hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
79429776ed9e3e859666dd5c433b183534f5b0ab
5,821
py
Python
convert.py
tonyngjichun/pspnet-pytorch
75297aa4fdb4f7a712ef9185be1ec805044f8328
[ "MIT" ]
56
2017-12-07T12:29:14.000Z
2021-05-14T16:45:59.000Z
convert.py
tonyngjichun/pspnet-pytorch
75297aa4fdb4f7a712ef9185be1ec805044f8328
[ "MIT" ]
7
2017-12-26T09:00:23.000Z
2019-01-14T03:55:56.000Z
convert.py
tonyngjichun/pspnet-pytorch
75297aa4fdb4f7a712ef9185be1ec805044f8328
[ "MIT" ]
16
2017-12-20T00:36:51.000Z
2020-12-31T07:41:06.000Z
#!/usr/bin/env python # coding: utf-8 # # Author: Kazuto Nakashima # URL: http://kazuto1011.github.io # Created: 2017-11-15 from __future__ import print_function import re from collections import OrderedDict import click import numpy as np import torch import yaml from addict import Dict from libs import caffe_pb2 from libs.models import PSPNet def parse_caffemodel(model_path): caffemodel = caffe_pb2.NetParameter() with open(model_path, "rb") as f: caffemodel.MergeFromString(f.read()) # Check trainable layers print(set([(layer.type, len(layer.blobs)) for layer in caffemodel.layer])) params = OrderedDict() for layer in caffemodel.layer: print("{} ({}): {}".format(layer.name, layer.type, len(layer.blobs))) # Convolution or Dilated Convolution if "Convolution" in layer.type: params[layer.name] = {} params[layer.name]["kernel_size"] = layer.convolution_param.kernel_size[0] params[layer.name]["stride"] = layer.convolution_param.stride[0] params[layer.name]["weight"] = list(layer.blobs[0].data) if len(layer.blobs) == 2: params[layer.name]["bias"] = list(layer.blobs[1].data) if len(layer.convolution_param.pad) == 1: # or [] params[layer.name]["padding"] = layer.convolution_param.pad[0] else: params[layer.name]["padding"] = 0 if isinstance(layer.convolution_param.dilation, int): # or [] params[layer.name]["dilation"] = layer.convolution_param.dilation else: params[layer.name]["dilation"] = 1 # Batch Normalization elif "BN" in layer.type: params[layer.name] = {} params[layer.name]["weight"] = list(layer.blobs[0].data) params[layer.name]["bias"] = list(layer.blobs[1].data) params[layer.name]["running_mean"] = list(layer.blobs[2].data) params[layer.name]["running_var"] = list(layer.blobs[3].data) params[layer.name]["eps"] = layer.bn_param.eps params[layer.name]["momentum"] = layer.bn_param.momentum return params # Hard coded translater def translate_layer_name(source): def conv_or_bn(source): if "bn" in source: return ".bn" else: return ".conv" source = re.split("[_/]", source) layer = int(source[0][4]) # Remove "conv" target = "" if layer == 1: target += "fcn.layer{}.conv{}".format(layer, source[1]) target += conv_or_bn(source) elif layer in range(2, 6): block = int(source[1]) # Auxirally layer if layer == 4 and len(source) == 3 and source[2] == "bn": target += "aux.conv4_aux.bn" elif layer == 4 and len(source) == 2: target += "aux.conv4_aux.conv" # Pyramid pooling modules elif layer == 5 and block == 3 and "pool" in source[2]: pyramid = {1: 3, 2: 2, 3: 1, 6: 0}[int(source[2][4])] target += "ppm.stages.s{}.conv".format(pyramid) target += conv_or_bn(source) # Last convolutions elif layer == 5 and block == 4: target += "final.conv5_4" target += conv_or_bn(source) else: target += "fcn.layer{}".format(layer) target += ".block{}".format(block) if source[2] == "3x3": target += ".conv3x3" else: target += ".