time import logging from typing import Tuple, Iterable, Union, Type, TypedDict, Any from sqlalchemy import or_ from web3 import Web3 from web3.contract import Contract, ContractEvent from web3.exceptions import BlockNotFound from web3.types import BlockIdentifier # Currently this method is not exposed over official web3 API, # but we need it to construct eth_get_logs parameters from web3._utils.filters import construct_event_filter_params from web3._utils.events import get_event_data from eth_abi.codec import ABICodec from src.models.models import AssociatedWallet, EthBlock, User from src.utils.helpers import redis_set_and_dump, redis_get_or_restore from src.queries.get_balances import enqueue_immediate_balance_refresh logger = logging.getLogger(__name__) eth_indexing_last_scanned_block_key = "eth_indexing_last_scanned_block" # How many times we try to re-attempt a failed JSON-RPC call MAX_REQUEST_RETRIES = 30 # Delay between failed requests to let JSON-RPC server to recover REQUEST_RETRY_SECONDS = 3 # Minimum number of blocks to scan for our JSON-RPC throttling parameters MIN_SCAN_CHUNK_SIZE = 10 # How many maximum blocks at the time we request from JSON-RPC # and we are unlikely to exceed the response size limit of the JSON-RPC server MAX_CHUNK_SCAN_SIZE = 10000 # Factor how was we increase chunk size if no results found CHUNK_SIZE_INCREASE = 2 # initial number of blocks to scan, this number will increase/decrease as a function of whether transfer events have been found within the range of blocks scanned START_CHUNK_SIZE = 20 # how many blocks from tail of chain we want to scan to ETH_BLOCK_TAIL_OFFSET = 1 # the block number to start with if first time scanning # this should be the first block during and after which $AUDIO transfer events started occurring MIN_SCAN_START_BLOCK = 11103292 class TransferEvent(TypedDict): logIndex: int transactionHash: Any blockNumber: int args: Any class EventScanner: """Scan blockchain for events and try not to abuse JSON-RPC API too much. Can be used for real-time scans, as it detects minor chain reorganisation and rescans. Unlike the easy web3.contract.Contract, this scanner can scan events from multiple contracts at once. For example, you can get all transfers from all tokens in the same scan. You *should* disable the default `http_retry_request_middleware` on your provider for Web3, because it cannot correctly throttle and decrease the `eth_get_logs` block number range. """ def __init__( self, db, redis, web3: Web3, contract: Type[Contract], event_type: Type[ContractEvent], filters: dict, ): """ :param db: database handle :param redis: redis handle :param web3: Web3 instantiated with provider url :param contract: Contract :param state: state manager to keep tracks of last scanned block and persisting events to db :param event_type: web3 Event we scan :param filters: Filters passed to get_logs e.g. { "address": <token-address> } """ self.logger = logger self.db = db self.redis = redis self.contract = contract self.web3 = web3 self.event_type = event_type self.filters = filters self.last_scanned_block = MIN_SCAN_START_BLOCK self.latest_chain_block = self.web3.eth.blockNumber def restore(self): """Restore the last scan state from redis. If value not found in redis, restore from database.""" restored = redis_get_or_restore(self.redis, eth_indexing_last_scanned_block_key) if not restored: with self.db.scoped_session() as session: result = session.query(EthBlock.last_scanned_block).first() restored = result[0] if result else restored self.last_scanned_block = int(restored) if restored else MIN_SCAN_START_BLOCK logger.info( f"event_scanner.py | Restored last scanned block ({self.last_scanned_block})" ) def save(self, block_number: int): """Save at the end of each chunk of blocks, so we can resume in the case of a crash or CTRL+C Next time the scanner is started we will resume from this block """ self.last_scanned_block = block_number logger.info( f"event_scanner.py | Saving last scanned block ({self.last_scanned_block}) to redis" ) redis_set_and_dump( self.redis, eth_indexing_last_scanned_block_key, str(self.last_scanned_block), ) with self.db.scoped_session() as session: record = session.query(EthBlock).first() if record: record.last_scanned_block = self.last_scanned_block else: record = EthBlock(last_scanned_block=self.last_scanned_block) session.add(record) def get_block_timestamp(self, block_num) -> Union[datetime.datetime, None]: """Get Ethereum block timestamp""" try: block_info = self.web3.eth.getBlock(block_num) except BlockNotFound: # Block was not mined yet, # minor chain reorganisation? return None last_time = block_info["timestamp"] return datetime.datetime.utcfromtimestamp(last_time) def get_suggested_scan_end_block(self): """Get the last mined block on Ethereum chain we are following.""" # Do not scan all the way to the final block, as this # block might not be mined yet return self.latest_chain_block - ETH_BLOCK_TAIL_OFFSET def get_last_scanned_block(self) -> int: """The number of the last block we have stored.""" return self.last_scanned_block def process_event( self, block_timestamp: datetime.datetime, event: TransferEvent ) -> str: """Record a ERC-20 transfer in our database.""" # Events are keyed by their transaction hash and log index # One transaction may contain multiple events # and each one of those gets their own log index log_index = event["logIndex"] # Log index within the block # transaction_index = event.transactionIndex # Transaction index within the block txhash = event["transactionHash"].hex() # Transaction hash block_number = event["blockNumber"] # Convert ERC-20 Transfer event to our internal format args = event["args"] transfer = { "from": args["from"], "to": args["to"], "value": args["value"], "timestamp": block_timestamp, } # add user ids from the transfer event into the balance refresh queue transfer_event_wallets = [transfer["from"].lower(), transfer["to"].lower()] with self.db.scoped_session() as session: result = ( session.query(User.user_id) .outerjoin(AssociatedWallet, User.user_id == AssociatedWallet.user_id) .filter(User.is_current == True) .filter(AssociatedWallet.is_current == True) .filter(AssociatedWallet.is_delete == False) .filter( or_( User.wallet.in_(transfer_event_wallets), AssociatedWallet.wallet.in_(transfer_event_wallets), ) ) .all() ) user_ids = [user_id for [user_id] in result] enqueue_immediate_balance_refresh(self.redis, user_ids) # Return a pointer that allows us to look up this event later if needed return f"{block_number}-{txhash}-{log_index}" def scan_chunk(self, start_block, end_block) -> Tuple[int, list]: """Read and process events between to block numbers. Dynamically decrease the size of the chunk in case the JSON-RPC server pukes out. :return: tuple(actual end block number, when this block was mined, processed events) """ block_timestamps = {} get_block_timestamp = self.get_block_timestamp # Cache block timestamps to reduce some RPC overhead # Real solution might include smarter models around block def get_block_mined_timestamp(block_num): if block_num not in block_timestamps: block_timestamps[block_num] = get_block_timestamp(block_num) return block_timestamps[block_num] all_processed = [] # Callable that takes care of the underlying web3 call def _fetch_events(from_block, to_block): return _fetch_events_for_all_contracts( self.web3, self.event_type, self.filters, from_block=from_block, to_block=to_block, ) # Do `n` retries on `eth_get_logs`, # throttle down block range if needed end_block, events = _retry_web3_call( _fetch_events, start_block=start_block, end_block=end_block ) for evt in events: idx = evt[ "logIndex" ] # Integer of the log index position in the block, null when its pending # We cannot avoid minor chain reorganisations, but # at least we must avoid blocks that are not mined yet assert idx is not None, "Somehow tried to scan a pending block" block_number = evt["blockNumber"] # Get UTC time when this event happened (block mined timestamp) # from our in-memory cache block_timestamp = get_block_mined_timestamp(block_number) logger.debug( f'event_scanner.py | Processing event {evt["event"]}, block:{evt["blockNumber"]}' ) processed = self.process_event(block_timestamp, evt) all_processed.append(processed) return end_block, all_processed def estimate_next_chunk_size(self, current_chuck_size: int, event_found_count: int): """Try to figure out optimal chunk size Our scanner might need to scan the whole blockchain for all events * We want to minimize API calls over empty blocks * We want to make sure that one scan chunk does not try to process too many entries once, as we try to control commit buffer size and potentially asynchronous busy loop * Do not overload node serving JSON-RPC API by asking data for too many events at a time Currently Ethereum JSON-API does not have an API to tell when a first event occured in a blockchain and our heuristics try to accelerate block fetching (chunk size) until we see the first event. These heurestics exponentially increase the scan chunk size depending on if we are seeing events or not. When any transfers are encountered, we are back to scanning only a few blocks at a time. It does not make sense to do a full chain scan starting from block 1, doing one JSON-RPC call per 20 blocks. """ if event_found_count > 0: # When we encounter first events, reset the chunk size window current_chuck_size = MIN_SCAN_CHUNK_SIZE else: current_chuck_size *= CHUNK_SIZE_INCREASE current_chuck_size = max(MIN_SCAN_CHUNK_SIZE, current_chuck_size) current_chuck_size = min(MAX_CHUNK_SCAN_SIZE, current_chuck_size) return int(current_chuck_size) def scan( self, start_block, end_block, start_chunk_size=START_CHUNK_SIZE, ) -> Tuple[list, int]: """Perform a token events scan. :param start_block: The first block included in the scan :param end_block: The last block included in the scan :param start_chunk_size: How many blocks we try to fetch over JSON-RPC on the first attempt :return: [All processed events, number of chunks used] """ current_block = start_block # Scan in chunks, commit between chunk_size = start_chunk_size last_scan_duration = last_logs_found = 0 total_chunks_scanned = 0 # All processed entries we got on this scan cycle all_processed = [] while current_block <= end_block: # Print some diagnostics to logs to try to fiddle with real world JSON-RPC API performance estimated_end_block = min( current_block + chunk_size, self.get_suggested_scan_end_block() ) logger.debug( "event_scanner.py | Scanning token transfers for blocks: %d - %d, chunk size %d, last chunk scan took %f, last logs found %d", current_block, estimated_end_block, chunk_size, last_scan_duration, last_logs_found, ) start = time.time() actual_end_block, new_entries = self.scan_chunk( current_block, estimated_end_block ) # Where does our current chunk scan ends - are we out of chain yet? current_end = actual_end_block last_scan_duration = int(time.time() - start) all_processed += new_entries # Try to guess how many blocks to fetch over `eth_get_logs` API next time chunk_size = self.estimate_next_chunk_size(chunk_size, len(new_entries)) # Set where the next chunk starts current_block = current_end + 1 total_chunks_scanned += 1 self.save(min(current_end, self.get_suggested_scan_end_block())) return all_processed, total_chunks_scanned def _retry_web3_call( # type: ignore func, start_block, end_block, retries=MAX_REQUEST_RETRIES, delay=REQUEST_RETRY_SECONDS, ) -> Tuple[int, list]: # type: ignore """A custom retry loop to throttle down block range. If our JSON-RPC server cannot serve all incoming `eth_get_logs` in a single request, we retry and throttle down block range for every retry. For example, Go Ethereum does not indicate what is an acceptable response size. It just fails on the server-side with a "context was cancelled" warning. :param func: A callable that triggers Ethereum JSON-RPC, as func(start_block, end_block) :param start_block: The initial start block of the block range :param end_block: The initial start block of the block range :param retries: How many times we retry :param delay: Time to sleep between retries """ for i in range(retries): try: return end_block, func(start_block, end_block) except Exception as e: # Assume this is HTTPConnectionPool(host='localhost', port=8545): Read timed out. (read timeout=10) # from Go Ethereum. This translates to the error "context was cancelled" on the server side: # https://github.com/ethereum/go-ethereum/issues/20426 if i < retries - 1: # Give some more verbose info than the default middleware logger.warning( "event_scanner.py | Retrying events for block range %d - %d (%d) failed with %s, retrying in %s seconds", start_block, end_block, end_block - start_block, e, delay, ) # Decrease the `eth_get_blocks` range end_block = start_block + ((end_block - start_block) // 2) # Let the JSON-RPC to recover e.g. from restart time.sleep(delay) continue else: logger.warning("event_scanner.py | Out of retries") raise def _fetch_events_for_all_contracts( web3, event_type, argument_filters: dict, from_block: BlockIdentifier, to_block: BlockIdentifier, ) -> Iterable: """Get events using eth_get_logs API. This method is detached from any contract instance. This is a stateless method, as opposed to createFilter. It can be safely called against nodes which do not provide `eth_newFilter` API, like Infura. """ if from_block is None: raise TypeError("Missing mandatory keyword argument to get_logs: fromBlock") # Currently no way to poke this using a public Web3.py API. # This will return raw underlying ABI JSON object for the event abi = event_type._get_event_abi() # Depending on the Solidity version used to compile # the contract that uses the ABI, # it might have Solidity ABI encoding v1 or v2. # We just assume the default that you set on Web3 object here. # More information here https://eth-abi.readthedocs.io/en/latest/index.html codec: ABICodec = web3.codec # Here we need to poke a bit into Web3 internals, as this # functionality is not exposed by default. # Construct JSON-RPC raw filter presentation based on human readable Python descriptions # Namely, convert event names to their keccak signatures # More information here: # https://github.com/ethereum/web3.py/blob/e176ce0793dafdd0573acc8d4b76425b6eb604ca/web3/_utils/filters.py#L71 _, event_filter_params = construct_event_filter_params( abi, codec, address=argument_filters.get("address"), argument_filters=argument_filters, fromBlock=from_block, toBlock=to_block, ) logger.debug( "event_scanner.py | Querying eth_get_logs with the following parameters: %s", event_filter_params, ) # Call JSON-RPC API on your Ethereum node. # get_logs() returns raw AttributedDict entries logs = web3.eth.getLogs(event_filter_params) # Convert raw binary data to Python proxy objects as described by ABI all_events = [] for log in logs: # Convert raw JSON-RPC log result to human readable event by using ABI data # More information how processLog works here # https://github.com/ethereum/web3.py/blob/fbaf1ad11b0c7fac09ba34baff2c256cffe0a148/web3/_utils/events.py#L200 event = get_event_data(codec, abi, log) all_events.append(event) return all_events
40.476821
176
0.660013
79426c4fbdda41af4238f10987aa941ddb5f7585
3,846
py
Python
src/virtual_io_server/volume_group/ModifyVolumeGroup.py
Niraj-Shah-1/HmcRestClient-1.0
529002588cd9bf5313f1c8ed2948ab96e648d45c
[ "Apache-2.0" ]
21
2015-04-23T06:26:20.000Z
2022-03-23T16:16:32.000Z
src/virtual_io_server/volume_group/ModifyVolumeGroup.py
Niraj-Shah-1/HmcRestClient-1.0
529002588cd9bf5313f1c8ed2948ab96e648d45c
[ "Apache-2.0" ]
7
2015-06-17T15:13:15.000Z
2020-09-18T00:47:04.000Z
src/virtual_io_server/volume_group/ModifyVolumeGroup.py
Niraj-Shah-1/HmcRestClient-1.0
529002588cd9bf5313f1c8ed2948ab96e648d45c
[ "Apache-2.0" ]
13
2015-06-17T09:48:20.000Z
2021-03-15T12:09:22.000Z
# Copyright 2015, 2016 IBM Corp. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from src.utility import HTTPClient from src.generated_src import UOM import pyxb ROOT = "VirtualIOServer" CONTENT_TYPE = "application/vnd.ibm.powervm.uom+xml; type=VolumeGroup" LOGICALVOLUME_NAME = "lv_1" PHYSICALVOLUME_NAME = "hdisk7" SCHEMA_VERSION = "V1_3_0" def sendrequest(xml, ip, root, content_type, x_api_session, vios_uuid, volumegroup_id): """ performs the HTTPPost request with modified volume group """ http_object = HTTPClient.HTTPClient("uom", ip, root, content_type, x_api_session) http_object.HTTPPost(xml,append=vios_uuid+"/VolumeGroup/"+volumegroup_id) if http_object.response_b: return True else: return False class ModifyVolumeGroup: def __init__(self): """ initializes root and content-type """ self.root = ROOT self.content_type = CONTENT_TYPE def add_physicalvolume(self, ip, vios_uuid, x_api_session, volumegroup_object): """ adds a Physical volume to the selected volume group Args: ip:ip address of hmc vios_uuid:UUID of VirtualIOServer x_api_session:session to be used volumegroup_object:volume group object to be modified """ pyxb.RequireValidWhenGenerating(True) physicalvolume_object = UOM.PhysicalVolume() physicalvolume_object.VolumeName = PHYSICALVOLUME_NAME physicalvolume_object.schemaVersion = SCHEMA_VERSION volumegroup_object.PhysicalVolumes.PhysicalVolume.append(physicalvolume_object) xml = volumegroup_object.toxml() volumegroup_id = volumegroup_object.Metadata.Atom.AtomID.value() response = sendrequest(xml, ip, self.root, self.content_type, x_api_session, vios_uuid, volumegroup_id) if response : print("Physical volume added to volumegroup Successfully") else: print("Adding Physical volume to volumegroup failed") def add_virtualdisk(self, ip, vios_uuid, x_api_session, volumegroup_object): """ creates a virtualdisk in VolumeGroup Args: ip:ip address of hmc vios_uuid:UUID of VirtualIOServer x_api_session:session to be used volumegroup_object:volume group object to be modified """ pyxb.RequireValidWhenGenerating(True) virtualdisk_object = UOM.VirtualDisk() virtualdisk_object.DiskName = LOGICALVOLUME_NAME virtualdisk_object.schemaVersion = SCHEMA_VERSION virtualdisk_object.DiskCapacity = volumegroup_object.GroupCapacity.value()/2 volumegroup_object.VirtualDisks.VirtualDisk.append(virtualdisk_object) xml = volumegroup_object.toxml() volumegroup_id = volumegroup_object.Metadata.Atom.AtomID.value() response = sendrequest(xml, ip, self.root, self.content_type, x_api_session, vios_uuid, volumegroup_id) if response : print("VirtualDisk Created in VolumeGroup Successfully") else: print("VirtualDisk Creation unsuccessfull")
41.804348
115
0.674207
79426daf099d673a1f5a3cc3e136325015387acb
1,500
py
Python
app/recipe/serializers.py
theonlysam/recipe-app-api
bb840796dc9b5a9760fd6e2c29e2ae3a0a26e92e
[ "MIT" ]
null
null
null
app/recipe/serializers.py
theonlysam/recipe-app-api
bb840796dc9b5a9760fd6e2c29e2ae3a0a26e92e
[ "MIT" ]
null
null
null
app/recipe/serializers.py
theonlysam/recipe-app-api
bb840796dc9b5a9760fd6e2c29e2ae3a0a26e92e
[ "MIT" ]
null
null
null
from rest_framework import serializers from core.models import Tag, Ingredient, Recipe class TagSerializer(serializers.ModelSerializer): """ Serializer for tag objects """ class Meta: model = Tag fields = ('id', 'name') read_only_fields = ('id',) class IngredientSerializer(serializers.ModelSerializer): """ Serializer for ingredient objects """ class Meta: model = Ingredient fields = ('id', 'name') read_only_fields = ('id',) class RecipeSerializer(serializers.ModelSerializer): """ Serializer for recipe objects """ ingredients = serializers.PrimaryKeyRelatedField( many=True, queryset=Ingredient.objects.all() ) tags = serializers.PrimaryKeyRelatedField( many=True, queryset=Ingredient.objects.all() ) class Meta: model = Recipe fields = ( 'id', 'title', 'ingredients', 'tags', 'time_minutes', 'price', 'link' ) read_only_fields = ('id',) class RecipeDetailSerializer(RecipeSerializer): """ Serializer for a recipe detail """ ingredients = IngredientSerializer(many=True, read_only=True) tags = TagSerializer(many=True, read_only=True) class RecipeImageSerializer(serializers.ModelSerializer): """ Serializer for uploading images to recipes """ class Meta: model = Recipe fields = ('id', 'image') read_only_fields = ('id',)
23.4375
65
0.623333
79426e030fd5a5dc8b650b319715cdd0ee9e46fc
4,835
py
Python
chatterbot/logic/logic_adapter.py
ingeniousambivert/chatbot
fb1d9659df6c1b6eddd8ee9349f5a65a0530db2a
[ "BSD-3-Clause" ]
null
null
null
chatterbot/logic/logic_adapter.py
ingeniousambivert/chatbot
fb1d9659df6c1b6eddd8ee9349f5a65a0530db2a
[ "BSD-3-Clause" ]
null
null
null
chatterbot/logic/logic_adapter.py
ingeniousambivert/chatbot
fb1d9659df6c1b6eddd8ee9349f5a65a0530db2a
[ "BSD-3-Clause" ]
null
null
null
from chatterbot.adapters import Adapter from chatterbot.storage import StorageAdapter from chatterbot.search import IndexedTextSearch from chatterbot.conversation import Statement class LogicAdapter(Adapter): """ This is an abstract class that represents the interface that all logic adapters should implement. :param search_algorithm_name: The name of the search algorithm that should be used to search for close matches to the provided input. Defaults to the value of ``Search.name``. :param maximum_similarity_threshold: The maximum amount of similarity between two statement that is required before the search process is halted. The search for a matching statement will continue until a statement with a greater than or equal similarity is found or the search set is exhausted. Defaults to 0.95 :param response_selection_method: The a response selection method. Defaults to ``get_first_response`` :type response_selection_method: collections.abc.Callable :param default_response: The default response returned by this logic adaper if there is no other possible response to return. :type default_response: str or list or tuple """ def __init__(self, chatbot, **kwargs): super().__init__(chatbot, **kwargs) from chatterbot.response_selection import get_first_response self.search_algorithm_name = kwargs.get( 'search_algorithm_name', IndexedTextSearch.name ) self.search_algorithm = self.chatbot.search_algorithms[ self.search_algorithm_name ] self.maximum_similarity_threshold = kwargs.get( 'maximum_similarity_threshold', 0.95 ) # By default, select the first available response self.select_response = kwargs.get( 'response_selection_method', get_first_response ) default_responses = kwargs.get('default_response', []) # Convert a single string into a list if isinstance(default_responses, str): default_responses = [ default_responses ] self.default_responses = [ Statement(text=default) for default in default_responses ] def can_process(self, statement): """ A preliminary check that is called to determine if a logic adapter can process a given statement. By default, this method returns true but it can be overridden in child classes as needed. :rtype: bool """ return True def process(self, statement, additional_response_selection_parameters=None): """ Override this method and implement your logic for selecting a response to an input statement. A confidence value and the selected response statement should be returned. The confidence value represents a rating of how accurate the logic adapter expects the selected response to be. Confidence scores are used to select the best response from multiple logic adapters. The confidence value should be a number between 0 and 1 where 0 is the lowest confidence level and 1 is the highest. :param statement: An input statement to be processed by the logic adapter. :type statement: Statement :param additional_response_selection_parameters: Parameters to be used when filtering results to choose a response from. :type additional_response_selection_parameters: dict :rtype: Statement """ raise self.AdapterMethodNotImplementedError() def get_default_response(self, input_statement): """ This method is called when a logic adapter is unable to generate any other meaningful response. """ from random import choice if self.default_responses: response = choice(self.default_responses) else: try: response = self.chatbot.storage.get_random() except StorageAdapter.EmptyDatabaseException: response = input_statement self.chatbot.logger.info( 'No known response to the input was found. Selecting a random response.' ) # Set confidence to zero because a random response is selected response.confidence = 0 return response @property def class_name(self): """ Return the name of the current logic adapter class. This is typically used for logging and debugging. """ return str(self.__class__.__name__)
36.08209
102
0.651706
79426e0bbe7e4fc0ed0f4a115ae78da0882a3752
25,924
py
Python
MappingGlobalCarbon/gfw_forestlearn/fl_regression.py
forc-db/GROA
a316bd6c70d02a8904a19fc554747acfadbae0c1
[ "CC-BY-4.0" ]
20
2020-09-27T07:37:19.000Z
2022-02-19T13:26:47.000Z
MappingGlobalCarbon/gfw_forestlearn/fl_regression.py
forc-db/GROA
a316bd6c70d02a8904a19fc554747acfadbae0c1
[ "CC-BY-4.0" ]
2
2020-09-18T11:08:37.000Z
2021-03-25T11:16:22.000Z
MappingGlobalCarbon/gfw_forestlearn/fl_regression.py
forc-db/GROA
a316bd6c70d02a8904a19fc554747acfadbae0c1
[ "CC-BY-4.0" ]
9
2020-11-12T01:49:16.000Z
2022-02-22T00:54:02.000Z
import subprocess import gdal import pandas as pd import numpy as np import glob import rasterio import os import datetime import csv import random from math import sqrt import pickle import math import datetime import warnings from shutil import copyfile import csv import sys import math import shutil from sklearn.model_selection import cross_val_score from sklearn import metrics from sklearn import svm from sklearn.model_selection import GridSearchCV, StratifiedKFold, validation_curve, train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder from sklearn.compose import ColumnTransformer from sklearn.ensemble import RandomForestRegressor from sklearn.base import BaseEstimator, TransformerMixin from sklearn.decomposition import PCA from sklearn.feature_selection import SelectFromModel from sklearn.svm import LinearSVR from sklearn.neural_network import MLPClassifier from sklearn.utils import resample from sklearn.metrics import mean_squared_error import xgboost as xgb class ForestLearn(object): """ Build machine learning object that can find the best parameters for final run. """ def __init__(self, predictors=[], y_column=None, xy = [], cat_feats = [], one_hot_feats = []): """ Defines predictors, response variable, coordinate column names, binary features, categorical features, and numeric features Inputs: predictors (list): List of predictor variables to be used in model, these will also be referred to as features y_column (string): Name of response variable column in dataframes xy (list): Name of coordinate columns for x, y (or longitude, latitude) positions of pixels cat_feats (list): List of binary features that will stay (0,1) one_hot_feats (list): List of categorical features with more than one category, these will be transformed using one hot encoding to binary features. Numeric features are those that are listed in predictors but not in cat_feats or one_hot_feats. Predictors, cat_feats, and one_hot_feats are combined to ensure all features are used and removes duplicates, so you can list both cat_feats and one_hot_feats in predictors or enter them seperately. For example: predictors= ['rainfall','temperature','biome','protected'] cat_feats = ['protected'] one_hot_feats = ['biome'] OR predictors= ['rainfall','temperature'] cat_feats = ['protected'] one_hot_feats = ['biome'] are both accepted. """ # Exit if y_column is not present if y_column is None: sys.exit('"y_column" must be defined in training process...') # Merge inputted feature lists and remove duplicates predictors = list(set(predictors + cat_feats + one_hot_feats)) # Select numeric features as predictors that are not in cat_feats or one_hot_feats numeric_features = [x for x in predictors if x not in cat_feats+one_hot_feats] # Save parameters to ForestLearn object self.y_column = y_column self.xy = xy self.predictors = predictors self.numeric_features = numeric_features self.categorical_features = cat_feats self.one_hot_features = one_hot_feats self.best_params = {} self.rmse = {} self.r2 = {} self.avg_res = {} self.avg_abs_res = {} def tune_param_set(self, train, params, out_modelfilename, cv_results_filename, k=5, scoring='neg_root_mean_squared_error', n_jobs=4,verbose=1,refit=True): """ Given a dictionary of lists of parameters to try, runs GridSearchCV to use cross validation to find the best set of parameters based on the cross validation score defined in the scoring variable. Saves the best fitting model to ForestLearn object, outputs model to pickle file, and outputs cross-validation results See documentation on GridSearchCV: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html Inputs: train (DataFrame): Dataframe of training data containing predictors and y_column params (dictionary): Dictionary with parameters names (str) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. out_modelfilename (string): Output file name to save trained model, using pickle, should have extension .pkl cv_results_filename (string): Output file name to save cross-validation results, should be a csv with extension .csv k (integer): Integer number for number of folds in cross-validation scoring (string): Scoring name to evaluate model, see https://scikit-learn.org/stable/modules/model_evaluation.html for options n_jobs (integer): Integer number of threads (CPUs) to train model, -1 uses all verbose (integer): Controls the verbosity: the higher, the more messages. refit (boolean): Refit an estimator using the best found parameters on the whole dataset. Returns: None """ # Define grid_search grid_search = GridSearchCV(self.mdl, params, n_jobs=n_jobs, verbose=verbose, cv=k, scoring=scoring, refit=refit, return_train_score=True) # Fit grid_search grid_search.fit(train[self.predictors], train[self.y_column]) # Save best parameters self.best_params = grid_search.best_params_ # Save best mdoel self.mdl = grid_search.best_estimator_ # Save best model to out_modelfilename pickle.dump(self.mdl, open(out_modelfilename, 'wb')) # Save cv_results to cv_results_filename cv_results_df = pd.DataFrame.from_dict(grid_search.cv_results_) cv_results_df.to_csv(cv_results_filename,index=False) return self.mdl def fit_model_with_params(self, train, out_modelfilename, in_params=None, in_modelfilename=None): """ Given a dictionary of parameters or input model filename to load parameters from trained model, trains a model with inputted parameters on training data and saves model. This parameters should only be for the machine learning part of the pipeline, named "learn". This step should only be run after setting up model pipeline type, i.e. running setup_xgb_model or setup_rf_model where the feature scaling and selecting is done. Inputs: train (DataFrame): Dataframe of training data containing predictors and y_column out_modelfilename (string): Output file name to save trained model, using pickle, should have extension .pkl in_params (dictionary): Dictionary with parameters names (str) as keys and parameter setting as value to train the model in_modelfilename (string): Input file name of trained model to load parameters, should have extension .pkl Returns: None """ # Exit if in_params or in_modelfilename is not given if (in_params is None) and (in_modelfilename is None): sys.exit('Either in_params or in_modelfilename must be provided') # If in_params is given, load parameters for "learn" machine learning part of the pipeline elif in_params: self.mdl.named_steps['learn'].set_params(**in_params) params = in_params # If in_modelfilename is given, load parameters from modelfile for "learn" machine learning part of the pipeline elif in_modelfilename: in_model = pickle.load(open(in_modelfilename, 'rb')) params = in_model.named_steps['learn'].get_params() self.mdl.named_steps['learn'].set_params(**params) # Fit model on training data in train self.mdl.fit(train[self.predictors], train[self.y_column]) # Save best parameters self.best_params = params # Save to out_modelfilename pickle.dump(self.mdl, open(out_modelfilename, 'wb')) return self.mdl def load_model_from_file(self, in_modelfilename): """ Loads inputted model and saves to ForestLearn object Inputs: in_modelfilename (string): Input file name of trained model to save, should have extension .pkl Returns: None """ self.mdl = pickle.load(open(in_modelfilename, 'rb')) self.best_params = self.mdl.named_steps['learn'].get_params() return self.mdl def save_feature_importances(self, feature_importance_filename): # """ # Saves feature importances from trained model # # Inputs: # feature_importance_filename (string): File name to save feature importances to, should have extension .csv # """ # # If one_hot_features are listed, grab the new one hot encoded feature names # # Then the list of parameters is numeric features, one hot encoded features, and categorical features # # preprocess_step = list(self.mdl.named_steps.keys())[-2] # transformer = self.mdl.named_steps[preprocess_step] # print(transformer) # if isinstance(transformer,ColumnTransformer): # print(transformer.transformers_) # elif isinstance(transformer,SelectFromModel): # print(transformer.get_support()) #print() #print(transformers) # names = [x[1].named_steps for x in transformers] # # has_pca = False # has_one_hot = False # # for dictionary in names: # for value in dictionary.values(): # if isinstance(value,PCA): # has_pca = True # if isinstance(value,OneHotEncoder): # has_one_hot=True # # print(self.one_hot_features, has_pca, has_one_hot) if self.one_hot_features: try: ohe = (self.mdl.named_steps['preprocess'].named_transformers_['cat'].named_steps['onehot']) one_hot_feature_names = ohe.get_feature_names(input_features=self.one_hot_features) all_feature_names = np.r_[self.numeric_features, one_hot_feature_names, self.categorical_features] except: all_feature_names = self.predictors # Otherwise the features are in order else: all_feature_names = self.predictors print(len(self.mdl.named_steps['learn'].feature_importances_)) # Merge feature importances and names, save to file # try: # feature_importances = self.mdl.named_steps['learn'].feature_importances_ # feature_dictionary = {'Feature Names':all_feature_names,'Importances':feature_importances} # dictionary = pd.DataFrame(feature_dictionary) # dictionary = dictionary.sort_values(by='Importances', axis=0, ascending=False, na_position='last') # dictionary.to_csv(feature_importance_filename,index=0) # except Exception as e: # print('No feature importances collected, reporting exception: ', e) def predict_data(self, df, out_file, name, other_columns=[],dropna=True): """ Uses trained model to predict accuracy over inputted data that has the response variable to asses score, such as training, validation, or test set. Saves coordinates, true response variable, predicted response variable, residual, and copies of other_columns (if included) into out_file Calculates the RMSE, R-Squared, average residual, and average absolute residual for scores. Inputs: df (DataFrame): Dataframe of data to predict over containing predictors and y_column out_file (string): File name to save data with predictions to name (string): Name of dataset to save scores using "save_scores" method, examples could be "training", "testing", or "validation" other_columns (list): Other columns that should also be included, this could be a unique ID of datapoints dropna (boolean): Whether to remove records with any nan values. If set to False and NaN values are not resolved, this will cause an error. Returns: None """ # Prepare output dataframe with columns if len(other_columns)>0: out_df = pd.DataFrame(columns=self.xy+other_columns+['Y_true','Est','Residual']) else: out_df = pd.DataFrame(columns=self.xy+['Y_true','Est','Residual']) out_df.to_csv(out_file,index=False) # Remove records with NaN values if dropna is tru if dropna: df = df.dropna() # Predict and calculate residual #print(df[self.predictors]) y_hat = self.mdl.predict(df[self.predictors]) residual = df[self.y_column].values - y_hat # Create series with data dfY = pd.Series(df[self.y_column].values, name='Y_true') dfY_hat = pd.Series(y_hat, name='Est') dfResidual = pd.Series(residual, name='Residual') dfCoords = df[self.xy].reset_index(drop=True) # If other_columns are listed, merge all of this data and output if len(other_columns)>0: dfOtherVariables = df[other_columns].reset_index(drop=True) df0 = pd.concat([dfCoords, dfOtherVariables, dfY, dfY_hat, dfResidual], axis=1) out_df = pd.DataFrame(df0, columns=self.xy+other_columns+['Y_true','Est','Residual']) out_df.to_csv(out_file, mode='a', header=False, index=False) # Otherwise merge all the data and output else: df0 = pd.concat([dfCoords, dfY, dfY_hat, dfResidual], axis=1) out_df = pd.DataFrame(df0, columns=self.xy+['Y_true','Est','Residual']) out_df.to_csv(out_file, mode='a', header=False, index=False) # Calculate scores and save as parameters to ForestLearn to output in "save_scores" self.rmse[name] = math.sqrt(metrics.mean_squared_error(df[self.y_column], y_hat)) self.r2[name] = metrics.r2_score(df[self.y_column], y_hat) self.avg_res[name] = np.mean(df[self.y_column] - y_hat) self.avg_abs_res[name] = np.mean(abs(df[self.y_column] - y_hat)) def save_scores(self, out_file): """ Saves scores from predict_data Inputs: out_file (string): File name to save scores to Returns: None """ # Create dictionary and save dict_list = [self.rmse, self.r2, self.avg_res, self.avg_abs_res] df = pd.DataFrame(dict_list) df.insert(0, 'Scores', ['Root Mean Square Error','R-Squared','Average Residual','Average Absolute Residual']) df.to_csv(out_file,index=False) def predict_unsupervised_data(self, in_file, out_file, chunksize=500000, dropna=True): """ Uses trained model to predict over data from in_file and saves output to out_file Inputs: in_file (String): File name to load data from out_file (string): File name to save data with predictions to chunksize (integer): Chunk size to read data as, this is helpfull if the data is larger than memory can read dropna (boolean): Whether to remove records with any nan values. If set to False and NaN values are not resolved, this will cause an error. Returns: None """ # Prepare output dataframe out_df = pd.DataFrame(columns=self.xy+['Est']) out_df.to_csv(out_file,index=False) # Read in file using extension if '.csv' in in_file: chunks = pd.read_csv(in_file, chunksize=chunksize) else: chunks = pd.read_hdf(in_file, chunksize=chunksize) # Loop over chunks for df in chunks: # Remove records with NaN values if dropna is tru if dropna: df = df.dropna() # Predict data y_hat = self.mdl.predict(df[self.predictors]) # Save results dfY_hat = pd.Series(y_hat, name='Est').reset_index(drop=True) dfCoords = df[self.xy].reset_index(drop=True) df0 = pd.concat([dfCoords, dfY_hat, dfProb], axis=1) out_df = pd.DataFrame(df0, columns=self.xy+['Est']) out_df.to_csv(out_file, mode='a', header=False, index=False) ''' The following methods are for instatiating model pipelines, which creates steps for numeric feature scaling, one hot encoding, and feature selection. Learn more about the sci-kit learn model pipelines here: https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html We have a number of different ones precoded to use ''' def setup_rf_model(self): ''' Sets up a random forest model with no feature selection or scaling Returns: self.mdl (Sk-learn Pipeline object) ''' mdl1 = RandomForestRegressor( n_estimators=500, max_features="sqrt", min_samples_split=5, oob_score=True, ) estimators = [ ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl def setup_rf_model_scale(self): ''' Sets up a random forest model with numeric feature scaling and one-hot-encoding Returns: self.mdl (Sk-learn Pipeline object) ''' numeric_transformer = Pipeline(steps=[ ('scale', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, self.numeric_features), ('cat', categorical_transformer, self.one_hot_features)],remainder='passthrough') mdl1 = RandomForestRegressor( n_estimators=500, max_features="sqrt", min_samples_split=5, oob_score=True, ) estimators = [ ('preprocess', preprocessor), ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl def setup_rf_model_PCA(self): ''' Sets up a random forest model with numeric feature scaling, one-hot-encoding, and principle component analysis Returns: self.mdl (Sk-learn Pipeline object) ''' numeric_transformer = Pipeline(steps=[ ('scale', StandardScaler()), ('PCA', PCA(0.95))]) categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, self.numeric_features), ('cat', categorical_transformer, self.one_hot_features)],remainder='passthrough') mdl1 = RandomForestRegressor( n_estimators=500, max_features="sqrt", min_samples_split=5, oob_score=True, ) estimators = [ ('preprocess', preprocessor), ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl def setup_rf_model_scale_SVR_FS(self): ''' Sets up a random forest model with numeric feature scaling, one-hot-encoding, and support vector machine feature selection Returns: self.mdl (Sk-learn Pipeline object) ''' numeric_transformer = Pipeline(steps=[ ('scale', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, self.numeric_features), ('cat', categorical_transformer, self.one_hot_features)],remainder='passthrough') mdl1 = RandomForestRegressor( n_estimators=500, max_features="sqrt", min_samples_split=5, oob_score=True, ) estimators = [ ('preprocess', preprocessor), ('feature_selection', SelectFromModel(LinearSVR())), ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl def setup_rf_model_scale_RF_FS(self): ''' Sets up a random forest model with numeric feature scaling, one-hot-encoding, and random forest model feature selection Returns: self.mdl (Sk-learn Pipeline object) ''' numeric_transformer = Pipeline(steps=[ ('scale', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, self.numeric_features), ('cat', categorical_transformer, self.one_hot_features)],remainder='passthrough') mdl1 = RandomForestRegressor( n_estimators=500, max_features="sqrt", min_samples_split=5, oob_score=True, ) estimators = [ ('preprocess', preprocessor), ('feature_selection', SelectFromModel(RandomForestRegressor(n_estimators=100))), ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl def setup_xgb_model(self): ''' Sets up a XGBoost model Returns: self.mdl (Sk-learn Pipeline object) ''' mdl1 = xgb.XGBRegressor( learning_rate=0.1, n_estimators=50, objective='reg:squarederror', eval_metric='rmse', nthread=-1) estimators = [ ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl def setup_xgb_model_scale(self): ''' Sets up a XGBoost model with numeric feature scaling and one-hot-encoding Returns: self.mdl (Sk-learn Pipeline object) ''' numeric_transformer = Pipeline(steps=[('scale', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, self.numeric_features), ('cat', categorical_transformer, self.one_hot_features)],remainder='passthrough') mdl1 = xgb.XGBRegressor( learning_rate=0.1, n_estimators=50, objective='reg:squarederror', eval_metric='rmse', nthread=-1) estimators = [ ('preprocess', preprocessor), ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl def setup_xgb_model_PCA(self): ''' Sets up a XGBoost model with numeric feature scaling, one-hot-encoding, and principle component analysis Returns: self.mdl (Sk-learn Pipeline object) ''' numeric_transformer = Pipeline(steps=[ ('scale', StandardScaler()), ('PCA', PCA(0.95)) ]) categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, self.numeric_features), ('cat', categorical_transformer, self.one_hot_features)],remainder='passthrough') mdl1 = xgb.XGBRegressor( learning_rate=0.1, n_estimators=50, objective='reg:squarederror', eval_metric='rmse', nthread=-1) estimators = [ ('preprocess', preprocessor), ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl def setup_xgb_model_RF_FS(self): ''' Sets up a XGBoost model with numeric feature scaling, one-hot-encoding, and random forest feature selection Returns: self.mdl (Sk-learn Pipeline object) ''' numeric_transformer = Pipeline(steps=[('scale', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, self.numeric_features), ('cat', categorical_transformer, self.one_hot_features)],remainder='passthrough') mdl1 = xgb.XGBRegressor( learning_rate=0.1, n_estimators=50, objective='reg:squarederror', eval_metric='rmse', nthread=-1) estimators = [ ('preprocess', preprocessor), ('feature_selection', SelectFromModel(RandomForestRegressor(n_estimators=100))), ('learn', mdl1) ] self.mdl = Pipeline(estimators) return self.mdl