{}".format(source[3]) target += conv_or_bn(source) elif layer == 6: if len(source) == 1: target += "final.conv6" else: target += "aux.conv6_1" return target @click.command() @click.option("--config", "-c", required=True) def main(config): WHITELIST = ["kernel_size", "stride", "padding", "dilation", "eps", "momentum"] CONFIG = Dict(yaml.load(open(config))) params = parse_caffemodel(CONFIG.CAFFE_MODEL) model = PSPNet( n_classes=CONFIG.N_CLASSES, n_blocks=CONFIG.N_BLOCKS, pyramids=CONFIG.PYRAMIDS ) model.eval() own_state = model.state_dict() report = [] state_dict = OrderedDict() for layer_name, layer_dict in params.items(): for param_name, values in layer_dict.items(): if param_name in WHITELIST: attribute = translate_layer_name(layer_name) attribute = eval("model." + attribute + "." + param_name) message = " ".join( [ layer_name.ljust(25), "->", param_name, "pytorch: " + str(attribute), "caffe: " + str(values), ] ) print(message, end="") if isinstance(attribute, tuple): if attribute[0] != values: report.append(message) else: if abs(attribute - values) > 1e-4: report.append(message) print(": Checked!") continue param_name = translate_layer_name(layer_name) + "." + param_name if param_name in own_state: print(layer_name.ljust(25), "->", param_name, end="") values = torch.FloatTensor(values) values = values.view_as(own_state[param_name]) state_dict[param_name] = values print(": Copied!") print("Inconsistent parameters (*_3x3 dilation and momentum can be ignored):") print(*report, sep="\n") # Check model.load_state_dict(state_dict) torch.save(state_dict, CONFIG.PYTORCH_MODEL) if __name__ == "__main__": main()
34.241176
86
0.552482
7942980b6aa13cebcca6b812f2901652441fa6ae
6,483
py
Python
models/train_classifier.py
jeena72/disaster-response-pipeline
4621425a29e7fa2f162c725555787b6fc24f8010
[ "MIT" ]
null
null
null
models/train_classifier.py
jeena72/disaster-response-pipeline
4621425a29e7fa2f162c725555787b6fc24f8010
[ "MIT" ]
null
null
null
models/train_classifier.py
jeena72/disaster-response-pipeline
4621425a29e7fa2f162c725555787b6fc24f8010
[ "MIT" ]
null
null
null
import sys import pandas as pd import numpy as np import nltk from joblib import dump from sqlalchemy import create_engine from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.preprocessing import StandardScaler from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.multioutput import MultiOutputClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report nltk.download('punkt') nltk.download('wordnet') nltk.download('averaged_perceptron_tagger') def load_data(database_filepath): """ Load and generate datasets for fitting along with message categories list Parameters ----------- database_filepath : str SQLite database file path Returns ---------- X : DataFrame Contains messages for generating features Y : DataFrame Contains binary labels for various message categories category_names : list List of different message categories """ engine = create_engine('sqlite:///' + database_filepath) df = pd.read_sql_table("DisasterResponseData", con=engine) X = df["message"] Y = df[[col for col in df.columns.tolist() if col not in ["id", "message", "original", "genre"]]] category_names = Y.columns.tolist() return X, Y, category_names def tokenize(text): """ Passed string is normalized, lemmatized, and tokenized Parameters ----------- text : str text to be tokenized Returns ---------- clean_tokens : list Contains generated tokens """ tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens class StartingVerbExtractor(BaseEstimator, TransformerMixin): """ This transformer class extract the starting verb of a sentence """ def starting_verb(self, text): sentence_list = nltk.sent_tokenize(text) for sentence in sentence_list: pos_tags = nltk.pos_tag(tokenize(sentence)) first_word, first_tag = pos_tags[0] if first_tag in ['VB', 'VBP'] or first_word == 'RT': return True return False def fit(self, X, y=None): return self def transform(self, X): X_tagged = pd.Series(X).apply(self.starting_verb) return pd.DataFrame(X_tagged) def build_model(useGridSearch=False): """ Creates scikit Pipeline object for processing text messages and fitting a classifier. Parameters ----------- useGridSearch: bool If grid search be used for model training Returns ---------- pipeline : Pipeline Pipeline object """ pipeline = Pipeline([ ("features", FeatureUnion([ ('text_pipeline', Pipeline([ ('count_vectorizer', CountVectorizer(tokenizer=tokenize)), ('scaler', StandardScaler(with_mean=False)) ])), ('tfidf_transformer', TfidfVectorizer()), ('starting_verb_extr', StartingVerbExtractor()) ])), ("clf", MultiOutputClassifier(AdaBoostClassifier())) ]) if useGridSearch: parameters = { 'features__text_pipeline__count_vectorizer__max_df': (0.5, 1.0), 'features__tfidf_transformer__use_idf': (True, False), 'features__transformer_weights': ( {'text_pipeline': 1, 'tfidf_transformer': 1, 'starting_verb': 1}, {'text_pipeline': 0.5, 'tfidf_transformer': 1, 'starting_verb': 0.5}, ) } cv = GridSearchCV(pipeline, param_grid=parameters, cv=3, verbose=2.1) return cv return pipeline def evaluate_model(model, X_test, Y_test, category_names): """ Method applies scikit pipeline to test set and prints the model performance (accuracy and f1score) Parameters ----------- model : Pipeline fit pipeline X_test : ndarray test features Y_test : ndarray test labels category_names : list List of different message categories Returns ---------- None """ Y_pred = model.predict(X_test) print(classification_report(Y_test, Y_pred, target_names=category_names)) def save_model(model, model_filepath): """ Save trained model Parameters ----------- model : Pipeline fit pipeline model_filepath : str path with dump format Returns ---------- None """ dump(model, "{}".format(model_filepath)) def main(): """ Runner function This function: 1) Extract data from SQLite db 2) Train ML model on training set 3) Estimate model performance on test set 4) Save trained model """ if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X.values, Y.values, test_size=0.2, random_state=42) print('Building model...') model = build_model() print('Training model...') model.fit(X_train, Y_train) print('Evaluating model...') evaluate_model(model, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
30.294393
111
0.629647
7942981bb8ea05ce9d378f0ba901a8042a2ac6ee
140
py
Python
rdr_service/lib_fhir/fhirclient_1_0_6/__init__.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
39
2017-10-13T19:16:27.000Z
2021-09-24T16:58:21.000Z
rdr_service/lib_fhir/fhirclient_3_0_0/__init__.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
312
2017-09-08T15:42:13.000Z
2022-03-23T18:21:40.000Z
rdr_service/lib_fhir/fhirclient_3_0_0/__init__.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
19
2017-09-15T13:58:00.000Z
2022-02-07T18:33:20.000Z
import os.path import sys abspath = os.path.abspath(os.path.dirname(__file__)) if abspath not in sys.path: sys.path.insert(0, abspath)
20
52
0.742857
79429855c3dfba52bc80a82e0494dfde0e7d082f
5,047
py
Python