41.611557
160
0.627951
79426e7e57840738d65686499b55b8e7f573e7e6
1,573
py
Python
src-django/api/migrations/0026_auto_20180313_2240.py
m-socha/sana.protocol_builder
7b054bbab5ed981bd7bbc357e9657024f3e380e7
[ "BSD-3-Clause" ]
6
2015-06-05T22:41:10.000Z
2017-09-06T07:08:09.000Z
src-django/api/migrations/0026_auto_20180313_2240.py
SanaMobile/sana.protocol_builder
e7e784797bf7b3a3060329f033fca5f411ebcc97
[ "BSD-3-Clause" ]
406
2015-01-11T05:50:07.000Z
2018-01-05T23:01:04.000Z
src-django/api/migrations/0026_auto_20180313_2240.py
m-socha/sana.protocol_builder
7b054bbab5ed981bd7bbc357e9657024f3e380e7
[ "BSD-3-Clause" ]
9
2015-10-12T23:39:31.000Z
2018-07-11T20:59:32.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.3 on 2018-03-13 22:40 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): dependencies = [ ('api', '0025_merge'), ] operations = [ migrations.CreateModel( name='Subroutine', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('uuid', models.UUIDField(default=uuid.uuid4, editable=False)), ('created', models.DateTimeField(auto_now_add=True)), ('last_modified', models.DateTimeField(auto_now=True)), ('name', models.CharField(max_length=255)), ('display_name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ], options={ 'ordering': ['last_modified'], }, ), migrations.AlterField( model_name='abstractelement', name='concept', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='abstractelement', to='api.Concept'), ), migrations.AddField( model_name='abstractelement', name='subroutine', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='abstractelements', to='api.Subroutine'), ), ]
36.581395
146
0.599491
79426ef5e49711f4547366c45ab2ad709983f8d1
2,687
py
Python
workflow/plot_all_cartels.py
calltri/journal-citation-cartels
2c7967eccb4783f136f8da47d417a0fe9e625c2a
[ "BSD-2-Clause" ]
null
null
null
workflow/plot_all_cartels.py
calltri/journal-citation-cartels
2c7967eccb4783f136f8da47d417a0fe9e625c2a
[ "BSD-2-Clause" ]
null
null
null
workflow/plot_all_cartels.py
calltri/journal-citation-cartels
2c7967eccb4783f136f8da47d417a0fe9e625c2a
[ "BSD-2-Clause" ]
null
null
null
import numpy as np import pandas as pd import utils from scipy import sparse import matplotlib.pyplot as plt import seaborn as sns import sys import matplotlib.colors as colors from matplotlib import cm import os sys.path.append(os.path.abspath(os.path.join("libs/cidre"))) from cidre import cidre, filters, draw def load_valid_cartel(year, cartel_dir): """Loads a cartel for a given year, returning an empty dataframe if none are there""" fileName = "{root}/cartels-{year}.csv".format(root=cartel_dir, year=year) if not os.path.exists(fileName): return pd.DataFrame() cartel_table = pd.read_csv( fileName, sep="\t" ) cartel_table["year"] = year return cartel_table def get_affiliation_name(graph, id): """Given database and id returns the display name""" # Compute the paper count first query = """ MATCH (a:Affiliations) WHERE a.AffiliationId="%d" return a.NormalizedName """ % ( id, ) df = graph.run(query).data() df = df[0]['a.NormalizedName'] print("{id}: {name}".format(id=id, name=df)) return df # python workflow/plot-all-cartels.py data/cartels data/figs data/networks 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 if __name__ == '__main__': CARTEL_DIR = sys.argv[1] PLOT_DIR = sys.argv[2] NETWORK_DIR = sys.argv[3] YEARS = [int(y) for y in sys.argv[4:]] theta = 0.15 graph = utils.get_db() # For each year make plots for year in YEARS: citation_group_table = load_valid_cartel(year, CARTEL_DIR) # Skip years that have nothing if citation_group_table.empty: continue W, A_gen, nodes = utils.load_network(year, NETWORK_DIR) # Load the class for drawing a cartel dc = draw.DrawCartel() # Set up the canvas fig, axes = plt.subplots(figsize=(10,10)) sns.set_style("white") sns.set(font_scale = 1.2) sns.set_style("ticks") # Set the name of each node citation_group_table["name"] = citation_group_table["mag_affiliation_id"].apply(lambda x : str(get_affiliation_name(graph, x))) for cid, cartel in citation_group_table.groupby("group_id"): dc.draw( W, cartel.node_id.values.tolist(), cartel.donor_score.values.tolist(), cartel.recipient_score.values.tolist(), theta, cartel.name.values.tolist(), ax=axes, ) plt.savefig("{root}/{year}-{cid}-cartel-plots.png".format(root=PLOT_DIR, year=year, cid=cid))
31.244186
169
0.633048
7942721871d37e7572cda011766f4c262ee7123f
2,077
py
Python
resources/fred/evaluator.py
zeroshot-ts/zeroshot-ts
177039565c3729dec0c25e8830c366c069b32ead
[ "Apache-2.0" ]
null
null
null
resources/fred/evaluator.py
zeroshot-ts/zeroshot-ts
177039565c3729dec0c25e8830c366c069b32ead
[ "Apache-2.0" ]
null
null
null
resources/fred/evaluator.py
zeroshot-ts/zeroshot-ts
177039565c3729dec0c25e8830c366c069b32ead
[ "Apache-2.0" ]
null
null
null
from collections import OrderedDict from collections import OrderedDict from dataclasses import dataclass import numpy as np from common.evaluator import Evaluator, EvaluationResult from common.metrics import smape_2 from common.timeseries import TimeseriesBundle from common.utils import round_half_up from resources.fred.dataset import FredDataset, FredMeta @dataclass class FredEvaluator(Evaluator): validation: bool = False def evaluate(self, forecast: TimeseriesBundle) -> EvaluationResult: insamples, _ = FredDataset(FredMeta.dataset_path).standard_split() if self.validation: horizons_map = FredMeta().horizons_map() insamples, _ = insamples.split(lambda ts: ts.split(-horizons_map[ts.meta['seasonal_pattern']])) grouped_smapes = {sp: np.mean(smape_2(forecast=np.array(self.filter_by_sp(forecast, sp).values()), target=np.array(self.filter_by_sp(self.test_set, sp).values()))) for sp in FredMeta.seasonal_patterns} grouped_smapes = self.summarize_groups(grouped_smapes) return self.round_values(grouped_smapes) def summarize_groups(self, scores): scores_summary = OrderedDict() weighted_score = {} for sp in ['Yearly', 'Quarterly', 'Monthly', 'Weekly', 'Daily']: weighted_score[sp] = scores[sp] * len(self.filter_by_sp(self.test_set, sp).timeseries) scores_summary[sp] = scores[sp] average = np.sum(list(weighted_score.values())) / len(self.test_set.timeseries) scores_summary['Average'] = average return scores_summary @staticmethod def filter_by_sp(bundle: TimeseriesBundle, seasonal_pattern: str) -> TimeseriesBundle: return bundle.filter(lambda ts: ts.meta['seasonal_pattern'] == seasonal_pattern) @staticmethod def round_values(scores: OrderedDict): rounded_scores = OrderedDict() for k, v in scores.items(): rounded_scores[k] = round_half_up(v, 3) return rounded_scores
37.763636
110
0.690419
79427296b2f1b12c30bfc7fd806b65648fe061d2
22,792
py
Python
src/genie/libs/parser/iosxe/show_lldp.py
ngrundler/genieparser
a78dfde72042744d4ea559f87cb014821d9a305a
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/iosxe/show_lldp.py
ngrundler/genieparser
a78dfde72042744d4ea559f87cb014821d9a305a
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/iosxe/show_lldp.py
ngrundler/genieparser
a78dfde72042744d4ea559f87cb014821d9a305a
[ "Apache-2.0" ]
null
null
null
"""show_lldp.py supported commands: * show lldp * show lldp entry * * show lldp entry [<WORD>] * show lldp interface [<WORD>] * show lldp neighbors detail * show lldp traffic """ import re from genie.metaparser import MetaParser from genie.metaparser.util.schemaengine import Schema, \ Any, \ Optional, \ Or, \ And, \ Default, \ Use # import parser utils from genie.libs.parser.utils.common import Common class ShowLldpSchema(MetaParser): """Schema for show lldp""" schema = { 'status': str, 'enabled': bool, 'hello_timer': int, 'hold_timer': int, 'reinit_timer': int } class ShowLldp(ShowLldpSchema): """Parser for show lldp""" cli_command = 'show lldp' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # initial return dictionary ret_dict = {} # initial regexp pattern p1 = re.compile(r'^Status: +(?P<status>\w+)$') p2 = re.compile(r'^LLDP +(?P<pattern>[\w\s]+) +(?P<value>\d+) +seconds$') for line in out.splitlines(): line = line.strip() # Status: ACTIVE m = p1.match(line) if m: status = m.groupdict()['status'].lower() ret_dict['status'] = status ret_dict['enabled'] = True if 'active' in status else False continue # LLDP advertisements are sent every 30 seconds # LLDP hold time advertised is 120 seconds # LLDP interface reinitialisation delay is 2 seconds m = p2.match(line) if m: group = m.groupdict() if re.search('(advertisements +are +sent +every)', group['pattern']): key = 'hello_timer' elif re.search('(hold +time +advertised +is)', group['pattern']): key = 'hold_timer' elif re.search('(interface +reinitialisation +delay +is)', group['pattern']): key = 'reinit_timer' else: continue ret_dict[key] = int(group['value']) continue return ret_dict class ShowLldpEntrySchema(MetaParser): """Schema for show lldp entry [<WORD>|*]""" schema = { 'total_entries': int, Optional('interfaces'): { Any(): { 'if_name': str, 'port_id': { Any(): { 'neighbors': { Any(): { 'chassis_id': str, 'port_id': str, 'neighbor_id': str, Optional('port_description'): str, Optional('system_description'): str, Optional('system_name'): str, 'time_remaining': int, Optional('capabilities'): { Any():{ Optional('system'): bool, Optional('enabled'): bool, 'name': str, } }, Optional('management_address'): str, Optional('auto_negotiation'): str, Optional('physical_media_capabilities'): list, Optional('unit_type'): int, Optional('vlan_id'): int, } } } } } }, Optional('med_information'): { 'f/w_revision': str, Optional('h/w_revision'): str, Optional('s/w_revision'): str, 'manufacturer': str, 'model': str, 'capabilities': list, 'device_type': str, 'network_policy': { Any(): { # 'voice'; 'voice_signal' 'vlan': int, # 110 'tagged': bool, 'layer_2_priority': int, 'dscp': int, }, }, Optional('serial_number'): str, 'power_source': str, 'power_priority': str, 'wattage': float, 'location': str, } } class ShowLldpEntry(ShowLldpEntrySchema): """Parser for show lldp entry {* | word}""" CAPABILITY_CODES = {'R': 'router', 'B': 'mac_bridge', 'T': 'telephone', 'C': 'docsis_cable_device', 'W': 'wlan_access_point', 'P': 'repeater', 'S': 'station_only', 'O': 'other'} cli_command = ['show lldp entry {entry}', 'show lldp entry *'] def cli(self, entry='',output=None): if output is None: if entry: cmd = self.cli_command[0].format(entry=entry) else: cmd = self.cli_command[1] out = self.device.execute(cmd) else: out = output # initial return dictionary ret_dict = {} item = '' sub_dict = {} # ==== initial regexp pattern ==== # Local Intf: Gi2/0/15 p1 = re.compile(r'^Local\s+Intf:\s+(?P<intf>[\w\/\.\-]+)$') # Port id: Gi1/0/4 p1_1 = re.compile(r'^Port\s+id:\s+(?P<port_id>[\S\s]+)$') # Chassis id: 843d.c638.b980 p2 = re.compile(r'^Chassis\s+id:\s+(?P<chassis_id>[\w\.]+)$') # Port Description: GigabitEthernet1/0/4 p3 = re.compile(r'^Port\s+Description:\s+(?P<desc>[\w\/\.\-\s]+)$') # System Name: R5 # System Name - not advertised p4 = re.compile(r'^System\s+Name(?: +-|:)\s+(?P<name>[\S\s]+)$') # System Description: p5 = re.compile(r'^System\s+Description:.*$') # Cisco IOS Software, C3750E Software (C3750E-UNIVERSALK9-M), Version 12.2(58)SE2, RELEASE SOFTWARE (fc1) # Technical Support: http://www.cisco.com/techsupport # Copyright (c) 1986-2011 by Cisco Systems, Inc. # Cisco IP Phone 7962G,V12, SCCP42.9-3-1ES27S p5_1 = re.compile(r'^(?P<msg>(Cisco +IOS +Software|Technical Support|Copyright|Cisco IP Phone).*)$') # Compiled Thu 21-Jul-11 01:23 by prod_rel_team # Avaya 1220 IP Deskphone, Firmware:06Q # IP Phone, Firmware:90234AP p5_2 = re.compile(r'^(?P<msg>(Compile|Avaya|IP Phone).*)$') # Time remaining: 112 seconds p6 = re.compile(r'^Time\s+remaining:\s+(?P<time_remaining>\w+)\s+seconds$') # System Capabilities: B,R p7 = re.compile(r'^System\s+Capabilities:\s+(?P<capab>[\w\,\s]+)$') # Enabled Capabilities: B,R p8 = re.compile(r'^Enabled\s+Capabilities:\s+(?P<capab>[\w\,\s]+)$') # Management Addresses: # IP: 10.9.1.1 # Management Addresses - not advertised p9 = re.compile(r'^IP:\s+(?P<ip>[\w\.]+)$') p9_1 = re.compile(r'^Management\s+Addresses\s+-\s+(?P<ip>not\sadvertised)$') # Auto Negotiation - supported, enabled p10 = re.compile(r'^Auto\s+Negotiation\s+\-\s+(?P<auto_negotiation>[\w\s\,]+)$') # Physical media capabilities: p11 = re.compile(r'^Physical\s+media\s+capabilities:$') # 1000baseT(FD) # 100base-TX(HD) # Symm, Asym Pause(FD) # Symm Pause(FD) p11_1 = re.compile(r'^(?P<physical_media_capabilities>[\S\(\s]+(HD|FD)[\)])$') # Media Attachment Unit type: 30 p12 = re.compile(r'^Media\s+Attachment\s+Unit\s+type:\s+(?P<unit_type>\d+)$') # Vlan ID: 1 # Note: not parsing 'not advertised since value type is int p13 = re.compile(r'^^Vlan\s+ID:\s+(?P<vlan_id>\d+)$') # Total entries displayed: 4 p14 = re.compile(r'^Total\s+entries\s+displayed:\s+(?P<entry>\d+)$') # ==== MED Information patterns ===== # F/W revision: 06Q # S/W revision: SCCP42.9-3-1ES27S # H/W revision: 12 med_p1 = re.compile(r'^(?P<head>(H/W|F/W|S/W))\s+revision:\s+(?P<revision>\S+)$') # Manufacturer: Avaya-05 med_p2 = re.compile(r'^Manufacturer:\s+(?P<manufacturer>[\S\s]+)$') # Model: 1220 IP Deskphone med_p3 = re.compile(r'^Model:\s+(?P<model>[\S\s]+)$') # Capabilities: NP, LI, PD, IN med_p4 = re.compile(r'^Capabilities:\s+(?P<capabilities>[\S\s]+)$') # Device type: Endpoint Class III med_p5 = re.compile(r'^Device\s+type:\s+(?P<device_type>[\S\s]+)$') # Network Policy(Voice): VLAN 110, tagged, Layer-2 priority: 5, DSCP: 46 # Network Policy(Voice Signal): VLAN 110, tagged, Layer-2 priority: 0, DSCP: 0 med_p6 = re.compile(r'^Network\s+Policy\(Voice(\s+(?P<voice_signal>Signal))?\):' r'\s+VLAN\s+(?P<vlan>\d+),\s+(?P<tagged>tagged),\s+' r'Layer-2 priority:\s+(?P<layer_2_priority>\d+),\s+DSCP:\s+(?P<dscp>\d+)$') # PD device, Power source: Unknown, Power Priority: High, Wattage: 6.0 med_p7 = re.compile(r'^(?P<device_type>PD device),\s+Power\s+source:\s+(?P<power_source>\S+),\s+' r'Power\s+Priority:\s+(?P<power_priority>\S+),\s+Wattage:\s+(?P<wattage>\S+)$') # Location - not advertised med_p8 = re.compile(r'^Location\s+-\s+(?P<location>[\S\s]+)$') # Serial number: FCH1610A5S5 med_p9 = re.compile(r'^Serial\s+number:\s+(?P<serial_number>\S+)$') for line in out.splitlines(): line = line.strip() # Local Intf: Gi2/0/15 m = p1.match(line) if m: intf = Common.convert_intf_name(m.groupdict()['intf']) intf_dict = ret_dict.setdefault('interfaces', {}).setdefault(intf, {}) intf_dict['if_name'] = intf sub_dict = {} continue # Chassis id: 843d.c638.b980 m = p2.match(line) if m: sub_dict = {} chassis_id = m.groupdict()['chassis_id'] sub_dict.setdefault('chassis_id', chassis_id) continue # Port id: Gi1/0/4 m = p1_1.match(line) if m: if 'interfaces' not in ret_dict: intf_dict = ret_dict.setdefault('interfaces', {}).setdefault('N/A', {}) intf_dict['if_name'] = 'N/A' port_id = Common.convert_intf_name(m.groupdict()['port_id']) port_dict = intf_dict.setdefault('port_id', {}). \ setdefault(port_id, {}) sub_dict.setdefault('port_id', port_id) continue # Port Description: GigabitEthernet1/0/4 m = p3.match(line) if m: sub_dict.setdefault('port_description', m.groupdict()['desc']) continue # System Name: R5 # System Name - not advertised m = p4.match(line) if m: name = m.groupdict()['name'] nei_dict = port_dict.setdefault('neighbors', {}).setdefault(name, {}) sub_dict['system_name'] = name nei_dict['neighbor_id'] = name nei_dict.update(sub_dict) continue # System Description: m = p5.match(line) if m: nei_dict.update({'system_description': ''}) continue # Cisco IOS Software, C3750E Software (C3750E-UNIVERSALK9-M), Version 12.2(58)SE2, RELEASE SOFTWARE (fc1) # Technical Support: http://www.cisco.com/techsupport # Copyright (c) 1986-2011 by Cisco Systems, Inc. # Cisco IP Phone 7962G,V12, SCCP42.9-3-1ES27S m = p5_1.match(line) if m: nei_dict['system_description'] += m.groupdict()['msg'] + '\n' continue # Compiled Thu 21-Jul-11 01:23 by prod_rel_team # Avaya 1220 IP Deskphone, Firmware:06Q # IP Phone, Firmware:90234AP m = p5_2.match(line) if m: nei_dict['system_description'] += m.groupdict()['msg'] continue # Time remaining: 112 seconds m = p6.match(line) if m: nei_dict['time_remaining'] = int(m.groupdict()['time_remaining']) continue # System Capabilities: B,R m = p7.match(line) if m: cap = [self.CAPABILITY_CODES[n] for n in m.groupdict()['capab'].split(',')] for item in cap: cap_dict = nei_dict.setdefault('capabilities', {}).\ setdefault(item, {}) cap_dict['name'] = item cap_dict['system'] = True continue # Enabled Capabilities: B,R m = p8.match(line) if m: cap = [self.CAPABILITY_CODES[n] for n in m.groupdict()['capab'].split(',')] for item in cap: cap_dict = nei_dict.setdefault('capabilities', {}).\ setdefault(item, {}) cap_dict['name'] = item cap_dict['enabled'] = True continue # Management Addresses: # IP: 10.9.1.1 # Management Addresses - not advertised m = p9.match(line) or p9_1.match(line) if m: nei_dict['management_address'] = m.groupdict()['ip'] continue # Auto Negotiation - supported, enabled m = p10.match(line) if m: nei_dict['auto_negotiation'] = m.groupdict()['auto_negotiation'] continue # Physical media capabilities: m = p11.match(line) if m: nei_dict['physical_media_capabilities'] = [] continue # 1000baseT(FD) # 100base-TX(HD) # Symm, Asym Pause(FD) # Symm Pause(FD) m = p11_1.match(line) if m: item = nei_dict.get('physical_media_capabilities', []) item.append(m.groupdict()['physical_media_capabilities']) nei_dict['physical_media_capabilities'] = item continue # Media Attachment Unit type: 30 m = p12.match(line) if m: nei_dict['unit_type'] = int(m.groupdict()['unit_type']) continue # Vlan ID: 1 # Note: not parsing 'not advertised since value type is int m = p13.match(line) if m: nei_dict['vlan_id'] = int(m.groupdict()['vlan_id']) continue # Total entries displayed: 4 m = p14.match(line) if m: ret_dict['total_entries'] = int(m.groupdict()['entry']) continue # ==== Med Information ==== # F/W revision: 06Q # S/W revision: SCCP42.9-3-1ES27S # H/W revision: 12 m = med_p1.match(line) if m: group = m.groupdict() med_dict = ret_dict.setdefault('med_information', {}) med_dict[group['head'].lower()+'_revision'] = m.groupdict()['revision'] continue # Manufacturer: Avaya-05 # Model: 1220 IP Deskphone # Device type: Endpoint Class III m = med_p2.match(line) or med_p3.match(line) or med_p5.match(line) if m: match_key = [*m.groupdict().keys()][0] med_dict[match_key] = m.groupdict()[match_key] continue # Capabilities: NP, LI, PD, IN m = med_p4.match(line) if m: list_capabilities = m.groupdict()['capabilities'].split(', ') med_dict['capabilities'] = list_capabilities continue # Network Policy(Voice): VLAN 110, tagged, Layer-2 priority: 5, DSCP: 46 # Network Policy(Voice Signal): VLAN 110, tagged, Layer-2 priority: 0, DSCP: 0 m = med_p6.match(line) if m: group = m.groupdict() if group['voice_signal']: voice = 'voice_signal' else: voice = 'voice' voice_sub_dict = med_dict.setdefault('network_policy', {}).\ setdefault(voice, {}) if group['tagged'] == 'tagged': voice_sub_dict['tagged'] = True else: voice_sub_dict['tagged'] = False for k in ['layer_2_priority', 'dscp', 'vlan']: voice_sub_dict[k] = int(group[k]) continue # PD device, Power source: Unknown, Power Priority: High, Wattage: 6.0 m = med_p7.match(line) if m: for k in ['device_type', 'power_source', 'power_priority']: med_dict[k] = m.groupdict()[k] med_dict['wattage'] = float(m.groupdict()['wattage']) continue # Location - not advertised m = med_p8.match(line) if m: med_dict['location'] = m.groupdict()['location'] continue # Serial number: FCH1610A5S5 m = med_p9.match(line) if m: med_dict['serial_number']: m.groupdict()['serial_number'] continue return ret_dict class ShowLldpNeighborsDetail(ShowLldpEntry): '''Parser for show lldp neighbors detail''' cli_command = 'show lldp neighbors detail' exclude = ['time_remaining'] def cli(self,output=None): if output is None: show_output = self.device.execute(self.cli_command) else: show_output = output return super().cli(output=show_output) class ShowLldpTrafficSchema(MetaParser): """Schema for show lldp traffic""" schema = { "frame_in": int, "frame_out": int, "frame_error_in": int, "frame_discard": int, "tlv_discard": int, 'tlv_unknown': int, 'entries_aged_out': int } class ShowLldpTraffic(ShowLldpTrafficSchema): """Parser for show lldp traffic""" cli_command = 'show lldp traffic' exclude = ['frame_in' , 'frame_out', 'tlv_discard', 'tlv_unknown'] def cli(self,output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # initial return dictionary ret_dict = {} # initial regexp pattern p1 = re.compile(r'^(?P<pattern>[\w\s]+): +(?P<value>\d+)$') for line in out.splitlines(): line = line.strip() # Total frames out: 20372 # Total entries aged: 34 # Total frames in: 13315 # Total frames received in error: 0 # Total frames discarded: 14 # Total TLVs discarded: 0 # Total TLVs unrecognized: 0 m = p1.match(line) if m: group = m.groupdict() if re.search('(Total +frames +out)', group['pattern']): key = 'frame_out' elif re.search('(Total +entries +aged)', group['pattern']): key = 'entries_aged_out' elif re.search('(Total +frames +in)', group['pattern']): key = 'frame_in' elif re.search('(Total +frames +received +in +error)', group['pattern']): key = 'frame_error_in' elif re.search('(Total +frames +discarded)', group['pattern']): key = 'frame_discard' elif re.search('(Total +TLVs +discarded)', group['pattern']): key = 'tlv_discard' elif re.search('(Total +TLVs +unrecognized)', group['pattern']): key = 'tlv_unknown' else: continue ret_dict[key] = int(group['value']) continue return ret_dict class ShowLldpInterfaceSchema(MetaParser): """Schema for show lldp interface [<WORD>]""" schema = { 'interfaces': { Any(): { 'tx': str, 'rx': str, 'tx_state': str, 'rx_state': str, }, } } class ShowLldpInterface(ShowLldpInterfaceSchema): """Parser for show lldp interface [<WORD>]""" cli_command = ['show lldp interface {interface}','show lldp interface'] def cli(self, interface='',output=None): if output is None: if interface: cmd = self.cli_command[0].format(interface=interface) else: cmd = self.cli_command[1] out = self.device.execute(cmd) else: out = output # initial return dictionary ret_dict = {} # initial regexp pattern p1 = re.compile(r'^(?P<intf>[\w\/\-\.]+):$') p2 = re.compile(r'^(?P<key>[\w\s]+): +(?P<value>[\w\s]+)$') for line in out.splitlines(): line = line.strip() # GigabitEthernet1/0/15 m = p1.match(line) if m: intf_dict = ret_dict.setdefault('interfaces', {}).\ setdefault(m.groupdict()['intf'], {}) continue # Tx: enabled # Rx: enabled # Tx state: IDLE # Rx state: WAIT FOR FRAME m = p2.match(line) if m: group = m.groupdict() key = '_'.join(group['key'].lower().split()) intf_dict[key] = group['value'].lower() continue return ret_dict
36.063291
117
0.478282
794273ed9dcb4fbaa257e3b10cd126bda79258d9
935
py
Python
datastructure/practice/c7/c_7_37.py
stoneyangxu/python-kata
979af91c74718a525dcd2a83fe53ec6342af9741
[ "MIT" ]
null
null
null
datastructure/practice/c7/c_7_37.py
stoneyangxu/python-kata
979af91c74718a525dcd2a83fe53ec6342af9741
[ "MIT" ]
null
null
null
datastructure/practice/c7/c_7_37.py
stoneyangxu/python-kata
979af91c74718a525dcd2a83fe53ec6342af9741
[ "MIT" ]
null
null
null
import unittest from datastructure.links.PositionList import PositionList def has_sum_equals(position_list, V): if position_list.is_empty(): return None sum_dict = {} current = position_list.first() while current is not None: if current.element() in sum_dict: return sum_dict[current.element()], current sum_dict[V - current.element()] = current current = position_list.after(current) return None class MyTestCase(unittest.TestCase): def test_something(self): position_list = PositionList() position_list.add_last(1) p = position_list.add_last(3) position_list.add_last(4) q = position_list.add_last(7) position_list.add_last(5) self.assertEqual(None, has_sum_equals(position_list, 22)) self.assertEqual((p, q), has_sum_equals(position_list, 10)) if __name__ == '__main__': unittest.main()
26.714286
67
0.673797
794275121810a83919f3894fcb094ff16cfdf2e1
1,074
bzl
Python
nisaba/scripts/brahmic/constant.bzl
google-research/nisaba
41cfe4390b421ecfb26b351a6b36d85dfb7ba153
[ "Apache-2.0" ]
16
2020-12-03T22:45:18.000Z
2022-01-21T07:28:35.000Z
nisaba/scripts/brahmic/constant.bzl
google-research/nisaba
41cfe4390b421ecfb26b351a6b36d85dfb7ba153
[ "Apache-2.0" ]
9
2021-02-19T19:50:21.000Z
2021-09-01T21:06:26.000Z
nisaba/scripts/brahmic/constant.bzl
google-research/nisaba
41cfe4390b421ecfb26b351a6b36d85dfb7ba153
[ "Apache-2.0" ]
2
2021-11-05T14:49:41.000Z
2022-01-29T18:27:54.000Z
# Copyright 2021 Nisaba Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Starlark constants for Brahmic targets.""" # Script and language codes are used as per IANA registry: # https://www.iana.org/assignments/language-subtag-registry SCRIPTS = [ "Beng", "Bugi", "Deva", "Gujr", "Guru", "Knda", "Lepc", "Limb", "Mlym", "Mtei", "Newa", "Orya", "Sinh", "Sylo", "Takr", "Taml", "Telu", "Tglg", "Thaa", "Tirh", ] LANG_DIRS = { "Beng": ["as", "bn"], } FIXED_RULE_SCRIPTS = ["Mlym"]
22.851064
74
0.648045
794275be32255d7dc0de4facc367bd4115a900ed
3,074
py
Python
recipes/Python/578203_pygmail_can_send_mail/recipe-578203.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/578203_pygmail_can_send_mail/recipe-578203.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/578203_pygmail_can_send_mail/recipe-578203.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
# -*- coding: utf-8 -*- """ Created on Mon Jul 9 20:57:29 2012 @author: garrett @email: [email protected] original pygmail from: https://github.com/vinod85/pygmail/blob/master/pygmail.py """ import imaplib, smtplib import re from email.mime.text import MIMEText class pygmail(object): IMAP_SERVER='imap.gmail.com' IMAP_PORT=993 SMTP_SERVER = 'smtp.gmail.com' SMTP_PORT=465 def __init__(self): self.M = None self.response = None self.mailboxes = [] def login(self, username, password): self.M = imaplib.IMAP4_SSL(self.IMAP_SERVER, self.IMAP_PORT) self.S = smtplib.SMTP_SSL(self.SMTP_SERVER, self.SMTP_PORT) rc, self.response = self.M.login(username, password) sc, self.response_s = self.S.login(username, password) self.username = username return rc, sc def send_mail(self, to_addrs, msg, subject = None): msg = MIMEText(msg) if subject != None: msg['Subject'] = subject msg['From'] = self.username msg['To'] = to_addrs return self.S.sendmail(self.username, to_addrs, msg.as_string()) def get_mailboxes(self): rc, self.response = self.M.list() for item in self.response: self.mailboxes.append(item.split()[-1]) return rc def get_mail_count(self, folder='Inbox'): rc, self.response = self.M.select(folder) return self.response[0] def get_unread_count(self, folder='Inbox'): rc, self.response = self.M.status(folder, "(UNSEEN)") unreadCount = re.search("UNSEEN (\d+)", self.response[0]).group(1) return unreadCount def get_imap_quota(self): quotaStr = self.M.getquotaroot("Inbox")[1][1][0] r = re.compile('\d+').findall(quotaStr) if r == []: r.append(0) r.append(0) return float(r[1])/1024, float(r[0])/1024 def get_mails_from(self, uid, folder='Inbox'): status, count = self.M.select(folder, readonly=1) status, response = self.M.search(None, 'FROM', uid) email_ids = [e_id for e_id in response[0].split()] return email_ids def get_mail_from_id(self, id): status, response = self.M.fetch(id, '(body[header.fields (subject)])') return response def rename_mailbox(self, oldmailbox, newmailbox): rc, self.response = self.M.rename(oldmailbox, newmailbox) return rc def create_mailbox(self, mailbox): rc, self.response = self.M.create(mailbox) return rc def delete_mailbox(self, mailbox): rc, self.response = self.M.delete(mailbox) return rc def logout(self): self.M.logout() self.S.quit() if __name__ == '__main__': user = '[email protected]' pwd = 'govegan4life' gm = pygmail() gm.login(user, pwd) send_to = '[email protected]' msg = 'Hi there, have you ever thought about the suffering of animals? Go vegan!' gm.send_mail(send_to, msg, 'peace')
29.84466
85
0.614509
79427603c2774214d29eb900cd10e1c722b9f4fd
1,627
py
Python
mli/server.py
m-pilia/mli
2e351cd98dbc9e689e252b823bb2ba63ac028716
[ "MIT" ]
1
2020-04-14T13:05:42.000Z
2020-04-14T13:05:42.000Z
mli/server.py
m-pilia/mli
2e351cd98dbc9e689e252b823bb2ba63ac028716
[ "MIT" ]
1
2020-04-14T19:08:22.000Z
2020-04-14T19:08:22.000Z
mli/server.py
m-pilia/mli
2e351cd98dbc9e689e252b823bb2ba63ac028716
[ "MIT" ]
null
null
null
import json import logging import socket import sys import threading import matlab.engine from .mlsession import MLSession logger = logging.getLogger(__name__) logger.addHandler(logging.StreamHandler()) class _ML_JSON_Encoder(json.JSONEncoder): def default(self, o): if isinstance(o, matlab.engine.FutureResult): return 'FutureResult' return super(_ML_JSON_Encoder, self).default(o) def _serve_client(connection, matlab_session): try: with connection: data = bytes.decode(connection.recv(4096)) logger.info('Serving request: %s', data) try: data = json.loads(data) ret = matlab_session.do(data['action'], *data['args'], **data['kwargs']) connection.sendall(json.dumps(ret, cls=_ML_JSON_Encoder).encode()) except json.decoder.JSONDecodeError: msg = sys.exc_info() logger.error(msg) connection.sendall(json.dumps({'ret': None, 'out': str(msg)}).encode()) except ConnectionAbortedError: return def main(args): logger.setLevel(args.log_level) ml = MLSession(session_name=args.session_name) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.settimeout(3.0) s.bind((args.host, args.port)) s.listen() logger.info('Waiting for incoming connections...') while True: try: conn, _ = s.accept() threading.Thread(target=_serve_client, args=(conn, ml)).start() except socket.timeout: continue
29.581818
88
0.617087
794276ed9c52c42667f5f048710c55d9de9dfd0a
3,789
py
Python
src/app/tests/mailchimp/tests_mailchimp_http.py
denkasyanov/education-backend
c796b6f2f1cc1cd09f83cab2ca0cc45344906ef5
[ "MIT" ]
151
2020-04-21T09:58:57.000Z
2021-09-12T09:01:21.000Z
src/app/tests/mailchimp/tests_mailchimp_http.py
denkasyanov/education-backend
c796b6f2f1cc1cd09f83cab2ca0cc45344906ef5
[ "MIT" ]
163
2020-05-29T20:52:00.000Z
2021-09-11T12:44:56.000Z
src/app/tests/mailchimp/tests_mailchimp_http.py
boochamoocha/education-backend
c6ffb0c00bc066c8f1e0a8c0ffe4d0215c7c416a
[ "MIT" ]
39
2020-04-21T12:28:16.000Z
2021-09-12T15:33:47.000Z
import pytest from app.integrations.mailchimp.exceptions import MailchimpNotFound, MailchimpWrongResponse pytestmark = [pytest.mark.django_db] def test_get_ok(mailchimp): mailchimp.http_mock.get('https://us05.api.mailchimp.com/3.0/test/endpoint', json={'ok': True}) assert mailchimp.http.get('test/endpoint') == {'ok': True} def test_custom_status_code(mailchimp): mailchimp.http_mock.get('https://us05.api.mailchimp.com/3.0/test/endpoint', json={'ok': True}, status_code=204) assert mailchimp.http.request(url='test/endpoint', method='GET', expected_status_code=204) == {'ok': True} def test_custom_status_code_fail(mailchimp): mailchimp.http_mock.get('https://us05.api.mailchimp.com/3.0/test/endpoint', json={'ok': True}, status_code=200) with pytest.raises(MailchimpWrongResponse): mailchimp.http.request(method='GET', url='test/endpoint', expected_status_code=931) def test_get_no_content(mailchimp): mailchimp.http_mock.get('https://us05.api.mailchimp.com/3.0/test/endpoint') assert mailchimp.http.get('test/endpoint') is None def test_post_ok(mailchimp): mailchimp.http_mock.post('https://us05.api.mailchimp.com/3.0/test/endpoint', json={'ok': True}) assert mailchimp.http.post('test/endpoint', payload={}) == {'ok': True} def test_post_no_content(mailchimp): mailchimp.http_mock.post('https://us05.api.mailchimp.com/3.0/test/endpoint') assert mailchimp.http.post('test/endpoint', payload={}) is None @pytest.mark.parametrize(('code', 'exception'), [ (504, MailchimpWrongResponse), (404, MailchimpNotFound), ]) def test_get_wrong_status_codes(mailchimp, code, exception): mailchimp.http_mock.get('https://us05.api.mailchimp.com/3.0/test/endpoint', json={'ok': True}, status_code=code) with pytest.raises(exception): mailchimp.http.get('test/endpoint') @pytest.mark.parametrize(('code', 'exception'), [ (504, MailchimpWrongResponse), (404, MailchimpNotFound), ]) def test_post_wrong_status_codes(mailchimp, code, exception): mailchimp.http_mock.post('https://us05.api.mailchimp.com/3.0/test/endpoint', json={'ok': True}, status_code=code) with pytest.raises(exception): mailchimp.http.post('test/endpoint', payload={}) def test_post_payload(mailchimp): def assertion(request, context): json = request.json() assert json['__mocked'] == 'test' return {'ok': True} mailchimp.http_mock.post('https://us05.api.mailchimp.com/3.0/test/endpoint', json=assertion) mailchimp.http.post('test/endpoint', payload={ '__mocked': 'test', }) @pytest.mark.xfail(strict=True, reason='Just to check above test works') def test_post_payload_fail(mailchimp): def assertion(request, context): json = request.json() assert json['__mocked'] == 'SHOULD NOT BE MOCKED' return {'ok': True} mailchimp.http_mock.post('https://us05.api.mailchimp.com/3.0/test/endpoint', json=assertion) mailchimp.http.post('test/endpoint', payload={ '__mocked': 'test', }) def test_authentication(mailchimp): def assertion(request, context): assert request.headers['Authorization'] == 'Basic dXNlcjprZXktdXMwNQ==' return {'ok': True} mailchimp.http_mock.get('https://us05.api.mailchimp.com/3.0/test/endpoint', json=assertion) mailchimp.http.get('test/endpoint') @pytest.mark.xfail(strict=True, reason='Just to check above test works') def test_authentication_wr0ng(mailchimp): def assertion(request, context): assert request.headers['Authorization'] == 'UNKNOWN AUTH DO NOT WORK' return {'ok': True} mailchimp.http_mock.get('https://us05.api.mailchimp.com/3.0/test/endpoint', json=assertion) mailchimp.http.get('test/endpoint')
31.840336
117
0.705199
79427742646a548f413048bbcf24e1c596ca5f84
2,108
py
Python
vision/body_analysis/ultraface/demo.py
mbencer/models
fb8271d5d5d9b90dbb1eb5e8e40f8f580fb248b3
[ "MIT" ]
1
2021-01-22T03:24:38.000Z
2021-01-22T03:24:38.000Z
vision/body_analysis/ultraface/demo.py
mbencer/models
fb8271d5d5d9b90dbb1eb5e8e40f8f580fb248b3
[ "MIT" ]
null
null
null
vision/body_analysis/ultraface/demo.py
mbencer/models
fb8271d5d5d9b90dbb1eb5e8e40f8f580fb248b3
[ "MIT" ]
null
null
null
import cv2 import onnxruntime as ort import argparse import numpy as np from dependencies.box_utils import predict # ------------------------------------------------------------------------------------------------------------------------------------------------ # Face detection using UltraFace-320 onnx model face_detector_onnx = "../ultraface/models/version-RFB-320.onnx" face_detector = ort.InferenceSession(face_detector_onnx) # scale current rectangle to box def scale(box): width = box[2] - box[0] height = box[3] - box[1] maximum = max(width, height) dx = int((maximum - width)/2) dy = int((maximum - height)/2) bboxes = [box[0] - dx, box[1] - dy, box[2] + dx, box[3] + dy] return bboxes # crop image def cropImage(image, box): num = image[box[1]:box[3], box[0]:box[2]] return num # face detection method def faceDetector(orig_image, threshold = 0.7): image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, (320, 240)) image_mean = np.array([127, 127, 127]) image = (image - image_mean) / 128 image = np.transpose(image, [2, 0, 1]) image = np.expand_dims(image, axis=0) image = image.astype(np.float32) input_name = face_detector.get_inputs()[0].name confidences, boxes = face_detector.run(None, {input_name: image}) boxes, labels, probs = predict(orig_image.shape[1], orig_image.shape[0], confidences, boxes, threshold) return boxes, labels, probs # ------------------------------------------------------------------------------------------------------------------------------------------------ # Main void parser=argparse.ArgumentParser() parser.add_argument("-i", "--image", type=str, required=False, help="input image") args=parser.parse_args() img_path = args.image if args.image else "dependencies/1.jpg" color = (255, 128, 0) orig_image = cv2.imread(img_path) boxes, labels, probs = faceDetector(orig_image) for i in range(boxes.shape[0]): box = scale(boxes[i, :]) cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), color, 4) cv2.imshow('', orig_image)
35.133333
146
0.588235
79427a245390294b40e56cd6f9de84794f6ef58f
2,645
py
Python
gpytorch/settings.py
ediphy-dwild/gpytorch
559c78a6446237ed7cc8e1cc7cf4ed8bf31a3c8a
[ "MIT" ]
null
null
null
gpytorch/settings.py
ediphy-dwild/gpytorch
559c78a6446237ed7cc8e1cc7cf4ed8bf31a3c8a
[ "MIT" ]
null
null
null
gpytorch/settings.py
ediphy-dwild/gpytorch
559c78a6446237ed7cc8e1cc7cf4ed8bf31a3c8a
[ "MIT" ]
null
null
null
class _feature_flag(object): _state = False @classmethod def on(cls): return cls._state @classmethod def _set_state(cls, state): cls._state = state def __init__(self, state=True): self.prev = self.__class__.on() self.state = state def __enter__(self): self.__class__._set_state(self.state) def __exit__(self, *args): self.__class__._set_state(self.prev) return False class _value_context(object): _global_value = None @classmethod def value(cls): return cls._global_value @classmethod def _set_value(cls, value): cls._global_value = value def __init__(self, value): self._orig_value = self.__class__.value() self._instance_value = value def __enter__(self, ): self.__class__._set_value(self._instance_value) def __exit__(self, *args): self.__class__._set_value(self._orig_value) return False class max_cg_iterations(_value_context): """ The maximum number of conjugate gradient iterations to perform (when computing matrix solves) More values results in more accurate solves Default: 20 """ _global_value = 20 class max_lanczos_iterations(_value_context): """ The maximum number of Lanczos iterations to perform This is used when 1) computing variance estiamtes 2) when drawing from MVNs, or 3) for kernel multiplication More values results in higher accuracy Default: 100 """ _global_value = 100 class max_lanczos_quadrature_iterations(_value_context): """ The maximum number of Lanczos iterations to perform when doing stochastic Lanczos quadrature. This is ONLY used for log determinant calculations and computing Tr(K^{-1}dK/d\theta) """ _global_value = 15 class num_likelihood_samples(_value_context): """ The number of samples to draw from a latent GP when computing a likelihood This is used in variational inference and training Default: 10 """ _global_value = 10 class num_trace_samples(_value_context): """ The number of samples to draw when stochastically computing the trace of a matrix More values results in more accurate trace estimations If the value is set to 0, then the trace will be deterministically computed Default: 10 """ _global_value = 10 class use_toeplitz(_feature_flag): """ Whether or not to use Toeplitz math with gridded data, grid inducing point modules Pros: memory efficient, faster on CPU Cons: slower on GPUs with < 10000 inducing points """ _state = True
26.188119
101
0.691871
79427a54d575585bb232ccdef6691b5c7ca36eca
27,055
py
Python
sphinx_toolbox/more_autodoc/regex.py
domdfcoding/sphinx-toolbox
fe5a35d6b4fce617514c4c243ad94fb8bd86b0bf
[ "MIT" ]
1
2020-09-27T15:37:27.000Z
2020-09-27T15:37:27.000Z
sphinx_toolbox/more_autodoc/regex.py
domdfcoding/sphinx-toolbox
fe5a35d6b4fce617514c4c243ad94fb8bd86b0bf
[ "MIT" ]
4
2020-08-25T19:01:19.000Z
2020-12-11T16:58:07.000Z
sphinx_toolbox/more_autodoc/regex.py
domdfcoding/sphinx-toolbox
fe5a35d6b4fce617514c4c243ad94fb8bd86b0bf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # # regex.py r""" Specialized Documenter for regular expression variables, similar to :rst:dir:`autodata`. .. versionadded:: 1.2.0 .. extensions:: sphinx_toolbox.more_autodoc.regex Usage ------- .. rst:directive:: autoregex Directive to automatically document a regular expression variable. The output is based on the :rst:dir:`autodata` directive, and takes all of its options except ``:annotation:``. .. rst:directive:option:: no-value Don't show the value of the variable. .. rst:directive:option:: value: value :type: string Show this instead of the value taken from the Python source code. .. rst:directive:option:: no-type Don't show the type of the variable. .. rst:directive:option:: no-flags Don't show the flags of the :class:`~typing.Pattern` object. .. rst:directive:option:: flags: flags :type: string Show this instead of the flags taken from the :class:`~typing.Pattern` object. This should be correctly formatted for insertion into reStructuredText, such as ``:py:data:`re.ASCII```. .. versionchanged:: 2.7.0 The flags :py:data:`re.DEBUG` and :py:data:`re.VERBOSE` are now hidden as they don't affect the regex itself. .. latex:clearpage:: .. rst:role:: regex Formats a regular expression with coloured output. .. rest-example:: :regex:`^Hello\s+[Ww]orld[.,](Lovely|Horrible) weather, isn't it (.*)?` .. versionchanged:: 2.11.0 Now generates coloured output with the LaTeX builder. """ # # Copyright © 2020-2022 Dominic Davis-Foster <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. # # Parts based on https://github.com/sphinx-doc/sphinx # | Copyright (c) 2007-2020 by the Sphinx team (see AUTHORS file). # | BSD Licensed # | All rights reserved. # | # | Redistribution and use in source and binary forms, with or without # | modification, are permitted provided that the following conditions are # | met: # | # | * Redistributions of source code must retain the above copyright # | notice, this list of conditions and the following disclaimer. # | # | * Redistributions in binary form must reproduce the above copyright # | notice, this list of conditions and the following disclaimer in the # | documentation and/or other materials provided with the distribution. # | # | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # | HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # stdlib import itertools import re import sre_parse from sre_constants import ( ANY, AT, AT_BEGINNING, AT_BEGINNING_STRING, AT_BOUNDARY, AT_END, AT_END_STRING, AT_NON_BOUNDARY, BRANCH, CATEGORY, CATEGORY_DIGIT, CATEGORY_NOT_DIGIT, CATEGORY_NOT_SPACE, CATEGORY_NOT_WORD, CATEGORY_SPACE, CATEGORY_WORD, IN, LITERAL, MAX_REPEAT, MAXREPEAT, MIN_REPEAT, RANGE, SUBPATTERN ) from textwrap import dedent from typing import Any, Callable, List, Optional, Pattern, Tuple # 3rd party import dict2css from docutils import nodes from docutils.nodes import Node, system_message from domdf_python_tools.paths import PathPlus from domdf_python_tools.stringlist import StringList from sphinx.application import Sphinx from sphinx.ext.autodoc import UNINITIALIZED_ATTR, ModuleDocumenter from sphinx.util import texescape from sphinx.util.docutils import SphinxRole from sphinx.writers.html import HTMLTranslator # this package from sphinx_toolbox import _css from sphinx_toolbox.more_autodoc.variables import VariableDocumenter from sphinx_toolbox.utils import Config, SphinxExtMetadata, add_nbsp_substitution, flag, metadata_add_version __all__ = ( "RegexDocumenter", "RegexParser", "TerminalRegexParser", "HTMLRegexParser", "LaTeXRegexParser", "parse_regex_flags", "no_formatting", "span", "latex_textcolor", "copy_asset_files", "setup", ) class RegexDocumenter(VariableDocumenter): """ Specialized Documenter subclass for regex patterns. """ directivetype = "data" objtype = "regex" priority = VariableDocumenter.priority + 1 option_spec = { **VariableDocumenter.option_spec, "no-flag": flag, "flag": str, } del option_spec["type"] del option_spec["annotation"] @classmethod def can_document_member( cls, member: Any, membername: str, isattr: bool, parent: Any, ) -> bool: """ Called to see if a member can be documented by this documenter. :param member: The member being checked. :param membername: The name of the member. :param isattr: :param parent: The parent of the member. """ return isinstance(parent, ModuleDocumenter) and isattr and isinstance(member, Pattern) def add_content(self, more_content: Any, no_docstring: bool = False) -> None: """ Add content from docstrings, attribute documentation and the user. :param more_content: :param no_docstring: """ # set sourcename and add content from attribute documentation sourcename = self.get_sourcename() if self.analyzer: attr_docs = self.analyzer.find_attr_docs() if self.objpath: key = ('.'.join(self.objpath[:-1]), self.objpath[-1]) if key in attr_docs: no_docstring = True # make a copy of docstring for attributes to avoid cache # the change of autodoc-process-docstring event. docstrings = [list(attr_docs[key])] for i, line in enumerate(self.process_doc(docstrings)): self.add_line(line, sourcename, i) # add content from docstrings if not no_docstring: docstrings = self.get_doc() or [] if not docstrings: # append at least a dummy docstring, so that the event # autodoc-process-docstring is fired and can add some # content if desired docstrings.append([]) if docstrings == [["Compiled regular expression objects", '']] or docstrings == [[]]: docstrings = [["Compiled regular expression object.", '']] # pylint: disable=W8301 for i, line in enumerate(self.process_doc(docstrings)): self.add_line(line, sourcename, i) # add additional content (e.g. from document), if present if more_content: for line, src in zip(more_content.data, more_content.items): self.add_line(line, src[0], src[1]) no_value = self.options.get("no-value", False) no_flag = self.options.get("no-flag", False) if self.object is not UNINITIALIZED_ATTR and (not no_value or not no_flag): self.add_line('', sourcename) self.add_line('', sourcename) the_flag: Optional[str] = None if not no_flag: if "flag" in self.options: the_flag = self.options["flag"] else: raw_flags = self.object.flags raw_flags = (raw_flags & ~re.DEBUG) & ~re.VERBOSE the_flag = parse_regex_flags(raw_flags) if no_value and not the_flag: return self.add_line(".. csv-table::", sourcename) self.add_line(" :widths: auto", sourcename) self.add_line(" :stub-columns: 1", sourcename) self.add_line('', sourcename) if not no_value: if "value" in self.options: the_pattern = self.options["value"] else: the_pattern = self.object.pattern the_pattern = the_pattern.replace('`', r"\`") leading_spaces = len(tuple(itertools.takewhile(str.isspace, the_pattern))) trailing_spaces = len(tuple(itertools.takewhile(str.isspace, the_pattern[::-1]))) the_pattern = the_pattern.strip(' ') if leading_spaces > 1: the_pattern = f"[ ]{leading_spaces}{the_pattern}" elif leading_spaces == 1: the_pattern = f"[ ]{the_pattern}" if trailing_spaces > 1: the_pattern += f" {trailing_spaces}" elif trailing_spaces == 1: the_pattern += "[ ]" self.add_line(f' **Pattern**, ":regex:`{the_pattern}`"', sourcename) if the_flag: self.add_line(f" **Flags**, {the_flag}", sourcename) self.add_line('', sourcename) def add_directive_header(self, sig: str) -> None: """ Add the directive's header. :param sig: """ user_no_value = self.options.get("no-value", False) self.options["no-value"] = True super().add_directive_header(sig) self.options["no-value"] = user_no_value def parse_regex_flags(flags: int) -> str: """ Convert regex flags into "bitwise-or'd" Sphinx xrefs. :param flags: """ buf = [] if flags & re.ASCII: buf.append("ASCII") if flags & re.DEBUG: buf.append("DEBUG") if flags & re.IGNORECASE: buf.append("IGNORECASE") if flags & re.LOCALE: buf.append("LOCALE") if flags & re.MULTILINE: buf.append("MULTILINE") if flags & re.DOTALL: buf.append("DOTALL") if flags & re.VERBOSE: buf.append("VERBOSE") return " ``|`` ".join(f":py:data:`re.{x}`" for x in buf) def no_formatting(value: Any) -> str: """ No-op that returns the value as a string. Used for unformatted output. """ return str(value) class RegexParser: r""" Parser for regular expressions that outputs coloured output. The formatting is controlled by the following callable attributes: * ``AT_COLOUR`` -- Used for e.g. :regex:`^\A\b\B\Z$` * ``SUBPATTERN_COLOUR`` -- Used for the parentheses around subpatterns, e.g. :regex:`(Hello) World` * ``IN_COLOUR`` -- Used for the square brackets around character sets, e.g. :regex:`[Hh]ello` * ``REPEAT_COLOUR`` -- Used for repeats, e.g. :regex:`A?B+C*D{2,4}E{5}` * ``REPEAT_BRACE_COLOUR`` -- Used for the braces around numerical repeats. * ``CATEGORY_COLOUR`` -- Used for categories, e.g. :regex:`\d\D\s\D\w\W` * ``BRANCH_COLOUR`` -- Used for branches, e.g. :regex:`(Lovely|Horrible) Weather` * ``LITERAL_COLOUR`` -- Used for literal characters. * ``ANY_COLOUR`` -- Used for the "any" dot. These are all :class:`~typing.Callable`\[[:class:`~typing.Any`], :class:`str`\]. By default no formatting is performed. Subclasses should set these attributes to appropriate functions. """ # Colours AT_COLOUR: Callable[[Any], str] = no_formatting SUBPATTERN_COLOUR: Callable[[Any], str] = no_formatting IN_COLOUR: Callable[[Any], str] = no_formatting REPEAT_COLOUR: Callable[[Any], str] = no_formatting REPEAT_BRACE_COLOUR: Callable[[Any], str] = no_formatting CATEGORY_COLOUR: Callable[[Any], str] = no_formatting BRANCH_COLOUR: Callable[[Any], str] = no_formatting LITERAL_COLOUR: Callable[[Any], str] = no_formatting ANY_COLOUR: Callable[[Any], str] = no_formatting def parse_pattern(self, regex: Pattern) -> str: """ Parse the given regular expression and return the formatted pattern. :param regex: """ buf = [] def _parse_pattern(pattern) -> None: # noqa: MAN001 for what, content in pattern: # print(what, content) if what is AT: if content is AT_BEGINNING: buf.append(type(self).AT_COLOUR('^')) continue elif content is AT_END: buf.append(type(self).AT_COLOUR('$')) continue elif content is AT_BEGINNING_STRING: buf.append(type(self).AT_COLOUR(r"\A")) continue elif content is AT_BOUNDARY: buf.append(type(self).AT_COLOUR(r"\b")) continue elif content is AT_NON_BOUNDARY: buf.append(type(self).AT_COLOUR(r"\B")) continue elif content is AT_END_STRING: buf.append(type(self).AT_COLOUR(r"\Z")) continue if what is SUBPATTERN: buf.append(type(self).SUBPATTERN_COLOUR('(')) group, add_flags, del_flags, subpattern = content # print(group, add_flags, del_flags) _parse_pattern(subpattern) buf.append(type(self).SUBPATTERN_COLOUR(')')) continue if what is LITERAL: # TODO: escape characters that have meaning to avoid ambiguity buf.append(type(self).LITERAL_COLOUR(chr(content))) continue if what is IN: if len(content) > 1 or content[0][0] is RANGE: buf.append(type(self).IN_COLOUR('[')) _parse_pattern(content) if len(content) > 1 or content[0][0] is RANGE: buf.append(type(self).IN_COLOUR(']')) continue if what is MAX_REPEAT or what is MIN_REPEAT: min_, max_, item = content _parse_pattern(item) if min_ == 0 and max_ is MAXREPEAT: buf.append(type(self).REPEAT_COLOUR('*')) elif min_ == 1 and max_ is MAXREPEAT: buf.append(type(self).REPEAT_COLOUR('+')) elif min_ == 0 and max_ == 1: buf.append(type(self).REPEAT_COLOUR('?')) elif min_ == max_: buf.append(type(self).REPEAT_BRACE_COLOUR('{')) buf.append(type(self).REPEAT_COLOUR(str(min_))) buf.append(type(self).REPEAT_BRACE_COLOUR('}')) else: buf.append(type(self).REPEAT_BRACE_COLOUR('{')) buf.append(type(self).REPEAT_COLOUR(str(min_))) buf.append(type(self).LITERAL_COLOUR(',')) buf.append(type(self).REPEAT_COLOUR(str(max_))) buf.append(type(self).REPEAT_BRACE_COLOUR('}')) if what is MIN_REPEAT: buf.append(type(self).REPEAT_COLOUR('?')) continue # # if what is MIN_REPEAT: # min_, max_, item = content # _parse_pattern(item) # print(min_, max_, item) # input(">>>") if what is CATEGORY: if content is CATEGORY_DIGIT: buf.append(type(self).CATEGORY_COLOUR(r"\d")) continue elif content is CATEGORY_NOT_DIGIT: buf.append(type(self).CATEGORY_COLOUR(r"\D")) continue elif content is CATEGORY_SPACE: buf.append(type(self).CATEGORY_COLOUR(r"\s")) continue elif content is CATEGORY_NOT_SPACE: buf.append(type(self).CATEGORY_COLOUR(r"\S")) continue elif content is CATEGORY_WORD: buf.append(type(self).CATEGORY_COLOUR(r"\w")) continue elif content is CATEGORY_NOT_WORD: buf.append(type(self).CATEGORY_COLOUR(r"\W")) continue if what is BRANCH: for branch in content[1]: _parse_pattern(branch) buf.append(type(self).BRANCH_COLOUR('|')) buf.pop(-1) continue if what is RANGE: buf.append(type(self).LITERAL_COLOUR(chr(content[0]))) buf.append(type(self).AT_COLOUR('-')) buf.append(type(self).LITERAL_COLOUR(chr(content[1]))) continue if what is ANY: buf.append(type(self).ANY_COLOUR('.')) continue print(what, content) # pragma: no cover pattern = regex.pattern.replace('\t', r"\t") # Remove leading and trailing spaces from the pattern. They will be added back at the end. leading_spaces = len(tuple(itertools.takewhile(str.isspace, pattern))) trailing_spaces = len(tuple(itertools.takewhile(str.isspace, pattern[::-1]))) pattern = pattern.strip(' ') tokens: List = list(sre_parse.parse(pattern, regex.flags)) # type: ignore[call-overload] if not leading_spaces: while tokens[0] == (LITERAL, ord(' ')): leading_spaces += 1 tokens.pop(0) if not trailing_spaces: while tokens[-1] == (LITERAL, ord(' ')): trailing_spaces += 1 tokens.pop(-1) if leading_spaces: buf.append(type(self).IN_COLOUR('[')) buf.append(type(self).LITERAL_COLOUR(' ')) buf.append(type(self).IN_COLOUR(']')) if leading_spaces > 1: buf.append(type(self).REPEAT_BRACE_COLOUR('{')) buf.append(type(self).REPEAT_COLOUR(str(leading_spaces))) buf.append(type(self).REPEAT_BRACE_COLOUR('}')) _parse_pattern(tokens) if trailing_spaces == 1: buf.append(type(self).IN_COLOUR('[')) buf.append(type(self).LITERAL_COLOUR(' ')) buf.append(type(self).IN_COLOUR(']')) elif trailing_spaces > 1: buf.append(type(self).LITERAL_COLOUR(' ')) buf.append(type(self).REPEAT_BRACE_COLOUR('{')) buf.append(type(self).REPEAT_COLOUR(str(trailing_spaces))) buf.append(type(self).REPEAT_BRACE_COLOUR('}')) return ''.join(buf) def span(css_class: str) -> Callable[[Any], str]: """ Returns a function that wraps a value in a ``span`` tag with the given class. :param css_class: """ def f(value: Any) -> str: return f'<span class="{css_class}">{value}</span>' return f def latex_textcolor(colour_name: str) -> Callable[[Any], str]: """ Returns a function that wraps a value in a LaTeX ``textcolor`` command for the given colour. .. versionadded:: 2.11.0 :param colour_name: """ def f(value: Any) -> str: if value == ' ': return "\\enspace" return f'\\textcolor{{{colour_name}}}{{{texescape.escape(value)}}}' return f class HTMLRegexParser(RegexParser): r""" :class:`~.RegexParser` that outputs styled HTML. The formatting is controlled by the following functions, which wrap the character in a ``span`` tag with an appropriate CSS class: * ``AT_COLOUR`` -> ``regex_at`` -- Used for e.g. :regex:`^\A\b\B\Z$` * ``SUBPATTERN_COLOUR`` -> ``regex_subpattern`` -- Used for the parentheses around subpatterns, e.g. :regex:`(Hello) World` * ``IN_COLOUR`` -> ``regex_in`` -- Used for the square brackets around character sets, e.g. :regex:`[Hh]ello` * ``REPEAT_COLOUR`` -> ``regex_repeat`` -- Used for repeats, e.g. :regex:`A?B+C*D{2,4}E{5}` * ``REPEAT_BRACE_COLOUR`` -> ``regex_repeat_brace`` -- Used for the braces around numerical repeats. * ``CATEGORY_COLOUR`` -> ``regex_category`` -- Used for categories, e.g. :regex:`\d\D\s\D\w\W` * ``BRANCH_COLOUR`` -> ``regex_branch`` -- Used for branches, e.g. :regex:`(Lovely|Horrible) Weather` * ``LITERAL_COLOUR`` -> ``regex_literal`` -- Used for literal characters. * ``ANY_COLOUR`` -> ``regex_any`` -- Used for the "any" dot. Additionally, all ``span`` tags the ``regex`` class, and the surrounding ``code`` tag has the following classes: ``docutils literal notranslate regex``. """ # Colours AT_COLOUR = span("regex regex_at") SUBPATTERN_COLOUR = span("regex regex_subpattern") IN_COLOUR = span("regex regex_in") REPEAT_COLOUR = span("regex regex_repeat") REPEAT_BRACE_COLOUR = span("regex regex_repeat_brace") CATEGORY_COLOUR = span("regex regex_category") BRANCH_COLOUR = span("regex regex_branch") LITERAL_COLOUR = span("regex regex_literal") ANY_COLOUR = span("regex regex_any") def parse_pattern(self, regex: Pattern) -> str: """ Parse the given regular expression and return the formatted pattern. :param regex: """ return dedent( f""" <code class="docutils literal notranslate regex"> {super().parse_pattern(regex)} </code> """ ) class LaTeXRegexParser(RegexParser): r""" :class:`~.RegexParser` that outputs styled LaTeX. The formatting is controlled by the following functions, which wrap the character in a LaTeX ``textcolor`` command for an appropriate colour: * ``AT_COLOUR`` -> ``regex_at`` -- Used for e.g. :regex:`^\A\b\B\Z$` * ``SUBPATTERN_COLOUR`` -> ``regex_subpattern`` -- Used for the parentheses around subpatterns, e.g. :regex:`(Hello) World` * ``IN_COLOUR`` -> ``regex_in`` -- Used for the square brackets around character sets, e.g. :regex:`[Hh]ello` * ``REPEAT_COLOUR`` -> ``regex_repeat`` -- Used for repeats, e.g. :regex:`A?B+C*D{2,4}E{5}` * ``REPEAT_BRACE_COLOUR`` -> ``regex_repeat_brace`` -- Used for the braces around numerical repeats. * ``CATEGORY_COLOUR`` -> ``regex_category`` -- Used for categories, e.g. :regex:`\d\D\s\D\w\W` * ``BRANCH_COLOUR`` -> ``regex_branch`` -- Used for branches, e.g. :regex:`(Lovely|Horrible) Weather` * ``LITERAL_COLOUR`` -> ``regex_literal`` -- Used for literal characters. * ``ANY_COLOUR`` -> ``regex_any`` -- Used for the "any" dot. .. versionadded:: 2.11.0 """ # Colours AT_COLOUR = latex_textcolor("regex_at") SUBPATTERN_COLOUR = latex_textcolor("regex_subpattern") IN_COLOUR = latex_textcolor("regex_in") REPEAT_COLOUR = latex_textcolor("regex_repeat") REPEAT_BRACE_COLOUR = latex_textcolor("regex_repeat_brace") CATEGORY_COLOUR = latex_textcolor("regex_category") BRANCH_COLOUR = latex_textcolor("regex_branch") LITERAL_COLOUR = latex_textcolor("regex_literal") ANY_COLOUR = latex_textcolor("regex_any") def parse_pattern(self, regex: Pattern) -> str: """ Parse the given regular expression and return the formatted pattern. :param regex: """ return f"\\sphinxcode{{\\sphinxupquote{{{super().parse_pattern(regex)}}}}}" class TerminalRegexParser(RegexParser): r""" :class:`~.RegexParser` that outputs ANSI coloured output for the terminal. The formatting is controlled by the following callable attributes, which set ANSI escape codes for the appropriate colour: * ``AT_COLOUR`` -> YELLOW, Used for e.g. :regex:`^\A\b\B\Z$` * ``SUBPATTERN_COLOUR`` -> LIGHTYELLOW_EX, Used for the parentheses around subpatterns, e.g. :regex:`(Hello) World` * ``IN_COLOUR`` -> LIGHTRED_EX, Used for the square brackets around character sets, e.g. :regex:`[Hh]ello` * ``REPEAT_COLOUR`` -> LIGHTBLUE_EX, Used for repeats, e.g. :regex:`A?B+C*D{2,4}E{5}` * ``REPEAT_BRACE_COLOUR`` -> YELLOW, Used for the braces around numerical repeats. * ``CATEGORY_COLOUR`` -> LIGHTYELLOW_EX, Used for categories, e.g. :regex:`\d\D\s\D\w\W` * ``BRANCH_COLOUR`` -> YELLOW, Used for branches, e.g. :regex:`(Lovely|Horrible) Weather` * ``LITERAL_COLOUR`` -> GREEN, Used for literal characters. * ``ANY_COLOUR`` -> YELLOW, Used for the "any" dot. """ # Colours @staticmethod def AT_COLOUR(s: str) -> str: # noqa: D102 return f"\x1b[33m{s}\x1b[39m" @staticmethod def SUBPATTERN_COLOUR(s: str) -> str: # noqa: D102 return f"\x1b[93m{s}\x1b[39m" @staticmethod def IN_COLOUR(s: str) -> str: # noqa: D102 return f"\x1b[91m{s}\x1b[39m" @staticmethod def REPEAT_COLOUR(s: str) -> str: # noqa: D102 return f"\x1b[94m{s}\x1b[39m" @staticmethod def LITERAL_COLOUR(s: str) -> str: # noqa: D102 return f"\x1b[32m{s}\x1b[39m" REPEAT_BRACE_COLOUR = BRANCH_COLOUR = ANY_COLOUR = AT_COLOUR CATEGORY_COLOUR = SUBPATTERN_COLOUR class RegexNode(nodes.literal): """ Docutils Node to show a highlighted regular expression. """ def __init__(self, rawsource: str = '', text: str = '', *children, **attributes) -> None: super().__init__(rawsource, text, *children, **attributes) self.pattern = re.compile(':'.join(rawsource.split(':')[2:])[1:-1]) class Regex(SphinxRole): """ Docutils role to show a highlighted regular expression. """ def run(self) -> Tuple[List[Node], List[system_message]]: """ Process the content of the regex role. """ options = self.options.copy() return [RegexNode(self.rawtext, self.text, **options)], [] def visit_regex_node(translator: HTMLTranslator, node: RegexNode) -> None: """ Visit an :class:`~.RegexNode`. :param translator: :param node: The node being visited. """ translator.body.append(regex_parser.parse_pattern(node.pattern)) def depart_regex_node(translator: HTMLTranslator, node: RegexNode) -> None: """ Depart an :class:`~.RegexNode`. :param translator: :param node: The node being visited. """ translator.body.pop(-1) def visit_regex_node_latex(translator: HTMLTranslator, node: RegexNode) -> None: """ Visit an :class:`~.RegexNode` with the LaTeX builder. .. versionadded:: 2.11.0 :param translator: :param node: The node being visited. """ translator.body.append(latex_regex_parser.parse_pattern(node.pattern)) def depart_regex_node_latex(translator: HTMLTranslator, node: RegexNode) -> None: """ Depart an :class:`~.RegexNode` with the LaTeX builder. .. versionadded:: 2.11.0 :param translator: :param node: The node being visited. """ translator.body.pop(-1) def copy_asset_files(app: Sphinx, exception: Optional[Exception] = None) -> None: """ Copy additional stylesheets into the HTML build directory. :param app: The Sphinx application. :param exception: Any exception which occurred and caused Sphinx to abort. """ if exception: # pragma: no cover return if app.builder is None or app.builder.format.lower() != "html": # pragma: no cover return static_dir = PathPlus(app.outdir) / "_static" static_dir.maybe_make(parents=True) dict2css.dump(_css.regex_styles, static_dir / "regex.css", minify=True) regex_parser = HTMLRegexParser() latex_regex_parser = LaTeXRegexParser() def configure(app: Sphinx, config: Config) -> None: """ Configure :mod:`sphinx_toolbox.code`. .. versionadded:: 2.11.0 :param app: The Sphinx application. :param config: """ latex_elements = getattr(app.config, "latex_elements", {}) latex_preamble = StringList(latex_elements.get("preamble", '')) latex_preamble.blankline() latex_preamble.append(r"\definecolor{regex_literal}{HTML}{696969}") latex_preamble.append(r"\definecolor{regex_at}{HTML}{FF4500}") latex_preamble.append(r"\definecolor{regex_repeat_brace}{HTML}{FF4500}") latex_preamble.append(r"\definecolor{regex_branch}{HTML}{FF4500}") latex_preamble.append(r"\definecolor{regex_subpattern}{HTML}{1e90ff}") latex_preamble.append(r"\definecolor{regex_in}{HTML}{ff8c00}") latex_preamble.append(r"\definecolor{regex_category}{HTML}{8fbc8f}") latex_preamble.append(r"\definecolor{regex_repeat}{HTML}{FF4500}") latex_preamble.append(r"\definecolor{regex_any}{HTML}{FF4500}") latex_elements["preamble"] = str(latex_preamble) app.config.latex_elements = latex_elements # type: ignore[attr-defined] add_nbsp_substitution(config) @metadata_add_version def setup(app: Sphinx) -> SphinxExtMetadata: """ Setup :mod:`sphinx_toolbox.more_autodoc.regex`. :param app: The Sphinx application. """ app.setup_extension("sphinx.ext.autodoc") app.setup_extension("sphinx_toolbox._css") app.connect("config-inited", configure) app.add_autodocumenter(RegexDocumenter) app.add_role("regex", Regex()) app.add_node( RegexNode, html=(visit_regex_node, depart_regex_node), latex=(visit_regex_node_latex, depart_regex_node_latex) ) return {"parallel_read_safe": True}
30.884703
124
0.69854
79427a885417c92efe763249ac490326d737d769
1,027
py
Python
14_exception/08_except_info.py
hemuke/python
bc99f2b5aee997083ae31f59a2b33db48c8255f3
[ "Apache-2.0" ]
null
null
null
14_exception/08_except_info.py
hemuke/python
bc99f2b5aee997083ae31f59a2b33db48c8255f3
[ "Apache-2.0" ]
null
null
null
14_exception/08_except_info.py
hemuke/python
bc99f2b5aee997083ae31f59a2b33db48c8255f3
[ "Apache-2.0" ]
null
null
null
#! /root/anaconda3/bin/python """ 标准库模块sys中的函数exc_info以获取异常的相关信息 异常的类型: <class 'ZeroDivisionError'> 异常的错误信息:division by zero 异常调用堆栈的跟踪信息:<traceback object at 0x7f689cbf5180> 提取Traceback对象中包含的信息,调用标准库traceback中的函数extract_tb() [<FrameSummary file ./08_except_info.py, line 11 in f2>, <FrameSummary file ./08_except_info.py, line 7 in f1>] 文件名:./08_except_info.py 行数:11 函数名:f2 源码:f1() 文件名:./08_except_info.py 行数:7 函数名:f1 源码:print(1 / 0) """ import sys import traceback def f1(): print(1 / 0) def f2(): try: f1() except ZeroDivisionError: ex_type, ex_value, ex_traceback = sys.exc_info() print('异常的类型: %s' % ex_type) print('异常的错误信息:%s' % ex_value) print('异常调用堆栈的跟踪信息:%s' % ex_traceback) tb = traceback.extract_tb(ex_traceback) print(tb) for filename, linenum, funcname, source in tb: print('文件名:%s' % filename) print('行数:%s' % linenum) print('函数名:%s' % funcname) print('源码:%s' % source) f2()
19.377358
111
0.638754
79427b041f818bbdb52d9c92f760eaed786e95fd
4,763
py
Python
protoc_gen_swagger/options/annotations_pb2.py
universe-proton/protoc-gen-swagger
b572618d0aadcef63224bf85ebba05270b573a53
[ "Apache-2.0" ]
5
2018-01-29T12:55:41.000Z
2020-05-27T09:10:33.000Z
protoc_gen_swagger/options/annotations_pb2.py
universe-proton/protoc-gen-swagger
b572618d0aadcef63224bf85ebba05270b573a53
[ "Apache-2.0" ]
null
null
null
protoc_gen_swagger/options/annotations_pb2.py
universe-proton/protoc-gen-swagger
b572618d0aadcef63224bf85ebba05270b573a53
[ "Apache-2.0" ]
null
null
null
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: protoc-gen-swagger/options/annotations.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from protoc_gen_swagger.options import openapiv2_pb2 as protoc__gen__swagger_dot_options_dot_openapiv2__pb2 from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='protoc-gen-swagger/options/annotations.proto', package='grpc.gateway.protoc_gen_swagger.options', syntax='proto3', serialized_pb=_b('\n,protoc-gen-swagger/options/annotations.proto\x12\'grpc.gateway.protoc_gen_swagger.options\x1a*protoc-gen-swagger/options/openapiv2.proto\x1a google/protobuf/descriptor.proto:j\n\x11openapiv2_swagger\x12\x1c.google.protobuf.FileOptions\x18\x92\x08 \x01(\x0b\x32\x30.grpc.gateway.protoc_gen_swagger.options.Swagger:p\n\x13openapiv2_operation\x12\x1e.google.protobuf.MethodOptions\x18\x92\x08 \x01(\x0b\x32\x32.grpc.gateway.protoc_gen_swagger.options.Operation:k\n\x10openapiv2_schema\x12\x1f.google.protobuf.MessageOptions\x18\x92\x08 \x01(\x0b\x32/.grpc.gateway.protoc_gen_swagger.options.Schema:e\n\ropenapiv2_tag\x12\x1f.google.protobuf.ServiceOptions\x18\x92\x08 \x01(\x0b\x32,.grpc.gateway.protoc_gen_swagger.options.TagBCZAgithub.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger/optionsb\x06proto3') , dependencies=[protoc__gen__swagger_dot_options_dot_openapiv2__pb2.DESCRIPTOR,google_dot_protobuf_dot_descriptor__pb2.DESCRIPTOR,]) OPENAPIV2_SWAGGER_FIELD_NUMBER = 1042 openapiv2_swagger = _descriptor.FieldDescriptor( name='openapiv2_swagger', full_name='grpc.gateway.protoc_gen_swagger.options.openapiv2_swagger', index=0, number=1042, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, options=None) OPENAPIV2_OPERATION_FIELD_NUMBER = 1042 openapiv2_operation = _descriptor.FieldDescriptor( name='openapiv2_operation', full_name='grpc.gateway.protoc_gen_swagger.options.openapiv2_operation', index=1, number=1042, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, options=None) OPENAPIV2_SCHEMA_FIELD_NUMBER = 1042 openapiv2_schema = _descriptor.FieldDescriptor( name='openapiv2_schema', full_name='grpc.gateway.protoc_gen_swagger.options.openapiv2_schema', index=2, number=1042, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, options=None) OPENAPIV2_TAG_FIELD_NUMBER = 1042 openapiv2_tag = _descriptor.FieldDescriptor( name='openapiv2_tag', full_name='grpc.gateway.protoc_gen_swagger.options.openapiv2_tag', index=3, number=1042, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, options=None) DESCRIPTOR.extensions_by_name['openapiv2_swagger'] = openapiv2_swagger DESCRIPTOR.extensions_by_name['openapiv2_operation'] = openapiv2_operation DESCRIPTOR.extensions_by_name['openapiv2_schema'] = openapiv2_schema DESCRIPTOR.extensions_by_name['openapiv2_tag'] = openapiv2_tag _sym_db.RegisterFileDescriptor(DESCRIPTOR) openapiv2_swagger.message_type = protoc__gen__swagger_dot_options_dot_openapiv2__pb2._SWAGGER google_dot_protobuf_dot_descriptor__pb2.FileOptions.RegisterExtension(openapiv2_swagger) openapiv2_operation.message_type = protoc__gen__swagger_dot_options_dot_openapiv2__pb2._OPERATION google_dot_protobuf_dot_descriptor__pb2.MethodOptions.RegisterExtension(openapiv2_operation) openapiv2_schema.message_type = protoc__gen__swagger_dot_options_dot_openapiv2__pb2._SCHEMA google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(openapiv2_schema) openapiv2_tag.message_type = protoc__gen__swagger_dot_options_dot_openapiv2__pb2._TAG google_dot_protobuf_dot_descriptor__pb2.ServiceOptions.RegisterExtension(openapiv2_tag) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('ZAgithub.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger/options')) # @@protoc_insertion_point(module_scope)
59.5375
828
0.847995
79427b2c2339273f0918226289626cde98784e6c
22,822
py
Python
test_data/samples/sqlalchemy_base_output.py
jgberry/ssort
65c4b0a1f2e9e93e65855967f9a438046b24d9e1
[ "MIT" ]
null
null
null
test_data/samples/sqlalchemy_base_output.py
jgberry/ssort
65c4b0a1f2e9e93e65855967f9a438046b24d9e1
[ "MIT" ]
null
null
null
test_data/samples/sqlalchemy_base_output.py
jgberry/ssort
65c4b0a1f2e9e93e65855967f9a438046b24d9e1
[ "MIT" ]
null
null
null
# Taken from SQLAlchemy # sql/base.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """Foundational utilities common to many sql modules. """ import itertools import re from .visitors import ClauseVisitor from .. import exc from .. import util PARSE_AUTOCOMMIT = util.symbol("PARSE_AUTOCOMMIT") NO_ARG = util.symbol("NO_ARG") class Immutable(object): """mark a ClauseElement as 'immutable' when expressions are cloned.""" def unique_params(self, *optionaldict, **kwargs): raise NotImplementedError("Immutable objects do not support copying") def params(self, *optionaldict, **kwargs): raise NotImplementedError("Immutable objects do not support copying") def _clone(self): return self def _from_objects(*elements): return itertools.chain(*[element._from_objects for element in elements]) @util.decorator def _generative(fn, *args, **kw): """Mark a method as generative.""" self = args[0]._generate() fn(self, *args[1:], **kw) return self class _DialectArgView(util.collections_abc.MutableMapping): """A dictionary view of dialect-level arguments in the form <dialectname>_<argument_name>. """ def __init__(self, obj): self.obj = obj def _key(self, key): try: dialect, value_key = key.split("_", 1) except ValueError as err: util.raise_(KeyError(key), replace_context=err) else: return dialect, value_key def __getitem__(self, key): dialect, value_key = self._key(key) try: opt = self.obj.dialect_options[dialect] except exc.NoSuchModuleError as err: util.raise_(KeyError(key), replace_context=err) else: return opt[value_key] def __setitem__(self, key, value): try: dialect, value_key = self._key(key) except KeyError as err: util.raise_( exc.ArgumentError( "Keys must be of the form <dialectname>_<argname>" ), replace_context=err, ) else: self.obj.dialect_options[dialect][value_key] = value def __delitem__(self, key): dialect, value_key = self._key(key) del self.obj.dialect_options[dialect][value_key] def __iter__(self): return ( util.safe_kwarg("%s_%s" % (dialect_name, value_name)) for dialect_name in self.obj.dialect_options for value_name in self.obj.dialect_options[ dialect_name ]._non_defaults ) def __len__(self): return sum( len(args._non_defaults) for args in self.obj.dialect_options.values() ) class _DialectArgDict(util.collections_abc.MutableMapping): """A dictionary view of dialect-level arguments for a specific dialect. Maintains a separate collection of user-specified arguments and dialect-specified default arguments. """ def __init__(self): self._non_defaults = {} self._defaults = {} def __getitem__(self, key): if key in self._non_defaults: return self._non_defaults[key] else: return self._defaults[key] def __setitem__(self, key, value): self._non_defaults[key] = value def __delitem__(self, key): del self._non_defaults[key] def __iter__(self): return iter(set(self._non_defaults).union(self._defaults)) def __len__(self): return len(set(self._non_defaults).union(self._defaults)) class DialectKWArgs(object): """Establish the ability for a class to have dialect-specific arguments with defaults and constructor validation. The :class:`.DialectKWArgs` interacts with the :attr:`.DefaultDialect.construct_arguments` present on a dialect. .. seealso:: :attr:`.DefaultDialect.construct_arguments` """ @util.dependencies("sqlalchemy.dialects") def _kw_reg_for_dialect(dialects, dialect_name): dialect_cls = dialects.registry.load(dialect_name) if dialect_cls.construct_arguments is None: return None return dict(dialect_cls.construct_arguments) _kw_registry = util.PopulateDict(_kw_reg_for_dialect) @classmethod def argument_for(cls, dialect_name, argument_name, default): """Add a new kind of dialect-specific keyword argument for this class. E.g.:: Index.argument_for("mydialect", "length", None) some_index = Index('a', 'b', mydialect_length=5) The :meth:`.DialectKWArgs.argument_for` method is a per-argument way adding extra arguments to the :attr:`.DefaultDialect.construct_arguments` dictionary. This dictionary provides a list of argument names accepted by various schema-level constructs on behalf of a dialect. New dialects should typically specify this dictionary all at once as a data member of the dialect class. The use case for ad-hoc addition of argument names is typically for end-user code that is also using a custom compilation scheme which consumes the additional arguments. :param dialect_name: name of a dialect. The dialect must be locatable, else a :class:`.NoSuchModuleError` is raised. The dialect must also include an existing :attr:`.DefaultDialect.construct_arguments` collection, indicating that it participates in the keyword-argument validation and default system, else :class:`.ArgumentError` is raised. If the dialect does not include this collection, then any keyword argument can be specified on behalf of this dialect already. All dialects packaged within SQLAlchemy include this collection, however for third party dialects, support may vary. :param argument_name: name of the parameter. :param default: default value of the parameter. .. versionadded:: 0.9.4 """ construct_arg_dictionary = DialectKWArgs._kw_registry[dialect_name] if construct_arg_dictionary is None: raise exc.ArgumentError( "Dialect '%s' does have keyword-argument " "validation and defaults enabled configured" % dialect_name ) if cls not in construct_arg_dictionary: construct_arg_dictionary[cls] = {} construct_arg_dictionary[cls][argument_name] = default @util.memoized_property def dialect_kwargs(self): """A collection of keyword arguments specified as dialect-specific options to this construct. The arguments are present here in their original ``<dialect>_<kwarg>`` format. Only arguments that were actually passed are included; unlike the :attr:`.DialectKWArgs.dialect_options` collection, which contains all options known by this dialect including defaults. The collection is also writable; keys are accepted of the form ``<dialect>_<kwarg>`` where the value will be assembled into the list of options. .. versionadded:: 0.9.2 .. versionchanged:: 0.9.4 The :attr:`.DialectKWArgs.dialect_kwargs` collection is now writable. .. seealso:: :attr:`.DialectKWArgs.dialect_options` - nested dictionary form """ return _DialectArgView(self) @property def kwargs(self): """A synonym for :attr:`.DialectKWArgs.dialect_kwargs`.""" return self.dialect_kwargs def _kw_reg_for_dialect_cls(self, dialect_name): construct_arg_dictionary = DialectKWArgs._kw_registry[dialect_name] d = _DialectArgDict() if construct_arg_dictionary is None: d._defaults.update({"*": None}) else: for cls in reversed(self.__class__.__mro__): if cls in construct_arg_dictionary: d._defaults.update(construct_arg_dictionary[cls]) return d @util.memoized_property def dialect_options(self): """A collection of keyword arguments specified as dialect-specific options to this construct. This is a two-level nested registry, keyed to ``<dialect_name>`` and ``<argument_name>``. For example, the ``postgresql_where`` argument would be locatable as:: arg = my_object.dialect_options['postgresql']['where'] .. versionadded:: 0.9.2 .. seealso:: :attr:`.DialectKWArgs.dialect_kwargs` - flat dictionary form """ return util.PopulateDict( util.portable_instancemethod(self._kw_reg_for_dialect_cls) ) def _validate_dialect_kwargs(self, kwargs): # validate remaining kwargs that they all specify DB prefixes if not kwargs: return for k in kwargs: m = re.match("^(.+?)_(.+)$", k) if not m: raise TypeError( "Additional arguments should be " "named <dialectname>_<argument>, got '%s'" % k ) dialect_name, arg_name = m.group(1, 2) try: construct_arg_dictionary = self.dialect_options[dialect_name] except exc.NoSuchModuleError: util.warn( "Can't validate argument %r; can't " "locate any SQLAlchemy dialect named %r" % (k, dialect_name) ) self.dialect_options[dialect_name] = d = _DialectArgDict() d._defaults.update({"*": None}) d._non_defaults[arg_name] = kwargs[k] else: if ( "*" not in construct_arg_dictionary and arg_name not in construct_arg_dictionary ): raise exc.ArgumentError( "Argument %r is not accepted by " "dialect %r on behalf of %r" % (k, dialect_name, self.__class__) ) else: construct_arg_dictionary[arg_name] = kwargs[k] class Generative(object): """Allow a ClauseElement to generate itself via the @_generative decorator. """ def _generate(self): s = self.__class__.__new__(self.__class__) s.__dict__ = self.__dict__.copy() return s class Executable(Generative): """Mark a ClauseElement as supporting execution. :class:`.Executable` is a superclass for all "statement" types of objects, including :func:`select`, :func:`delete`, :func:`update`, :func:`insert`, :func:`text`. """ supports_execution = True _execution_options = util.immutabledict() _bind = None @_generative def execution_options(self, **kw): """ Set non-SQL options for the statement which take effect during execution. Execution options can be set on a per-statement or per :class:`_engine.Connection` basis. Additionally, the :class:`_engine.Engine` and ORM :class:`~.orm.query.Query` objects provide access to execution options which they in turn configure upon connections. The :meth:`execution_options` method is generative. A new instance of this statement is returned that contains the options:: statement = select([table.c.x, table.c.y]) statement = statement.execution_options(autocommit=True) Note that only a subset of possible execution options can be applied to a statement - these include "autocommit" and "stream_results", but not "isolation_level" or "compiled_cache". See :meth:`_engine.Connection.execution_options` for a full list of possible options. .. seealso:: :meth:`_engine.Connection.execution_options` :meth:`_query.Query.execution_options` :meth:`.Executable.get_execution_options` """ if "isolation_level" in kw: raise exc.ArgumentError( "'isolation_level' execution option may only be specified " "on Connection.execution_options(), or " "per-engine using the isolation_level " "argument to create_engine()." ) if "compiled_cache" in kw: raise exc.ArgumentError( "'compiled_cache' execution option may only be specified " "on Connection.execution_options(), not per statement." ) self._execution_options = self._execution_options.union(kw) def get_execution_options(self): """ Get the non-SQL options which will take effect during execution. .. versionadded:: 1.3 .. seealso:: :meth:`.Executable.execution_options` """ return self._execution_options def execute(self, *multiparams, **params): """Compile and execute this :class:`.Executable`. """ e = self.bind if e is None: label = getattr(self, "description", self.__class__.__name__) msg = ( "This %s is not directly bound to a Connection or Engine. " "Use the .execute() method of a Connection or Engine " "to execute this construct." % label ) raise exc.UnboundExecutionError(msg) return e._execute_clauseelement(self, multiparams, params) def scalar(self, *multiparams, **params): """Compile and execute this :class:`.Executable`, returning the result's scalar representation. """ return self.execute(*multiparams, **params).scalar() @property def bind(self): """Returns the :class:`_engine.Engine` or :class:`_engine.Connection` to which this :class:`.Executable` is bound, or None if none found. This is a traversal which checks locally, then checks among the "from" clauses of associated objects until a bound engine or connection is found. """ if self._bind is not None: return self._bind for f in _from_objects(self): if f is self: continue engine = f.bind if engine is not None: return engine else: return None class SchemaEventTarget(object): """Base class for elements that are the targets of :class:`.DDLEvents` events. This includes :class:`.SchemaItem` as well as :class:`.SchemaType`. """ def _set_parent(self, parent): """Associate with this SchemaEvent's parent object.""" def _set_parent_with_dispatch(self, parent): self.dispatch.before_parent_attach(self, parent) self._set_parent(parent) self.dispatch.after_parent_attach(self, parent) class SchemaVisitor(ClauseVisitor): """Define the visiting for ``SchemaItem`` objects.""" __traverse_options__ = {"schema_visitor": True} class ColumnCollection(util.OrderedProperties): """An ordered dictionary that stores a list of ColumnElement instances. Overrides the ``__eq__()`` method to produce SQL clauses between sets of correlated columns. """ __slots__ = "_all_columns" def __init__(self, *columns): super(ColumnCollection, self).__init__() object.__setattr__(self, "_all_columns", []) for c in columns: self.add(c) def replace(self, column): """add the given column to this collection, removing unaliased versions of this column as well as existing columns with the same key. e.g.:: t = Table('sometable', metadata, Column('col1', Integer)) t.columns.replace(Column('col1', Integer, key='columnone')) will remove the original 'col1' from the collection, and add the new column under the name 'columnname'. Used by schema.Column to override columns during table reflection. """ remove_col = None if column.name in self and column.key != column.name: other = self[column.name] if other.name == other.key: remove_col = other del self._data[other.key] if column.key in self._data: remove_col = self._data[column.key] self._data[column.key] = column if remove_col is not None: self._all_columns[:] = [ column if c is remove_col else c for c in self._all_columns ] else: self._all_columns.append(column) def add(self, column): """Add a column to this collection. The key attribute of the column will be used as the hash key for this dictionary. """ if not column.key: raise exc.ArgumentError( "Can't add unnamed column to column collection" ) self[column.key] = column def clear(self): raise NotImplementedError() def remove(self, column): del self._data[column.key] self._all_columns[:] = [ c for c in self._all_columns if c is not column ] def update(self, iter_): cols = list(iter_) all_col_set = set(self._all_columns) self._all_columns.extend( c for label, c in cols if c not in all_col_set ) self._data.update((label, c) for label, c in cols) def extend(self, iter_): cols = list(iter_) all_col_set = set(self._all_columns) self._all_columns.extend(c for c in cols if c not in all_col_set) self._data.update((c.key, c) for c in cols) def contains_column(self, col): return col in set(self._all_columns) def as_immutable(self): return ImmutableColumnCollection(self._data, self._all_columns) def __setattr__(self, key, obj): raise NotImplementedError() def __setitem__(self, key, value): if key in self: # this warning is primarily to catch select() statements # which have conflicting column names in their exported # columns collection existing = self[key] if existing is value: return if not existing.shares_lineage(value): util.warn( "Column %r on table %r being replaced by " "%r, which has the same key. Consider " "use_labels for select() statements." % (key, getattr(existing, "table", None), value) ) # pop out memoized proxy_set as this # operation may very well be occurring # in a _make_proxy operation util.memoized_property.reset(value, "proxy_set") self._all_columns.append(value) self._data[key] = value def __delitem__(self, key): raise NotImplementedError() def __contains__(self, other): if not isinstance(other, util.string_types): raise exc.ArgumentError("__contains__ requires a string argument") return util.OrderedProperties.__contains__(self, other) @util.dependencies("sqlalchemy.sql.elements") def __eq__(self, elements, other): l = [] for c in getattr(other, "_all_columns", other): for local in self._all_columns: if c.shares_lineage(local): l.append(c == local) return elements.and_(*l) __hash__ = None def __getstate__(self): return {"_data": self._data, "_all_columns": self._all_columns} def __setstate__(self, state): object.__setattr__(self, "_data", state["_data"]) object.__setattr__(self, "_all_columns", state["_all_columns"]) def __str__(self): return repr([str(c) for c in self]) class ImmutableColumnCollection(util.ImmutableProperties, ColumnCollection): extend = remove = util.ImmutableProperties._immutable def __init__(self, data, all_columns): util.ImmutableProperties.__init__(self, data) object.__setattr__(self, "_all_columns", all_columns) class ColumnSet(util.ordered_column_set): def contains_column(self, col): return col in self def extend(self, cols): for col in cols: self.add(col) def __add__(self, other): return list(self) + list(other) @util.dependencies("sqlalchemy.sql.elements") def __eq__(self, elements, other): l = [] for c in other: for local in self: if c.shares_lineage(local): l.append(c == local) return elements.and_(*l) def __hash__(self): return hash(tuple(x for x in self)) def _bind_or_error(schemaitem, msg=None): bind = schemaitem.bind if not bind: name = schemaitem.__class__.__name__ label = getattr( schemaitem, "fullname", getattr(schemaitem, "name", None) ) if label: item = "%s object %r" % (name, label) else: item = "%s object" % name if msg is None: msg = ( "%s is not bound to an Engine or Connection. " "Execution can not proceed without a database to execute " "against." % item ) raise exc.UnboundExecutionError(msg) return bind
32.696275