tests/test_images_color.py
JParzival/mediafier
f5da82b6bdda4bb41638860cd133aeb332329db1
[ "MIT" ]
3
2021-06-02T16:15:26.000Z
2021-06-06T22:07:05.000Z
tests/test_images_color.py
JParzival/mediafier
f5da82b6bdda4bb41638860cd133aeb332329db1
[ "MIT" ]
8
2021-06-02T17:08:33.000Z
2021-06-06T16:32:50.000Z
tests/test_images_color.py
JParzival/mediafier
f5da82b6bdda4bb41638860cd133aeb332329db1
[ "MIT" ]
null
null
null
import cv2 import os from numpy.core.defchararray import find from mediafier.image.color import modifyContrast, modifyBrightness, changeBGRColorspace, findMostCommonColor SRC_IMG_DIR = os.path.join('test_media', 'imgs_src_test') SAVE_IMG_DIR = os.path.join('test_media', 'imgs_result_test', 'color') if not os.path.exists(SAVE_IMG_DIR): os.makedirs(SAVE_IMG_DIR) def test_image_color_contrast(): img = cv2.imread(os.path.join(SRC_IMG_DIR, 'test.png')) """Transform contrast default""" params_default=[ { 'image': img, 'value': 1 }, { 'image': img, 'value': 3 }, { 'image': img, 'value': 0.5 }, { 'image': img, 'value': 0 }, ] for param in params_default: cv2.imwrite(os.path.join(SAVE_IMG_DIR, f"img_contrast_{param['value']}_default.png"), modifyContrast(param['image'], param['value'])) """Transform contrast CLAHE""" params_clahe=[ { 'image': img, 'value': 1, 'method': 'CLAHE', 'name': 'img_contrast_1_CLAHE.png' }, { 'image': img, 'value': 2, 'method': 'CLAHE', 'name': 'img_contrast_2_CLAHE.png' }, { 'image': img, 'value': 0.5, 'method': 'CLAHE', 'name': 'img_contrast_05_CLAHE.png' }, { 'image': img, 'value': 0, 'method': 'CLAHE', 'name': 'img_contrast_0_CLAHE.png' }, ] for param in params_clahe: cv2.imwrite(os.path.join(SAVE_IMG_DIR, f"img_contrast_{param['value']}_CLAHE.png"), modifyContrast(param['image'], param['value'], param['method'])) """Failure example""" #modifyContrast(img, "a") #modifyContrast(img, 1, ':S') #modifyContrast(img, -1) def test_image_color_brightness(): img = cv2.imread(os.path.join(SRC_IMG_DIR, 'test.png')) """Transform brightness""" params_default=[ { 'image': img, 'value': 1 }, { 'image': img, 'value': 1.5 }, { 'image': img, 'value': 2 }, { 'image': img, 'value': 0.5 }, { 'image': img, 'value': 0 }, ] for param in params_default: cv2.imwrite(os.path.join(SAVE_IMG_DIR, f"img_brightness_{param['value']}.png"), modifyBrightness(param['image'], param['value'])) """Failure example""" #modifyBrightness(img, "a") #modifyBrightness(img, 1, ':S') #modifyBrightness(img, -1) def test_image_color_colorspaceBGR(): img = cv2.imread(os.path.join(SRC_IMG_DIR, 'test.png')) params = [ { 'image': img, 'to': 'gray' }, { 'image': img, 'to': 'hsv' }, { 'image': img, 'to': 'hls' }, { 'image': img, 'to': 'lab' }, { 'image': img, 'to': 'luv' }, { 'image': img, 'to': 'yuv' }, { 'image': img, 'to': 'rgb' } ] for param in params: cv2.imwrite(os.path.join(SAVE_IMG_DIR, f"img_colorspaceBGR_{param['to']}.png"), changeBGRColorspace(param['image'], param['to'])) """Failure example""" #changeBGRColorspace(img, "a") #changeBGRColorspace(img, 1) def test_image_color_mostCommonColor(): img = cv2.imread(os.path.join(SRC_IMG_DIR, 'test.png')) params = [ { 'image': img, 'method': 'average' }, { 'image': img, 'method': 'frequency' }, { 'image': img, 'method': 'kmeans', 'clusters': 3 }, { 'image': img, 'method': 'kmeans', 'clusters': 6 } ] for param in params: try: a, b = findMostCommonColor(param['image'], param['method'], param['clusters']) cv2.imwrite(os.path.join(SAVE_IMG_DIR, f"img_mostCommonColor_{param['method']}_{param['clusters']}.png"), b) with