78
0.62225
79427b8aa41aad4eba456c91c479ab0a9aae64dd
858
py
Python
tests/test_add_contact.py
leanor13/python_training
0e933a35f0829ee5775158049d5d252fdc54a054
[ "Apache-2.0" ]
null
null
null
tests/test_add_contact.py
leanor13/python_training
0e933a35f0829ee5775158049d5d252fdc54a054
[ "Apache-2.0" ]
null
null
null
tests/test_add_contact.py
leanor13/python_training
0e933a35f0829ee5775158049d5d252fdc54a054
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from model.contact import Contact import re def test_contact_creation(app, db, json_contacts, check_ui): contact = json_contacts old_contacts = db.get_contact_list() app.contact.create(contact) new_contacts = db.get_contact_list() old_contacts.append(contact) assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) if check_ui: def clean(cn): return Contact(contact_id=cn.contact_id, first_name=re.sub(r'\s+', ' ', cn.first_name.strip()), last_name=re.sub(r'\s+', ' ', cn.last_name.strip())) ui_contacts = sorted(app.contact.get_simple_contact_list(), key=Contact.id_or_max) db_contacts = sorted(map(clean, db.get_contact_list()), key=Contact.id_or_max) assert ui_contacts == db_contacts
39
107
0.681818
79427c369f7da1ddfbe00ae2bcb867cb1ee93881
3,406
py
Python
env/Lib/site-packages/plotly/graph_objs/histogram2d/_marker.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
7
2022-01-16T12:28:16.000Z
2022-03-04T15:31:45.000Z
packages/python/plotly/plotly/graph_objs/histogram2d/_marker.py
jiangrongbo/plotly.py
df19fc702b309586cc24e25373b87e8bdbb3ff60
[ "MIT" ]
14
2021-10-20T23:33:47.000Z
2021-12-21T04:50:37.000Z
packages/python/plotly/plotly/graph_objs/histogram2d/_marker.py
jiangrongbo/plotly.py
df19fc702b309586cc24e25373b87e8bdbb3ff60
[ "MIT" ]
1
2021-11-29T22:55:05.000Z
2021-11-29T22:55:05.000Z
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Marker(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "histogram2d" _path_str = "histogram2d.marker" _valid_props = {"color", "colorsrc"} # color # ----- @property def color(self): """ Sets the aggregation data. The 'color' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on Chart Studio Cloud for `color`. The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the aggregation data. colorsrc Sets the source reference on Chart Studio Cloud for `color`. """ def __init__(self, arg=None, color=None, colorsrc=None, **kwargs): """ Construct a new Marker object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.histogram2d.Marker` color Sets the aggregation data. colorsrc Sets the source reference on Chart Studio Cloud for `color`. Returns ------- Marker """ super(Marker, self).__init__("marker") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.histogram2d.Marker constructor must be a dict or an instance of :class:`plotly.graph_objs.histogram2d.Marker`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("colorsrc", None) _v = colorsrc if colorsrc is not None else _v if _v is not None: self["colorsrc"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
26.2
82
0.521726
79427c81f654f0c7776ef35323f6a43d8019d898
8,869
py
Python
code/test/02_processing_bootstrapping.py
data-intelligence-for-health-lab/delirium_prediction
a0a25819ef6c98e32563b4e3b986c1a26fc30ed7
[ "MIT" ]
null
null
null
code/test/02_processing_bootstrapping.py
data-intelligence-for-health-lab/delirium_prediction
a0a25819ef6c98e32563b4e3b986c1a26fc30ed7
[ "MIT" ]
null
null
null
code/test/02_processing_bootstrapping.py
data-intelligence-for-health-lab/delirium_prediction
a0a25819ef6c98e32563b4e3b986c1a26fc30ed7
[ "MIT" ]
null
null
null
# --- loading libraries ------------------------------------------------------- import numpy as np import pandas as pd import pickle import tensorflow as tf import random from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, roc_auc_score, auc, precision_recall_curve import sys # ------------------------------------------------------ loading libraries ---- # --- setting random seed ----------------------------------------------------- seed_n = 42 np.random.seed(seed_n) random.seed(seed_n) tf.random.set_seed(seed_n) # ----------------------------------------------------- setting random seed --- # --- main routine ------------------------------------------------------------ # Argument n = int(sys.argv[1]) # Mounting output dataframe output = pd.DataFrame(columns = ['n', 'threshold', 'calibration', 'tn_12h', 'fp_12h', 'fn_12h', 'tp_12h', 'auc_12h', 'sensitivity_12h', 'specificity_12h', 'f1_score_12h', 'precision_12h', 'recall_12h', 'precision_recall_auc_12h', 'tn_24h', 'fp_24h', 'fn_24h', 'tp_24h', 'auc_24h', 'sensitivity_24h', 'specificity_24h', 'f1_score_24h', 'precision_24h', 'recall_24h', 'precision_recall_auc_24h', 'auc_mean', 'sensitivity_mean', 'specificity_mean', 'f1_score_mean', 'precision_mean', 'recall_mean', 'precision_recall_auc_mean']) idx = 0 # Mounting model & data # loading model model = tf.keras.models.load_model('/project/M-ABeICU176709/delirium/data/outputs/models/003057/model.hdf5') # loading data X_adm = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/bootstrapping/X_adm5y_test_'+str(n)+'.pickle', 'rb')) X_temp = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/bootstrapping/X_temp_test_'+str(n)+'.pickle', 'rb')) y_12h = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/bootstrapping/y_12h_test_'+str(n)+'.pickle', 'rb')) y_24h = pickle.load(open('/project/M-ABeICU176709/delirium/data/inputs/preprocessed/bootstrapping/y_24h_test_'+str(n)+'.pickle', 'rb')) # ----------------------------------------------------------------------------- # Predicting y_12h and y_24h results = model.predict([X_adm, X_temp], verbose = 1) y_12h_pred = results[0] y_24h_pred = results[1] # Applying calibrators (isotonic regression) # 12h y_12h_pred = [x[0] for x in y_12h_pred] ir_12h = pickle.load(open('/project/M-ABeICU176709/delirium/data/outputs/calibration/calibrators/3057_ir_12h.pickle', 'rb')) y_12h_pred = ir_12h.transform(y_12h_pred) # 24h y_24h_pred = [x[0] for x in y_24h_pred] ir_24h = pickle.load(open('/project/M-ABeICU176709/delirium/data/outputs/calibration/calibrators/3057_ir_24h.pickle', 'rb')) y_24h_pred = ir_24h.transform(y_24h_pred) # ----------------------------------------------------------------------------- # auc - 12h auc_12h = roc_auc_score(y_true = y_12h, y_score = y_12h_pred) # auc - 24h auc_24h = roc_auc_score(y_true = y_24h, y_score = y_24h_pred) # processing thresholds thresholds = list(np.arange(0, 1.05, 0.05)) for threshold in thresholds: print(f'N: {n}. Threshold: {threshold}.') # Adjusting values to be 0 or 1 according to threshold y_12h_pred_temp = list(map(lambda x: 1 if x >= threshold else 0, y_12h_pred)) y_24h_pred_temp = list(map(lambda x: 1 if x >= threshold else 0, y_24h_pred)) # Evaluating predictions # confusion matrix - 12h tn_12h, fp_12h, fn_12h, tp_12h = confusion_matrix(y_true = y_12h, y_pred = y_12h_pred_temp).ravel() # confusion matrix - 24h tn_24h, fp_24h, fn_24h, tp_24h = confusion_matrix(y_true = y_24h, y_pred = y_24h_pred_temp).ravel() # f1-score - 12h f1_score_12h = f1_score(y_true = y_12h, y_pred = y_12h_pred_temp, zero_division = 0) # f1-score - 24h f1_score_24h = f1_score(y_true = y_24h, y_pred = y_24h_pred_temp, zero_division = 0) # precision - 12h precision_12h = precision_score(y_true = y_12h, y_pred = y_12h_pred_temp, zero_division = 0) # precision - 24h precision_24h = precision_score(y_true = y_24h, y_pred = y_24h_pred_temp, zero_division = 0) # sensitivity / recall - 12h recall_12h = recall_score(y_true = y_12h, y_pred = y_12h_pred_temp, zero_division = 0) # sensitivity / recall - 24h recall_24h = recall_score(y_true = y_24h, y_pred = y_24h_pred_temp, zero_division = 0) # precision_recall_auc 12h precision_12h_auc, recall_12h_auc, _ = precision_recall_curve(y_true = y_12h, probas_pred = y_12h_pred_temp) precision_recall_auc_12h = auc(recall_12h_auc, precision_12h_auc) # precision_recall_auc 24h precision_24h_auc, recall_24h_auc, _ = precision_recall_curve(y_true = y_24h, probas_pred = y_24h_pred_temp) precision_recall_auc_24h = auc(recall_24h_auc, precision_24h_auc) # specificity 12h specificity_12h = tn_12h / (tn_12h + fp_12h) # specificity 24h specificity_24h = tn_24h / (tn_24h + fp_24h) # ----------------------------------------------------------------------------- # Saving results to output output.loc[idx, 'n'] = n output.loc[idx, 'threshold'] = threshold output.loc[idx, 'calibration'] = 'Isotonic Regression' output.loc[idx, 'tn_12h'] = tn_12h output.loc[idx, 'fp_12h'] = fp_12h output.loc[idx, 'fn_12h'] = fn_12h output.loc[idx, 'tp_12h'] = tp_12h output.loc[idx, 'auc_12h'] = auc_12h output.loc[idx, 'sensitivity_12h'] = recall_12h output.loc[idx, 'specificity_12h'] = specificity_12h output.loc[idx, 'f1_score_12h'] = f1_score_12h output.loc[idx, 'precision_12h'] = precision_12h output.loc[idx, 'recall_12h'] = recall_12h output.loc[idx, 'precision_recall_auc_12h'] = precision_recall_auc_12h output.loc[idx, 'tn_24h'] = tn_24h output.loc[idx, 'fp_24h'] = fp_24h output.loc[idx, 'fn_24h'] = fn_24h output.loc[idx, 'tp_24h'] = tp_24h output.loc[idx, 'auc_24h'] = auc_24h output.loc[idx, 'sensitivity_24h'] = recall_24h output.loc[idx, 'specificity_24h'] = specificity_24h output.loc[idx, 'f1_score_24h'] = f1_score_24h output.loc[idx, 'precision_24h'] = precision_24h output.loc[idx, 'recall_24h'] = recall_24h output.loc[idx, 'precision_recall_auc_24h'] = precision_recall_auc_24h output.loc[idx, 'auc_mean'] = (auc_12h + auc_24h) / 2 output.loc[idx, 'sensitivity_mean'] = (recall_12h + recall_24h) / 2 output.loc[idx, 'specificity_mean'] = (specificity_12h + specificity_24h) / 2 output.loc[idx, 'f1_score_mean'] = (f1_score_12h + f1_score_24h) / 2 output.loc[idx, 'precision_mean'] = (precision_12h + precision_24h) / 2 output.loc[idx, 'recall_mean'] = (recall_12h + recall_24h) / 2 output.loc[idx, 'precision_recall_auc_mean'] = (precision_recall_auc_12h + precision_recall_auc_24h) / 2 # updating idx idx += 1 # ----------------------------------------------------------------------------- # Saving results to file output.to_csv(f'/project/M-ABeICU176709/delirium/data/outputs/test/bootstrapping/results_{str(n)}.csv', index = False) print(output) # ------------------------------------------------------------ main routine ---
42.233333
138
0.526553
79427d4aa9d24eb5fc484fd7a5de05e891fc7c88
3,787
py
Python
code/node2vec.py
CLAIRE-COVID-T4/covid-data
ccdf1397b945b63e95768a7b91f0a7bad6e5085d
[ "CC-BY-4.0" ]
4
2020-05-17T21:29:19.000Z
2021-08-09T00:59:29.000Z
code/node2vec.py
CLAIRE-COVID-T4/covid-data
ccdf1397b945b63e95768a7b91f0a7bad6e5085d
[ "CC-BY-4.0" ]
null
null
null
code/node2vec.py
CLAIRE-COVID-T4/covid-data
ccdf1397b945b63e95768a7b91f0a7bad6e5085d
[ "CC-BY-4.0" ]
null
null
null
""" Taken from https://github.com/aditya-grover/node2vec and adapted to run on Python 3+""" import numpy as np import networkx as nx import random class Graph(): def __init__(self, nx_G, is_directed, p, q): self.G = nx_G self.is_directed = is_directed self.p = p self.q = q def node2vec_walk(self, walk_length, start_node): r""" Simulate a random walk starting from start node. """ G = self.G alias_nodes = self.alias_nodes alias_edges = self.alias_edges walk = [start_node] while len(walk) < walk_length: cur = walk[-1] cur_nbrs = sorted(G.neighbors(cur)) if len(cur_nbrs) > 0: if len(walk) == 1: walk.append(cur_nbrs[alias_draw(alias_nodes[cur][0], alias_nodes[cur][1])]) else: prev = walk[-2] next = cur_nbrs[alias_draw(alias_edges[(prev, cur)][0], alias_edges[(prev, cur)][1])] walk.append(next) else: break return walk def simulate_walks(self, num_walks, walk_length): r"""Repeatedly simulate random walks from each node.""" G = self.G walks = [] nodes = list(G.nodes()) print('Walk iteration:') for walk_iter in range(num_walks): print(str(walk_iter+1), '/', str(num_walks)) random.shuffle(nodes) for node in nodes: walks.append(self.node2vec_walk(walk_length=walk_length, start_node=node)) return walks def get_alias_edge(self, src, dst): r"""Get the alias edge setup lists for a given edge.""" G = self.G p = self.p q = self.q unnormalized_probs = [] for dst_nbr in sorted(G.neighbors(dst)): if dst_nbr == src: unnormalized_probs.append(G[dst][dst_nbr]['weight']/p) elif G.has_edge(dst_nbr, src): unnormalized_probs.append(G[dst][dst_nbr]['weight']) else: unnormalized_probs.append(G[dst][dst_nbr]['weight']/q) norm_const = sum(unnormalized_probs) normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs] return alias_setup(normalized_probs) def preprocess_transition_probs(self): r"""Preprocessing of transition probabilities for guiding the random walks.""" G = self.G is_directed = self.is_directed alias_nodes = {} for node in G.nodes(): unnormalized_probs = [G[node][nbr]['weight'] for nbr in sorted(G.neighbors(node))] norm_const = sum(unnormalized_probs) normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs] alias_nodes[node] = alias_setup(normalized_probs) alias_edges = {} triads = {} if is_directed: for edge in G.edges(): alias_edges[edge] = self.get_alias_edge(edge[0], edge[1]) else: for edge in G.edges(): alias_edges[edge] = self.get_alias_edge(edge[0], edge[1]) alias_edges[(edge[1], edge[0])] = self.get_alias_edge(edge[1], edge[0]) self.alias_nodes = alias_nodes self.alias_edges = alias_edges return def alias_setup(probs): r""" Compute utility lists for non-uniform sampling from discrete distributions. Refer to https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/ for details """ K = len(probs) q = np.zeros(K) J = np.zeros(K, dtype=np.int) smaller = [] larger = [] for kk, prob in enumerate(probs): q[kk] = K*prob if q[kk] < 1.0: smaller.append(kk) else: larger.append(kk) while len(smaller) > 0 and len(larger) > 0: small = smaller.pop() large = larger.pop() J[small] = large q[large] = q[large] + q[small] - 1.0 if q[large] < 1.0: smaller.append(large) else: larger.append(large) return J, q def alias_draw(J, q): r"""Draw sample from a non-uniform discrete distribution using alias sampling.""" K = len(J) kk = int(np.floor(np.random.rand()*K)) if np.random.rand() < q[kk]: return kk else: return J[kk]
25.246667
120
0.670452
79427dca3c20f750423b33788aec901c8cdb3529
1,582
py
Python
extraPackages/Pillow-6.0.0/Tests/bench_cffi_access.py
dolboBobo/python3_ios
877f8c2c5890f26292ddd14909bea62a04fe2889
[ "BSD-3-Clause" ]
130
2018-02-03T10:25:54.000Z
2022-03-25T22:27:22.000Z
extraPackages/Pillow-6.0.0/Tests/bench_cffi_access.py
doc22940/python3_ios
877f8c2c5890f26292ddd14909bea62a04fe2889
[ "BSD-3-Clause" ]
9
2018-12-14T07:31:42.000Z
2020-12-09T20:29:28.000Z
extraPackages/Pillow-6.0.0/Tests/bench_cffi_access.py
doc22940/python3_ios
877f8c2c5890f26292ddd14909bea62a04fe2889
[ "BSD-3-Clause" ]
64
2018-04-25T08:51:57.000Z
2022-01-29T14:13:57.000Z
from .helper import unittest, PillowTestCase, hopper # Not running this test by default. No DOS against Travis CI. from PIL import PyAccess import time def iterate_get(size, access): (w, h) = size for x in range(w): for y in range(h): access[(x, y)] def iterate_set(size, access): (w, h) = size for x in range(w): for y in range(h): access[(x, y)] = (x % 256, y % 256, 0) def timer(func, label, *args): iterations = 5000 starttime = time.time() for x in range(iterations): func(*args) if time.time()-starttime > 10: print("%s: breaking at %s iterations, %.6f per iteration" % ( label, x+1, (time.time()-starttime)/(x+1.0))) break if x == iterations-1: endtime = time.time() print("%s: %.4f s %.6f per iteration" % ( label, endtime-starttime, (endtime-starttime)/(x+1.0))) class BenchCffiAccess(PillowTestCase): def test_direct(self): im = hopper() im.load() # im = Image.new( "RGB", (2000, 2000), (1, 3, 2)) caccess = im.im.pixel_access(False) access = PyAccess.new(im, False) self.assertEqual(caccess[(0, 0)], access[(0, 0)]) print("Size: %sx%s" % im.size) timer(iterate_get, 'PyAccess - get', im.size, access) timer(iterate_set, 'PyAccess - set', im.size, access) timer(iterate_get, 'C-api - get', im.size, caccess) timer(iterate_set, 'C-api - set', im.size, caccess) if __name__ == '__main__': unittest.main()
26.813559
73
0.565107
79427e0cfea1bb9873fbcd6a20700f01493fe03f
1,289
py
Python
utils/others.py
MSwML/ML-guided-material-synthesis
8c0ae4a4f6403bcc6833e959f549ab11c9874fe6
[ "MIT" ]
2
2020-11-10T01:45:28.000Z
2021-05-30T03:32:26.000Z
utils/others.py
MSwML/ML-guided-material-synthesis
8c0ae4a4f6403bcc6833e959f549ab11c9874fe6
[ "MIT" ]
null
null
null
utils/others.py
MSwML/ML-guided-material-synthesis
8c0ae4a4f6403bcc6833e959f549ab11c9874fe6
[ "MIT" ]
1
2021-01-23T04:34:50.000Z
2021-01-23T04:34:50.000Z
import shap import numpy as np import pandas as pd from utils import data_handler def extract_feature_importance(model,X,title): print('Feature importance...') explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X) shap.summary_plot(shap_values, feature_names=X.columns, plot_type="bar") # normalize importance values sum_col = abs(shap_values).sum(axis=0) imp = np.array(sum_col/sum_col.sum()) ind = np.argsort(imp)[::-1] sorted_imp = imp[ind] sorted_feature = X.columns[ind] feature_imp_sorted = pd.DataFrame( [sorted_imp],columns=sorted_feature) print(feature_imp_sorted) data_handler.save_csv(feature_imp_sorted,title=title+'feature_imp_sorted') def predict_fake_input(model, task, title): generated = data_handler.load_fake_input(task) print('Number of generated conditions : ',generated.shape) if(task==0): pred = model.predict_proba(generated) final_state = pd.Series( pred[:,1], name='Pred_Result') elif(task==1): pred = model.predict(generated) final_state = pd.Series( pred, name='Pred_Result') result = pd.concat([generated, final_state], axis=1) data_handler.save_csv(result,title+'pred_fake_input')
28.644444
78
0.694337
79427e37762155d108c16efd1ee009b67587edcb
9,814
py
Python
test/color/test_rgb.py
connorlee77/kornia
af5b1f76bedf2a7fc0e0da2386b1be3032b6534f
[ "ECL-2.0", "Apache-2.0" ]
1
2021-10-21T05:13:51.000Z
2021-10-21T05:13:51.000Z
test/color/test_rgb.py
connorlee77/kornia
af5b1f76bedf2a7fc0e0da2386b1be3032b6534f
[ "ECL-2.0", "Apache-2.0" ]
1
2022-03-12T01:08:10.000Z
2022-03-12T01:08:10.000Z
test/color/test_rgb.py
connorlee77/kornia
af5b1f76bedf2a7fc0e0da2386b1be3032b6534f
[ "ECL-2.0", "Apache-2.0" ]
1
2021-02-09T02:19:32.000Z
2021-02-09T02:19:32.000Z
import kornia import kornia.testing as utils # test utils from test.common import device import torch from torch.autograd import gradcheck from torch.testing import assert_allclose import pytest class TestRgbToRgba: def test_smoke(self, device): data = torch.rand(3, 4, 4).to(device) assert kornia.rgb_to_rgba(data, 0.).shape == (4, 4, 4) def test_back_and_forth_rgb(self, device): a_val: float = 1. x_rgb = torch.rand(3, 4, 4).to(device) x_rgba = kornia.rgb_to_rgba(x_rgb, a_val) x_rgb_new = kornia.rgba_to_rgb(x_rgba) assert_allclose(x_rgb, x_rgb_new) def test_back_and_forth_bgr(self, device): a_val: float = 1. x_bgr = torch.rand(3, 4, 4).to(device) x_rgba = kornia.bgr_to_rgba(x_bgr, a_val) x_bgr_new = kornia.rgba_to_bgr(x_rgba) assert_allclose(x_bgr, x_bgr_new) def test_bgr(self, device): a_val: float = 1. x_rgb = torch.rand(3, 4, 4).to(device) x_bgr = kornia.rgb_to_bgr(x_rgb) x_rgba = kornia.rgb_to_rgba(x_rgb, a_val) x_rgba_new = kornia.bgr_to_rgba(x_bgr, a_val) assert_allclose(x_rgba, x_rgba_new) def test_single(self, device): data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 data = data.to(device) aval: float = 0.4 expected = torch.tensor([[[1.0, 1.0], [1.0, 1.0]], [[2.0, 2.0], [2.0, 2.0]], [[3.0, 3.0], [3.0, 3.0]], [[0.4, 0.4], [0.4, 0.4]]]) # 4x2x2 expected = expected.to(device) assert_allclose(kornia.rgb_to_rgba(data, aval), expected) def test_batch(self, device): data = torch.tensor([[[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]], [[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]]) # 2x3x2x2 data = data.to(device) aval: float = 45. expected = torch.tensor([[[[1.0, 1.0], [1.0, 1.0]], [[2.0, 2.0], [2.0, 2.0]], [[3.0, 3.0], [3.0, 3.0]], [[45., 45.], [45., 45.]]], [[[1.0, 1.0], [1.0, 1.0]], [[2.0, 2.0], [2.0, 2.0]], [[3.0, 3.0], [3.0, 3.0]], [[45., 45.], [45., 45.]]]]) expected = expected.to(device) assert_allclose(kornia.rgb_to_rgba(data, aval), expected) def test_gradcheck(self, device): data = torch.rand(1, 3, 2, 2).to(device) data = utils.tensor_to_gradcheck_var(data) # to var assert gradcheck(kornia.color.RgbToRgba(1.), (data,), raise_exception=True) class TestBgrToRgb: def test_back_and_forth(self, device): data_bgr = torch.rand(1, 3, 3, 2).to(device) data_rgb = kornia.bgr_to_rgb(data_bgr) data_bgr_new = kornia.rgb_to_bgr(data_rgb) assert_allclose(data_bgr, data_bgr_new) def test_bgr_to_rgb(self, device): data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 expected = torch.tensor([[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]]) # 3x2x2 # move data to the device data = data.to(device) expected = expected.to(device) f = kornia.color.BgrToRgb() assert_allclose(f(data), expected) def test_batch_bgr_to_rgb(self, device): data = torch.tensor([[[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]], [[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]]) # 2x3x2x2 expected = torch.tensor([[[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]], [[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]]]) # 2x3x2x2 # move data to the device data = data.to(device) expected = expected.to(device) f = kornia.color.BgrToRgb() out = f(data) assert_allclose(out, expected) def test_gradcheck(self, device): data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 data = data.to(device) data = utils.tensor_to_gradcheck_var(data) # to var assert gradcheck(kornia.color.BgrToRgb(), (data,), raise_exception=True) @pytest.mark.skip(reason="turn off all jit for a while") def test_jit(self, device): @torch.jit.script def op_script(data: torch.Tensor) -> torch.Tensor: return kornia.bgr_to_rgb(data) data = torch.Tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 actual = op_script(data) expected = kornia.bgr_to_rgb(data) assert_allclose(actual, expected) class TestRgbToBgr: def test_back_and_forth(self, device): data_rgb = torch.rand(1, 3, 3, 2).to(device) data_bgr = kornia.rgb_to_bgr(data_rgb) data_rgb_new = kornia.bgr_to_rgb(data_bgr) assert_allclose(data_rgb, data_rgb_new) def test_rgb_to_bgr(self, device): # prepare input data data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 expected = torch.tensor([[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]]) # 3x2x2 # move data to the device data = data.to(device) expected = expected.to(device) f = kornia.color.RgbToBgr() assert_allclose(f(data), expected) def test_gradcheck(self, device): # prepare input data data = torch.tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x2 data = data.to(device) data = utils.tensor_to_gradcheck_var(data) # to var assert gradcheck(kornia.color.RgbToBgr(), (data,), raise_exception=True) @pytest.mark.skip(reason="turn off all jit for a while") def test_jit(self): @torch.jit.script def op_script(data: torch.Tensor) -> torch.Tensor: return kornia.rgb_to_bgr(data) data = torch.Tensor([[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]) # 3x2x actual = op_script(data) expected = kornia.rgb_to_bgr(data) assert_allclose(actual, expected) def test_batch_rgb_to_bgr(self, device): # prepare input data data = torch.tensor([[[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]], [[[1., 1.], [1., 1.]], [[2., 2.], [2., 2.]], [[3., 3.], [3., 3.]]]]) # 2x3x2x2 expected = torch.tensor([[[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]], [[[3., 3.], [3., 3.]], [[2., 2.], [2., 2.]], [[1., 1.], [1., 1.]]]]) # 2x3x2x2 # move data to the device data = data.to(device) expected = expected.to(device) f = kornia.color.RgbToBgr() out = f(data) assert_allclose(out, expected)
31.863636
83
0.3602
79427fb72b17238219878925957b3b6e0e4ff7bb
4,160
py
Python
tests/unitary/GaugeController/test_gauges_weights.py
AqualisDAO/curve-dao-contracts
beec73a068da8ed01c0f710939dc5adb776d565b
[ "MIT" ]
217
2020-06-24T14:01:21.000Z
2022-03-29T08:35:24.000Z
tests/unitary/GaugeController/test_gauges_weights.py
AqualisDAO/curve-dao-contracts
beec73a068da8ed01c0f710939dc5adb776d565b
[ "MIT" ]
25
2020-06-24T09:39:02.000Z
2022-03-22T17:03:00.000Z
tests/unitary/GaugeController/test_gauges_weights.py
AqualisDAO/curve-dao-contracts
beec73a068da8ed01c0f710939dc5adb776d565b
[ "MIT" ]
110
2020-07-10T22:45:49.000Z
2022-03-29T02:51:08.000Z
import brownie WEEK = 7 * 86400 YEAR = 365 * 86400 TYPE_WEIGHTS = [5 * 10 ** 17, 2 * 10 ** 18] GAUGE_WEIGHTS = [2 * 10 ** 18, 10 ** 18, 5 * 10 ** 17] def test_add_gauges(accounts, gauge_controller, three_gauges): gauge_controller.add_gauge(three_gauges[0], 0, {"from": accounts[0]}) gauge_controller.add_gauge(three_gauges[1], 0, {"from": accounts[0]}) assert gauge_controller.gauges(0) == three_gauges[0] assert gauge_controller.gauges(1) == three_gauges[1] def test_n_gauges(accounts, gauge_controller, three_gauges): assert gauge_controller.n_gauges() == 0 gauge_controller.add_gauge(three_gauges[0], 0, {"from": accounts[0]}) gauge_controller.add_gauge(three_gauges[1], 0, {"from": accounts[0]}) assert gauge_controller.n_gauges() == 2 def test_n_gauges_same_gauge(accounts, gauge_controller, three_gauges): assert gauge_controller.n_gauges() == 0 gauge_controller.add_gauge(three_gauges[0], 0, {"from": accounts[0]}) with brownie.reverts("dev: cannot add the same gauge twice"): gauge_controller.add_gauge(three_gauges[0], 0, {"from": accounts[0]}) assert gauge_controller.n_gauges() == 1 def test_n_gauge_types(gauge_controller, accounts, three_gauges): assert gauge_controller.n_gauge_types() == 1 gauge_controller.add_type(b"Insurance", {"from": accounts[0]}) assert gauge_controller.n_gauge_types() == 2 def test_gauge_types(accounts, gauge_controller, three_gauges): gauge_controller.add_type(b"Insurance", {"from": accounts[0]}) gauge_controller.add_gauge(three_gauges[0], 1, {"from": accounts[0]}) gauge_controller.add_gauge(three_gauges[1], 0, {"from": accounts[0]}) assert gauge_controller.gauge_types(three_gauges[0]) == 1 assert gauge_controller.gauge_types(three_gauges[1]) == 0 def test_gauge_weight(accounts, gauge_controller, gauge): gauge_controller.add_gauge(gauge, 0, 10 ** 19, {"from": accounts[0]}) assert gauge_controller.get_gauge_weight.call(gauge) == 10 ** 19 def test_gauge_weight_as_zero(accounts, gauge_controller, gauge): gauge_controller.add_gauge(gauge, 0, {"from": accounts[0]}) assert gauge_controller.get_gauge_weight.call(gauge) == 0 def test_set_gauge_weight(chain, accounts, gauge_controller, gauge): gauge_controller.add_gauge(gauge, 0, {"from": accounts[0]}) gauge_controller.change_gauge_weight(gauge, 10 ** 21) chain.sleep(WEEK) assert gauge_controller.get_gauge_weight(gauge) == 10 ** 21 def test_type_weight(accounts, gauge_controller): gauge_controller.add_type(b"Insurance", {"from": accounts[0]}) assert gauge_controller.get_type_weight(0) == TYPE_WEIGHTS[0] assert gauge_controller.get_type_weight(1) == 0 def test_change_type_weight(accounts, gauge_controller): gauge_controller.add_type(b"Insurance", {"from": accounts[0]}) gauge_controller.change_type_weight(1, TYPE_WEIGHTS[1], {"from": accounts[0]}) gauge_controller.change_type_weight(0, 31337, {"from": accounts[0]}) assert gauge_controller.get_type_weight(0) == 31337 assert gauge_controller.get_type_weight(1) == TYPE_WEIGHTS[1] def test_relative_weight_write(accounts, chain, gauge_controller, three_gauges, skip_coverage): gauge_controller.add_type(b"Insurance", TYPE_WEIGHTS[1], {"from": accounts[0]}) gauge_controller.add_gauge(three_gauges[0], 0, GAUGE_WEIGHTS[0], {"from": accounts[0]}) gauge_controller.add_gauge(three_gauges[1], 0, GAUGE_WEIGHTS[1], {"from": accounts[0]}) gauge_controller.add_gauge(three_gauges[2], 1, GAUGE_WEIGHTS[2], {"from": accounts[0]}) total_weight = ( TYPE_WEIGHTS[0] * GAUGE_WEIGHTS[0] + TYPE_WEIGHTS[0] * GAUGE_WEIGHTS[1] + TYPE_WEIGHTS[1] * GAUGE_WEIGHTS[2] ) chain.sleep(int(1.1 * YEAR)) # Fill weights and check that nothing has changed t = chain.time() for gauge, w, gauge_type in zip(three_gauges, GAUGE_WEIGHTS, [0, 0, 1]): gauge_controller.gauge_relative_weight_write(gauge, t) relative_weight = gauge_controller.gauge_relative_weight(gauge, t) assert relative_weight == 10 ** 18 * w * TYPE_WEIGHTS[gauge_type] / total_weight
37.477477
95
0.722837
79427fbda58bff26e958303467032bf18314f192
1,335
py
Python
test/test_v1_volume_mount.py
pearsontechnology/k8sv1
f9df106a4f2492d35af63b6bb2b1da4ed2b84579
[ "Apache-2.0" ]
1
2016-08-10T15:06:53.000Z
2016-08-10T15:06:53.000Z
test/test_v1_volume_mount.py
pearsontechnology/k8sv1
f9df106a4f2492d35af63b6bb2b1da4ed2b84579
[ "Apache-2.0" ]
null
null
null
test/test_v1_volume_mount.py
pearsontechnology/k8sv1
f9df106a4f2492d35af63b6bb2b1da4ed2b84579
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ No descripton provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1 Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import os import sys import unittest import k8sv1 from k8sv1.rest import ApiException from k8sv1.models.v1_volume_mount import V1VolumeMount class TestV1VolumeMount(unittest.TestCase): """ V1VolumeMount unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1VolumeMount(self): """ Test V1VolumeMount """ model = k8sv1.models.v1_volume_mount.V1VolumeMount() if __name__ == '__main__': unittest.main()
25.188679
104
0.713109
79427fc696a65dc7442e39342261a3f5df774cae
672
py
Python
bindings/python/button-example.py
ali-hdvr/libsurvive
576fdbac0f9f18f7c90bb65503dbd8508a52af00
[ "MIT" ]
377
2016-12-03T06:44:50.000Z
2020-02-09T21:48:46.000Z
bindings/python/button-example.py
ali-hdvr/libsurvive
576fdbac0f9f18f7c90bb65503dbd8508a52af00
[ "MIT" ]
87
2016-12-05T04:07:18.000Z
2020-02-04T15:10:16.000Z
bindings/python/button-example.py
ali-hdvr/libsurvive
576fdbac0f9f18f7c90bb65503dbd8508a52af00
[ "MIT" ]
62
2016-12-03T06:38:02.000Z
2020-02-04T19:21:14.000Z
import sys import pysurvive ctx = pysurvive.init(sys.argv) if ctx is None: # implies -help or similiar exit(-1) def button_func(obj, eventtype, buttonid, axisids, axisvals): if eventtype == pysurvive.SURVIVE_INPUT_EVENT_BUTTON_DOWN: eventstring = "DOWN" elif eventtype == pysurvive.SURVIVE_INPUT_EVENT_BUTTON_UP: eventstring = "UP" else: eventstring = "%d" % (eventtype) print("Button %d on %s generated event %s"%(buttonid, obj.contents.codename.decode('utf8'), eventstring)) keepRunning = True pysurvive.install_button_fn(ctx, button_func) while keepRunning and pysurvive.poll(ctx) == 0: pass pysurvive.close(ctx)
24.888889
109
0.71131
794281432fe4d2d4aaee82c41c08b488a6933e16
15,849
py
Python
projectq/libs/math/_gates.py
ionq/ProjectQ
0cf7322cde910f79c6d4515fed36beaad2ae2f40
[ "Apache-2.0" ]
4
2021-07-09T04:14:36.000Z
2022-01-31T01:39:56.000Z
projectq/libs/math/_gates.py
ionq/ProjectQ
0cf7322cde910f79c6d4515fed36beaad2ae2f40
[ "Apache-2.0" ]
14
2021-06-21T12:19:09.000Z
2022-03-17T16:06:06.000Z
projectq/libs/math/_gates.py
ionq/ProjectQ
0cf7322cde910f79c6d4515fed36beaad2ae2f40
[ "Apache-2.0" ]
1
2021-07-09T15:04:49.000Z
2021-07-09T15:04:49.000Z
# -*- coding: utf-8 -*- # Copyright 2020 ProjectQ-Framework (www.projectq.ch) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Math gates for ProjectQ""" from projectq.ops import BasicMathGate class AddConstant(BasicMathGate): """ Add a constant to a quantum number represented by a quantum register, stored from low- to high-bit. Example: .. code-block:: python qunum = eng.allocate_qureg(5) # 5-qubit number X | qunum[1] # qunum is now equal to 2 AddConstant(3) | qunum # qunum is now equal to 5 Important: if you run with conditional and carry, carry needs to be a quantum register for the compiler/decomposition to work. """ def __init__(self, a): """ Initializes the gate to the number to add. Args: a (int): Number to add to a quantum register. It also initializes its base class, BasicMathGate, with the corresponding function, so it can be emulated efficiently. """ BasicMathGate.__init__(self, lambda x: ((x + a),)) self.a = a def get_inverse(self): """ Return the inverse gate (subtraction of the same constant). """ return SubConstant(self.a) def __str__(self): return "AddConstant({})".format(self.a) def __eq__(self, other): return isinstance(other, AddConstant) and self.a == other.a def __hash__(self): return hash(str(self)) def __ne__(self, other): return not self.__eq__(other) def SubConstant(a): """ Subtract a constant from a quantum number represented by a quantum register, stored from low- to high-bit. Args: a (int): Constant to subtract Example: .. code-block:: python qunum = eng.allocate_qureg(5) # 5-qubit number X | qunum[2] # qunum is now equal to 4 SubConstant(3) | qunum # qunum is now equal to 1 """ return AddConstant(-a) class AddConstantModN(BasicMathGate): """ Add a constant to a quantum number represented by a quantum register modulo N. The number is stored from low- to high-bit, i.e., qunum[0] is the LSB. Example: .. code-block:: python qunum = eng.allocate_qureg(5) # 5-qubit number X | qunum[1] # qunum is now equal to 2 AddConstantModN(3, 4) | qunum # qunum is now equal to 1 .. note:: Pre-conditions: * c < N * c >= 0 * The value stored in the quantum register must be lower than N """ def __init__(self, a, N): """ Initializes the gate to the number to add modulo N. Args: a (int): Number to add to a quantum register (0 <= a < N). N (int): Number modulo which the addition is carried out. It also initializes its base class, BasicMathGate, with the corresponding function, so it can be emulated efficiently. """ BasicMathGate.__init__(self, lambda x: ((x + a) % N,)) self.a = a self.N = N def __str__(self): return "AddConstantModN({}, {})".format(self.a, self.N) def get_inverse(self): """ Return the inverse gate (subtraction of the same number a modulo the same number N). """ return SubConstantModN(self.a, self.N) def __eq__(self, other): return isinstance(other, AddConstantModN) and self.a == other.a and self.N == other.N def __hash__(self): return hash(str(self)) def __ne__(self, other): return not self.__eq__(other) def SubConstantModN(a, N): """ Subtract a constant from a quantum number represented by a quantum register modulo N. The number is stored from low- to high-bit, i.e., qunum[0] is the LSB. Args: a (int): Constant to add N (int): Constant modulo which the addition of a should be carried out. Example: .. code-block:: python qunum = eng.allocate_qureg(3) # 3-qubit number X | qunum[1] # qunum is now equal to 2 SubConstantModN(4,5) | qunum # qunum is now -2 = 6 = 1 (mod 5) .. note:: Pre-conditions: * c < N * c >= 0 * The value stored in the quantum register must be lower than N """ return AddConstantModN(N - a, N) class MultiplyByConstantModN(BasicMathGate): """ Multiply a quantum number represented by a quantum register by a constant modulo N. The number is stored from low- to high-bit, i.e., qunum[0] is the LSB. Example: .. code-block:: python qunum = eng.allocate_qureg(5) # 5-qubit number X | qunum[2] # qunum is now equal to 4 MultiplyByConstantModN(3,5) | qunum # qunum is now 2. .. note:: Pre-conditions: * c < N * c >= 0 * gcd(c, N) == 1 * The value stored in the quantum register must be lower than N """ def __init__(self, a, N): """ Initializes the gate to the number to multiply with modulo N. Args: a (int): Number by which to multiply a quantum register (0 <= a < N). N (int): Number modulo which the multiplication is carried out. It also initializes its base class, BasicMathGate, with the corresponding function, so it can be emulated efficiently. """ BasicMathGate.__init__(self, lambda x: ((a * x) % N,)) self.a = a self.N = N def __str__(self): return "MultiplyByConstantModN({}, {})".format(self.a, self.N) def __eq__(self, other): return isinstance(other, MultiplyByConstantModN) and self.a == other.a and self.N == other.N def __hash__(self): return hash(str(self)) def __ne__(self, other): return not self.__eq__(other) class AddQuantumGate(BasicMathGate): """ Adds up two quantum numbers represented by quantum registers. The numbers are stored from low- to high-bit, i.e., qunum[0] is the LSB. Example: .. code-block:: python qunum_a = eng.allocate_qureg(5) # 5-qubit number qunum_b = eng.allocate_qureg(5) # 5-qubit number carry_bit = eng.allocate_qubit() X | qunum_a[2] #qunum_a is now equal to 4 X | qunum_b[3] #qunum_b is now equal to 8 AddQuantum | (qunum_a, qunum_b, carry) # qunum_a remains 4, qunum_b is now 12 and carry_bit is 0 """ def __init__(self): BasicMathGate.__init__(self, None) def __str__(self): return "AddQuantum" def __eq__(self, other): return isinstance(other, AddQuantumGate) def __hash__(self): return hash(str(self)) def __ne__(self, other): return not self.__eq__(other) def get_math_function(self, qubits): n = len(qubits[0]) def math_fun(a): a[1] = a[0] + a[1] if len(bin(a[1])[2:]) > n: a[1] = a[1] % (2 ** n) if len(a) == 3: # Flip the last bit of the carry register a[2] ^= 1 return a return math_fun def get_inverse(self): """ Return the inverse gate (subtraction of the same number a modulo the same number N). """ return _InverseAddQuantumGate() AddQuantum = AddQuantumGate() class _InverseAddQuantumGate(BasicMathGate): """ Internal gate glass to support emulation for inverse addition. """ def __init__(self): BasicMathGate.__init__(self, None) def __str__(self): return "_InverseAddQuantum" def get_math_function(self, qubits): def math_fun(a): if len(a) == 3: # Flip the last bit of the carry register a[2] ^= 1 a[1] -= a[0] return a return math_fun class SubtractQuantumGate(BasicMathGate): """ Subtract one quantum number represented by a quantum register from another quantum number represented by a quantum register. Example: .. code-block:: python qunum_a = eng.allocate_qureg(5) # 5-qubit number qunum_b = eng.allocate_qureg(5) # 5-qubit number X | qunum_a[2] #qunum_a is now equal to 4 X | qunum_b[3] #qunum_b is now equal to 8 SubtractQuantum | (qunum_a, qunum_b) # qunum_a remains 4, qunum_b is now 4 """ def __init__(self): """ Initializes the gate to its base class, BasicMathGate, with the corresponding function, so it can be emulated efficiently. """ def subtract(a, b): return (a, b - a) BasicMathGate.__init__(self, subtract) def __str__(self): return "SubtractQuantum" def __eq__(self, other): return isinstance(other, SubtractQuantumGate) def __hash__(self): return hash(str(self)) def __ne__(self, other): return not self.__eq__(other) def get_inverse(self): """ Return the inverse gate (subtraction of the same number a modulo the same number N). """ return AddQuantum SubtractQuantum = SubtractQuantumGate() class ComparatorQuantumGate(BasicMathGate): """ Flips a compare qubit if the binary value of first imput is higher than the second input. The numbers are stored from low- to high-bit, i.e., qunum[0] is the LSB. Example: .. code-block:: python qunum_a = eng.allocate_qureg(5) # 5-qubit number qunum_b = eng.allocate_qureg(5) # 5-qubit number compare_bit = eng.allocate_qubit() X | qunum_a[4] #qunum_a is now equal to 16 X | qunum_b[3] #qunum_b is now equal to 8 ComparatorQuantum | (qunum_a, qunum_b, compare_bit) # qunum_a and qunum_b remain 16 and 8, qunum_b is now 12 and compare bit is now 1 """ def __init__(self): """ Initializes the gate and its base class, BasicMathGate, with the corresponding function, so it can be emulated efficiently. """ def compare(a, b, c): if b < a: if c == 0: c = 1 else: c = 0 return (a, b, c) BasicMathGate.__init__(self, compare) def __str__(self): return "Comparator" def __eq__(self, other): return isinstance(other, ComparatorQuantumGate) def __hash__(self): return hash(str(self)) def __ne__(self, other): return not self.__eq__(other) def get_inverse(self): """ Return the inverse gate """ return AddQuantum ComparatorQuantum = ComparatorQuantumGate() class DivideQuantumGate(BasicMathGate): """ Divides one quantum number from another. Takes three inputs which should be quantum registers of equal size; a dividend, a remainder and a divisor. The remainder should be in the state |0...0> and the dividend should be bigger than the divisor.The gate returns (in this order): the remainder, the quotient and the divisor. The numbers are stored from low- to high-bit, i.e., qunum[0] is the LSB. Example: .. code-block:: python qunum_a = eng.allocate_qureg(5) # 5-qubit number qunum_b = eng.allocate_qureg(5) # 5-qubit number qunum_c = eng.allocate_qureg(5) # 5-qubit number All(X) | [qunum_a[0],qunum_a[3]] #qunum_a is now equal to 9 X | qunum_c[2] #qunum_c is now equal to 4 DivideQuantum | (qunum_a, qunum_b,qunum_c) # qunum_a is now equal to 1 (remainder), qunum_b is now # equal to 2 (quotient) and qunum_c remains 4 (divisor) |dividend>|remainder>|divisor> -> |remainder>|quotient>|divisor> """ def __init__(self): """ Initializes the gate and its base class, BasicMathGate, with the corresponding function, so it can be emulated efficiently. """ def division(dividend, remainder, divisor): if divisor == 0 or divisor > dividend: return (remainder, dividend, divisor) else: quotient = remainder + dividend // divisor return ((dividend - (quotient * divisor)), quotient, divisor) BasicMathGate.__init__(self, division) def get_inverse(self): return _InverseDivideQuantumGate() def __str__(self): return "DivideQuantum" def __eq__(self, other): return isinstance(other, DivideQuantumGate) def __hash__(self): return hash(str(self)) def __ne__(self, other): return not self.__eq__(other) DivideQuantum = DivideQuantumGate() class _InverseDivideQuantumGate(BasicMathGate): """ Internal gate glass to support emulation for inverse division. """ def __init__(self): def inverse_division(remainder, quotient, divisor): if divisor == 0: return (quotient, remainder, divisor) dividend = remainder + quotient * divisor remainder = 0 return (dividend, remainder, divisor) BasicMathGate.__init__(self, inverse_division) def __str__(self): return "_InverseDivideQuantum" class MultiplyQuantumGate(BasicMathGate): """ Multiplies two quantum numbers represented by a quantum registers. Requires three quantum registers as inputs, the first two are the numbers to be multiplied and should have the same size (n qubits). The third register will hold the product and should be of size 2n+1. The numbers are stored from low- to high-bit, i.e., qunum[0] is the LSB. Example: .. code-block:: python qunum_a = eng.allocate_qureg(4) qunum_b = eng.allocate_qureg(4) qunum_c = eng.allocate_qureg(9) X | qunum_a[2] # qunum_a is now 4 X | qunum_b[3] # qunum_b is now 8 MultiplyQuantum() | (qunum_a, qunum_b, qunum_c) # qunum_a remains 4 and qunum_b remains 8, qunum_c is now equal to 32 """ def __init__(self): """ Initializes the gate and its base class, BasicMathGate, with the corresponding function, so it can be emulated efficiently. """ def multiply(a, b, c): return (a, b, c + a * b) BasicMathGate.__init__(self, multiply) def __str__(self): return "MultiplyQuantum" def __eq__(self, other): return isinstance(other, MultiplyQuantumGate) def __hash__(self): return hash(str(self)) def __ne__(self, other): return not self.__eq__(other) def get_inverse(self): return _InverseMultiplyQuantumGate() MultiplyQuantum = MultiplyQuantumGate() class _InverseMultiplyQuantumGate(BasicMathGate): """ Internal gate glass to support emulation for inverse multiplication. """ def __init__(self): def inverse_multiplication(a, b, c): return (a, b, c - a * b) BasicMathGate.__init__(self, inverse_multiplication) def __str__(self): return "_InverseMultiplyQuantum"
28.051327
100
0.604202
794281c62f53bff2c4a1c95ad1e4d4b5326c55c2
3,323
py
Python
retools/lock.py
dolead/retools
28847168d768e3ff8f6e296627175085a205790c
[ "MIT" ]
null
null
null
retools/lock.py
dolead/retools
28847168d768e3ff8f6e296627175085a205790c
[ "MIT" ]
null
null
null
retools/lock.py
dolead/retools
28847168d768e3ff8f6e296627175085a205790c
[ "MIT" ]
null
null
null
"""A Redis backed distributed global lock This lock based mostly on this excellent example: http://chris-lamb.co.uk/2010/06/07/distributing-locking-python-and-redis/ This code add's one change as suggested by the Redis documentation regarding using locks in Redis, which is to only delete the Redis lock if we actually completed within the timeout period. If we took too long to execute, then the lock stored here is actually from a *different* client holding a lock and we shouldn't be deleting their lock. """ # Copyright 2010,2011 Chris Lamb <[email protected]> import time import random from retools import global_connection class Lock(object): def __init__(self, key, expires=60, timeout=10, redis=None): """ Distributed locking using Redis SETNX and GETSET. Usage:: with Lock('my_lock'): print "Critical section" :param expires: We consider any existing lock older than ``expires`` seconds to be invalid in order to detect crashed clients. This value must be higher than it takes the critical section to execute. :param timeout: If another client has already obtained the lock, sleep for a maximum of ``timeout`` seconds before giving up. A value of 0 means we never wait. :param redis: The redis instance to use if the default global redis connection is not desired. """ self.key = key self.timeout = timeout self.expires = expires if not redis: redis = global_connection.redis self.redis = redis self.start_time = time.time() def __enter__(self): redis = self.redis timeout = self.timeout retry_sleep = 0.005 if self.expires is None: return while timeout >= 0: expires = time.time() + self.expires + 1 if redis.setnx(self.key, expires): # We gained the lock; enter critical section self.start_time = time.time() redis.expire(self.key, int(self.expires)) return current_value = redis.get(self.key) # We found an expired lock and nobody raced us to replacing it if current_value and float(current_value) < time.time() and \ redis.getset(self.key, expires) == current_value: self.start_time = time.time() redis.expire(self.key, int(self.expires)) return timeout -= 1 if timeout >= 0: time.sleep(random.uniform(0, retry_sleep)) retry_sleep = min(retry_sleep * 2, 1) raise LockTimeout("Timeout while waiting for lock") def __exit__(self, exc_type, exc_value, traceback): # Only delete the key if we completed within the lock expiration, # otherwise, another lock might've been established if self.expires is None: return if time.time() - self.start_time < self.expires: self.redis.delete(self.key) class LockTimeout(BaseException): """Raised in the event a timeout occurs while waiting for a lock"""
36.119565
77
0.604574
794281cafa4f98f84b36cb43101f03491c1d0352
1,272
py
Python
tests/api_resources/test_application_fee_refund.py
bhch/async-stripe
75d934a8bb242f664e7be30812c12335cf885287
[ "MIT", "BSD-3-Clause" ]
8
2021-05-29T08:57:58.000Z
2022-02-19T07:09:25.000Z
tests/api_resources/test_application_fee_refund.py
bhch/async-stripe
75d934a8bb242f664e7be30812c12335cf885287
[ "MIT", "BSD-3-Clause" ]
5
2021-05-31T10:18:36.000Z
2022-01-25T11:39:03.000Z
tests/api_resources/test_application_fee_refund.py
bhch/async-stripe
75d934a8bb242f664e7be30812c12335cf885287
[ "MIT", "BSD-3-Clause" ]
1
2021-05-29T13:27:10.000Z
2021-05-29T13:27:10.000Z
from __future__ import absolute_import, division, print_function import pytest import stripe import pytest pytestmark = pytest.mark.asyncio TEST_RESOURCE_ID = "fr_123" TEST_APPFEE_ID = "fee_123" class TestApplicationFeeRefund(object): async def test_is_saveable(self, request_mock): appfee = await stripe.ApplicationFee.retrieve(TEST_APPFEE_ID) resource = await appfee.refunds.retrieve(TEST_RESOURCE_ID) resource.metadata["key"] = "value" await resource.save() request_mock.assert_requested( "post", "/v1/application_fees/%s/refunds/%s" % (TEST_APPFEE_ID, TEST_RESOURCE_ID), ) async def test_is_modifiable(self, request_mock): resource = await stripe.ApplicationFeeRefund.modify( TEST_APPFEE_ID, TEST_RESOURCE_ID, metadata={"key": "value"} ) request_mock.assert_requested( "post", "/v1/application_fees/%s/refunds/%s" % (TEST_APPFEE_ID, TEST_RESOURCE_ID), ) assert isinstance(resource, stripe.ApplicationFeeRefund) async def test_is_not_retrievable(self): with pytest.raises(NotImplementedError): await stripe.ApplicationFeeRefund.retrieve(TEST_RESOURCE_ID)
30.285714
72
0.68239
794281f7a10014ae0e3b2dd30805e3c8c303b6d3
163
py
Python
tests/model_control/detailed/transf_Integration/model_control_one_enabled_Integration_MovingAverage_BestCycle_SVR.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
tests/model_control/detailed/transf_Integration/model_control_one_enabled_Integration_MovingAverage_BestCycle_SVR.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
1
2019-11-30T23:39:38.000Z
2019-12-01T04:34:35.000Z
tests/model_control/detailed/transf_Integration/model_control_one_enabled_Integration_MovingAverage_BestCycle_SVR.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Integration'] , ['MovingAverage'] , ['BestCycle'] , ['SVR'] );
40.75
85
0.754601
79428338800187a14771fd7603482689d78daa6d
307
py
Python
example_app/set_sys_path.py
soofaloofa/gutter-appengine
279073e18939e8070421210ca4d65f2f16d7ee5c
[ "MIT" ]
1
2015-06-01T19:31:33.000Z
2015-06-01T19:31:33.000Z
example_app/set_sys_path.py
soofaloofa/gutter-appengine
279073e18939e8070421210ca4d65f2f16d7ee5c
[ "MIT" ]
null
null
null
example_app/set_sys_path.py
soofaloofa/gutter-appengine
279073e18939e8070421210ca4d65f2f16d7ee5c
[ "MIT" ]
null
null
null
import os import sys CURRENT_PATH = os.path.abspath(os.path.dirname(__file__)) def set_sys_path(): # Add lib as primary libraries directory, with fallback to lib/dist # and optionally to lib/dist.zip, loaded using zipimport. sys.path[0:0] = [ os.path.join(CURRENT_PATH, 'lib'), ]
23.615385
71
0.687296
79428345c64dce00c672e545483a4f00f47ea31f
2,159
py
Python
front/models.py
llazzaro/django-front
8a04a88d42b37f4882ab43415e5f20bedae9d257
[ "MIT" ]
135
2015-01-12T22:21:41.000Z
2021-12-12T03:52:04.000Z
front/models.py
P-Designs/django-front
2f7daaa70d6b2210f4a4ad0c251b0893f15bd711
[ "MIT" ]
12
2015-04-10T12:45:04.000Z
2020-03-22T17:32:32.000Z
front/models.py
P-Designs/django-front
2f7daaa70d6b2210f4a4ad0c251b0893f15bd711
[ "MIT" ]
24
2015-01-24T01:22:18.000Z
2022-03-15T13:06:47.000Z
from django.db import models from django.core.cache import cache from django.dispatch import receiver from django.db.models.signals import post_save import hashlib import six class Placeholder(models.Model): key = models.CharField(max_length=40, primary_key=True, db_index=True) value = models.TextField(blank=True) def __unicode__(self): return self.value def cache_key(self): return "front-edit-%s" % self.key @classmethod def key_for(cls, name, *bits): return hashlib.new('sha1', six.text_type(name + ''.join([six.text_type(token) for token in bits])).encode('utf8')).hexdigest() @classmethod def copy_content(cls, name, source_bits, target_bits): source_key = cls.key_for(name, *source_bits) target_key = cls.key_for(name, *target_bits) source = cls.objects.filter(key=source_key) if source.exists(): source = source.get() cls.objects.create(key=target_key, value=source.value) class PlaceholderHistory(models.Model): placeholder = models.ForeignKey(Placeholder, related_name='history', on_delete=models.CASCADE) value = models.TextField(blank=True) saved = models.DateTimeField(auto_now_add=True) class Meta: ordering = ('-saved', ) @property def _as_json(self): return {'value': self.value, 'saved': self.saved.strftime('%s')} @receiver(post_save, sender=Placeholder) def save_placeholder(sender, instance, created, raw, *args, **kwargs): if not raw: # If we have placeholders, check wheter the content has changed before saving history if PlaceholderHistory.objects.filter(placeholder=instance).exists(): ph = PlaceholderHistory.objects.all()[0] if ph.value != instance.value: PlaceholderHistory.objects.create(placeholder=instance, value=instance.value) else: PlaceholderHistory.objects.create(placeholder=instance, value=instance.value) @receiver(post_save, sender=PlaceholderHistory) def save_history(sender, instance, created, raw, *args, **kwargs): cache.delete(instance.placeholder.cache_key())
34.822581
134
0.696619
794283e09f59053c4936189314f3f0b0fe85e5d0
4,313
py
Python
homeassistant/components/hue/__init__.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
22,481
2020-03-02T13:09:59.000Z
2022-03-31T23:34:28.000Z
homeassistant/components/hue/__init__.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
homeassistant/components/hue/__init__.py
andersop91/core
0e0ef0aa17073609eae7c974cf4c73306b7c414b
[ "Apache-2.0" ]
11,411
2020-03-02T14:19:20.000Z
2022-03-31T22:46:07.000Z
"""Support for the Philips Hue system.""" from aiohue.util import normalize_bridge_id from homeassistant import config_entries, core from homeassistant.components import persistent_notification from homeassistant.helpers import device_registry as dr from .bridge import HueBridge from .const import DOMAIN, SERVICE_HUE_ACTIVATE_SCENE from .migration import check_migration from .services import async_register_services async def async_setup_entry( hass: core.HomeAssistant, entry: config_entries.ConfigEntry ) -> bool: """Set up a bridge from a config entry.""" # check (and run) migrations if needed await check_migration(hass, entry) # setup the bridge instance bridge = HueBridge(hass, entry) if not await bridge.async_initialize_bridge(): return False # register Hue domain services async_register_services(hass) api = bridge.api # For backwards compat unique_id = normalize_bridge_id(api.config.bridge_id) if entry.unique_id is None: hass.config_entries.async_update_entry(entry, unique_id=unique_id) # For recovering from bug where we incorrectly assumed homekit ID = bridge ID # Remove this logic after Home Assistant 2022.4 elif entry.unique_id != unique_id: # Find entries with this unique ID other_entry = next( ( entry for entry in hass.config_entries.async_entries(DOMAIN) if entry.unique_id == unique_id ), None, ) if other_entry is None: # If no other entry, update unique ID of this entry ID. hass.config_entries.async_update_entry(entry, unique_id=unique_id) elif other_entry.source == config_entries.SOURCE_IGNORE: # There is another entry but it is ignored, delete that one and update this one hass.async_create_task( hass.config_entries.async_remove(other_entry.entry_id) ) hass.config_entries.async_update_entry(entry, unique_id=unique_id) else: # There is another entry that already has the right unique ID. Delete this entry hass.async_create_task(hass.config_entries.async_remove(entry.entry_id)) return False # add bridge device to device registry device_registry = dr.async_get(hass) if bridge.api_version == 1: device_registry.async_get_or_create( config_entry_id=entry.entry_id, connections={(dr.CONNECTION_NETWORK_MAC, api.config.mac_address)}, identifiers={(DOMAIN, api.config.bridge_id)}, manufacturer="Signify", name=api.config.name, model=api.config.model_id, sw_version=api.config.software_version, ) # create persistent notification if we found a bridge version with security vulnerability if ( api.config.model_id == "BSB002" and api.config.software_version < "1935144040" ): persistent_notification.async_create( hass, "Your Hue hub has a known security vulnerability ([CVE-2020-6007] " "(https://cve.circl.lu/cve/CVE-2020-6007)). " "Go to the Hue app and check for software updates.", "Signify Hue", "hue_hub_firmware", ) else: device_registry.async_get_or_create( config_entry_id=entry.entry_id, connections={(dr.CONNECTION_NETWORK_MAC, api.config.mac_address)}, identifiers={ (DOMAIN, api.config.bridge_id), (DOMAIN, api.config.bridge_device.id), }, manufacturer=api.config.bridge_device.product_data.manufacturer_name, name=api.config.name, model=api.config.model_id, sw_version=api.config.software_version, ) return True async def async_unload_entry( hass: core.HomeAssistant, entry: config_entries.ConfigEntry ): """Unload a config entry.""" unload_success = await hass.data[DOMAIN][entry.entry_id].async_reset() if len(hass.data[DOMAIN]) == 0: hass.data.pop(DOMAIN) hass.services.async_remove(DOMAIN, SERVICE_HUE_ACTIVATE_SCENE) return unload_success
37.504348
97
0.656156
7942854af2003faf969bef9948d51919aecb34db
7,178
py
Python
gitrevise/tui.py
krobelus/git-revise
55bfb71bd4e9232b3b0befe171bc72d412856ae2
[ "MIT" ]
null
null
null
gitrevise/tui.py
krobelus/git-revise
55bfb71bd4e9232b3b0befe171bc72d412856ae2
[ "MIT" ]
null
null
null
gitrevise/tui.py
krobelus/git-revise
55bfb71bd4e9232b3b0befe171bc72d412856ae2
[ "MIT" ]
null
null
null
from typing import Optional, List from argparse import ArgumentParser, Namespace from subprocess import CalledProcessError import sys from .odb import Repository, Commit, Reference from .utils import ( EditorError, commit_range, edit_commit_message, update_head, cut_commit, local_commits, ) from .todo import ( CyclicFixupError, apply_todos, build_todos, edit_todos, autosquash_todos, ) from .merge import MergeConflict from . import __version__ def build_parser() -> ArgumentParser: parser = ArgumentParser( description="""\ Rebase staged changes onto the given commit, and rewrite history to incorporate these changes.""" ) parser.add_argument("target", nargs="?", help="target commit to apply fixups to") parser.add_argument("--ref", default="HEAD", help="reference to update") parser.add_argument( "--reauthor", action="store_true", help="reset the author of the targeted commit", ) parser.add_argument("--version", action="version", version=__version__) parser.add_argument( "--edit", "-e", action="store_true", help="edit commit message of targeted commit(s)", ) autosquash_group = parser.add_mutually_exclusive_group() autosquash_group.add_argument( "--autosquash", action="store_true", help="automatically apply fixup! and squash! commits to their targets", ) autosquash_group.add_argument( "--no-autosquash", action="store_true", help="force disable revise.autoSquash behaviour", ) index_group = parser.add_mutually_exclusive_group() index_group.add_argument( "--no-index", action="store_true", help="ignore the index while rewriting history", ) index_group.add_argument( "--all", "-a", action="store_true", help="stage all tracked files before running", ) index_group.add_argument( "--patch", "-p", action="store_true", help="interactively stage hunks before running", ) mode_group = parser.add_mutually_exclusive_group() mode_group.add_argument( "--interactive", "-i", action="store_true", help="interactively edit commit stack", ) mode_group.add_argument( "--message", "-m", action="append", help="specify commit message on command line", ) mode_group.add_argument( "--cut", "-c", action="store_true", help="interactively cut a commit into two smaller commits", ) return parser def interactive( args: Namespace, repo: Repository, staged: Optional[Commit], head: Reference[Commit] ): assert head.target is not None if args.target is None: base, to_rebase = local_commits(repo, head.target) else: base = repo.get_commit(args.target) to_rebase = commit_range(base, head.target) # Build up an initial todos list, edit that todos list. todos = original = build_todos(to_rebase, staged) if enable_autosquash(args, repo): todos = autosquash_todos(todos) if args.interactive: todos = edit_todos(repo, todos, msgedit=args.edit) if todos != original: # Perform the todo list actions. new_head = apply_todos(base, todos, reauthor=args.reauthor) # Update the value of HEAD to the new state. update_head(head, new_head, None) else: print("(warning) no changes performed", file=sys.stderr) def enable_autosquash(args: Namespace, repo: Repository) -> bool: if args.autosquash: return True if args.no_autosquash: return False return repo.bool_config( "revise.autoSquash", default=repo.bool_config("rebase.autoSquash", default=False), ) def noninteractive( args: Namespace, repo: Repository, staged: Optional[Commit], head: Reference[Commit] ): assert head.target is not None if args.target is None: raise ValueError("<target> is a required argument") head = repo.get_commit_ref(args.ref) if head.target is None: raise ValueError("Invalid target reference") current = replaced = repo.get_commit(args.target) to_rebase = commit_range(current, head.target) # Apply changes to the target commit. final = head.target.tree() if staged: print(f"Applying staged changes to '{args.target}'") current = current.update(tree=staged.rebase(current).tree()) final = staged.rebase(head.target).tree() # Update the commit message on the target commit if requested. if args.message: message = b"\n".join(l.encode("utf-8") + b"\n" for l in args.message) current = current.update(message=message) # Prompt the user to edit the commit message if requested. if args.edit: current = edit_commit_message(current) # Rewrite the author to match the current user if requested. if args.reauthor: current = current.update(author=repo.default_author) # If the commit should be cut, prompt the user to perform the cut. if args.cut: current = cut_commit(current) if current != replaced: print(f"{current.oid.short()} {current.summary()}") # Rebase commits atop the commit range. for commit in to_rebase: current = commit.rebase(current) print(f"{current.oid.short()} {current.summary()}") update_head(head, current, final) else: print("(warning) no changes performed", file=sys.stderr) def inner_main(args: Namespace, repo: Repository): # If '-a' or '-p' was specified, stage changes. if args.all: repo.git("add", "-u") if args.patch: repo.git("add", "-p") # Create a commit with changes from the index staged = None if not args.no_index: staged = repo.index.commit(message=b"<git index>") if staged.tree() == staged.parent().tree(): staged = None # No changes, ignore the commit # Determine the HEAD reference which we're going to update. head = repo.get_commit_ref(args.ref) if head.target is None: raise ValueError("Head reference not found!") # Either enter the interactive or non-interactive codepath. if args.interactive or args.autosquash: interactive(args, repo, staged, head) else: noninteractive(args, repo, staged, head) def main(argv: Optional[List[str]] = None): args = build_parser().parse_args(argv) try: with Repository() as repo: inner_main(args, repo) except CalledProcessError as err: print(f"subprocess exited with non-zero status: {err.returncode}") sys.exit(1) except CyclicFixupError as err: print(f"todo error: {err}") sys.exit(1) except EditorError as err: print(f"editor error: {err}") sys.exit(1) except MergeConflict as err: print(f"merge conflict: {err}") sys.exit(1) except ValueError as err: print(f"invalid value: {err}") sys.exit(1)
29.908333
88
0.642101
794285aa5e0a2f8571e77d0c0d8a68fff49f2cb1
613
py
Python
stocal/examples/events.py
MrLiono21/stocal
7f7110c5b6401e7332d5d35c843b6fedafd464c2
[ "MIT" ]
null
null
null
stocal/examples/events.py
MrLiono21/stocal
7f7110c5b6401e7332d5d35c843b6fedafd464c2
[ "MIT" ]
null
null
null
stocal/examples/events.py
MrLiono21/stocal
7f7110c5b6401e7332d5d35c843b6fedafd464c2
[ "MIT" ]
null
null
null
"""Event example stocal.Event's can be added to a processes definition just like Reactions. Process.trajectory returns an TrajectorySampler that can cope with deterministic transitions (e.g. FirstReactionMethod). Sampler selection and usage is entirely transparent to the user. """ import stocal process = stocal.Process([ stocal.MassAction(['A', 'A'], ['A2'], 0.01), stocal.MassAction(['A2'], ['A', 'A'], 1.), stocal.Event([], ['A'], 0., 1.) ]) if __name__ == '__main__': traj = process.trajectory({}, tmax=100) for _ in traj: print(traj.time, traj.state['A'], traj.state['A2'])
27.863636
67
0.668842
7942869f91600f5ced12b5178a647eb9df42255f
22,751
py
Python
venv/Lib/site-packages/pandas/core/groupby/grouper.py
Jos33y/student-performance-knn
4e965434f52dd6a1380904aa257df1edfaebb3c4
[ "MIT" ]
null
null
null
venv/Lib/site-packages/pandas/core/groupby/grouper.py
Jos33y/student-performance-knn
4e965434f52dd6a1380904aa257df1edfaebb3c4
[ "MIT" ]
null
null
null
venv/Lib/site-packages/pandas/core/groupby/grouper.py
Jos33y/student-performance-knn
4e965434f52dd6a1380904aa257df1edfaebb3c4
[ "MIT" ]
null
null
null
""" Provide user facing operators for doing the split part of the split-apply-combine paradigm. """ from typing import Dict, Hashable, List, Optional, Tuple import numpy as np from pandas._typing import FrameOrSeries from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( ensure_categorical, is_categorical_dtype, is_datetime64_dtype, is_list_like, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCSeries import pandas.core.algorithms as algorithms from pandas.core.arrays import Categorical, ExtensionArray import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.groupby import ops from pandas.core.groupby.categorical import recode_for_groupby, recode_from_groupby from pandas.core.indexes.api import CategoricalIndex, Index, MultiIndex from pandas.core.series import Series from pandas.io.formats.printing import pprint_thing class Grouper: """ A Grouper allows the user to specify a groupby instruction for an object. This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. If `axis` and/or `level` are passed as keywords to both `Grouper` and `groupby`, the values passed to `Grouper` take precedence. Parameters ---------- key : str, defaults to None Groupby key, which selects the grouping column of the target. level : name/number, defaults to None The level for the target index. freq : str / frequency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object. For full specification of available frequencies, please see `here <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_. axis : str, int, defaults to 0 Number/name of the axis. sort : bool, default to False Whether to sort the resulting labels. closed : {'left' or 'right'} Closed end of interval. Only when `freq` parameter is passed. label : {'left' or 'right'} Interval boundary to use for labeling. Only when `freq` parameter is passed. convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex and `freq` parameter is passed. base : int, default 0 Only when `freq` parameter is passed. loffset : str, DateOffset, timedelta object Only when `freq` parameter is passed. Returns ------- A specification for a groupby instruction Examples -------- Syntactic sugar for ``df.groupby('A')`` >>> df.groupby(Grouper(key='A')) Specify a resample operation on the column 'date' >>> df.groupby(Grouper(key='date', freq='60s')) Specify a resample operation on the level 'date' on the columns axis with a frequency of 60s >>> df.groupby(Grouper(level='date', freq='60s', axis=1)) """ _attributes: Tuple[str, ...] = ("key", "level", "freq", "axis", "sort") def __new__(cls, *args, **kwargs): if kwargs.get("freq") is not None: from pandas.core.resample import TimeGrouper cls = TimeGrouper return super().__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=0, sort=False): self.key = key self.level = level self.freq = freq self.axis = axis self.sort = sort self.grouper = None self.obj = None self.indexer = None self.binner = None self._grouper = None @property def ax(self): return self.grouper def _get_grouper(self, obj, validate: bool = True): """ Parameters ---------- obj : the subject object validate : boolean, default True if True, validate the grouper Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) self.grouper, _, self.obj = get_grouper( self.obj, [self.key], axis=self.axis, level=self.level, sort=self.sort, validate=validate, ) return self.binner, self.grouper, self.obj def _set_grouper(self, obj: FrameOrSeries, sort: bool = False): """ given an object and the specifications, setup the internal grouper for this particular specification Parameters ---------- obj : Series or DataFrame sort : bool, default False whether the resulting grouper should be sorted """ assert obj is not None if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # Keep self.grouper value before overriding if self._grouper is None: self._grouper = self.grouper # the key must be a valid info item if self.key is not None: key = self.key # The 'on' is already defined if getattr(self.grouper, "name", None) == key and isinstance( obj, ABCSeries ): ax = self._grouper.take(obj.index) else: if key not in obj._info_axis: raise KeyError(f"The grouper name {key} is not found") ax = Index(obj[key], name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) ax = Index(ax._get_level_values(level), name=ax.names[level]) else: if level not in (0, ax.name): raise ValueError(f"The level {level} is not valid") # possibly sort if (self.sort or sort) and not ax.is_monotonic: # use stable sort to support first, last, nth indexer = self.indexer = ax.argsort(kind="mergesort") ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis) self.obj = obj self.grouper = ax return self.grouper @property def groups(self): return self.grouper.groups def __repr__(self) -> str: attrs_list = ( f"{attr_name}={repr(getattr(self, attr_name))}" for attr_name in self._attributes if getattr(self, attr_name) is not None ) attrs = ", ".join(attrs_list) cls_name = type(self).__name__ return f"{cls_name}({attrs})" class Grouping: """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj Union[DataFrame, Series]: name : level : observed : bool, default False If we are a Categorical, use the observed values in_axis : if the Grouping is a column in self.obj and hence among Groupby.exclusions list Returns ------- **Attributes**: * indices : dict of {group -> index_list} * codes : ndarray, group codes * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__( self, index: Index, grouper=None, obj: Optional[FrameOrSeries] = None, name=None, level=None, sort: bool = True, observed: bool = False, in_axis: bool = False, ): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.all_grouper = None self.index = index self.sort = sort self.obj = obj self.observed = observed self.in_axis = in_axis # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # we have a single grouper which may be a myriad of things, # some of which are dependent on the passing in level if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError(f"Level {level} not in index") level = index.names.index(level) if self.name is None: self.name = index.names[level] ( self.grouper, self._codes, self._group_index, ) = index._get_grouper_for_level(self.grouper, level) # a passed Grouper like, directly get the grouper in the same way # as single grouper groupby, use the group_info to get codes elif isinstance(self.grouper, Grouper): # get the new grouper; we already have disambiguated # what key/level refer to exactly, don't need to # check again as we have by this point converted these # to an actual value (rather than a pd.Grouper) _, grouper, _ = self.grouper._get_grouper(self.obj, validate=False) if self.name is None: self.name = grouper.result_index.name self.obj = self.grouper.obj self.grouper = grouper._get_grouper() else: if self.grouper is None and self.name is not None and self.obj is not None: self.grouper = self.obj[self.name] elif isinstance(self.grouper, (list, tuple)): self.grouper = com.asarray_tuplesafe(self.grouper) # a passed Categorical elif is_categorical_dtype(self.grouper): self.grouper, self.all_grouper = recode_for_groupby( self.grouper, self.sort, observed ) categories = self.grouper.categories # we make a CategoricalIndex out of the cat grouper # preserving the categories / ordered attributes self._codes = self.grouper.codes if observed: codes = algorithms.unique1d(self.grouper.codes) codes = codes[codes != -1] if sort or self.grouper.ordered: codes = np.sort(codes) else: codes = np.arange(len(categories)) self._group_index = CategoricalIndex( Categorical.from_codes( codes=codes, categories=categories, ordered=self.grouper.ordered ), name=self.name, ) # we are done if isinstance(self.grouper, Grouping): self.grouper = self.grouper.grouper # no level passed elif not isinstance( self.grouper, (Series, Index, ExtensionArray, np.ndarray) ): if getattr(self.grouper, "ndim", 1) != 1: t = self.name or str(type(self.grouper)) raise ValueError(f"Grouper for '{t}' not 1-dimensional") self.grouper = self.index.map(self.grouper) if not ( hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index) ): grper = pprint_thing(self.grouper) errmsg = ( "Grouper result violates len(labels) == " f"len(data)\nresult: {grper}" ) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have # Timestamps like if getattr(self.grouper, "dtype", None) is not None: if is_datetime64_dtype(self.grouper): self.grouper = self.grouper.astype("datetime64[ns]") elif is_timedelta64_dtype(self.grouper): self.grouper = self.grouper.astype("timedelta64[ns]") def __repr__(self) -> str: return f"Grouping({self.name})" def __iter__(self): return iter(self.indices) _codes: Optional[np.ndarray] = None _group_index: Optional[Index] = None @property def ngroups(self) -> int: return len(self.group_index) @cache_readonly def indices(self): # we have a list of groupers if isinstance(self.grouper, ops.BaseGrouper): return self.grouper.indices values = ensure_categorical(self.grouper) return values._reverse_indexer() @property def codes(self) -> np.ndarray: if self._codes is None: self._make_codes() return self._codes @cache_readonly def result_index(self) -> Index: if self.all_grouper is not None: return recode_from_groupby(self.all_grouper, self.sort, self.group_index) return self.group_index @property def group_index(self) -> Index: if self._group_index is None: self._make_codes() assert self._group_index is not None return self._group_index def _make_codes(self) -> None: if self._codes is None or self._group_index is None: # we have a list of groupers if isinstance(self.grouper, ops.BaseGrouper): codes = self.grouper.codes_info uniques = self.grouper.result_index else: codes, uniques = algorithms.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._codes = codes self._group_index = uniques @cache_readonly def groups(self) -> Dict[Hashable, np.ndarray]: return self.index.groupby(Categorical.from_codes(self.codes, self.group_index)) def get_grouper( obj: FrameOrSeries, key=None, axis: int = 0, level=None, sort: bool = True, observed: bool = False, mutated: bool = False, validate: bool = True, ) -> "Tuple[ops.BaseGrouper, List[Hashable], FrameOrSeries]": """ Create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure out what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. If observed & we have a categorical grouper, only show the observed values. If validate, then check for key/level overlaps. """ group_axis = obj._get_axis(axis) # validate that the passed single level is compatible with the passed # axis of the object if level is not None: # TODO: These if-block and else-block are almost same. # MultiIndex instance check is removable, but it seems that there are # some processes only for non-MultiIndex in else-block, # eg. `obj.index.name != level`. We have to consider carefully whether # these are applicable for MultiIndex. Even if these are applicable, # we need to check if it makes no side effect to subsequent processes # on the outside of this condition. # (GH 17621) if isinstance(group_axis, MultiIndex): if is_list_like(level) and len(level) == 1: level = level[0] if key is None and is_scalar(level): # Get the level values from group_axis key = group_axis.get_level_values(level) level = None else: # allow level to be a length-one list-like object # (e.g., level=[0]) # GH 13901 if is_list_like(level): nlevels = len(level) if nlevels == 1: level = level[0] elif nlevels == 0: raise ValueError("No group keys passed!") else: raise ValueError("multiple levels only valid with MultiIndex") if isinstance(level, str): if obj._get_axis(axis).name != level: raise ValueError( f"level name {level} is not the name " f"of the {obj._get_axis_name(axis)}" ) elif level > 0 or level < -1: raise ValueError("level > 0 or level < -1 only valid with MultiIndex") # NOTE: `group_axis` and `group_axis.get_level_values(level)` # are same in this section. level = None key = group_axis # a passed-in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj, validate=False) if key.key is None: return grouper, [], obj else: return grouper, [key.key], obj # already have a BaseGrouper, just return it elif isinstance(key, ops.BaseGrouper): return key, [], obj if not isinstance(key, list): keys = [key] match_axis_length = False else: keys = key match_axis_length = len(keys) == len(group_axis) # what are we after, exactly? any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_groupers = any(isinstance(g, Grouper) for g in keys) any_arraylike = any( isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys ) # is this an index replacement? if ( not any_callable and not any_arraylike and not any_groupers and match_axis_length and level is None ): if isinstance(obj, DataFrame): all_in_columns_index = all( g in obj.columns or g in obj.index.names for g in keys ) else: assert isinstance(obj, Series) all_in_columns_index = all(g in obj.index.names for g in keys) if not all_in_columns_index: keys = [com.asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings: List[Grouping] = [] exclusions: List[Hashable] = [] # if the actual grouper should be obj[key] def is_in_axis(key) -> bool: if not _is_label_like(key): items = obj._data.items try: items.get_loc(key) except (KeyError, TypeError): # TypeError shows up here if we pass e.g. Int64Index return False return True # if the grouper is obj[name] def is_in_obj(gpr) -> bool: if not hasattr(gpr, "name"): return False try: return gpr is obj[gpr.name] except (KeyError, IndexError): return False for i, (gpr, level) in enumerate(zip(keys, levels)): if is_in_obj(gpr): # df.groupby(df['name']) in_axis, name = True, gpr.name exclusions.append(name) elif is_in_axis(gpr): # df.groupby('name') if gpr in obj: if validate: obj._check_label_or_level_ambiguity(gpr, axis=axis) in_axis, name, gpr = True, gpr, obj[gpr] exclusions.append(name) elif obj._is_level_reference(gpr, axis=axis): in_axis, name, level, gpr = False, None, gpr, None else: raise KeyError(gpr) elif isinstance(gpr, Grouper) and gpr.key is not None: # Add key to exclusions exclusions.append(gpr.key) in_axis, name = False, None else: in_axis, name = False, None if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]: raise ValueError( f"Length of grouper ({len(gpr)}) and axis ({obj.shape[axis]}) " "must be same length" ) # create the Grouping # allow us to passing the actual Grouping as the gpr ping = ( Grouping( group_axis, gpr, obj=obj, name=name, level=level, sort=sort, observed=observed, in_axis=in_axis, ) if not isinstance(gpr, Grouping) else gpr ) groupings.append(ping) if len(groupings) == 0 and len(obj): raise ValueError("No group keys passed!") elif len(groupings) == 0: groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp))) # create the internals grouper grouper = ops.BaseGrouper(group_axis, groupings, sort=sort, mutated=mutated) return grouper, exclusions, obj def _is_label_like(val) -> bool: return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val)) def _convert_grouper(axis: Index, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper._values else: return grouper.reindex(axis)._values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise ValueError("Grouper and axis must be same length") return grouper else: return grouper
34.52352
100
0.563536
794286b61eaa817b6021909de4b856b5eccd4ee7
1,345
py
Python
lib/main.py
twstrike/tor_guardsim
743c01b06e28e87ca5ce9e7d7ca3ca9271781cd5
[ "CC0-1.0" ]
null
null
null
lib/main.py
twstrike/tor_guardsim
743c01b06e28e87ca5ce9e7d7ca3ca9271781cd5
[ "CC0-1.0" ]
1
2016-02-22T14:00:01.000Z
2016-02-24T18:35:05.000Z
lib/main.py
twstrike/tor_guardsim
743c01b06e28e87ca5ce9e7d7ca3ca9271781cd5
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/python from __future__ import print_function from py3hax import * import tornet import simtime import client def trivialSimulation(): net = tornet.Network(100) # Decorate the network. # Uncomment one or two of these at a time, kthx! #net = tornet.FascistNetwork(net) #net = tornet.FlakyNetwork(net) #net = tornet.EvilFilteringNetwork(net) #net = tornet.SniperNetwork(net) c = client.Client(net, client.ClientParams()) ok = 0 bad = 0 for period in xrange(30): # one hour each for subperiod in xrange(30): # two minutes each if (subperiod % 10) == 0: # nodes left and arrived net.do_churn() # nodes went up and down net.updateRunning() for attempts in xrange(6): # 20 sec each # actually have the client act. if c.buildCircuit(): ok += 1 else: bad += 1 # time passed simtime.advanceTime(20) # new consensus c.updateGuardLists() print("Successful client circuits (total): %d (%d)" % (ok, (ok + bad))) print("Percentage of successful circuilts: %f%%" % ((ok / float(ok + bad)) * 100.0)) if __name__ == '__main__': trivialSimulation()
24.907407
75
0.559108
794286cc1e71f95c262abaf26a24c9e8389ee28a
6,057
py
Python
app/decorators/validator.py
Poketnans/capstone-q3
38d550a54ff41387534241df85eb8aa8c9b6ba7e
[ "MIT" ]
null
null
null
app/decorators/validator.py
Poketnans/capstone-q3
38d550a54ff41387534241df85eb8aa8c9b6ba7e
[ "MIT" ]
4
2022-03-03T12:47:02.000Z
2022-03-08T18:10:34.000Z
app/decorators/validator.py
Poketnans/capstone-q3
38d550a54ff41387534241df85eb8aa8c9b6ba7e
[ "MIT" ]
1
2022-03-17T14:21:30.000Z
2022-03-17T14:21:30.000Z
from http import HTTPStatus from re import match from functools import wraps from flask import request import datetime from app.errors.json_not_found import JSONNotFound from app.services import get_data from datetime import datetime, timedelta, timezone def validator( user_name: str = None, date: str = None, date_schedule: dict = None, phone: str = None, cpf: str = None, zip_code: str = None, email=None, password=None, birthdate: str = None, interval_date: dict = None ): ''' Decorator valida os campos do request pelo tipo de campo requerido. Tipos: -> Todos os formatos de data são `DD/MM/YYYY` - `date_schedule`: recebe um objeto dois datetime com data e hora uma de inicio e fim. `date_schedule` Verifica se o formato datetime é valido e se o intervalo da data esta correto. - `date`: Verifica se o formato da data é valido e se essa data ainda não passou. - `birthdate`: Verifica se o formato da data é valido. - `zip_code`: Verifica se o formato CEP é valido. O CEP aceita somente nesse formato `60000-000`. - `cpf`: Verifica se o formato da CPF é valido. O CPF aceita somente números `12345678901` ou números separados por ponto `123.456.789.01`. - `email`: Verifica se o formato da email é valido. - `password`: Verifica se o formato do password é valido. O password aceita somente uma letra Maiuscula , uma minuscula, um número e um caracter especial. - `phone`: Verifica se o formato do phone é valido. O phone aceita somente números. Lembrando que só são aceitos números de telefones fixos e móveis válidos no Brasil. - `verify_two`: Verifica se a data atual esta entre este intervalo Exceções: `É lançada excesão personalida para cada validação` ''' def received_function(function): @wraps(function) def wrapper(id: int = 0): try: regex_bithdate = ( "^(0[1-9]|[12][0-9]|3[01])[\/\-](0[1-9]|1[012])[\/\-]\d{4}$" ) regex_phone = "^[1-9]{2}(?:[2-8]|9[0-9])[0-9]{3}[0-9]{4}$" regex_cep = "^[0-9]{5}-[0-9]{3}$" regex_cpf = "^[0-9]{3}\.?[0-9]{3}\.?[0-9]{3}\.?[0-9]{2}$" regex_email = "^[\w\.]+@([\w-]+\.)+[\w-]{2,4}$" regex_password = "^((?=.*[!@#$%^&*()\-_=+{};:,<.>]){1})(?=.*\d)((?=.*[a-z]){1})((?=.*[A-Z]){1}).*$" request_json: dict = get_data() if request_json.get(date): date_now = datetime.now() pattern = "%d/%m/%Y" try: date_passed = datetime.strptime( request_json[date], pattern) except ValueError as err: resp = { 'msg': 'Invalid date format. It must be in the format DD/MM/YYYY' } return resp, HTTPStatus.BAD_REQUEST if date_now >= date_passed: return {"error": "that date has passed"}, 400 if request_json.get(date_schedule): pattern = "%d/%m/%Y %H:%M:%S" tattoo_schedule = request_json.get(date_schedule) try: date_now = datetime.utcnow() start = tattoo_schedule.get("start") end = tattoo_schedule.get("end") start = datetime.strptime( start, pattern) end = datetime.strptime(end, pattern) rest_time = end - start if start.date() != end.date(): return {"error": "the dates are not the same day"}, 400 if(start >= end): return {"error": "date and hour start smaller date and hour end"}, 400 if rest_time < timedelta(hours=1): return {"error": "Minimum time of 1 hour per tattoo"}, 400 except ValueError: return {"error": "datetime in the wrong format. It must be in the format DD/MM/YYYY H:M:S"}, 400 if request_json.get(birthdate): if not match(regex_bithdate, request_json[birthdate]): return {"error": "birthdate in format incorrect. It must be in the format DD/MM/YYYY"}, 400 if request_json.get(phone): if not match(regex_phone, request_json[phone]): return {"error": "phone in format incorrect"}, 400 if request_json.get(cpf): if not match(regex_cpf, request_json[cpf]): return {"error": "cpf in format incorrect"}, 400 if request_json.get(zip_code): if not match(regex_cep, request_json[zip_code]): return {"error": "cep in format incorrect"}, 400 if request_json.get(email): if not match(regex_email, request_json[email]): return {"error": "email in format incorrect"}, 400 if request_json.get(password): if not match(regex_password, request_json[password]): return { "error": "password in format incorrect", "should be": "Password must contain at least one letter uppercase, one lowercase, one number and one special character", }, 400 except JSONNotFound as err: return {"msg": f"{err.describe}"}, err.status_code if id: return function(id) return function() return wrapper return received_function
45.541353
197
0.513621
794286f6a6888364ae595fe5a13901a45af18a8b
2,480
py
Python
n3ml/connection.py
chatterboy/n3ml
28b4e25a277e55e734e6054e8239237a5ff7d1f1
[ "MIT" ]
11
2019-03-15T17:20:54.000Z
2022-03-01T08:25:36.000Z
n3ml/connection.py
chatterboy/n3ml
28b4e25a277e55e734e6054e8239237a5ff7d1f1
[ "MIT" ]
7
2019-03-15T16:02:51.000Z
2021-12-03T08:17:06.000Z
n3ml/connection.py
chatterboy/n3ml
28b4e25a277e55e734e6054e8239237a5ff7d1f1
[ "MIT" ]
9
2019-10-14T12:38:19.000Z
2021-12-02T04:49:28.000Z
from typing import Type import torch import torch.nn import torch.distributions.distribution import n3ml.population import n3ml.learning class Synapse(torch.nn.Module): def __init__(self, source: n3ml.population.Population, target: n3ml.population.Population, w: torch.Tensor, w_min: float = 0.0, w_max: float = 1.0, alpha: float = None, learning_rule: Type[n3ml.learning.LearningRule] = None, initializer: torch.distributions.distribution.Distribution = None) -> None: super().__init__() self.source = source self.target = target self.register_buffer('w', w) self.w_min = w_min self.w_max = w_max self.alpha = alpha if learning_rule is None: self.learning_rule = learning_rule else: self.learning_rule = learning_rule(self) self.initializer = initializer def init(self) -> None: self.w[:] = self.initializer.sample(sample_shape=self.w.size()) def normalize(self) -> None: if self.alpha is not None: w_abs_sum = self.w.abs().sum(dim=1).unsqueeze(dim=1) w_abs_sum[w_abs_sum == 0.0] = 1.0 self.w *= self.alpha / w_abs_sum def update(self) -> None: if self.learning_rule is not None: self.learning_rule.run() def run(self) -> None: raise NotImplementedError class LinearSynapse(Synapse): def __init__(self, source: n3ml.population.Population, target: n3ml.population.Population, w: torch.Tensor = None, w_min: float = 0.0, w_max: float = 1.0, alpha: float = None, learning_rule: n3ml.learning.LearningRule = None, initializer: torch.distributions.distribution.Distribution = None) -> None: if w is None: w = torch.zeros(size=(target.neurons, source.neurons)) super().__init__(source, target, w, w_min, w_max, alpha, learning_rule, initializer) def run(self) -> torch.Tensor: """ Non batch processing self.w.size: [self.target.neurons, self.source.neurons] self.source.s.size: [self.source.neurons] """ return torch.matmul(self.w, self.source.s) class ConvSynapse(Synapse): pass
32.207792
92
0.57621
7942885807c74ba498878ae9ca62678293db9dbf
981
py
Python
working_copy_indeed copy.py
jenjhayden/Scrapy
16bbe7fd30badf242dea95dc8cddfd06b2a911b6
[ "MIT" ]
null
null
null
working_copy_indeed copy.py
jenjhayden/Scrapy
16bbe7fd30badf242dea95dc8cddfd06b2a911b6
[ "MIT" ]
null
null
null
working_copy_indeed copy.py
jenjhayden/Scrapy
16bbe7fd30badf242dea95dc8cddfd06b2a911b6
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup import requests source = requests.get('https://www.indeed.com/jobs?q=python+developer&l=').text soup = BeautifulSoup(source,'html5lib') for jobs in soup.find_all (class_='result'): try: title = jobs.h2.text.strip() except Exception as e: title = None print('Job Title:', title) try: company = jobs.span.text.strip() except Exception as e: company= None print('Company:', company) try: location = jobs.find('span', class_='location').text.strip() except Exception as e: location = None print('Location:', location) try: summary = jobs.find('span', class_='summary').text.strip() except Exception as e: summary = None print('Summary:', summary) try: salary = jobs.find('span', class_='no-wrap').text.strip() except Exception as e: salary = None print('salary:', salary) print('------------------')
22.813953
79
0.598369
794288e8dad2043a4160e75b7813c4dfa4e423ac
12,322
py
Python
test/functional/feature_fee_estimation.py
beirut-boop/syscoin
fb9a2e1cba0489f4a46e41dbd8ba5265e1351c2b
[ "MIT" ]
null
null
null
test/functional/feature_fee_estimation.py
beirut-boop/syscoin
fb9a2e1cba0489f4a46e41dbd8ba5265e1351c2b
[ "MIT" ]
null
null
null
test/functional/feature_fee_estimation.py
beirut-boop/syscoin
fb9a2e1cba0489f4a46e41dbd8ba5265e1351c2b
[ "MIT" ]
1
2021-12-01T07:18:04.000Z
2021-12-01T07:18:04.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test fee estimation code.""" from decimal import Decimal import random from test_framework.messages import CTransaction, CTxIn, CTxOut, COutPoint, ToHex, COIN from test_framework.script import CScript, OP_1, OP_DROP, OP_2, OP_HASH160, OP_EQUAL, hash160, OP_TRUE from test_framework.test_framework import SyscoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_greater_than_or_equal, connect_nodes, satoshi_round, ) # Construct 2 trivial P2SH's and the ScriptSigs that spend them # So we can create many transactions without needing to spend # time signing. REDEEM_SCRIPT_1 = CScript([OP_1, OP_DROP]) REDEEM_SCRIPT_2 = CScript([OP_2, OP_DROP]) P2SH_1 = CScript([OP_HASH160, hash160(REDEEM_SCRIPT_1), OP_EQUAL]) P2SH_2 = CScript([OP_HASH160, hash160(REDEEM_SCRIPT_2), OP_EQUAL]) # Associated ScriptSig's to spend satisfy P2SH_1 and P2SH_2 SCRIPT_SIG = [CScript([OP_TRUE, REDEEM_SCRIPT_1]), CScript([OP_TRUE, REDEEM_SCRIPT_2])] def small_txpuzzle_randfee(from_node, conflist, unconflist, amount, min_fee, fee_increment): """Create and send a transaction with a random fee. The transaction pays to a trivial P2SH script, and assumes that its inputs are of the same form. The function takes a list of confirmed outputs and unconfirmed outputs and attempts to use the confirmed list first for its inputs. It adds the newly created outputs to the unconfirmed list. Returns (raw transaction, fee).""" # It's best to exponentially distribute our random fees # because the buckets are exponentially spaced. # Exponentially distributed from 1-128 * fee_increment rand_fee = float(fee_increment) * (1.1892 ** random.randint(0, 28)) # Total fee ranges from min_fee to min_fee + 127*fee_increment fee = min_fee - fee_increment + satoshi_round(rand_fee) tx = CTransaction() total_in = Decimal("0.00000000") while total_in <= (amount + fee) and len(conflist) > 0: t = conflist.pop(0) total_in += t["amount"] tx.vin.append(CTxIn(COutPoint(int(t["txid"], 16), t["vout"]), b"")) if total_in <= amount + fee: while total_in <= (amount + fee) and len(unconflist) > 0: t = unconflist.pop(0) total_in += t["amount"] tx.vin.append(CTxIn(COutPoint(int(t["txid"], 16), t["vout"]), b"")) if total_in <= amount + fee: raise RuntimeError("Insufficient funds: need %d, have %d" % (amount + fee, total_in)) tx.vout.append(CTxOut(int((total_in - amount - fee) * COIN), P2SH_1)) tx.vout.append(CTxOut(int(amount * COIN), P2SH_2)) # These transactions don't need to be signed, but we still have to insert # the ScriptSig that will satisfy the ScriptPubKey. for inp in tx.vin: inp.scriptSig = SCRIPT_SIG[inp.prevout.n] txid = from_node.sendrawtransaction(hexstring=ToHex(tx), maxfeerate=0) unconflist.append({"txid": txid, "vout": 0, "amount": total_in - amount - fee}) unconflist.append({"txid": txid, "vout": 1, "amount": amount}) return (ToHex(tx), fee) def split_inputs(from_node, txins, txouts, initial_split=False): """Generate a lot of inputs so we can generate a ton of transactions. This function takes an input from txins, and creates and sends a transaction which splits the value into 2 outputs which are appended to txouts. Previously this was designed to be small inputs so they wouldn't have a high coin age when the notion of priority still existed.""" prevtxout = txins.pop() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int(prevtxout["txid"], 16), prevtxout["vout"]), b"")) half_change = satoshi_round(prevtxout["amount"] / 2) rem_change = prevtxout["amount"] - half_change - Decimal("0.00001000") tx.vout.append(CTxOut(int(half_change * COIN), P2SH_1)) tx.vout.append(CTxOut(int(rem_change * COIN), P2SH_2)) # If this is the initial split we actually need to sign the transaction # Otherwise we just need to insert the proper ScriptSig if (initial_split): completetx = from_node.signrawtransactionwithwallet(ToHex(tx))["hex"] else: tx.vin[0].scriptSig = SCRIPT_SIG[prevtxout["vout"]] completetx = ToHex(tx) txid = from_node.sendrawtransaction(hexstring=completetx, maxfeerate=0) txouts.append({"txid": txid, "vout": 0, "amount": half_change}) txouts.append({"txid": txid, "vout": 1, "amount": rem_change}) def check_raw_estimates(node, fees_seen): """Call estimaterawfee and verify that the estimates meet certain invariants.""" delta = 1.0e-6 # account for rounding error for i in range(1, 26): for _, e in node.estimaterawfee(i).items(): feerate = float(e["feerate"]) assert_greater_than(feerate, 0) if feerate + delta < min(fees_seen) or feerate - delta > max(fees_seen): raise AssertionError("Estimated fee (%f) out of range (%f,%f)" % (feerate, min(fees_seen), max(fees_seen))) def check_smart_estimates(node, fees_seen): """Call estimatesmartfee and verify that the estimates meet certain invariants.""" delta = 1.0e-6 # account for rounding error last_feerate = float(max(fees_seen)) all_smart_estimates = [node.estimatesmartfee(i) for i in range(1, 26)] for i, e in enumerate(all_smart_estimates): # estimate is for i+1 feerate = float(e["feerate"]) assert_greater_than(feerate, 0) if feerate + delta < min(fees_seen) or feerate - delta > max(fees_seen): raise AssertionError("Estimated fee (%f) out of range (%f,%f)" % (feerate, min(fees_seen), max(fees_seen))) if feerate - delta > last_feerate: raise AssertionError("Estimated fee (%f) larger than last fee (%f) for lower number of confirms" % (feerate, last_feerate)) last_feerate = feerate if i == 0: assert_equal(e["blocks"], 2) else: assert_greater_than_or_equal(i + 1, e["blocks"]) def check_estimates(node, fees_seen): check_raw_estimates(node, fees_seen) check_smart_estimates(node, fees_seen) class EstimateFeeTest(SyscoinTestFramework): def set_test_params(self): self.num_nodes = 3 # mine non-standard txs (e.g. txs with "dust" outputs) # Force fSendTrickle to true (via whitelist.noban) self.extra_args = [ ["-acceptnonstdtxn", "[email protected]"], ["-acceptnonstdtxn", "[email protected]", "-blockmaxweight=68000"], ["-acceptnonstdtxn", "[email protected]", "-blockmaxweight=32000"], ] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): """ We'll setup the network to have 3 nodes that all mine with different parameters. But first we need to use one node to create a lot of outputs which we will use to generate our transactions. """ self.add_nodes(3, extra_args=self.extra_args) # Use node0 to mine blocks for input splitting # Node1 mines small blocks but that are bigger than the expected transaction rate. # NOTE: the CreateNewBlock code starts counting block weight at 4,000 weight, # (68k weight is room enough for 120 or so transactions) # Node2 is a stingy miner, that # produces too small blocks (room for only 55 or so transactions) self.start_nodes() self.import_deterministic_coinbase_privkeys() self.stop_nodes() def transact_and_mine(self, numblocks, mining_node): min_fee = Decimal("0.00001") # We will now mine numblocks blocks generating on average 100 transactions between each block # We shuffle our confirmed txout set before each set of transactions # small_txpuzzle_randfee will use the transactions that have inputs already in the chain when possible # resorting to tx's that depend on the mempool when those run out for i in range(numblocks): random.shuffle(self.confutxo) for j in range(random.randrange(100 - 50, 100 + 50)): from_index = random.randint(1, 2) (txhex, fee) = small_txpuzzle_randfee(self.nodes[from_index], self.confutxo, self.memutxo, Decimal("0.005"), min_fee, min_fee) tx_kbytes = (len(txhex) // 2) / 1000.0 self.fees_per_kb.append(float(fee) / tx_kbytes) self.sync_mempools(wait=.1) mined = mining_node.getblock(mining_node.generate(1)[0], True)["tx"] self.sync_blocks(wait=.1) # update which txouts are confirmed newmem = [] for utx in self.memutxo: if utx["txid"] in mined: self.confutxo.append(utx) else: newmem.append(utx) self.memutxo = newmem def run_test(self): self.log.info("This test is time consuming, please be patient") self.log.info("Splitting inputs so we can generate tx's") # Start node0 self.start_node(0) self.txouts = [] self.txouts2 = [] # Split a coinbase into two transaction puzzle outputs split_inputs(self.nodes[0], self.nodes[0].listunspent(0), self.txouts, True) # Mine while len(self.nodes[0].getrawmempool()) > 0: self.nodes[0].generate(1) # Repeatedly split those 2 outputs, doubling twice for each rep # Use txouts to monitor the available utxo, since these won't be tracked in wallet reps = 0 while reps < 5: # Double txouts to txouts2 while len(self.txouts) > 0: split_inputs(self.nodes[0], self.txouts, self.txouts2) while len(self.nodes[0].getrawmempool()) > 0: self.nodes[0].generate(1) # Double txouts2 to txouts while len(self.txouts2) > 0: split_inputs(self.nodes[0], self.txouts2, self.txouts) while len(self.nodes[0].getrawmempool()) > 0: self.nodes[0].generate(1) reps += 1 self.log.info("Finished splitting") # Now we can connect the other nodes, didn't want to connect them earlier # so the estimates would not be affected by the splitting transactions self.start_node(1) self.start_node(2) connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[0], 2) connect_nodes(self.nodes[2], 1) self.sync_all() self.fees_per_kb = [] self.memutxo = [] self.confutxo = self.txouts # Start with the set of confirmed txouts after splitting self.log.info("Will output estimates for 1/2/3/6/15/25 blocks") for i in range(2): self.log.info("Creating transactions and mining them with a block size that can't keep up") # Create transactions and mine 10 small blocks with node 2, but create txs faster than we can mine self.transact_and_mine(10, self.nodes[2]) check_estimates(self.nodes[1], self.fees_per_kb) self.log.info("Creating transactions and mining them at a block size that is just big enough") # Generate transactions while mining 10 more blocks, this time with node1 # which mines blocks with capacity just above the rate that transactions are being created self.transact_and_mine(10, self.nodes[1]) check_estimates(self.nodes[1], self.fees_per_kb) # Finish by mining a normal-sized block: while len(self.nodes[1].getrawmempool()) > 0: self.nodes[1].generate(1) self.sync_blocks(self.nodes[0:3], wait=.1) self.log.info("Final estimates after emptying mempools") check_estimates(self.nodes[1], self.fees_per_kb) if __name__ == '__main__': EstimateFeeTest().main()
45.806691
110
0.651355
79428966945bf502e08c62405af8bfab9b1d69dc
2,625
py
Python
tests/unittests/socket_chat.py
FI18-Trainees/FISocketChat
a3c9f9ec502e1b7961716ac4f8ccb14e145e4f86
[ "MIT" ]
4
2019-09-19T12:46:52.000Z
2019-12-02T13:51:13.000Z
tests/unittests/socket_chat.py
FI18-Trainees/FISocketChat
a3c9f9ec502e1b7961716ac4f8ccb14e145e4f86
[ "MIT" ]
102
2019-09-20T06:56:15.000Z
2021-12-19T23:33:06.000Z
tests/unittests/socket_chat.py
FI18-Trainees/FISocketChat
a3c9f9ec502e1b7961716ac4f8ccb14e145e4f86
[ "MIT" ]
null
null
null
import unittest from test_objs import SocketIOConnection class TestBasicChat(unittest.TestCase): def test_start(self): print("Establishing connection") sockets = SocketIOConnection() print("Testing connection") self.assertTrue(sockets.online_status) self.assertEqual(sockets.status.get("count", 0), 1) self.assertFalse(sockets.status.get("loginmode", True)) # =========================================================================== print("Sending message") sockets.send_message("test_user", "test_message") print("Check received messages") self.assertEqual(len(sockets.messages), 1) self.assertEqual(len(sockets.errors), 0) x = sockets.messages[0] y = {"content": "test_message", "content_type": "message"} # expected shared_items = {k: x[k] for k in x if k in y and x[k] == y[k]} self.assertEqual(shared_items, y) x = sockets.messages[0].get("author", {}) y = {"username": "test_user", "display_name": "test_user"} # expected shared_items = {k: x[k] for k in x if k in y and x[k] == y[k]} self.assertEqual(shared_items, y) self.assertIn("avatar", x) self.assertIn("chat_color", x) # =========================================================================== print("Sending message with invalid username") sockets.send_message("", "test_message") self.assertEqual(len(sockets.messages), 1) self.assertEqual(len(sockets.errors), 1) x = sockets.errors[0] y = {"message": "invalid username"} # expected shared_items = {k: x[k] for k in x if k in y and x[k] == y[k]} self.assertEqual(shared_items, y) # =========================================================================== print("Sending message with invalid message") sockets.send_message("test_user", "") self.assertEqual(len(sockets.messages), 1) self.assertEqual(len(sockets.errors), 2) x = sockets.errors[1] y = {"message": "invalid message"} # expected shared_items = {k: x[k] for k in x if k in y and x[k] == y[k]} self.assertEqual(shared_items, y) # =========================================================================== print("Sending message with emoji and test replacement") sockets.send_message("test_user", " Shawn abc") self.assertEqual(len(sockets.messages), 2) self.assertEqual(len(sockets.errors), 2) self.assertIn("img", sockets.messages[1].get("content", ""))
44.491525
85
0.540952
794289cb595d8f314d6a3cc7f9e2e0f4767588a5
277
py
Python
python-syntax-exercise/python-syntax/any7.py
ryankrdh/Springboard-Assignments
9c9b132a814fc818810978dce1f33c4052028353
[ "MIT" ]
null
null
null
python-syntax-exercise/python-syntax/any7.py
ryankrdh/Springboard-Assignments
9c9b132a814fc818810978dce1f33c4052028353
[ "MIT" ]
null
null
null
python-syntax-exercise/python-syntax/any7.py
ryankrdh/Springboard-Assignments
9c9b132a814fc818810978dce1f33c4052028353
[ "MIT" ]
null
null
null
def any7(nums): """Are any of these numbers a 7? (True/False)""" # YOUR CODE HERE for num in nums: if num == 7: return True return False print("should be true", any7([1, 2, 7, 4, 5])) print("should be false", any7([1, 2, 4, 5]))
19.785714
52
0.523466
794289cbc830838a332413add8a84ec36dfff7cd
30
py
Python
python/testData/intentions/convertTripleQuotedStringInParenthesized_after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/intentions/convertTripleQuotedStringInParenthesized_after.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/intentions/convertTripleQuotedStringInParenthesized_after.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
t = ("string\n" "some\n")
15
15
0.433333
79428a905380d3e3a47f4f0cb29e37a70de0a3de
300
py
Python
10DaysofStatistics/Day0-Weighted-Mean.py
KunyuHe/Hacker-Rank-Practice
b6ffae26fd5b11e7826b7c8aa4f197399ed3c93e
[ "Apache-2.0" ]
null
null
null
10DaysofStatistics/Day0-Weighted-Mean.py
KunyuHe/Hacker-Rank-Practice
b6ffae26fd5b11e7826b7c8aa4f197399ed3c93e
[ "Apache-2.0" ]
null
null
null
10DaysofStatistics/Day0-Weighted-Mean.py
KunyuHe/Hacker-Rank-Practice
b6ffae26fd5b11e7826b7c8aa4f197399ed3c93e
[ "Apache-2.0" ]
null
null
null
# Enter your code here. Read input from STDIN. Print output to STDOUT size = int(input()) nums = list(map(int, input().split())) weights = list(map(int, input().split())) weighted_sum = 0 for i in range(size): weighted_sum += nums[i] * weights[i] print(round(weighted_sum / sum(weights), 1))
23.076923
69
0.676667
79428ab16b59ff7420ebf1d4c4689fa667ac1c18
19,692
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_12_01/operations/_ddos_custom_policies_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_12_01/operations/_ddos_custom_policies_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_12_01/operations/_ddos_custom_policies_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class DdosCustomPoliciesOperations(object): """DdosCustomPoliciesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_12_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _delete_initial( self, resource_group_name, # type: str ddos_custom_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str ddos_custom_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified DDoS custom policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param ddos_custom_policy_name: The name of the DDoS custom policy. :type ddos_custom_policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, ddos_custom_policy_name=ddos_custom_policy_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore def get( self, resource_group_name, # type: str ddos_custom_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.DdosCustomPolicy" """Gets information about the specified DDoS custom policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param ddos_custom_policy_name: The name of the DDoS custom policy. :type ddos_custom_policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DdosCustomPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_12_01.models.DdosCustomPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.DdosCustomPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str ddos_custom_policy_name, # type: str parameters, # type: "models.DdosCustomPolicy" **kwargs # type: Any ): # type: (...) -> "models.DdosCustomPolicy" cls = kwargs.pop('cls', None) # type: ClsType["models.DdosCustomPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'DdosCustomPolicy') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str ddos_custom_policy_name, # type: str parameters, # type: "models.DdosCustomPolicy" **kwargs # type: Any ): # type: (...) -> LROPoller["models.DdosCustomPolicy"] """Creates or updates a DDoS custom policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param ddos_custom_policy_name: The name of the DDoS custom policy. :type ddos_custom_policy_name: str :param parameters: Parameters supplied to the create or update operation. :type parameters: ~azure.mgmt.network.v2019_12_01.models.DdosCustomPolicy :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either DdosCustomPolicy or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2019_12_01.models.DdosCustomPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.DdosCustomPolicy"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, ddos_custom_policy_name=ddos_custom_policy_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore def update_tags( self, resource_group_name, # type: str ddos_custom_policy_name, # type: str parameters, # type: "models.TagsObject" **kwargs # type: Any ): # type: (...) -> "models.DdosCustomPolicy" """Update a DDoS custom policy tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param ddos_custom_policy_name: The name of the DDoS custom policy. :type ddos_custom_policy_name: str :param parameters: Parameters supplied to update DDoS custom policy resource tags. :type parameters: ~azure.mgmt.network.v2019_12_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: DdosCustomPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_12_01.models.DdosCustomPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.DdosCustomPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'ddosCustomPolicyName': self._serialize.url("ddos_custom_policy_name", ddos_custom_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('DdosCustomPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ddosCustomPolicies/{ddosCustomPolicyName}'} # type: ignore
48.985075
204
0.673268
79428c007cb5f673c35aad775e047d5ad9cc87ed
2,139
py
Python
quickstartup/qs_accounts/admin.py
shahabaz/quickstartup
e351138580d3b332aa309d5d98d562a1ebef5c2c
[ "MIT" ]
13
2015-06-10T03:29:15.000Z
2021-10-01T22:06:48.000Z
quickstartup/qs_accounts/admin.py
shahabaz/quickstartup
e351138580d3b332aa309d5d98d562a1ebef5c2c
[ "MIT" ]
47
2015-06-10T03:26:18.000Z
2021-09-22T17:35:24.000Z
quickstartup/qs_accounts/admin.py
shahabaz/quickstartup
e351138580d3b332aa309d5d98d562a1ebef5c2c
[ "MIT" ]
3
2015-07-07T23:55:39.000Z
2020-04-18T10:34:53.000Z
from django import forms from django.contrib import admin from django.contrib.auth import get_user_model from django.contrib.auth.forms import ReadOnlyPasswordHashField from django.utils.translation import gettext_lazy as _ from .models import User class UserAdminCreationForm(forms.ModelForm): password1 = forms.CharField(label=_('Password'), widget=forms.PasswordInput) password2 = forms.CharField(label=_('Password (verify)'), widget=forms.PasswordInput) class Meta: model = get_user_model() fields = ('name', 'email', 'password1', 'password2', 'is_staff', 'is_superuser') def clean_password2(self): password1 = self.cleaned_data.get("password1") password2 = self.cleaned_data.get("password2") if password1 and password2 and password1 != password2: raise forms.ValidationError("Passwords don't match") return password2 def save(self, commit=True): user = super().save(commit=False) user.set_password(self.cleaned_data["password1"]) return user class UserAdminChangeForm(forms.ModelForm): password = ReadOnlyPasswordHashField() class Meta: model = User fields = ("name", "email", "password", "is_staff", "is_superuser") def clean_password(self): return self.initial["password"] class UserAdmin(admin.ModelAdmin): form = UserAdminChangeForm add_form = UserAdminCreationForm list_display = ("name", "email", "is_staff", "last_login") list_filter = ("is_staff", "is_active") fieldsets = ( (None, {"fields": ("name", "email", "password")}), ("Permissions", {"fields": ("is_active", "is_staff")}), ("Important dates", {"fields": ("last_login", "date_joined")}), ) add_fieldsets = ( (None, { "classes": ("wide",), "fields": ("name", "email", "password1", "password2", "is_staff"), },), ) search_fields = ("name", "email") ordering = ("name", "email") # Enable admin interface if User is the quickstart user model if get_user_model() is User: admin.site.register(User, UserAdmin)
31.925373
89
0.656381
79428c50f6fd8b19b4cdb1c3cf6a38997060de68
1,589
py
Python
plugins/file/select_file.py
manuelprogramming/OSA
3a57ea944eef3e8680055a35e8cebd36b93dac51
[ "MIT", "Unlicense" ]
1
2022-01-06T21:00:01.000Z
2022-01-06T21:00:01.000Z
plugins/file/select_file.py
manuelprogramming/OSA
3a57ea944eef3e8680055a35e8cebd36b93dac51
[ "MIT", "Unlicense" ]
null
null
null
plugins/file/select_file.py
manuelprogramming/OSA
3a57ea944eef3e8680055a35e8cebd36b93dac51
[ "MIT", "Unlicense" ]
null
null
null
from dataclasses import dataclass from typing import Tuple from tkinter.filedialog import askopenfilename from tkinter import Tk from osa import factory from handlers.result import BaseResult from handlers.file import get_saving_path, set_setting @dataclass class SelectFile: """ Opens a File Dialog for selecting a file """ command: str result: BaseResult def do_work(self) -> BaseResult: file_name = self.showDialog() self.result.value = file_name valid_file_types = (".csv", ".xlsx", ".xls", ".dat", ".DAT", ".txt") if not self.result.value.endswith(valid_file_types): self._fail_result(valid_file_types) return self.result set_setting("selected_file", file_name) self.result.msg = f"Selected the file {self.result.value}" return self.result def showDialog(self): root = Tk() file_type_filter = [("All types", ".*"), ("CSV file", ".csv"), ("Excel files", ".xlsx .xls"), ("Data files", ".dat .DAT"), ("Text files", ".txt")] saving_path = get_saving_path() filename = askopenfilename(filetypes=file_type_filter, initialdir=saving_path) root.destroy() return filename def _fail_result(self, valid_file_types: Tuple[str, ...]): self.result.msg = f"The file chosen has not a valid type. Valid Types are {valid_file_types}" def initialize() -> None: factory.register("select_file", SelectFile)
29.425926
101
0.614852
79428d1b5c59c73e3b9c0c3137f1bdd1cd326fee
2,433
py
Python
leetcode/040_combination_sum_II.py
aiden0z/snippets
c3534ad718599a64f3c7ccdbfe51058e01244c60
[ "MIT" ]
null
null
null
leetcode/040_combination_sum_II.py
aiden0z/snippets
c3534ad718599a64f3c7ccdbfe51058e01244c60
[ "MIT" ]
null
null
null
leetcode/040_combination_sum_II.py
aiden0z/snippets
c3534ad718599a64f3c7ccdbfe51058e01244c60
[ "MIT" ]
null
null
null
"""Combination Sum II Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target. Each number in candidates may only be used once in the combination. Note: * All numbers (including target) will be positive integers. * The solution set must not contain duplicate combinations. Example 1: Input: candidates = [10,1,2,7,6,1,5], target = 8, A solution set is: [ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ] Example 2: Input: candidates = [2,5,2,1,2], target = 5, A solution set is: [ [1,2,2], [5] ] """ from typing import List class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: results = [] self.dfs(sorted(candidates), target, [], results, 0) return results def dfs(self, candidates: List[int], target: int, answer: List[int], results: List[List[int]], i: int): if target < 0: return if target == 0: results.append(answer) return for index in range(i, len(candidates)): if index > i and candidates[index] == candidates[index - 1]: continue self.dfs(candidates, target - candidates[index], answer + [candidates[index]], results, index + 1) class SolutionBacktracking: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: results = [] self.find(sorted(candidates), target, [], results, 0) return results def find(self, candidates: List[int], target: int, answer: List[int], results: List[List[int]], start: int): if target < 0: return if target == 0: results.append(answer[:]) return for i in range(start, len(candidates)): if i > start and candidates[i] == candidates[i - 1]: continue answer.append(candidates[i]) self.find(candidates, target - candidates[i], answer, results, i + 1) answer.pop() if __name__ == '__main__': cases = [([10, 1, 2, 7, 6, 1, 5], 8), ([2, 5, 2, 1, 2], 5)] for case in cases: for S in [Solution, SolutionBacktracking]: print(S().combinationSum2(case[0], case[1]))
25.882979
99
0.568023
79428e70b85cfc59363a7ad6e80599bd46f985b5
11,809
py
Python
utils/image.py
cresposito/BirdCLEF-Baseline
bb95a749d21b62031aa208fe7a12e991eba076ac
[ "MIT" ]
47
2018-04-11T01:15:18.000Z
2022-01-27T15:30:45.000Z
utils/image.py
cresposito/BirdCLEF-Baseline
bb95a749d21b62031aa208fe7a12e991eba076ac
[ "MIT" ]
null
null
null
utils/image.py
cresposito/BirdCLEF-Baseline
bb95a749d21b62031aa208fe7a12e991eba076ac
[ "MIT" ]
17
2018-04-17T00:26:33.000Z
2021-12-30T10:02:24.000Z
# This file includes basic functionality for image processing # including i/o handling, image augmentation and model input pre-processing # Author: Stefan Kahl, 2018, Chemnitz University of Technology import sys sys.path.append("..") import copy import numpy as np import cv2 ######################## CONFIG ########################## import config as cfg #Fixed random seed RANDOM = cfg.getRandomState() def resetRandomState(): global RANDOM RANDOM = cfg.getRandomState() ########################## I/O ########################### def openImage(path, im_dim=1): # Open image if im_dim == 3: img = cv2.imread(path, 1) else: img = cv2.imread(path, 0) # Convert to floats between 0 and 1 img = np.asarray(img / 255., dtype='float32') return img def showImage(img, name='IMAGE', timeout=-1): cv2.imshow(name, img) cv2.waitKey(timeout) def saveImage(img, path): cv2.imwrite(path, img) #################### PRE-PROCESSING ###################### def normalize(img, zero_center=False): # Normalize if not img.min() == 0 and not img.max() == 0: img -= img.min() img /= img.max() else: img = img.clip(0, 1) # Use values between -1 and 1 if zero_center: img -= 0.5 img *= 2 return img def substractMean(img, clip=True): # Only suitable for RGB images if len(img.shape) == 3: # Normalized image? if img.max() <= 1.0: img[:, :, 0] -= 0.4850 #B img[:, :, 1] -= 0.4579 #G img[:, :, 2] -= 0.4076 #R else: img[:, :, 0] -= 123.680 #B img[:, :, 1] -= 116.779 #G img[:, :, 2] -= 103.939 #R else: img -= np.mean(img) # Clip values if clip: img = img.clip(0, img.max()) return img def prepare(img): # ConvNet inputs in Theano are 4D-vectors: (batch size, channels, height, width) # Add axis if grayscale image if len(img.shape) == 2: img = img[:, :, np.newaxis] # Transpose axis, channels = axis 0 img = np.transpose(img, (2, 0, 1)) # Add new dimension img = np.expand_dims(img, 0) return img ######################## RESIZING ######################## def resize(img, width, height, mode='squeeze'): if img.shape[:2] == (height, width): return img if mode == 'crop' or mode == 'cropCenter': img = cropCenter(img, width, height) elif mode == 'cropRandom': img = cropRandom(img, width, height) elif mode == 'fill': img = fill(img, width, height) else: img = squeeze(img, width, height) return img def squeeze(img, width, height): # Squeeze resize: Resize image and ignore aspect ratio return cv2.resize(img, (width, height), interpolation=cv2.INTER_CUBIC) def cropRandom(img, width, height): # Random crop: Scale shortest side to minsize, crop with random offset # Original image shape h, w = img.shape[:2] aspect_ratio = float(max(h, w)) / float(min(h, w)) # Scale original image minsize = int(max(width, height) * 1.1) if w <= h and w < minsize: img = squeeze(img, minsize, int(minsize * aspect_ratio)) elif h < w and h < minsize: img = squeeze(img, int(minsize * aspect_ratio), minsize) #crop with random offset h, w = img.shape[:2] top = RANDOM.randint(0, h - height) left = RANDOM.randint(0, w - width) new_img = img[top:top + height, left:left + width] return new_img def cropCenter(img, width, height): # Center crop: Scale shortest side, crop longer side # Original image shape h, w = img.shape[:2] aspect_ratio = float(max(h, w)) / float(min(h, w)) # Scale original image if w == h: img = squeeze(img, max(width, height), max(width, height)) elif width >= height: if h >= w: img = squeeze(img, width, int(width * aspect_ratio)) else: img = squeeze(img, int(height * aspect_ratio), height) else: if h >= w: img = squeeze(img, int(height / aspect_ratio), height) else: img = squeeze(img, int(height * aspect_ratio), height) #Crop from original image top = (img.shape[0] - height) // 2 left = (img.shape[1] - width) // 2 new_img = img[top:top + height, left:left + width] return new_img def fill(img, width, height): # Fill mode: Scale longest side, pad shorter side with noise # Determine new shape try: new_shape = (height, width, img.shape[2]) except: new_shape = (height, width) # Allocate array with noise new_img = RANDOM.normal(0.0, 1.0, new_shape) # Original image shape h, w = img.shape[:2] aspect_ratio = float(max(h, w)) / float(min(h, w)) # Scale original image if w == h: img = squeeze(img, min(width, height), min(width, height)) elif width >= height: if h >= w: img = squeeze(img, int(height / aspect_ratio), height) else: img = squeeze(img, width, int(width / aspect_ratio)) else: if h >= w: img = squeeze(img, width, int(width * aspect_ratio)) else: img = squeeze(img, width, int(width / aspect_ratio)) # Place original image at center of new image top = (height - img.shape[0]) // 2 left = (width - img.shape[1]) // 2 new_img[top:top + img.shape[0], left:left + img.shape[1]] = img return new_img ###################### AUGMENTATION ###################### def augment(img, augmentation={}, count=3, probability=0.5): # Make working copy augmentations = copy.deepcopy(augmentation) # Choose number of augmentations according to count # Count = 3 means either 0, 1, 2 or 3 different augmentations while(count > 0 and len(augmentations) > 0): # Roll the dice if we do augment or not if RANDOM.choice([True, False], p=[probability, 1 - probability]): # Choose one method aug = RANDOM.choice(augmentations.keys()) # Call augementation methods if aug == 'flip': img = flip(img, augmentations[aug]) elif aug == 'rotate': img = rotate(img, augmentations[aug]) elif aug == 'zoom': img = zoom(img, augmentations[aug]) elif aug == 'crop': if isinstance(augmentations[aug], float): img = crop(img, top=augmentations[aug], left=augmentations[aug], right=augmentations[aug], bottom=augmentations[aug]) else: img = crop(img, top=augmentations[aug][0], left=augmentations[aug][1], bottom=augmentations[aug][2], right=augmentations[aug][3]) elif aug == 'roll': img = roll(img, vertical=augmentations[aug], horizontal=augmentations[aug]) elif aug == 'roll_v': img = roll(img, vertical=augmentations[aug], horizontal=0) elif aug == 'roll_h': img = roll(img, vertical=0, horizontal=augmentations[aug]) elif aug == 'mean': img = mean(img, augmentations[aug]) elif aug == 'noise': img = noise(img, augmentations[aug]) elif aug == 'dropout': img = dropout(img, augmentations[aug]) elif aug == 'blackout': img = blackout(img, augmentations[aug]) elif aug == 'blur': img = blur(img, augmentations[aug]) elif aug == 'brightness': img = brightness(img, augmentations[aug]) elif aug == 'multiply': img = randomMultiply(img, augmentations[aug]) elif aug == 'hue': img = hue(img, augmentations[aug]) elif aug == 'lightness': img = lightness(img, augmentations[aug]) elif aug == 'add': img = add(img, augmentations[aug]) else: pass # Remove key so we avoid duplicate augmentations del augmentations[aug] # Count (even if we did not augment) count -= 1 return img def flip(img, flip_axis=1): return cv2.flip(img, flip_axis) def rotate(img, angle, zoom=1.0): h, w = img.shape[:2] M = cv2.getRotationMatrix2D((w / 2, h / 2), RANDOM.uniform(-angle, angle), zoom) return cv2.warpAffine(img, M,(w, h)) def zoom(img, amount=0.33): h, w = img.shape[:2] M = cv2.getRotationMatrix2D((w / 2, h / 2), 0, 1 + RANDOM.uniform(0, amount)) return cv2.warpAffine(img, M,(w, h)) def crop(img, top=0.1, left=0.1, bottom=0.1, right=0.1): h, w = img.shape[:2] t_crop = max(1, int(h * RANDOM.uniform(0, top))) l_crop = max(1, int(w * RANDOM.uniform(0, left))) b_crop = max(1, int(h * RANDOM.uniform(0, bottom))) r_crop = max(1, int(w * RANDOM.uniform(0, right))) img = img[t_crop:-b_crop, l_crop:-r_crop] img = squeeze(img, w, h) return img def roll(img, vertical=0.1, horizontal=0.1): # Vertical Roll img = np.roll(img, int(img.shape[0] * RANDOM.uniform(-vertical, vertical)), axis=0) # Horizontal Roll img = np.roll(img, int(img.shape[1] * RANDOM.uniform(-horizontal, horizontal)), axis=1) return img def mean(img, normalize=True): img = substractMean(img, True) if normalize and not img.max() == 0: img /= img.max() return img def noise(img, amount=0.05): img += RANDOM.normal(0.0, RANDOM.uniform(0, amount**0.5), img.shape) img = np.clip(img, 0.0, 1.0) return img def dropout(img, amount=0.25): d = RANDOM.uniform(0, 1, img.shape) d[d <= amount] = 0 d[d > 0] = 1 return img * d def blackout(img, amount=0.25): b_width = int(img.shape[1] * amount) b_start = RANDOM.randint(0, img.shape[1] - b_width) img[:, b_start:b_start + b_width] = 0 return img def blur(img, kernel_size=3): return cv2.blur(img, (kernel_size, kernel_size)) def brightness(img, amount=0.25): img *= RANDOM.uniform(1 - amount, 1 + amount) img = np.clip(img, 0.0, 1.0) return img def randomMultiply(img, amount=0.25): img *= RANDOM.uniform(1 - amount, 1 + amount, size=img.shape) img = np.clip(img, 0.0, 1.0) return img def hue(img, amount=0.1): try: # Only works with BGR images hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) hsv[:, :, 0] *= RANDOM.uniform(1 - amount, 1 + amount) hsv[:, :, 0].clip(0, 360) img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) except: pass return img def lightness(img, amount=0.25): try: # Only works with BGR images lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) lab[:, :, 0] *= RANDOM.uniform(1 - amount, 1 + amount) lab[:, :, 0].clip(0, 255) img = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR) except: pass return img def add(img, items): # Choose one item from List index = RANDOM.randint(len(items)) # Open and resize image img2 = openImage(items[index], cfg.IM_DIM) img2 = resize(img2, img.shape[1], img.shape[0]) # Generate random weights w1 = RANDOM.uniform(1, 2) w2 = RANDOM.uniform(1, 2) # Add images and calculate average img = (img * w1 + img2 * w2) / (w1 + w2) return img if __name__ == '__main__': im_path = '../example/Acadian Flycatcher.png' img = openImage(im_path, 1) img = resize(img, 256, 256, mode='fill') showImage(img) img = augment(img, {'flip':1}, 3) showImage(img)
27.209677
149
0.556017
79428eb260a0f9cba3e4dc17273e462a9e4b039a
467
py
Python
trump.py
ant3h/knife_scraper
1f5bffce2c6bb5dfdde9f49845d916acd1a92a90
[ "MIT" ]
null
null
null
trump.py
ant3h/knife_scraper
1f5bffce2c6bb5dfdde9f49845d916acd1a92a90
[ "MIT" ]
null
null
null
trump.py
ant3h/knife_scraper
1f5bffce2c6bb5dfdde9f49845d916acd1a92a90
[ "MIT" ]
null
null
null
#!/usr/bin/env python # bhq_query.py - module for sopel to query blade head quarters site for knife data # # Copyright (c) 2017 Casey Bartlett <[email protected]> # # See LICENSE for terms of usage, modification and redistribution. # from sopel import * import random from itertools import repeat @module.rule('.*bigly.*') def trumpSAD(bot, trigger): bot.say('SAD.') @module.rule('.*disaster.*') def trumpDisaster(bot, trigger): bot.say('TOTAL DISASTER.')
23.35
82
0.713062
79429031691626d1a079f253421e5e3bf0ff3e4f
952
py
Python
kubernetes_asyncio/test/test_v1_scale_status.py
PidgeyBE/kubernetes_asyncio
14d15dc309890253c26b6274a022e84441e05217
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/test/test_v1_scale_status.py
PidgeyBE/kubernetes_asyncio
14d15dc309890253c26b6274a022e84441e05217
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/test/test_v1_scale_status.py
PidgeyBE/kubernetes_asyncio
14d15dc309890253c26b6274a022e84441e05217
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: v1.13.5 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes_asyncio.client from kubernetes_asyncio.client.models.v1_scale_status import V1ScaleStatus # noqa: E501 from kubernetes_asyncio.client.rest import ApiException class TestV1ScaleStatus(unittest.TestCase): """V1ScaleStatus unit test stubs""" def setUp(self): pass def tearDown(self): pass def testV1ScaleStatus(self): """Test V1ScaleStatus""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes_asyncio.client.models.v1_scale_status.V1ScaleStatus() # noqa: E501 pass if __name__ == '__main__': unittest.main()
23.8
124
0.721639
79429055861649ca489737ee388e742ecf57b8f6
974
py
Python
web/cascade/bomstrip.py
epmoyer/cascade
79b877d5b19567be2d08c00f5cdc31c8968db4c7
[ "MIT" ]
null
null
null
web/cascade/bomstrip.py
epmoyer/cascade
79b877d5b19567be2d08c00f5cdc31c8968db4c7
[ "MIT" ]
null
null
null
web/cascade/bomstrip.py
epmoyer/cascade
79b877d5b19567be2d08c00f5cdc31c8968db4c7
[ "MIT" ]
null
null
null
""" Strip the UTF-8 Byte Order Mark (BOM) from a file (if it exists) """ import codecs BOMLEN = len(codecs.BOM_UTF8) def copy_and_strip_bom(infilename, outfilename): """Copy file into a new file, excluding the BOM (if it exists) """ buffer_size = 4096 with open(infilename, "r+b") as infile: with open(outfilename, "wb") as outfile: chunk = infile.read(buffer_size) if chunk.startswith(codecs.BOM_UTF8): chunk = chunk[BOMLEN:] while chunk: outfile.write(chunk) chunk = infile.read(buffer_size) def open_and_seek_past_bom(infilename): """Open file, seek past BOM (if it exists), and return the handle to the open file object """ infile = open(infilename, "r+b") chunk = infile.read(BOMLEN * 2) if chunk.startswith(codecs.BOM_UTF8): infile.seek(BOMLEN) else: infile.seek(0) return infile
30.4375
94
0.602669
7942906c909f7ae6cc73ebb728c2336ac0c6587e
2,687
py
Python
mailpile/plugins/keylookup/dnspka.py
JocelynDelalande/Mailpile
3e53a54195a0dd8ca48e7cb3be44dd7b3acabd74
[ "Apache-2.0" ]
null
null
null
mailpile/plugins/keylookup/dnspka.py
JocelynDelalande/Mailpile
3e53a54195a0dd8ca48e7cb3be44dd7b3acabd74
[ "Apache-2.0" ]
null
null
null
mailpile/plugins/keylookup/dnspka.py
JocelynDelalande/Mailpile
3e53a54195a0dd8ca48e7cb3be44dd7b3acabd74
[ "Apache-2.0" ]
null
null
null
try: import DNS except: DNS = None import urllib2 from mailpile.i18n import gettext from mailpile.plugins.keylookup import LookupHandler from mailpile.plugins.keylookup import register_crypto_key_lookup_handler _ = lambda t: t # # Support for DNS PKA (_pka) entries. # See http://www.gushi.org/make-dns-cert/HOWTO.html # class DNSPKALookupHandler(LookupHandler): NAME = _("DNS PKA records") TIMEOUT = 10 PRIORITY = 100 def __init__(self, *args, **kwargs): LookupHandler.__init__(self, *args, **kwargs) if not DNS: return DNS.ParseResolvConf() self.req = DNS.Request(qtype="TXT") def _score(self, key): return (9, _('Found key in DNSPKA')) def _lookup(self, address): """ >>> from mailpile.crypto.dnspka import * >>> d = DNSPKALookup() >>> res = d.lookup("[email protected]") >>> res["result"]["count"] == 1 """ if not DNS: return {} dom = address.replace("@", "._pka.") result = self.req.req(dom) for res in result.answers: if res["typename"] != "TXT": continue for entry in res["data"]: return self._keyinfo(entry) return {} def _keyinfo(self, entry): pkaver = None fingerprint = None url = None for stmt in entry.split(";"): key, value = stmt.split("=", 1) if key == "v": pkaver = value elif key == "fpr": fingerprint = value elif key == "uri": url = value if pkaver != "pka1": raise ValueError("We only know how to deal with pka version 1") return {fingerprint: {"fingerprint": fingerprint, "url": url, "pkaver": pkaver}} def _getkey(self, key): if key["fingerprint"] and not key["url"]: res = self._gnupg().recv_key(key["fingerprint"]) elif key["url"]: r = urllib2.urlopen(key["url"]) result = r.readlines() start = 0 end = len(result) # Hack to deal with possible HTML results from keyservers: for i in range(len(result)): if result[i].startswith("-----BEGIN PGP"): start = i elif result[i].startswith("-----END PGP"): end = i result = "".join(result[start:end]) res = self._gnupg().import_keys(result) return res else: raise ValueError("Need a fingerprint or a URL") _ = gettext register_crypto_key_lookup_handler(DNSPKALookupHandler)
28.284211
88
0.536658
794290a36bfa6db484892c7c5b77536988afd901
227
py
Python
xbee/__init__.py
AndreRenaud/python-xbee
803b5267395b66540cc0b12f501932c55b168010
[ "MIT" ]
65
2015-12-06T02:38:28.000Z
2017-09-05T16:46:07.000Z
xbee/__init__.py
AndreRenaud/python-xbee
803b5267395b66540cc0b12f501932c55b168010
[ "MIT" ]
44
2015-10-23T15:33:54.000Z
2017-09-01T06:39:50.000Z
xbee/__init__.py
AndreRenaud/python-xbee
803b5267395b66540cc0b12f501932c55b168010
[ "MIT" ]
43
2015-12-15T02:52:21.000Z
2017-06-24T17:14:53.000Z
""" XBee package initalization file [email protected] """ __title__ = 'xbee' __version__ = '2.3.2' __author__ = 'n.io' __license__ = 'MIT' from xbee.thread import XBee from xbee.thread import ZigBee from xbee.thread import DigiMesh
15.133333
32
0.735683
7942914816b8c578099f42eb3fc1e0d955b918ba
6,121
py
Python
hw_07/hypers_optim.py
coinflip112/ml_101
9e56ffdb99ac241ed396e25d7f7818a58ee5c4de
[ "MIT" ]
null
null
null
hw_07/hypers_optim.py
coinflip112/ml_101
9e56ffdb99ac241ed396e25d7f7818a58ee5c4de
[ "MIT" ]
null
null
null
hw_07/hypers_optim.py
coinflip112/ml_101
9e56ffdb99ac241ed396e25d7f7818a58ee5c4de
[ "MIT" ]
null
null
null
import argparse import json import lzma import os import pickle import sys import urllib.request import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.svm import SVC from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import ( MaxAbsScaler, MinMaxScaler, StandardScaler, PolynomialFeatures, FunctionTransformer, ) from target_encoder import TargetEncoder from search_spaces import ( svc_linear_search_space, svc_polynomial_search_space, svc_rbf_search_space, rf_search_space, elastic_net_search_space, gaussian_process_search_space, knn_search_space, naive_bayes_search_space, extra_tree_search_space, ) from skopt import BayesSearchCV from skopt.space import Categorical, Integer, Real class Dataset: def __init__( self, name="binary_classification_competition.train.csv.xz", url="https://ufal.mff.cuni.cz/~straka/courses/npfl129/1920/datasets/", ): if not os.path.exists(name): print("Downloading dataset {}...".format(name), file=sys.stderr) urllib.request.urlretrieve(url + name, filename=name) # Load the dataset and split it into `train_target` (column Target) # and `train_data` (all other columns). dataset = pd.read_csv(name) self.data, self.target = dataset.drop("Target", axis=1), dataset["Target"] if __name__ == "__main__": train = Dataset() features = train.data targets = train.target categoricals = [ "Workclass", "Education", "Marital-status", "Occupation", "Relationship", "Race", "Native-country", "Sex", ] numerics = [ "Age", "Fnlwgt", "Education-num", "Capital-gain", "Capital-loss", "Hours-per-week", ] features_mapping_dict = {"categoricals": categoricals, "numerics": numerics} numerics_pipeline = lambda: Pipeline( steps=[ ("poly_features", PolynomialFeatures(include_bias=False)), ("scaler", FunctionTransformer(validate=False)), ] ) preprocessing = lambda features_mapping_dict: ColumnTransformer( transformers=[ ("numerics", numerics_pipeline(), features_mapping_dict["numerics"]), ("categoricals", TargetEncoder(), features_mapping_dict["categoricals"]), ] ) estimator_svc_linear = Pipeline( steps=[ ("preprocessing", preprocessing(features_mapping_dict)), ( "estimator", SGDClassifier(loss="hinge", penalty="elasticnet", max_iter=30000), ), ] ) estimator_extra_trees = Pipeline( steps=[ ("preprocessing", preprocessing(features_mapping_dict)), ("estimator", ExtraTreesClassifier()), ] ) estimator_rf = Pipeline( steps=[ ("preprocessing", preprocessing(features_mapping_dict)), ("estimator", RandomForestClassifier()), ] ) estimator_elastic_net = Pipeline( steps=[ ("preprocessing", preprocessing(features_mapping_dict)), ( "estimator", SGDClassifier(max_iter=30000, penalty="elasticnet", loss="log"), ), ] ) estimator_naive_bayes = Pipeline( steps=[ ("preprocessing", preprocessing(features_mapping_dict)), ("estimator", GaussianNB()), ] ) estimator_knn = Pipeline( steps=[ ("preprocessing", preprocessing(features_mapping_dict)), ("estimator", KNeighborsClassifier()), ] ) naive_bayes_opt = BayesSearchCV( cv=4, estimator=estimator_naive_bayes, search_spaces=naive_bayes_search_space, n_iter=100, n_jobs=-1, refit=False, verbose=3, ) knn_opt = BayesSearchCV( cv=4, estimator=estimator_knn, search_spaces=knn_search_space, n_iter=60, n_jobs=-1, refit=False, verbose=3, ) svc_linear_opt = BayesSearchCV( cv=4, estimator=estimator_svc_linear, search_spaces=svc_linear_search_space, n_iter=100, n_jobs=-1, refit=False, verbose=3, ) extra_tree_opt = BayesSearchCV( cv=4, estimator=estimator_extra_trees, search_spaces=extra_tree_search_space, n_iter=100, n_jobs=-1, refit=False, verbose=3, ) rf_opt = BayesSearchCV( cv=4, estimator=estimator_rf, search_spaces=rf_search_space, n_iter=100, n_jobs=-1, refit=False, verbose=3, ) elastic_net_opt = BayesSearchCV( cv=4, estimator=estimator_elastic_net, search_spaces=elastic_net_search_space, n_iter=80, n_jobs=-1, refit=False, verbose=3, ) naive_bayes_opt.fit(features, targets) knn_opt.fit(features, targets) svc_linear_opt.fit(features, targets) extra_tree_opt.fit(features, targets) rf_opt.fit(features, targets) elastic_net_opt.fit(features, targets) best_params = { "naive_bayes": [naive_bayes_opt.best_params_, naive_bayes_opt.best_score_], "knn": [knn_opt.best_params_, knn_opt.best_score_], "svc_linear": [svc_linear_opt.best_params_, svc_linear_opt.best_score_], "extra_tree": [extra_tree_opt.best_params_, extra_tree_opt.best_score_], "rf": [rf_opt.best_params_, rf_opt.best_score_], "elastic_net": [elastic_net_opt.best_params_, elastic_net_opt.best_score_], } with open("best_params.params", "wb") as params_to_write: pickle.dump(best_params, params_to_write)
28.207373
85
0.632576
7942917e48e03deb411ce9c358ece7f9a5277cd6
8,435
py
Python
backend/config/settings/production.py
kwkelly/chuckwagon
f6d3ee564b9d895195df223025ac05ef56f78e52
[ "MIT" ]
null
null
null
backend/config/settings/production.py
kwkelly/chuckwagon
f6d3ee564b9d895195df223025ac05ef56f78e52
[ "MIT" ]
null
null
null
backend/config/settings/production.py
kwkelly/chuckwagon
f6d3ee564b9d895195df223025ac05ef56f78e52
[ "MIT" ]
null
null
null
import logging from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env('DJANGO_SECRET_KEY') # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = env.list('DJANGO_ALLOWED_HOSTS', default=['chuckwagon.io']) # DATABASES # ------------------------------------------------------------------------------ DATABASES['default'] = env.db('DATABASE_URL') # noqa F405 DATABASES['default']['ATOMIC_REQUESTS'] = True # noqa F405 DATABASES['default']['ENGINE'] = 'django.contrib.gis.db.backends.postgis' DATABASES['default']['CONN_MAX_AGE'] = env.int('CONN_MAX_AGE', default=60) # noqa F405 # CACHES # ------------------------------------------------------------------------------ CACHES = { 'default': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': env('REDIS_URL'), 'OPTIONS': { 'CLIENT_CLASS': 'django_redis.client.DefaultClient', # Mimicing memcache behavior. # http://niwinz.github.io/django-redis/latest/#_memcached_exceptions_behavior 'IGNORE_EXCEPTIONS': True, } } } # SECURITY # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#secure-proxy-ssl-header SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # https://docs.djangoproject.com/en/dev/ref/settings/#secure-ssl-redirect SECURE_SSL_REDIRECT = env.bool('DJANGO_SECURE_SSL_REDIRECT', default=True) # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-secure SESSION_COOKIE_SECURE = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-secure CSRF_COOKIE_SECURE = True # https://docs.djangoproject.com/en/dev/topics/security/#ssl-https # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-seconds # TODO: set this to 60 seconds first and then to 518400 once you prove the former works SECURE_HSTS_SECONDS = 60 # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-include-subdomains SECURE_HSTS_INCLUDE_SUBDOMAINS = env.bool('DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS', default=True) # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-preload SECURE_HSTS_PRELOAD = env.bool('DJANGO_SECURE_HSTS_PRELOAD', default=True) # https://docs.djangoproject.com/en/dev/ref/middleware/#x-content-type-options-nosniff SECURE_CONTENT_TYPE_NOSNIFF = env.bool('DJANGO_SECURE_CONTENT_TYPE_NOSNIFF', default=True) # STORAGES # ------------------------------------------------------------------------------ # https://django-storages.readthedocs.io/en/latest/#installation INSTALLED_APPS += ['storages'] # noqa F405 # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_ACCESS_KEY_ID = env('DJANGO_AWS_ACCESS_KEY_ID') # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_SECRET_ACCESS_KEY = env('DJANGO_AWS_SECRET_ACCESS_KEY') # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_STORAGE_BUCKET_NAME = env('DJANGO_AWS_STORAGE_BUCKET_NAME') # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_QUERYSTRING_AUTH = False # DO NOT change these unless you know what you're doing. _AWS_EXPIRY = 60 * 60 * 24 * 7 # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_S3_OBJECT_PARAMETERS = { 'CacheControl': f'max-age={_AWS_EXPIRY}, s-maxage={_AWS_EXPIRY}, must-revalidate', } # STATIC # ------------------------ STATICFILES_STORAGE = 'config.settings.production.StaticRootS3Boto3Storage' STATIC_URL = f'https://{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com/static/' # MEDIA # ------------------------------------------------------------------------------ # region http://stackoverflow.com/questions/10390244/ # Full-fledge class: https://stackoverflow.com/a/18046120/104731 from storages.backends.s3boto3 import S3Boto3Storage # noqa E402 class StaticRootS3Boto3Storage(S3Boto3Storage): location = 'static' class MediaRootS3Boto3Storage(S3Boto3Storage): location = 'media' file_overwrite = False # endregion DEFAULT_FILE_STORAGE = 'config.settings.production.MediaRootS3Boto3Storage' MEDIA_URL = f'https://{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com/media/' # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]['OPTIONS']['loaders'] = [ # noqa F405 ( 'django.template.loaders.cached.Loader', [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ] ), ] # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#default-from-email DEFAULT_FROM_EMAIL = env( 'DJANGO_DEFAULT_FROM_EMAIL', default='chuckwagon <[email protected]>' ) # https://docs.djangoproject.com/en/dev/ref/settings/#server-email SERVER_EMAIL = env('DJANGO_SERVER_EMAIL', default=DEFAULT_FROM_EMAIL) # https://docs.djangoproject.com/en/dev/ref/settings/#email-subject-prefix EMAIL_SUBJECT_PREFIX = env('DJANGO_EMAIL_SUBJECT_PREFIX', default='[chuckwagon]') # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL regex. ADMIN_URL = env('DJANGO_ADMIN_URL') # Anymail (Mailgun) # ------------------------------------------------------------------------------ # https://anymail.readthedocs.io/en/stable/installation/#installing-anymail INSTALLED_APPS += ['anymail'] # noqa F405 EMAIL_BACKEND = 'anymail.backends.mailgun.EmailBackend' # https://anymail.readthedocs.io/en/stable/installation/#anymail-settings-reference ANYMAIL = { 'MAILGUN_API_KEY': env('MAILGUN_API_KEY'), 'MAILGUN_SENDER_DOMAIN': env('MAILGUN_DOMAIN') } # Gunicorn # ------------------------------------------------------------------------------ INSTALLED_APPS += ['gunicorn'] # noqa F405 # Collectfast # ------------------------------------------------------------------------------ # https://github.com/antonagestam/collectfast#installation INSTALLED_APPS = ['collectfast'] + INSTALLED_APPS # noqa F405 AWS_PRELOAD_METADATA = True # raven # ------------------------------------------------------------------------------ # https://docs.sentry.io/clients/python/integrations/django/ INSTALLED_APPS += ['raven.contrib.django.raven_compat'] # noqa F405 MIDDLEWARE = ['raven.contrib.django.raven_compat.middleware.SentryResponseErrorIdMiddleware'] + MIDDLEWARE # Sentry # ------------------------------------------------------------------------------ SENTRY_DSN = env('SENTRY_DSN') SENTRY_CLIENT = env('DJANGO_SENTRY_CLIENT', default='raven.contrib.django.raven_compat.DjangoClient') LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'root': { 'level': 'WARNING', 'handlers': ['sentry'], }, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s ' '%(process)d %(thread)d %(message)s' }, }, 'handlers': { 'sentry': { 'level': 'ERROR', 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler', }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose' } }, 'loggers': { 'django.db.backends': { 'level': 'ERROR', 'handlers': ['console'], 'propagate': False, }, 'raven': { 'level': 'DEBUG', 'handlers': ['console'], 'propagate': False, }, 'sentry.errors': { 'level': 'DEBUG', 'handlers': ['console'], 'propagate': False, }, 'django.security.DisallowedHost': { 'level': 'ERROR', 'handlers': ['console', 'sentry'], 'propagate': False, }, }, } SENTRY_CELERY_LOGLEVEL = env.int('DJANGO_SENTRY_LOG_LEVEL', logging.INFO) RAVEN_CONFIG = { 'dsn': SENTRY_DSN } # Your stuff... # ------------------------------------------------------------------------------
38.870968
106
0.597747
7942919c8e4b89d5a2cb6de509985098011e3375
4,968
py
Python
bsp/stm32/stm32l433-st-nucleo/rtconfig.py
BreederBai/rt-thread
53ed0314982556dfa9c5db75d4f3e02485d16ab5
[ "Apache-2.0" ]
null
null
null
bsp/stm32/stm32l433-st-nucleo/rtconfig.py
BreederBai/rt-thread
53ed0314982556dfa9c5db75d4f3e02485d16ab5
[ "Apache-2.0" ]
null
null
null
bsp/stm32/stm32l433-st-nucleo/rtconfig.py
BreederBai/rt-thread
53ed0314982556dfa9c5db75d4f3e02485d16ab5
[ "Apache-2.0" ]
null
null
null
import os # toolchains options ARCH='arm' CPU='cortex-m4' CROSS_TOOL='gcc' # bsp lib config BSP_LIBRARY_TYPE = None if os.getenv('RTT_CC'): CROSS_TOOL = os.getenv('RTT_CC') if os.getenv('RTT_ROOT'): RTT_ROOT = os.getenv('RTT_ROOT') # cross_tool provides the cross compiler # EXEC_PATH is the compiler execute path, for example, CodeSourcery, Keil MDK, IAR if CROSS_TOOL == 'gcc': PLATFORM = 'gcc' EXEC_PATH = r'C:\Users\XXYYZZ' elif CROSS_TOOL == 'keil': PLATFORM = 'armcc' EXEC_PATH = r'C:/Keil_v5' elif CROSS_TOOL == 'iar': PLATFORM = 'iccarm' EXEC_PATH = r'C:/Program Files (x86)/IAR Systems/Embedded Workbench 8.3' if os.getenv('RTT_EXEC_PATH'): EXEC_PATH = os.getenv('RTT_EXEC_PATH') BUILD = 'debug' if PLATFORM == 'gcc': # toolchains PREFIX = 'arm-none-eabi-' CC = PREFIX + 'gcc' AS = PREFIX + 'gcc' AR = PREFIX + 'ar' CXX = PREFIX + 'g++' LINK = PREFIX + 'gcc' TARGET_EXT = 'elf' SIZE = PREFIX + 'size' OBJDUMP = PREFIX + 'objdump' OBJCPY = PREFIX + 'objcopy' DEVICE = ' -mcpu=cortex-m4 -mthumb -mfpu=fpv4-sp-d16 -mfloat-abi=hard -ffunction-sections -fdata-sections' CFLAGS = DEVICE + ' -Dgcc' AFLAGS = ' -c' + DEVICE + ' -x assembler-with-cpp -Wa,-mimplicit-it=thumb ' LFLAGS = DEVICE + ' -Wl,--gc-sections,-Map=rt-thread.map,-cref,-u,Reset_Handler -T board/linker_scripts/link.lds' CPATH = '' LPATH = '' if BUILD == 'debug': CFLAGS += ' -O0 -gdwarf-2 -g' AFLAGS += ' -gdwarf-2' else: CFLAGS += ' -O2' CXXFLAGS = CFLAGS POST_ACTION = OBJCPY + ' -O binary $TARGET rtthread.bin\n' + SIZE + ' $TARGET \n' elif PLATFORM == 'armcc': # toolchains CC = 'armcc' CXX = 'armcc' AS = 'armasm' AR = 'armar' LINK = 'armlink' TARGET_EXT = 'axf' DEVICE = ' --cpu Cortex-M4.fp ' CFLAGS = '-c ' + DEVICE + ' --apcs=interwork --c99' AFLAGS = DEVICE + ' --apcs=interwork ' LFLAGS = DEVICE + ' --info sizes --info totals --info unused --info veneers --list rt-thread.map --strict --scatter "board\linker_scripts\link.sct"' CFLAGS += ' -I' + EXEC_PATH + '/ARM/ARMCC/include' LFLAGS += ' --libpath=' + EXEC_PATH + '/ARM/ARMCC/lib' CFLAGS += ' -D__MICROLIB ' AFLAGS += ' --pd "__MICROLIB SETA 1" ' LFLAGS += ' --library_type=microlib ' EXEC_PATH += '/ARM/ARMCC/bin/' if BUILD == 'debug': CFLAGS += ' -g -O0' AFLAGS += ' -g' else: CFLAGS += ' -O2' CXXFLAGS = CFLAGS CFLAGS += ' -std=c99' POST_ACTION = 'fromelf --bin $TARGET --output rtthread.bin \nfromelf -z $TARGET' elif PLATFORM == 'armclang': # toolchains CC = 'armclang' CXX = 'armclang' AS = 'armasm' AR = 'armar' LINK = 'armlink' TARGET_EXT = 'axf' DEVICE = ' --cpu Cortex-M4.fp ' CFLAGS = ' --target=arm-arm-none-eabi -mcpu=cortex-m4 ' CFLAGS += ' -mcpu=cortex-m4 -mfpu=fpv4-sp-d16 ' CFLAGS += ' -mfloat-abi=hard -c -fno-rtti -funsigned-char -fshort-enums -fshort-wchar ' CFLAGS += ' -gdwarf-3 -ffunction-sections ' AFLAGS = DEVICE + ' --apcs=interwork ' LFLAGS = DEVICE + ' --info sizes --info totals --info unused --info veneers ' LFLAGS += ' --list rt-thread.map ' LFLAGS += r' --strict --scatter "board\linker_scripts\link.sct" ' CFLAGS += ' -I' + EXEC_PATH + '/ARM/ARMCLANG/include' LFLAGS += ' --libpath=' + EXEC_PATH + '/ARM/ARMCLANG/lib' EXEC_PATH += '/ARM/ARMCLANG/bin/' if BUILD == 'debug': CFLAGS += ' -g -O1' # armclang recommend AFLAGS += ' -g' else: CFLAGS += ' -O2' CXXFLAGS = CFLAGS CFLAGS += ' -std=c99' POST_ACTION = 'fromelf --bin $TARGET --output rtthread.bin \nfromelf -z $TARGET' elif PLATFORM == 'iccarm': # toolchains CC = 'iccarm' CXX = 'iccarm' AS = 'iasmarm' AR = 'iarchive' LINK = 'ilinkarm' TARGET_EXT = 'out' DEVICE = '-Dewarm' CFLAGS = DEVICE CFLAGS += ' --diag_suppress Pa050' CFLAGS += ' --no_cse' CFLAGS += ' --no_unroll' CFLAGS += ' --no_inline' CFLAGS += ' --no_code_motion' CFLAGS += ' --no_tbaa' CFLAGS += ' --no_clustering' CFLAGS += ' --no_scheduling' CFLAGS += ' --endian=little' CFLAGS += ' --cpu=Cortex-M4' CFLAGS += ' -e' CFLAGS += ' --fpu=VFPv4_sp' CFLAGS += ' --dlib_config "' + EXEC_PATH + '/arm/INC/c/DLib_Config_Normal.h"' CFLAGS += ' --silent' AFLAGS = DEVICE AFLAGS += ' -s+' AFLAGS += ' -w+' AFLAGS += ' -r' AFLAGS += ' --cpu Cortex-M4' AFLAGS += ' --fpu VFPv4_sp' AFLAGS += ' -S' if BUILD == 'debug': CFLAGS += ' --debug' CFLAGS += ' -On' else: CFLAGS += ' -Oh' LFLAGS = ' --config "board/linker_scripts/link.icf"' LFLAGS += ' --entry __iar_program_start' CXXFLAGS = CFLAGS EXEC_PATH = EXEC_PATH + '/arm/bin/' POST_ACTION = 'ielftool --bin $TARGET rtthread.bin'
27.910112
152
0.574074
794291e89ca343cafca6b7589f59ee13d9af00eb
2,606
py
Python
test/convert_test_format.py
TysonAndre/igbinary-hhvm
0608c54e996ee91fc3b16337654ce7ea5ece7814
[ "PHP-3.01" ]
null
null
null
test/convert_test_format.py
TysonAndre/igbinary-hhvm
0608c54e996ee91fc3b16337654ce7ea5ece7814
[ "PHP-3.01" ]
2
2017-10-20T05:57:58.000Z
2017-10-20T06:10:01.000Z
test/convert_test_format.py
TysonAndre/igbinary-hhvm
0608c54e996ee91fc3b16337654ce7ea5ece7814
[ "PHP-3.01" ]
null
null
null
#!/usr/bin/env python3 import os import re import sys TEST_COMMENT = re.compile(r"--TEST--\r?\n([^\n\r]+)\r?\n--", re.MULTILINE) FILE_CONTENTS = re.compile(r"--FILE--\r?\n<\?php\s*\r?\n?\s*(.*)(\r?\n?(\?>)?)?\r?\n--EXPECT(F|REGEX)?--", re.MULTILINE | re.DOTALL) EXPECT_CONTENTS = re.compile(r"--(EXPECT(F|REGEX)?)--\r?\n(.*)$", re.MULTILINE | re.DOTALL) def get_normalized_filename_as_php(phpt_filename): phpt_filename = re.sub(r"(^|/)igbinary_([^/.]+.phpt)", r"\1\2", phpt_filename) php_filename = re.sub("\.phpt$", ".php", phpt_filename) return php_filename def parse_phpt_sections(contents, phpt_filename): comment_match = TEST_COMMENT.search(contents) if comment_match is None: sys.stderr.write("Could not find comment in {0}\n".format(phpt_filename)) sys.exit(1) comment = comment_match.group(1) php_code_match = FILE_CONTENTS.search(contents) if php_code_match is None: sys.stderr.write("Could not find php test code in {0}\n".format(phpt_filename)) sys.exit(1) php_code = php_code_match.group(1) expect_match = EXPECT_CONTENTS.search(contents) if expect_match is None: sys.stderr.write("Could not find expectated output (EXPECT or EXPECTF) in {0}\n".format(phpt_filename)) sys.exit(1) is_expectf = expect_match.group(1) in ("EXPECTF", "EXPECTREGEX") expect = expect_match.group(3) return [comment, php_code, expect, is_expectf] def main(): files = sys.argv[1:] if len(files) == 0: sys.stderr.write("Usage: {0} path/to/igbinary_0xy.phpt...\n".format(sys.argv[0])) sys.exit(1) for filename in files: if filename[-5:] != '.phpt': sys.stderr.write("{0} is not a file of type phpt\n".format(filename)) sys.exit(1) for filename in files: with open(filename) as file: contents = file.read() [comment, php_code, expect, is_expectf] = parse_phpt_sections(contents, filename) result_filename = get_normalized_filename_as_php(filename) result_contents = "<?php\n// {0}\n{1}".format(comment.strip().replace("\n", "\n// "), php_code) with open(result_filename, "w") as result_file: result_file.write(result_contents) expect_filename = result_filename + (".expectf" if is_expectf else ".expect") with open(expect_filename, "w") as expect_file: expect_file.write(expect) print("Wrote {0}: {1}".format(result_filename, "; ".join(re.split("\r?\n", comment)))) if __name__ == "__main__": main()
42.721311
134
0.633922
794292985726332c2834f5c787f816ae27f5658a
621
py
Python
location.py
burkee75/flask-weather-app
6c7eecfad83727fc73e4122cfcc926ff607870cd
[ "MIT" ]
1
2020-05-01T22:03:19.000Z
2020-05-01T22:03:19.000Z
location.py
burkee75/flask-weather-app
6c7eecfad83727fc73e4122cfcc926ff607870cd
[ "MIT" ]
1
2020-05-04T06:54:28.000Z
2020-05-04T06:54:28.000Z
location.py
burkee75/flask-weather-app
6c7eecfad83727fc73e4122cfcc926ff607870cd
[ "MIT" ]
2
2020-05-01T22:03:24.000Z
2020-05-03T18:56:33.000Z
from mapbox import Geocoder class MapboxLocation: def __init__(self, api_key): self.api_key = api_key self.geocoder = Geocoder(access_token=self.api_key) def latitude_longitude(self, zipcode): self.zipcode = zipcode response = self.geocoder.forward(self.zipcode, country=['us']) #print(f'Mapbox Zipcode Lookup HTTP code: {response.status_code}') # Get Zipcode Center Latitude and Longitude from Mapbox #print(f"Mapbox Coordinates: {response.json()['features'][0]['center']}") # for debugging return response.json()['features'][0]['center']
32.684211
97
0.669887
7942935c7b79fbb5a7609e45b8ed9d213fe63b12
27,425
py
Python
appdirs.py
eukreign/appdirs
e0176a71a71b16dc5f16dd32268323e4263dcf1d
[ "MIT" ]
null
null
null
appdirs.py
eukreign/appdirs
e0176a71a71b16dc5f16dd32268323e4263dcf1d
[ "MIT" ]
null
null
null
appdirs.py
eukreign/appdirs
e0176a71a71b16dc5f16dd32268323e4263dcf1d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2005-2010 ActiveState Software Inc. # Copyright (c) 2013 Eddy Petrișor """Utilities for determining application-specific dirs. See <https://github.com/ActiveState/appdirs> for details and usage. """ # Dev Notes: # - MSDN on where to store app data files: # http://support.microsoft.com/default.aspx?scid=kb;en-us;310294#XSLTH3194121123120121120120 # - Mac OS X: http://developer.apple.com/documentation/MacOSX/Conceptual/BPFileSystem/index.html # - XDG spec for Un*x: https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html __version__ = "1.4.4" __version_info__ = tuple(int(segment) for segment in __version__.split(".")) import sys import os import re PY3 = sys.version_info[0] == 3 if PY3: unicode = str if sys.platform.startswith('java'): import platform os_name = platform.java_ver()[3][0] if os_name.startswith('Windows'): # "Windows XP", "Windows 7", etc. system = 'win32' elif os_name.startswith('Mac'): # "Mac OS X", etc. system = 'darwin' else: # "Linux", "SunOS", "FreeBSD", etc. # Setting this to "linux2" is not ideal, but only Windows or Mac # are actually checked for and the rest of the module expects # *sys.platform* style strings. system = 'linux2' else: system = sys.platform def user_download_dir(): r"""Return full path to the user-specific download dir for this application. Typical user data directories are: Mac OS X: ~/Downloads Unix: ~/Downloads # or in $XDG_DOWNLOAD_DIR, if defined Win 7: C:\Users\<username>\Downloads For Unix, we follow the XDG spec and support $XDG_DOWNLOAD_DIR. That means, by default "~/Downloads". """ if system == "win32": return os.path.normpath(_get_win_download_folder_with_ctypes()) elif system == 'darwin': return os.path.expanduser('~/Downloads') else: try: config_dirs = os.path.join(user_config_dir(), 'user-dirs.dirs') with open(config_dirs) as dirs_file: path_match = re.search(r'XDG_DOWNLOAD_DIR=(.+)', dirs_file.read()) cleaned_path = path_match.group(1).replace('"', '').replace('$HOME', '~') return os.path.expanduser(cleaned_path) except Exception: pass return os.getenv('XDG_DOWNLOAD_DIR', os.path.expanduser("~/Downloads")) def user_data_dir(appname=None, appauthor=None, version=None, roaming=False): r"""Return full path to the user-specific data dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user data directories are: Mac OS X: ~/Library/Application Support/<AppName> Unix: ~/.local/share/<AppName> # or in $XDG_DATA_HOME, if defined Win XP (not roaming): C:\Documents and Settings\<username>\Application Data\<AppAuthor>\<AppName> Win XP (roaming): C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName> Win 7 (not roaming): C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName> Win 7 (roaming): C:\Users\<username>\AppData\Roaming\<AppAuthor>\<AppName> For Unix, we follow the XDG spec and support $XDG_DATA_HOME. That means, by default "~/.local/share/<AppName>". """ if system == "win32": if appauthor is None: appauthor = appname const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA" path = os.path.normpath(_get_win_folder(const)) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) elif system == 'darwin': path = os.path.expanduser('~/Library/Application Support/') if appname: path = os.path.join(path, appname) else: path = os.getenv('XDG_DATA_HOME', os.path.expanduser("~/.local/share")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def site_data_dir(appname=None, appauthor=None, version=None, multipath=False): r"""Return full path to the user-shared data dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "multipath" is an optional parameter only applicable to *nix which indicates that the entire list of data dirs should be returned. By default, the first item from XDG_DATA_DIRS is returned, or '/usr/local/share/<AppName>', if XDG_DATA_DIRS is not set Typical site data directories are: Mac OS X: /Library/Application Support/<AppName> Unix: /usr/local/share/<AppName> or /usr/share/<AppName> Win XP: C:\Documents and Settings\All Users\Application Data\<AppAuthor>\<AppName> Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.) Win 7: C:\ProgramData\<AppAuthor>\<AppName> # Hidden, but writeable on Win 7. For Unix, this is using the $XDG_DATA_DIRS[0] default. WARNING: Do not use this on Windows. See the Vista-Fail note above for why. """ if system == "win32": if appauthor is None: appauthor = appname path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA")) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) elif system == 'darwin': path = os.path.expanduser('/Library/Application Support') if appname: path = os.path.join(path, appname) else: # XDG default for $XDG_DATA_DIRS # only first, if multipath is False path = os.getenv('XDG_DATA_DIRS', os.pathsep.join(['/usr/local/share', '/usr/share'])) pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)] if appname: if version: appname = os.path.join(appname, version) pathlist = [os.sep.join([x, appname]) for x in pathlist] if multipath: path = os.pathsep.join(pathlist) else: path = pathlist[0] return path if appname and version: path = os.path.join(path, version) return path def user_config_dir(appname=None, appauthor=None, version=None, roaming=False): r"""Return full path to the user-specific config dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user config directories are: Mac OS X: ~/Library/Preferences/<AppName> Unix: ~/.config/<AppName> # or in $XDG_CONFIG_HOME, if defined Win *: same as user_data_dir For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME. That means, by default "~/.config/<AppName>". """ if system == "win32": path = user_data_dir(appname, appauthor, None, roaming) elif system == 'darwin': path = os.path.expanduser('~/Library/Preferences/') if appname: path = os.path.join(path, appname) else: path = os.getenv('XDG_CONFIG_HOME', os.path.expanduser("~/.config")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def site_config_dir(appname=None, appauthor=None, version=None, multipath=False): r"""Return full path to the user-shared data dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "multipath" is an optional parameter only applicable to *nix which indicates that the entire list of config dirs should be returned. By default, the first item from XDG_CONFIG_DIRS is returned, or '/etc/xdg/<AppName>', if XDG_CONFIG_DIRS is not set Typical site config directories are: Mac OS X: same as site_data_dir Unix: /etc/xdg/<AppName> or $XDG_CONFIG_DIRS[i]/<AppName> for each value in $XDG_CONFIG_DIRS Win *: same as site_data_dir Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.) For Unix, this is using the $XDG_CONFIG_DIRS[0] default, if multipath=False WARNING: Do not use this on Windows. See the Vista-Fail note above for why. """ if system == 'win32': path = site_data_dir(appname, appauthor) if appname and version: path = os.path.join(path, version) elif system == 'darwin': path = os.path.expanduser('/Library/Preferences') if appname: path = os.path.join(path, appname) else: # XDG default for $XDG_CONFIG_DIRS # only first, if multipath is False path = os.getenv('XDG_CONFIG_DIRS', '/etc/xdg') pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)] if appname: if version: appname = os.path.join(appname, version) pathlist = [os.sep.join([x, appname]) for x in pathlist] if multipath: path = os.pathsep.join(pathlist) else: path = pathlist[0] return path def user_cache_dir(appname=None, appauthor=None, version=None, opinion=True): r"""Return full path to the user-specific cache dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "opinion" (boolean) can be False to disable the appending of "Cache" to the base app data dir for Windows. See discussion below. Typical user cache directories are: Mac OS X: ~/Library/Caches/<AppName> Unix: ~/.cache/<AppName> (XDG default) Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Cache Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Cache On Windows the only suggestion in the MSDN docs is that local settings go in the `CSIDL_LOCAL_APPDATA` directory. This is identical to the non-roaming app data dir (the default returned by `user_data_dir` above). Apps typically put cache data somewhere *under* the given dir here. Some examples: ...\Mozilla\Firefox\Profiles\<ProfileName>\Cache ...\Acme\SuperApp\Cache\1.0 OPINION: This function appends "Cache" to the `CSIDL_LOCAL_APPDATA` value. This can be disabled with the `opinion=False` option. """ if system == "win32": if appauthor is None: appauthor = appname path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA")) if appname: if appauthor is not False: path = os.path.join(path, appauthor, appname) else: path = os.path.join(path, appname) if opinion: path = os.path.join(path, "Cache") elif system == 'darwin': path = os.path.expanduser('~/Library/Caches') if appname: path = os.path.join(path, appname) else: path = os.getenv('XDG_CACHE_HOME', os.path.expanduser('~/.cache')) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def user_state_dir(appname=None, appauthor=None, version=None, roaming=False): r"""Return full path to the user-specific state dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user state directories are: Mac OS X: same as user_data_dir Unix: ~/.local/state/<AppName> # or in $XDG_STATE_HOME, if defined Win *: same as user_data_dir For Unix, we follow this Debian proposal <https://wiki.debian.org/XDGBaseDirectorySpecification#state> to extend the XDG spec and support $XDG_STATE_HOME. That means, by default "~/.local/state/<AppName>". """ if system in ["win32", "darwin"]: path = user_data_dir(appname, appauthor, None, roaming) else: path = os.getenv('XDG_STATE_HOME', os.path.expanduser("~/.local/state")) if appname: path = os.path.join(path, appname) if appname and version: path = os.path.join(path, version) return path def user_log_dir(appname=None, appauthor=None, version=None, opinion=True): r"""Return full path to the user-specific log dir for this application. "appname" is the name of application. If None, just the system directory is returned. "appauthor" (only used on Windows) is the name of the appauthor or distributing body for this application. Typically it is the owning company name. This falls back to appname. You may pass False to disable it. "version" is an optional version path element to append to the path. You might want to use this if you want multiple versions of your app to be able to run independently. If used, this would typically be "<major>.<minor>". Only applied when appname is present. "opinion" (boolean) can be False to disable the appending of "Logs" to the base app data dir for Windows, and "log" to the base cache dir for Unix. See discussion below. Typical user log directories are: Mac OS X: ~/Library/Logs/<AppName> Unix: ~/.cache/<AppName>/log # or under $XDG_CACHE_HOME if defined Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Logs Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Logs On Windows the only suggestion in the MSDN docs is that local settings go in the `CSIDL_LOCAL_APPDATA` directory. (Note: I'm interested in examples of what some windows apps use for a logs dir.) OPINION: This function appends "Logs" to the `CSIDL_LOCAL_APPDATA` value for Windows and appends "log" to the user cache dir for Unix. This can be disabled with the `opinion=False` option. """ if system == "darwin": path = os.path.join( os.path.expanduser('~/Library/Logs'), appname) elif system == "win32": path = user_data_dir(appname, appauthor, version) version = False if opinion: path = os.path.join(path, "Logs") else: path = user_cache_dir(appname, appauthor, version) version = False if opinion: path = os.path.join(path, "log") if appname and version: path = os.path.join(path, version) return path class AppDirs(object): """Convenience wrapper for getting application dirs.""" def __init__(self, appname=None, appauthor=None, version=None, roaming=False, multipath=False): self.appname = appname self.appauthor = appauthor self.version = version self.roaming = roaming self.multipath = multipath @property def user_download_dir(self): return user_download_dir() @property def user_data_dir(self): return user_data_dir(self.appname, self.appauthor, version=self.version, roaming=self.roaming) @property def site_data_dir(self): return site_data_dir(self.appname, self.appauthor, version=self.version, multipath=self.multipath) @property def user_config_dir(self): return user_config_dir(self.appname, self.appauthor, version=self.version, roaming=self.roaming) @property def site_config_dir(self): return site_config_dir(self.appname, self.appauthor, version=self.version, multipath=self.multipath) @property def user_cache_dir(self): return user_cache_dir(self.appname, self.appauthor, version=self.version) @property def user_state_dir(self): return user_state_dir(self.appname, self.appauthor, version=self.version) @property def user_log_dir(self): return user_log_dir(self.appname, self.appauthor, version=self.version) #---- internal support stuff def _get_win_folder_from_registry(csidl_name): """This is a fallback technique at best. I'm not sure if using the registry for this guarantees us the correct answer for all CSIDL_* names. """ if PY3: import winreg as _winreg else: import _winreg shell_folder_name = { "CSIDL_APPDATA": "AppData", "CSIDL_COMMON_APPDATA": "Common AppData", "CSIDL_LOCAL_APPDATA": "Local AppData", }[csidl_name] key = _winreg.OpenKey( _winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders" ) dir, type = _winreg.QueryValueEx(key, shell_folder_name) return dir def _get_win_folder_with_pywin32(csidl_name): from win32com.shell import shellcon, shell dir = shell.SHGetFolderPath(0, getattr(shellcon, csidl_name), 0, 0) # Try to make this a unicode path because SHGetFolderPath does # not return unicode strings when there is unicode data in the # path. try: dir = unicode(dir) # Downgrade to short path name if have highbit chars. See # <http://bugs.activestate.com/show_bug.cgi?id=85099>. has_high_char = False for c in dir: if ord(c) > 255: has_high_char = True break if has_high_char: try: import win32api dir = win32api.GetShortPathName(dir) except ImportError: pass except UnicodeError: pass return dir def _get_win_folder_with_ctypes(csidl_name): import ctypes csidl_const = { "CSIDL_APPDATA": 26, "CSIDL_COMMON_APPDATA": 35, "CSIDL_LOCAL_APPDATA": 28, }[csidl_name] buf = ctypes.create_unicode_buffer(1024) ctypes.windll.shell32.SHGetFolderPathW(None, csidl_const, None, 0, buf) # Downgrade to short path name if have highbit chars. See # <http://bugs.activestate.com/show_bug.cgi?id=85099>. has_high_char = False for c in buf: if ord(c) > 255: has_high_char = True break if has_high_char: buf2 = ctypes.create_unicode_buffer(1024) if ctypes.windll.kernel32.GetShortPathNameW(buf.value, buf2, 1024): buf = buf2 return buf.value def _get_win_download_folder_with_ctypes(): import ctypes from ctypes import windll, wintypes from uuid import UUID class GUID(ctypes.Structure): _fields_ = [ ("data1", wintypes.DWORD), ("data2", wintypes.WORD), ("data3", wintypes.WORD), ("data4", wintypes.BYTE * 8) ] def __init__(self, uuidstr): ctypes.Structure.__init__(self) uuid = UUID(uuidstr) self.data1, self.data2, self.data3, \ self.data4[0], self.data4[1], rest = uuid.fields for i in range(2, 8): self.data4[i] = rest >> (8-i-1)*8 & 0xff SHGetKnownFolderPath = windll.shell32.SHGetKnownFolderPath SHGetKnownFolderPath.argtypes = [ ctypes.POINTER(GUID), wintypes.DWORD, wintypes.HANDLE, ctypes.POINTER(ctypes.c_wchar_p) ] FOLDERID_Downloads = '{374DE290-123F-4565-9164-39C4925E467B}' guid = GUID(FOLDERID_Downloads) pathptr = ctypes.c_wchar_p() if SHGetKnownFolderPath(ctypes.byref(guid), 0, 0, ctypes.byref(pathptr)): raise Exception('Failed to get download directory.') return pathptr.value def _get_win_folder_with_jna(csidl_name): import array from com.sun import jna from com.sun.jna.platform import win32 buf_size = win32.WinDef.MAX_PATH * 2 buf = array.zeros('c', buf_size) shell = win32.Shell32.INSTANCE shell.SHGetFolderPath(None, getattr(win32.ShlObj, csidl_name), None, win32.ShlObj.SHGFP_TYPE_CURRENT, buf) dir = jna.Native.toString(buf.tostring()).rstrip("\0") # Downgrade to short path name if have highbit chars. See # <http://bugs.activestate.com/show_bug.cgi?id=85099>. has_high_char = False for c in dir: if ord(c) > 255: has_high_char = True break if has_high_char: buf = array.zeros('c', buf_size) kernel = win32.Kernel32.INSTANCE if kernel.GetShortPathName(dir, buf, buf_size): dir = jna.Native.toString(buf.tostring()).rstrip("\0") return dir if system == "win32": try: import win32com.shell _get_win_folder = _get_win_folder_with_pywin32 except ImportError: try: from ctypes import windll _get_win_folder = _get_win_folder_with_ctypes except ImportError: try: import com.sun.jna _get_win_folder = _get_win_folder_with_jna except ImportError: _get_win_folder = _get_win_folder_from_registry #---- self test code if __name__ == "__main__": appname = "MyApp" appauthor = "MyCompany" props = ("user_data_dir", "user_config_dir", "user_cache_dir", "user_state_dir", "user_log_dir", "site_data_dir", "site_config_dir") print("-- app dirs %s --" % __version__) print("-- app dirs (with optional 'version')") dirs = AppDirs(appname, appauthor, version="1.0") for prop in props: print("%s: %s" % (prop, getattr(dirs, prop))) print("\n-- app dirs (without optional 'version')") dirs = AppDirs(appname, appauthor) for prop in props: print("%s: %s" % (prop, getattr(dirs, prop))) print("\n-- app dirs (without optional 'appauthor')") dirs = AppDirs(appname) for prop in props: print("%s: %s" % (prop, getattr(dirs, prop))) print("\n-- app dirs (with disabled 'appauthor')") dirs = AppDirs(appname, appauthor=False) for prop in props: print("%s: %s" % (prop, getattr(dirs, prop))) print("\n-- download dir") print(user_download_dir())
39.919942
122
0.628441
7942936918bd00b5774f3070c8ae3a62cf6fe71a
796
py
Python
benchmarks/flask_simple/app.py
p7g/dd-trace-py
141ac0ab6e9962e3b3bafc9de172076075289a19
[ "Apache-2.0", "BSD-3-Clause" ]
308
2016-12-07T16:49:27.000Z
2022-03-15T10:06:45.000Z
benchmarks/flask_simple/app.py
p7g/dd-trace-py
141ac0ab6e9962e3b3bafc9de172076075289a19
[ "Apache-2.0", "BSD-3-Clause" ]
1,928
2016-11-28T17:13:18.000Z
2022-03-31T21:43:19.000Z
benchmarks/flask_simple/app.py
p7g/dd-trace-py
141ac0ab6e9962e3b3bafc9de172076075289a19
[ "Apache-2.0", "BSD-3-Clause" ]
311
2016-11-27T03:01:49.000Z
2022-03-18T21:34:03.000Z
import random from flask import Flask from flask import render_template_string app = Flask(__name__) @app.route("/") def index(): rand_numbers = [random.random() for _ in range(20)] return render_template_string( """ <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Hello World!</title> </head> <body> <section class="section"> <div class="container"> <h1 class="title"> Hello World </h1> <p class="subtitle"> My first website </p> <ul> {% for i in rand_numbers %} <li>{{ i }}</li> {% endfor %} </ul> </div> </section> </body> </html> """, rand_numbers=rand_numbers, )
18.511628
72
0.557789
79429389032e033e271c1e5fb364ef614bc89fc3
3,397
py
Python
yandex_maps/tests.py
66ru/yandex-maps
aadacb751bf4b491a8caf00e35f11faeb4a516d3
[ "MIT" ]
8
2015-02-22T22:32:30.000Z
2021-02-16T16:50:44.000Z
yandex_maps/tests.py
66ru/yandex-maps
aadacb751bf4b491a8caf00e35f11faeb4a516d3
[ "MIT" ]
4
2015-06-24T10:25:54.000Z
2019-08-20T11:30:05.000Z
yandex_maps/tests.py
66ru/yandex-maps
aadacb751bf4b491a8caf00e35f11faeb4a516d3
[ "MIT" ]
12
2015-01-26T09:40:18.000Z
2019-09-01T14:10:17.000Z
#coding: utf-8 from unittest import TestCase from yandex_maps.api import _get_coords, get_map_url RESPONSE = u"""<?xml version="1.0" encoding="utf-8"?> <ymaps xmlns="http://maps.yandex.ru/ymaps/1.x" xmlns:x="http://www.yandex.ru/xscript"> <GeoObjectCollection> <metaDataProperty xmlns="http://www.opengis.net/gml"> <GeocoderResponseMetaData xmlns="http://maps.yandex.ru/geocoder/1.x"> <request>Екатеринбург, Свердлова 27</request> <found>1</found> <results>10</results> </GeocoderResponseMetaData> </metaDataProperty> <featureMember xmlns="http://www.opengis.net/gml"> <GeoObject xmlns="http://maps.yandex.ru/ymaps/1.x"> <metaDataProperty xmlns="http://www.opengis.net/gml"> <GeocoderMetaData xmlns="http://maps.yandex.ru/geocoder/1.x"> <kind>house</kind> <text>Россия, Свердловская область, Екатеринбург, улица Свердлова, 27</text> <precision>number</precision> <AddressDetails xmlns="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"> <Country> <CountryName>Россия</CountryName> <AdministrativeArea> <AdministrativeAreaName>Свердловская область</AdministrativeAreaName> <Locality> <LocalityName>Екатеринбург</LocalityName> <Thoroughfare> <ThoroughfareName>улица Свердлова</ThoroughfareName> <Premise> <PremiseNumber>27</PremiseNumber> </Premise> </Thoroughfare> </Locality> </AdministrativeArea> </Country> </AddressDetails> </GeocoderMetaData> </metaDataProperty> <boundedBy xmlns="http://www.opengis.net/gml"> <Envelope> <lowerCorner>60.599720 56.852332</lowerCorner> <upperCorner>60.607931 56.856830</upperCorner> </Envelope> </boundedBy> <Point xmlns="http://www.opengis.net/gml"> <pos>60.603826 56.854581</pos> </Point> </GeoObject> </featureMember> </GeoObjectCollection> </ymaps> """.encode('utf8') UNKNOWN_ADDRESS = u'''<?xml version="1.0" encoding="utf-8"?> <ymaps xmlns="http://maps.yandex.ru/ymaps/1.x" xmlns:x="http://www.yandex.ru/xscript"> <GeoObjectCollection> <metaDataProperty xmlns="http://www.opengis.net/gml"> <GeocoderResponseMetaData xmlns="http://maps.yandex.ru/geocoder/1.x"> <request>Екатеринбург, Свердлова 87876</request> <found>0</found> <results>10</results> </GeocoderResponseMetaData> </metaDataProperty> </GeoObjectCollection> </ymaps> '''.encode('utf8') TEST_API_KEY = 'vasia' COORDS = (u'60.603826', u'56.854581') MAP_URL = 'http://static-maps.yandex.ru/1.x/?ll=60.6038260,56.8545810&size=200,300&z=5&l=map&pt=60.6038260,56.8545810&key=vasia' class GeocodeParsingTest(TestCase): def test_parsing(self): self.assertEqual(_get_coords(RESPONSE), COORDS) def test_unknown(self): self.assertEqual(_get_coords(UNKNOWN_ADDRESS), (None, None,)) # FIXME: тест полагается на порядок параметров в url class MapUrlTest(TestCase): def test_map_url(self): url = get_map_url(TEST_API_KEY, COORDS[0], COORDS[1], 5, 200, 300) self.assertEqual(url, MAP_URL)
39.045977
128
0.622019
794293c225d66e35c2075b2bd913d52736e2f3b9
551
py
Python
conftest.py
daltonik666/python_training
99e243c346aeeeb1698e31be04e1742cce6029d9
[ "Apache-2.0" ]
null
null
null
conftest.py
daltonik666/python_training
99e243c346aeeeb1698e31be04e1742cce6029d9
[ "Apache-2.0" ]
null
null
null
conftest.py
daltonik666/python_training
99e243c346aeeeb1698e31be04e1742cce6029d9
[ "Apache-2.0" ]
null
null
null
import pytest from fixture.application import Application fixture = None @pytest.fixture def app(request): global fixture if fixture is None: fixture = Application() else: if not fixture.is_valid(): fixture = Application() fixture.session.ensure_login(username="admin", password="secret") return fixture @pytest.fixture(scope="session", autouse=True) def stop(request): def fin(): fixture.session.ensure_logout() fixture.destroy() request.addfinalizer(fin) return fixture
22.958333
69
0.678766
794293edb49bc42e36dbffc69a3542ae8935d69c
587
py
Python
class/cls07.py
LBarros77/Python
283b383d9d14c8d7b907b80f03f7cdc5dbd1e8af
[ "MIT" ]
null
null
null
class/cls07.py
LBarros77/Python
283b383d9d14c8d7b907b80f03f7cdc5dbd1e8af
[ "MIT" ]
null
null
null
class/cls07.py
LBarros77/Python
283b383d9d14c8d7b907b80f03f7cdc5dbd1e8af
[ "MIT" ]
null
null
null
class Date: def __init__(self, day = 0, month = 0, year = 0): self.day = day self.month = month self.year = year @classmethod def date_str(cls, string): day, month, year = map(int, string.split("-")) date1 = cls(day, month, year) return date1 @staticmethod def date_meta(string): day, month, year = map(int, string.split("-")) return day <= 31 and month <= 12 and year <= 2023 date2 = Date.date_str("23-7-2000") is_date = Date.date_meta("12-11-1990") print(date2.__dict__) print(is_date)
26.681818
57
0.577513
7942946759adb77f7029389e9da300939708dc59
15,023
py
Python
tests/cloudformation/runner/test_runner.py
BenjaDiaz/checkov
c53e32f1654e4ee771abf2001b3cb7df16752f6e
[ "Apache-2.0" ]
null
null
null
tests/cloudformation/runner/test_runner.py
BenjaDiaz/checkov
c53e32f1654e4ee771abf2001b3cb7df16752f6e
[ "Apache-2.0" ]
3
2022-03-07T20:37:31.000Z
2022-03-21T20:20:14.000Z
tests/cloudformation/runner/test_runner.py
BenjaDiaz/checkov
c53e32f1654e4ee771abf2001b3cb7df16752f6e
[ "Apache-2.0" ]
null
null
null
import dis import inspect import os import unittest from pathlib import Path from typing import Dict, Any import pytest from checkov.cloudformation import cfn_utils from checkov.cloudformation.checks.resource.base_resource_check import BaseResourceCheck from checkov.cloudformation.parser import parse from checkov.common.models.enums import CheckResult, CheckCategories from checkov.runner_filter import RunnerFilter from checkov.cloudformation.runner import Runner from checkov.common.output.report import Report from checkov.cloudformation.cfn_utils import create_definitions class TestRunnerValid(unittest.TestCase): def test_record_relative_path_with_relative_dir(self): # test whether the record's repo_file_path is correct, relative to the CWD (with a / at the start). # this is just constructing the scan dir as normal current_dir = os.path.dirname(os.path.realpath(__file__)) scan_dir_path = os.path.join(current_dir, "resources") # this is the relative path to the directory to scan (what would actually get passed to the -d arg) dir_rel_path = os.path.relpath(scan_dir_path).replace('\\', '/') runner = Runner() checks_allowlist = ['CKV_AWS_20'] report = runner.run(root_folder=dir_rel_path, external_checks_dir=None, runner_filter=RunnerFilter(framework='cloudformation', checks=checks_allowlist)) all_checks = report.failed_checks + report.passed_checks self.assertGreater(len(all_checks), 0) # ensure that the assertions below are going to do something for record in all_checks: # no need to join with a '/' because the CFN runner adds it to the start of the file path self.assertEqual(record.repo_file_path, f'/{dir_rel_path}{record.file_path}') def test_record_relative_path_with_abs_dir(self): # test whether the record's repo_file_path is correct, relative to the CWD (with a / at the start). # this is just constructing the scan dir as normal current_dir = os.path.dirname(os.path.realpath(__file__)) scan_dir_path = os.path.join(current_dir, "resources") dir_rel_path = os.path.relpath(scan_dir_path).replace('\\', '/') dir_abs_path = os.path.abspath(scan_dir_path) runner = Runner() checks_allowlist = ['CKV_AWS_20'] report = runner.run(root_folder=dir_abs_path, external_checks_dir=None, runner_filter=RunnerFilter(framework='cloudformation', checks=checks_allowlist)) all_checks = report.failed_checks + report.passed_checks self.assertGreater(len(all_checks), 0) # ensure that the assertions below are going to do something for record in all_checks: # no need to join with a '/' because the CFN runner adds it to the start of the file path self.assertEqual(record.repo_file_path, f'/{dir_rel_path}{record.file_path}') def test_record_relative_path_with_relative_file(self): # test whether the record's repo_file_path is correct, relative to the CWD (with a / at the start). # this is just constructing the scan dir as normal current_dir = os.path.dirname(os.path.realpath(__file__)) scan_file_path = os.path.join(current_dir, "resources", "success.json") # this is the relative path to the file to scan (what would actually get passed to the -f arg) file_rel_path = os.path.relpath(scan_file_path) runner = Runner() checks_allowlist = ['CKV_AWS_20'] report = runner.run(root_folder=None, external_checks_dir=None, files=[file_rel_path], runner_filter=RunnerFilter(framework='cloudformation', checks=checks_allowlist)) all_checks = report.failed_checks + report.passed_checks self.assertGreater(len(all_checks), 0) # ensure that the assertions below are going to do something for record in all_checks: # no need to join with a '/' because the CFN runner adds it to the start of the file path self.assertEqual(record.repo_file_path, f'/{file_rel_path}') def test_record_relative_path_with_abs_file(self): # test whether the record's repo_file_path is correct, relative to the CWD (with a / at the start). # this is just constructing the scan dir as normal current_dir = os.path.dirname(os.path.realpath(__file__)) scan_file_path = os.path.join(current_dir, "resources", "success.json") file_rel_path = os.path.relpath(scan_file_path) file_abs_path = os.path.abspath(scan_file_path) runner = Runner() checks_allowlist = ['CKV_AWS_20'] report = runner.run(root_folder=None, external_checks_dir=None, files=[file_abs_path], runner_filter=RunnerFilter(framework='cloudformation', checks=checks_allowlist)) all_checks = report.failed_checks + report.passed_checks self.assertGreater(len(all_checks), 0) # ensure that the assertions below are going to do something for record in all_checks: # no need to join with a '/' because the CFN runner adds it to the start of the file path self.assertEqual(record.repo_file_path, f'/{file_rel_path}') def test_record_includes_custom_guideline(self): custom_guideline_url = "https://my.custom.url" custom_check_id = "MY_CUSTOM_CHECK" class AnyFailingCheck(BaseResourceCheck): def __init__(self, *_, **__) -> None: super().__init__( "this should fail", custom_check_id, [CheckCategories.ENCRYPTION], ["AWS::SQS::Queue"], guideline=custom_guideline_url ) def scan_resource_conf(self, conf: Dict[str, Any], entity_type: str) -> CheckResult: return CheckResult.FAILED AnyFailingCheck() scan_file_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "resources", "fail.yaml") report = Runner().run( None, files=[scan_file_path], runner_filter=RunnerFilter(framework='cloudformation', checks=[custom_check_id]) ) self.assertEqual(report.failed_checks[0].guideline, custom_guideline_url) def test_get_tags(self): current_dir = os.path.dirname(os.path.realpath(__file__)) scan_file_path = os.path.join(current_dir, "resources", "tags.yaml") definitions, _ = parse(scan_file_path) resource_name = 'DataBucket' resource = definitions['Resources'][resource_name] entity = {resource_name: resource} entity_tags = cfn_utils.get_resource_tags(entity) self.assertEqual(len(entity_tags), 4) tags = { 'Simple': 'Value', 'Name': '${AWS::AccountId}-data', 'Environment': 'long-form-sub-${account}', 'Account': 'long-form-sub-${account}' } for name, value in tags.items(): self.assertEqual(entity_tags[name], value) resource_name = 'NoTags' resource = definitions['Resources'][resource_name] entity = {resource_name: resource} entity_tags = cfn_utils.get_resource_tags(entity) self.assertIsNone(entity_tags) 'TerraformServerAutoScalingGroup' resource_name = 'TerraformServerAutoScalingGroup' resource = definitions['Resources'][resource_name] entity = {resource_name: resource} entity_tags = cfn_utils.get_resource_tags(entity) self.assertIsNone(entity_tags) resource_name = 'EKSClusterNodegroup' resource = definitions['Resources'][resource_name] entity = {resource_name: resource} entity_tags = cfn_utils.get_resource_tags(entity) self.assertEqual(len(entity_tags), 1) tags = { 'Name': '{\'Ref\': \'ClusterName\'}-EKS-{\'Ref\': \'NodeGroupName\'}' } for name, value in tags.items(): self.assertEqual(entity_tags[name], value) def test_wrong_check_imports(self): wrong_imports = ["arm", "dockerfile", "helm", "kubernetes", "serverless", "terraform"] ignore_files = ["BaseCloudsplainingIAMCheck.py"] check_imports = [] checks_path = Path(inspect.getfile(Runner)).parent.joinpath("checks") for file in checks_path.rglob("*.py"): if file.name in ignore_files: continue with file.open() as f: instructions = dis.get_instructions(f.read()) import_names = [instr.argval for instr in instructions if "IMPORT_NAME" == instr.opname] for import_name in import_names: wrong_import = next((import_name for x in wrong_imports if x in import_name), None) if wrong_import: check_imports.append({file.name: wrong_import}) assert len(check_imports) == 0, f"Wrong imports were added: {check_imports}" @pytest.mark.skip("No graph checks implemented yet for cloudformation") def test_run_graph_checks(self): current_dir = os.path.dirname(os.path.realpath(__file__)) scan_dir_path = os.path.join(current_dir, "../graph/checks/resources/MSKClusterLogging") dir_abs_path = os.path.abspath(scan_dir_path) report = Runner().run( root_folder=dir_abs_path, external_checks_dir=None, runner_filter=RunnerFilter(framework=["cloudformation"], download_external_modules=False) ) self.assertGreater(len(report.failed_checks), 0) self.assertGreater(len(report.passed_checks), 0) def test_external_data(self): dir_abs_path = os.path.dirname(os.path.realpath(__file__)) definitions = { f'{dir_abs_path}/s3.yaml': { 'Resources': { 'MySourceQueue': { 'Type': 'AWS::SQS::Queue', 'Properties': { 'KmsMasterKeyId': 'kms_id', '__startline__': 17, '__endline__': 22, 'resource_type': 'AWS::SQS::Queue' } }, 'MyDB': { 'Type': 'AWS::RDS::DBInstance', 'Properties': { 'DBName': 'db', 'DBInstanceClass': 'db.t3.micro', 'Engine': 'mysql', 'MasterUsername': 'master', 'MasterUserPassword': 'password', '__startline__': 23, '__endline__': 32, 'resource_type': 'AWS::RDS::DBInstance' } } } } } context = {f'{dir_abs_path}/s3.yaml': {'Parameters': {'KmsMasterKeyId': {'start_line': 5, 'end_line': 9, 'code_lines': [(5, ' "KmsMasterKeyId": {\n'), (6, ' "Description": "Company Name",\n'), (7, ' "Type": "String",\n'), (8, ' "Default": "kms_id"\n'), (9, ' },\n')]}, 'DBName': {'start_line': 10, 'end_line': 14, 'code_lines': [(10, ' "DBName": {\n'), (11, ' "Description": "Name of the Database",\n'), (12, ' "Type": "String",\n'), (13, ' "Default": "db"\n'), (14, ' }\n')]}}, 'Resources': {'MySourceQueue': {'start_line': 17, 'end_line': 22, 'code_lines': [(17, ' "MySourceQueue": {\n'), (18, ' "Type": "AWS::SQS::Queue",\n'), (19, ' "Properties": {\n'), (20, ' "KmsMasterKeyId": { "Ref": "KmsMasterKeyId" }\n'), (21, ' }\n'), (22, ' },\n')], 'skipped_checks': []}, 'MyDB': {'start_line': 23, 'end_line': 32, 'code_lines': [(23, ' "MyDB": {\n'), (24, ' "Type": "AWS::RDS::DBInstance",\n'), (25, ' "Properties": {\n'), (26, ' "DBName": { "Ref": "DBName" },\n'), (27, ' "DBInstanceClass": "db.t3.micro",\n'), (28, ' "Engine": "mysql",\n'), (29, ' "MasterUsername": "master",\n'), (30, ' "MasterUserPassword": "password"\n'), (31, ' }\n'), (32, ' }\n')], 'skipped_checks': []}}, 'Outputs': {'DBAppPublicDNS': {'start_line': 35, 'end_line': 38, 'code_lines': [(35, ' "DBAppPublicDNS": {\n'), (36, ' "Description": "DB App Public DNS Name",\n'), (37, ' "Value": { "Fn::GetAtt" : [ "MyDB", "PublicDnsName" ] }\n'), (38, ' }\n')]}}}} breadcrumbs = {} runner = Runner() runner.set_external_data(definitions, context, breadcrumbs) report = Report('cloudformation') runner.check_definitions(root_folder=dir_abs_path, runner_filter=RunnerFilter(framework='cloudformation', download_external_modules=False), report=report) self.assertEqual(len(report.passed_checks), 2) self.assertEqual(len(report.failed_checks), 3) pass def test_breadcrumbs_report(self): current_dir = os.path.dirname(os.path.realpath(__file__)) scan_dir_path = os.path.join(current_dir, "../graph/graph_builder/resources/variable_rendering/render_params") dir_abs_path = os.path.abspath(scan_dir_path) runner = Runner() report = runner.run(root_folder=dir_abs_path, external_checks_dir=None, runner_filter=RunnerFilter(framework='cloudformation', download_external_modules=False, checks=["CKV_AWS_21"])) self.assertEqual(1, len(report.failed_checks)) self.assertIsNotNone(report.failed_checks[0].breadcrumbs) self.assertIsNotNone(report.failed_checks[0].breadcrumbs.get("VersioningConfiguration.Status")) def test_parsing_error_yaml(self): current_dir = os.path.dirname(os.path.realpath(__file__)) scan_file_path = os.path.join(current_dir, "resources", "invalid.yaml") runner = Runner() report = runner.run(root_folder=None, external_checks_dir=None, files=[scan_file_path], runner_filter=RunnerFilter(framework='cloudformation')) self.assertEqual(report.parsing_errors, [scan_file_path]) def test_parsing_error_json(self): current_dir = os.path.dirname(os.path.realpath(__file__)) scan_file_path = os.path.join(current_dir, "resources", "invalid.json") runner = Runner() report = runner.run(root_folder=None, external_checks_dir=None, files=[scan_file_path], runner_filter=RunnerFilter(framework='cloudformation')) self.assertEqual(report.parsing_errors, [scan_file_path]) def test_parse_relevant_files_only(self): definitions, _ = create_definitions(None, ['main.tf']) # just check that we skip the file and return normally self.assertFalse('main.tf' in definitions) def tearDown(self): pass if __name__ == '__main__': unittest.main()
48.618123
1,579
0.623111
79429587d1c9cec880050745d1c6809ddbb4c38e
8,433
py
Python
models/official/detection/inference.py
Joxis/tpu
6b1a71c3ba8c882cc26e15a54b5f2c302eb34620
[ "Apache-2.0" ]
null
null
null
models/official/detection/inference.py
Joxis/tpu
6b1a71c3ba8c882cc26e15a54b5f2c302eb34620
[ "Apache-2.0" ]
null
null
null
models/official/detection/inference.py
Joxis/tpu
6b1a71c3ba8c882cc26e15a54b5f2c302eb34620
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=line-too-long r"""A stand-alone binary to run model inference and visualize results. It currently only supports model of type `retinanet` and `mask_rcnn`. It only supports running on CPU/GPU with batch size 1. """ # pylint: enable=line-too-long from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import csv import io from absl import flags from absl import logging import numpy as np from PIL import Image from matplotlib import pyplot as plt import tensorflow.compat.v1 as tf from configs import factory as config_factory from dataloader import mode_keys from modeling import factory as model_factory from utils import box_utils from utils import input_utils from utils import mask_utils from utils.object_detection import visualization_utils from hyperparameters import params_dict FLAGS = flags.FLAGS flags.DEFINE_string( 'model', 'retinanet', 'Support `retinanet`, `mask_rcnn` and `shapemask`.') flags.DEFINE_integer('image_size', 640, 'The image size.') flags.DEFINE_string( 'checkpoint_path', '', 'The path to the checkpoint file.') flags.DEFINE_string( 'config_file', '', 'The config file template.') flags.DEFINE_string( 'params_override', '', 'The YAML file/string that specifies the parameters ' 'override in addition to the `config_file`.') flags.DEFINE_string( 'label_map_file', '', 'The label map file. See --label_map_format for the definition.') flags.DEFINE_string( 'label_map_format', 'csv', 'The format of the label map file. Currently only support `csv` where the ' 'format of each row is: `id:name`.') flags.DEFINE_string( 'image_file_pattern', '', 'The glob that specifies the image file pattern.') flags.DEFINE_string( 'output_html', '/tmp/test.html', 'The output HTML file that includes images with rendered detections.') flags.DEFINE_integer( 'max_boxes_to_draw', 10, 'The maximum number of boxes to draw.') flags.DEFINE_float( 'min_score_threshold', 0.05, 'The minimum score thresholds in order to draw boxes.') def main(unused_argv): del unused_argv # Load the label map. print(' - Loading the label map...') label_map_dict = {} if FLAGS.label_map_format == 'csv': with tf.gfile.Open(FLAGS.label_map_file, 'r') as csv_file: reader = csv.reader(csv_file, delimiter=':') for row in reader: if len(row) != 2: raise ValueError('Each row of the csv label map file must be in ' '`id:name` format.') id_index = int(row[0]) name = row[1] label_map_dict[id_index] = { 'id': id_index, 'name': name, } else: raise ValueError( 'Unsupported label map format: {}.'.format(FLAGS.label_mape_format)) params = config_factory.config_generator(FLAGS.model) if FLAGS.config_file: params = params_dict.override_params_dict( params, FLAGS.config_file, is_strict=True) params = params_dict.override_params_dict( params, FLAGS.params_override, is_strict=True) params.override({ 'architecture': { 'use_bfloat16': False, # The inference runs on CPU/GPU. }, }, is_strict=True) params.validate() params.lock() model = model_factory.model_generator(params) with tf.Graph().as_default(): image_input = tf.placeholder(shape=(), dtype=tf.string) image = tf.io.decode_image(image_input, channels=3) image.set_shape([None, None, 3]) image = input_utils.normalize_image(image) image_size = [FLAGS.image_size, FLAGS.image_size] image, image_info = input_utils.resize_and_crop_image( image, image_size, image_size, aug_scale_min=1.0, aug_scale_max=1.0) image.set_shape([image_size[0], image_size[1], 3]) # batching. images = tf.reshape(image, [1, image_size[0], image_size[1], 3]) images_info = tf.expand_dims(image_info, axis=0) # model inference outputs = model.build_outputs( images, {'image_info': images_info}, mode=mode_keys.PREDICT) # outputs['detection_boxes'] = ( # outputs['detection_boxes'] / tf.tile(images_info[:, 2:3, :], [1, 1, 2])) predictions = outputs # Create a saver in order to load the pre-trained checkpoint. saver = tf.train.Saver() image_with_detections_list = [] with tf.Session() as sess: print(' - Loading the checkpoint...') saver.restore(sess, FLAGS.checkpoint_path) image_files = tf.gfile.Glob(FLAGS.image_file_pattern) for i, image_file in enumerate(image_files): print(' - Processing image %d...' % i) with tf.gfile.GFile(image_file, 'rb') as f: image_bytes = f.read() image = Image.open(image_file) image = image.convert('RGB') # needed for images with 4 channels. width, height = image.size np_image = (np.array(image.getdata()) .reshape(height, width, 3).astype(np.uint8)) print(np_image.shape) predictions_np = sess.run( predictions, feed_dict={image_input: image_bytes}) logits = predictions_np['logits'][0] print(logits.shape) labels = np.argmax(logits.squeeze(), -1) print(labels.shape) print(labels) labels = np.array( Image.fromarray(labels.astype('uint8'))) print(labels.shape) plt.imshow(labels) plt.savefig(f"temp-{i}.png") # num_detections = int(predictions_np['num_detections'][0]) # np_boxes = predictions_np['detection_boxes'][0, :num_detections] # np_scores = predictions_np['detection_scores'][0, :num_detections] # np_classes = predictions_np['detection_classes'][0, :num_detections] # np_classes = np_classes.astype(np.int32) # np_masks = None # if 'detection_masks' in predictions_np: # instance_masks = predictions_np['detection_masks'][0, :num_detections] # np_masks = mask_utils.paste_instance_masks( # instance_masks, box_utils.yxyx_to_xywh(np_boxes), height, width) # # image_with_detections = ( # visualization_utils.visualize_boxes_and_labels_on_image_array( # np_image, # np_boxes, # np_classes, # np_scores, # label_map_dict, # instance_masks=np_masks, # use_normalized_coordinates=False, # max_boxes_to_draw=FLAGS.max_boxes_to_draw, # min_score_thresh=FLAGS.min_score_threshold)) # image_with_detections_list.append(image_with_detections) # print(' - Saving the outputs...') # formatted_image_with_detections_list = [ # Image.fromarray(image.astype(np.uint8)) # for image in image_with_detections_list] # html_str = '<html>' # image_strs = [] # for formatted_image in formatted_image_with_detections_list: # with io.BytesIO() as stream: # formatted_image.save(stream, format='JPEG') # data_uri = base64.b64encode(stream.getvalue()).decode('utf-8') # image_strs.append( # '<img src="data:image/jpeg;base64,{}", height=800>' # .format(data_uri)) # images_str = ' '.join(image_strs) # html_str += images_str # html_str += '</html>' # with tf.gfile.GFile(FLAGS.output_html, 'w') as f: # f.write(html_str) if __name__ == '__main__': flags.mark_flag_as_required('model') flags.mark_flag_as_required('checkpoint_path') flags.mark_flag_as_required('label_map_file') flags.mark_flag_as_required('image_file_pattern') flags.mark_flag_as_required('output_html') logging.set_verbosity(logging.INFO) tf.app.run(main)
35.582278
82
0.670106
79429652637da9b9db83beddfed720442abd0280
4,541
py
Python
lib/prairie.py
JLSirvent/bws-calibration-analysis
b2f129e31974c16d7498e105a075b43bfece92c9
[ "MIT" ]
null
null
null
lib/prairie.py
JLSirvent/bws-calibration-analysis
b2f129e31974c16d7498e105a075b43bfece92c9
[ "MIT" ]
null
null
null
lib/prairie.py
JLSirvent/bws-calibration-analysis
b2f129e31974c16d7498e105a075b43bfece92c9
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------- # Copyright (c) <2017> <Lionel Garcia> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # -------------------------------------------------------------------------- # # Not fully documented import matplotlib as mpl from cycler import cycler from matplotlib import pyplot as plt from matplotlib.ticker import MultipleLocator def use_colors(tones, i=None): """ Use specific color tones for plotting. If i is specified, this function returns a specific color from the corresponding color cycle Args: tones : 'hot' or 'cold' for hot and cold colors Returns: color i of the color cycle """ hot = ['#fed976', '#feb24c', '#fd8d3c', '#fc4e2a', '#e31a1c', '#b10026'] cold = ['#a6bddb', '#67a9cf', '#3690c0', '#02818a', '#016c59', '#014636'] # cold = ['#44AE7E', '#388A8D', '#397187', '#3E568E', '#463883', '#461167'] if i is None: if tones is 'hot': colors = hot elif tones is 'cold': colors = cold else: colors = tones plt.rc('axes', prop_cycle=(cycler('color', colors))) return colors else: if tones is 'hot': colors = hot elif tones is 'cold': colors = cold else: colors = tones return colors[i % len(colors)] def use(): use_colors('cold') mpl.rcParams['font.family'] = 'arial' mpl.rcParams['axes.titlesize'] = 9 mpl.rcParams['axes.titlepad'] = 6 mpl.rcParams['text.antialiased'] = True mpl.rcParams['text.color'] = '#545454' mpl.rcParams['axes.labelcolor'] = '#545454' mpl.rcParams['ytick.color'] = '#545454' mpl.rcParams['xtick.color'] = '#545454' mpl.rcParams['axes.titleweight'] = 'demibold' mpl.rcParams['axes.labelsize'] = 9 mpl.rcParams['xtick.labelsize'] = 8 mpl.rcParams['ytick.labelsize'] = 8 mpl.rcParams['axes.spines.left'] = True mpl.rcParams['axes.spines.bottom'] = True mpl.rcParams['axes.spines.right'] = True mpl.rcParams['axes.spines.top'] = True mpl.rcParams['lines.antialiased'] = True mpl.rcParams['lines.linewidth'] = 1 mpl.rcParams['lines.markersize'] = 3 mpl.rcParams['legend.fontsize'] = 8 mpl.rcParams['legend.columnspacing'] = 0.5 mpl.rcParams['axes.grid'] = True mpl.rcParams['grid.color'] = '#DBDBDB' mpl.rcParams['grid.alpha'] = 0.2 def style(axe, ticks=True): """ Apply Bokeh-like styling to a specific axe Args: axe : axe to be styled """ use() if hasattr(axe, 'spines'): axe.spines['bottom'].set_color('#545454') axe.spines['left'].set_color('#545454') axe.spines['top'].set_color('#DBDBDB') axe.spines['right'].set_color('#DBDBDB') axe.spines['top'].set_linewidth(1) axe.spines['right'].set_linewidth(1) if hasattr(axe, 'yaxis'): axe.yaxis.labelpad = 3 if hasattr(axe, 'xaxis'): axe.xaxis.labelpad = 3 if ticks is True: if hasattr(axe, 'yaxis'): x_ticks = axe.xaxis.get_majorticklocs() axe.xaxis.set_minor_locator(MultipleLocator((x_ticks[1] - x_ticks[0]) / 5)) if hasattr(axe, 'yaxis'): y_ticks = axe.yaxis.get_majorticklocs() axe.yaxis.set_minor_locator(MultipleLocator((y_ticks[1] - y_ticks[0]) / 5))
35.755906
136
0.603612
7942970e843c3187e12d01d474256865bf1ada95
6,445
py
Python
recuprm1.2.py
chichocoria/recuprm
310997d8cf4bf8ea66bf9e63745bf9c98d8768fa
[ "Xnet", "X11" ]
null
null
null
recuprm1.2.py
chichocoria/recuprm
310997d8cf4bf8ea66bf9e63745bf9c98d8768fa
[ "Xnet", "X11" ]
null
null
null
recuprm1.2.py
chichocoria/recuprm
310997d8cf4bf8ea66bf9e63745bf9c98d8768fa
[ "Xnet", "X11" ]
2
2021-03-29T23:05:22.000Z
2021-04-07T19:50:17.000Z
import os.path import os import shutil import glob import winreg import sched, time import logging #Busca en el registro de Windows el directorio de Puleo de Sitel Cliente. with winreg.OpenKey(winreg.HKEY_CURRENT_USER, "SOFTWARE\\VB and VBA Program Settings\\Sitel32\\Puleo") as key: value = winreg.QueryValueEx(key,'Directorio') ##variable que contiene el directorio de trabajo, el resultado es una array pero solo traigo el valor 0. dirtrabajo=(value[0]) print (dirtrabajo) ##variable que contiene el directorio del backup bkp= r'/backup_itcs' dirbackup = dirtrabajo + bkp ##variables que contiene el path hasta el archivo _sitel.* archivoprm= dirtrabajo + '\\_sitel.prm' archivoprv= dirtrabajo + '\\_sitel.prv' archivoemp= dirtrabajo + '\\_sitel.emp' print (dirbackup) # Creación del logger con el archivo llamado logs_info.log. logging.basicConfig( format = '%(asctime)-5s %(name)-15s %(levelname)-8s %(message)s', level = logging.INFO, # Nivel de evento INFO filename = dirtrabajo + '\\logs_info_itcs.log', # archivo en donde se escriben los logs filemode = "a" # a ("append"), si el archivo de logs ya existe, se abre y añaden nuevas lineas. ) logging.info('Se inicio recuprm') while True: if os.path.exists('C:/Program Files (x86)'): ## Valida si el SO es de 64Bit if os.path.exists(dirbackup): print('La carpeta bkp existe y el sistema operatico es de 64bits.') ##Valida si existe el archivo prm que es el que desencadena el problema, si exite no hace nada, si no existe realiza el backup en la carpeta bkp if os.path.exists(archivoprm): print('El archivo existe.') else: files_sitel = glob.iglob(os.path.join(dirbackup, "_site*")) for file in files_sitel: if os.path.isfile(file): shutil.copy2(file, dirtrabajo) fileslic = glob.iglob(os.path.join(dirbackup, "*.lic")) for file in fileslic: if os.path.isfile(file): shutil.copy2(file, 'C:/Program Files (x86)/ITC Soluciones/Sitel Cliente/') filesprm = glob.iglob(os.path.join(dirbackup, "*.prm")) for file in filesprm: if os.path.isfile(file): shutil.copy2(file, 'C:/Program Files (x86)/ITC Soluciones/Sitel Cliente/') logging.info('El archivo prm se borro inesperadamente, se realizo el backup OK.') else: ##Si existen los archivos _sitel prm prv y emp en el directorio de trabajo, crea la carpeta bkp if os.path.exists(archivoprm) and os.path.exists(archivoprv) and os.path.exists(archivoemp): os.mkdir(dirbackup) files_sitel = glob.iglob(os.path.join(dirtrabajo, "_site*")) for file in files_sitel: if os.path.isfile(file): shutil.copy2(file, dirbackup) fileslic = glob.iglob(os.path.join( 'C:/Program Files (x86)/ITC Soluciones/Sitel Cliente/', "*.lic")) for file in fileslic: if os.path.isfile(file): shutil.copy2(file, dirbackup) filesprm = glob.iglob(os.path.join( 'C:/Program Files (x86)/ITC Soluciones/Sitel Cliente/', "*.prm")) for file in filesprm: if os.path.isfile(file): shutil.copy2(file, dirbackup) logging.info('Se creo la carpeta bkp con los archivos de registracion.') else: #El sistema operativo es de 32bits if os.path.exists(dirbackup): print('La carpeta bkp existe y el sistema operatico es de 32bits.') ##Valida si existe el archivo prm que es el que desencadena el problema, si exite no hace nada, si no existe realiza el backup ##en la carpeta bkp if os.path.exists(archivoprm): print('El archivo existe.') else: files_sitel = glob.iglob(os.path.join(dirbackup, "_site*")) for file in files_sitel: if os.path.isfile(file): shutil.copy2(file, dirtrabajo) fileslic = glob.iglob(os.path.join( dirbackup, "*.lic")) for file in fileslic: if os.path.isfile(file): shutil.copy2(file, 'C:/Program Files/ITC Soluciones/Sitel Cliente/') filesprm = glob.iglob(os.path.join( dirbackup, "*.prm")) for file in filesprm: if os.path.isfile(file): shutil.copy2(file, 'C:/Program Files/ITC Soluciones/Sitel Cliente/') logging.info('El archivo prm se borro inesperadamente, se realizo el backup OK.') else: os.mkdir(dirbackup) files_sitel = glob.iglob(os.path.join(dirtrabajo, "_site*")) for file in files_sitel: if os.path.isfile(file): shutil.copy2(file, dirbackup) fileslic = glob.iglob(os.path.join( 'C:/Program Files/ITC Soluciones/Sitel Cliente/', "*.lic")) for file in fileslic: if os.path.isfile(file): shutil.copy2(file, dirbackup) filesprm = glob.iglob(os.path.join( 'C:/Program Files/ITC Soluciones/Sitel Cliente/', "*.prm")) for file in filesprm: if os.path.isfile(file): shutil.copy2(file, dirbackup) logging.info('Se creo la carpeta bkp con los archivos de registracion.') #Arriba la busqueda de la carpeta bkp copia todos los archivos con extension prm, por eso abajo se borra el _sitel.prm de ese directorio al finalizar el programa. #Esto mismo hace que al buscar todos los archivos con extension prm duplique el log con la leyenda "El archivo prm se borro inesperadamente, se realizo el backup OK."" if os.path.exists ('C:/Program Files (x86)/ITC Soluciones/Sitel Cliente/_sitel.prm'): os.remove('C:/Program Files (x86)/ITC Soluciones/Sitel Cliente/_sitel.prm') ##Corre cada 60 segundos el programa. time.sleep(60)
50.748031
172
0.586191
7942975ddf6e8f589e97a3abfaf9779652403b7b
15,403
py
Python
ryu/app/experiments/ECMP/fattree.py
Helloworld1995/Ryu_SDN_Controller
2680f967debca361adc6ff14ddadcbbcde0c7082
[ "Apache-2.0" ]
1
2021-03-11T01:47:35.000Z
2021-03-11T01:47:35.000Z
ryu/app/experiments/ECMP/fattree.py
Helloworld1995/Ryu_SDN_Controller
2680f967debca361adc6ff14ddadcbbcde0c7082
[ "Apache-2.0" ]
null
null
null
ryu/app/experiments/ECMP/fattree.py
Helloworld1995/Ryu_SDN_Controller
2680f967debca361adc6ff14ddadcbbcde0c7082
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2016 Huang MaChi at Chongqing University # of Posts and Telecommunications, China. # Copyright (C) 2016 Li Cheng at Beijing University of Posts # and Telecommunications. www.muzixing.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from threading import Thread from mininet.net import Mininet from mininet.node import Controller, RemoteController from mininet.cli import CLI from mininet.log import setLogLevel from mininet.link import Link, Intf, TCLink from mininet.topo import Topo import random import os import logging import argparse import time from subprocess import Popen from multiprocessing import Process from ryu.app.experiments.readfile import readIpeers import sys parentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0,parentdir) parser = argparse.ArgumentParser(description="Parameters importation") parser.add_argument('--k', dest='k', type=int, default=4, choices=[4, 8], help="Switch fanout number") parser.add_argument('--duration', dest='duration', type=int, default=60, help="Duration (sec) for each iperf traffic generation") parser.add_argument('--dir', dest='output_dir', help="Directory to store outputs") parser.add_argument('--cpu', dest='cpu', type=float, default=1.0, help='Total CPU to allocate to hosts') args = parser.parse_args() class Fattree(Topo): """ Class of Fattree Topology. """ CoreSwitchList = [] AggSwitchList = [] EdgeSwitchList = [] HostList = [] def __init__(self, k, density): self.pod = k self.density = density self.iCoreLayerSwitch = (k/2)**2 self.iAggLayerSwitch = k*k/2 self.iEdgeLayerSwitch = k*k/2 self.iHost = self.iEdgeLayerSwitch * density # Topo initiation Topo.__init__(self) def createNodes(self): self.createCoreLayerSwitch(self.iCoreLayerSwitch) self.createAggLayerSwitch(self.iAggLayerSwitch) self.createEdgeLayerSwitch(self.iEdgeLayerSwitch) self.createHost(self.iHost) def _addSwitch(self, number, level, switch_list): """ Create switches. """ for i in xrange(1, number+1): PREFIX = str(level) + "00" if i >= 10: PREFIX = str(level) + "0" switch_list.append(self.addSwitch(PREFIX + str(i))) def createCoreLayerSwitch(self, NUMBER): self._addSwitch(NUMBER, 1, self.CoreSwitchList) def createAggLayerSwitch(self, NUMBER): self._addSwitch(NUMBER, 2, self.AggSwitchList) def createEdgeLayerSwitch(self, NUMBER): self._addSwitch(NUMBER, 3, self.EdgeSwitchList) def createHost(self, NUMBER): """ Create hosts. """ for i in xrange(1, NUMBER+1): if i >= 100: PREFIX = "h" elif i >= 10: PREFIX = "h0" else: PREFIX = "h00" self.HostList.append(self.addHost(PREFIX + str(i), cpu=args.cpu/float(NUMBER))) def createLinks(self, bw_c2a, bw_a2e, bw_e2h,links_loss=None): """ Add network links. """ # Core to Agg end = self.pod/2 for x in xrange(0, self.iAggLayerSwitch, end): for i in xrange(0, end): for j in xrange(0, end): self.addLink( self.CoreSwitchList[i*end+j], self.AggSwitchList[x+i], bw=bw_c2a, max_queue_size=1000) # use_htb=False # Agg to Edge for x in xrange(0, self.iAggLayerSwitch, end): for i in xrange(0, end): for j in xrange(0, end): self.addLink( self.AggSwitchList[x+i], self.EdgeSwitchList[x+j], bw=bw_a2e, max_queue_size=1000) # use_htb=False # Edge to Host for x in xrange(0, self.iEdgeLayerSwitch): for i in xrange(0, self.density): self.addLink( self.EdgeSwitchList[x], self.HostList[self.density * x + i], bw=bw_e2h, max_queue_size=1000) # use_htb=False def set_ovs_protocol_13(self,): """ Set the OpenFlow version for switches. """ self._set_ovs_protocol_13(self.CoreSwitchList) self._set_ovs_protocol_13(self.AggSwitchList) self._set_ovs_protocol_13(self.EdgeSwitchList) def _set_ovs_protocol_13(self, sw_list): for sw in sw_list: cmd = "sudo ovs-vsctl set bridge %s protocols=OpenFlow13" % sw os.system(cmd) def set_host_ip(net, topo): hostlist = [] for k in xrange(len(topo.HostList)): hostlist.append(net.get(topo.HostList[k])) i = 1 j = 1 for host in hostlist: host.setIP("10.%d.0.%d" % (i, j)) j += 1 if j == topo.density+1: j = 1 i += 1 def create_subnetList(topo, num): """ Create the subnet list of the certain Pod. """ subnetList = [] remainder = num % (topo.pod/2) if topo.pod == 4: if remainder == 0: subnetList = [num-1, num] elif remainder == 1: subnetList = [num, num+1] else: pass elif topo.pod == 8: if remainder == 0: subnetList = [num-3, num-2, num-1, num] elif remainder == 1: subnetList = [num, num+1, num+2, num+3] elif remainder == 2: subnetList = [num-1, num, num+1, num+2] elif remainder == 3: subnetList = [num-2, num-1, num, num+1] else: pass else: pass return subnetList def install_proactive(net, topo): """ Install proactive flow entries for switches. """ # Edge Switch for sw in topo.EdgeSwitchList: num = int(sw[-2:]) # Downstream for i in xrange(1, topo.density+1): cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,idle_timeout=0,hard_timeout=0,priority=40,arp, \ nw_dst=10.%d.0.%d,actions=output:%d'" % (sw, num, i, topo.pod/2+i) os.system(cmd) cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,idle_timeout=0,hard_timeout=0,priority=40,ip, \ nw_dst=10.%d.0.%d,actions=output:%d'" % (sw, num, i, topo.pod/2+i) os.system(cmd) # Upstream if topo.pod == 4: cmd = "ovs-ofctl add-group %s -O OpenFlow13 \ 'group_id=1,type=select,bucket=output:1,bucket=output:2'" % sw elif topo.pod == 8: cmd = "ovs-ofctl add-group %s -O OpenFlow13 \ 'group_id=1,type=select,bucket=output:1,bucket=output:2,\ bucket=output:3,bucket=output:4'" % sw else: pass os.system(cmd) cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,priority=10,arp,actions=group:1'" % sw os.system(cmd) cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,priority=10,ip,actions=group:1'" % sw os.system(cmd) # Aggregate Switch for sw in topo.AggSwitchList: num = int(sw[-2:]) subnetList = create_subnetList(topo, num) # Downstream k = 1 for i in subnetList: cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,idle_timeout=0,hard_timeout=0,priority=40,arp, \ nw_dst=10.%d.0.0/16, actions=output:%d'" % (sw, i, topo.pod/2+k) os.system(cmd) cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,idle_timeout=0,hard_timeout=0,priority=40,ip, \ nw_dst=10.%d.0.0/16, actions=output:%d'" % (sw, i, topo.pod/2+k) os.system(cmd) k += 1 # Upstream if topo.pod == 4: cmd = "ovs-ofctl add-group %s -O OpenFlow13 \ 'group_id=1,type=select,bucket=output:1,bucket=output:2'" % sw elif topo.pod == 8: cmd = "ovs-ofctl add-group %s -O OpenFlow13 \ 'group_id=1,type=select,bucket=output:1,bucket=output:2,\ bucket=output:3,bucket=output:4'" % sw else: pass os.system(cmd) cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,priority=10,arp,actions=group:1'" % sw os.system(cmd) cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,priority=10,ip,actions=group:1'" % sw os.system(cmd) # Core Switch for sw in topo.CoreSwitchList: j = 1 k = 1 for i in xrange(1, len(topo.EdgeSwitchList)+1): cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,idle_timeout=0,hard_timeout=0,priority=10,arp, \ nw_dst=10.%d.0.0/16, actions=output:%d'" % (sw, i, j) os.system(cmd) cmd = "ovs-ofctl add-flow %s -O OpenFlow13 \ 'table=0,idle_timeout=0,hard_timeout=0,priority=10,ip, \ nw_dst=10.%d.0.0/16, actions=output:%d'" % (sw, i, j) os.system(cmd) k += 1 if k == topo.pod/2 + 1: j += 1 k = 1 def monitor_devs_ng(fname="./txrate.txt", interval_sec=0.1): """ Use bwm-ng tool to collect interface transmit rate statistics. bwm-ng Mode: rate; interval time: 1s. """ cmd = "sleep 1; bwm-ng -t %s -o csv -u bits -T rate -C ',' > %s" % (interval_sec * 1000, fname) Popen(cmd, shell=True).wait() def pingTest(net,flows_peers): count=0 for src,dst in flows_peers: count+=1 server=net.get(dst) client=net.get(src) # client.cmd('ping %s -c %d > %s/pingTest/ping_%s_%s_%d &'%(server.IP(),60,args.output_dir,src,dst,count)) client.cmd('ping -c %d -i 0.1 -n -q %s>> %s/%s &' % (args.duration,server.IP(), args.output_dir,'successive_packets.txt')) time.sleep(random.random()) def traffic_generation1(net,flows_peers,ping_peers): """ Generate traffics and test the performance of the network. """ # 1.Start iperf. (Elephant flows) # Start the servers. serversList = set([peer[1] for peer in flows_peers]) for server in serversList: # filename = server[1:] server = net.get(server) # server.cmd("iperf -s > %s/%s &" % (args.output_dir, 'server'+filename+'.txt')) server.cmd("iperf -s > /dev/null &") # Its statistics is useless, just throw away. time.sleep(3) # Start the clients. for src, dest in flows_peers: time.sleep(1) server = net.get(dest) client = net.get(src) client.cmd("iperf -c %s -t %d -M 1250 > /dev/null &" % (server.IP(), 3000)) pingTest(net,ping_peers) time.sleep(30) monitor = Process(target=monitor_devs_ng, args=('%s/bwmng.txt' % args.output_dir, 1.0)) monitor.start() # client.cmd("iperf -c %s -t %d -M 1250 > /dev/null &" % (server.IP(), 2500) ) # Its statistics is useless, just throw away. 1990 just means a great # client.cmd("iperf -c %s -t %d -M 1250 > /dev/null &" % (server.IP(), random.randint(10,60))) # time.sleep(1) # monitor = Process(target = monitor_devs_ng, args = ('%s/bwmng.txt' % args.output_dir, 1.0)) # Wait for the traffic to become stable. # 3. The experiment is going on. time.sleep(args.duration + 5) monitor.terminate() def traffic_generation(net,flows_peers,monitor1,monitor): """ Generate traffics and test the performance of the network. """ # 1.Start iperf. (Elephant flows) # Start the servers. serversList = set([peer[1] for peer in flows_peers]) for server in serversList: # filename = server[1:] server = net.get(server) # server.cmd("iperf -s > %s/%s &" % (args.output_dir, 'server'+filename+'.txt')) server.cmd("iperf -s > /dev/null &") # Its statistics is useless, just throw away. time.sleep(3) # Start the clients. monitor1.start() for src, dest in flows_peers: time.sleep(1) server = net.get(dest) client = net.get(src) Thread(target=iperfC, args=(client, server.IP(), 3000,)).start() # client.cmd("iperf -c %s -t %d -M 1250 > /dev/null &" % (server.IP(), 2500) ) # Its statistics is useless, just throw away. 1990 just means a great # client.cmd("iperf -c %s -t %d -M 1250 > /dev/null &" % (server.IP(), random.randint(10,60))) # time.sleep(1) # monitor = Process(target = monitor_devs_ng, args = ('%s/bwmng.txt' % args.output_dir, 1.0)) time.sleep(30) monitor.start() # Wait for the traffic to become stable. # 3. The experiment is going on. time.sleep(args.duration + 5) monitor.terminate() monitor1.terminate() def iperfC(client,ip,time): client.cmd("iperf -c %s -t %d -M 1250 > /dev/null &" % (ip, time)) def run_experiment(pod, density, ip="192.168.16.137", port=6653, bw_c2a=100, bw_a2e=100, bw_e2h=100): """ Firstly, start up Mininet; secondly, generate traffics and test the performance of the network. """ # Create Topo. iperfPath = '/home/lee/ryu2/ryu/app/experiments/iperf_peers.txt' pingPath = '/home/lee/ryu2/ryu/app/experiments/ping_test.txt' # lossPath = '/home/lee/ryu2/ryu/app/experiments/link_loss.txt' iperf_peers = readIpeers(iperfPath) ping_peers = readIpeers(pingPath) # loss = readIpeers(lossPath) time.sleep(2) topo = Fattree(pod, density) topo.createNodes() topo.createLinks(bw_c2a=bw_c2a, bw_a2e=bw_a2e, bw_e2h=bw_e2h,links_loss=loss) # 1. Start Mininet CONTROLLER_IP = ip CONTROLLER_PORT = port net = Mininet(topo=topo, link=TCLink, controller=None, autoSetMacs=True) net.addController( 'controller', controller=RemoteController, ip=CONTROLLER_IP, port=CONTROLLER_PORT) net.start() # Set the OpenFlow version for switches as 1.3.0. topo.set_ovs_protocol_13() # Set the IP addresses for hosts. set_host_ip(net, topo) # Install proactive flow entries. install_proactive(net, topo) # monitor1 = Process(target=pingTest, args=(net, ping_peers)) # monitor = Process(target=monitor_devs_ng, args=('%s/bwmng.txt' % args.output_dir, 1.0)) # 3. Generate traffics and test the performance of the network. # traffic_generation(net, iperf_peers, monitor1,monitor) traffic_generation1(net, iperf_peers, ping_peers) os.system('killall ping') os.system('killall iperf') # CLI(net) # os.killpg(Controller_Ryu.pid, signal.SIGKILL) net.stop() if __name__ == '__main__': setLogLevel('info') if os.getuid() != 0: logging.warning("You are NOT root!") elif os.getuid() == 0: # run_experiment(4, 2) or run_experiment(8, 4) run_experiment(args.k, args.k/2)
37.205314
156
0.595728