open(os.path.join(SAVE_IMG_DIR, f"img_mostCommonColor_{param['method']}_{param['clusters']}.txt"), 'w') as txtfile: txtfile.write(str(a)) except Exception as e: a, b = findMostCommonColor(param['image'], param['method']) cv2.imwrite(os.path.join(SAVE_IMG_DIR, f"img_mostCommonColor_{param['method']}.png"), b) with open(os.path.join(SAVE_IMG_DIR, f"img_mostCommonColor_{param['method']}.txt"), 'w') as txtfile: txtfile.write(str(a)) """Failure example""" #findMostCommonColor(img, "a") #findMostCommonColor(img, "kmeans", -1)
25.109453
156
0.490192
794298f90cedfe1848447994a942ea23ee2dc33d
116
py
Python
signalpings/urls.py
soratidus999/allianceauth-signal-pings
127d301f9511171eeef7822bb7f3cc38c0d13d56
[ "MIT" ]
1
2020-09-19T11:59:33.000Z
2020-09-19T11:59:33.000Z
signalpings/urls.py
soratidus999/allianceauth-signal-pings
127d301f9511171eeef7822bb7f3cc38c0d13d56
[ "MIT" ]
12
2020-07-14T11:16:07.000Z
2021-06-15T08:04:43.000Z
signalpings/urls.py
soratidus999/allianceauth-signal-pings
127d301f9511171eeef7822bb7f3cc38c0d13d56
[ "MIT" ]
3
2020-09-19T11:59:42.000Z
2021-08-12T04:27:59.000Z
from django.urls import path from . import views app_name = 'signalpings' urlpatterns = [ ] # no urls admmin app
11.6
28
0.724138
79429a1e3518d5017b81045b3f3039784e2efe17
3,717
py
Python
ncclient/operations/retrieve.py
MrRagga-/ncclient
d7baa5c4df3119356c6ca239701c4c67c00bc533
[ "Apache-2.0" ]
1
2021-07-22T16:21:42.000Z
2021-07-22T16:21:42.000Z
ncclient/operations/retrieve.py
MrRagga-/ncclient
d7baa5c4df3119356c6ca239701c4c67c00bc533
[ "Apache-2.0" ]
null
null
null
ncclient/operations/retrieve.py
MrRagga-/ncclient
d7baa5c4df3119356c6ca239701c4c67c00bc533
[ "Apache-2.0" ]
null
null
null
# Copyright 2009 Shikhar Bhushan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rpc import RPC, RPCReply from ncclient.xml_ import * import util class GetReply(RPCReply): """Adds attributes for the *data* element to `RPCReply`.""" def _parsing_hook(self, root): self._data = None if not self._errors: self._data = root.find(qualify("data")) @property def data_ele(self): "*data* element as an :class:`~xml.etree.ElementTree.Element`" if not self._parsed: self.parse() return self._data @property def data_xml(self): "*data* element as an XML string" if not self._parsed: self.parse() return to_xml(self._data) data = data_ele "Same as :attr:`data_ele`" class Get(RPC): "The *get* RPC." REPLY_CLS = GetReply "See :class:`GetReply`." def request(self, filter=None): """Retrieve running configuration and device state information. *filter* specifies the portion of the configuration to retrieve (by default entire configuration is retrieved) :seealso: :ref:`filter_params` """ node = new_ele("get") if filter is not None: node.append(util.build_filter(filter)) return self._request(node) class GetConfig(RPC): "The *get-config* RPC." REPLY_CLS = GetReply "See :class:`GetReply`." def request(self, source, filter=None): """Retrieve all or part of a specified configuration. *source* name of the configuration datastore being queried *filter* specifies the portion of the configuration to retrieve (by default entire configuration is retrieved) :seealso: :ref:`filter_params`""" node = new_ele("get-config") node.append(util.datastore_or_url("source", source, self._assert)) if filter is not None: node.append(util.build_filter(filter)) return self._request(node) class Dispatch(RPC): "Generic retrieving wrapper" REPLY_CLS = GetReply "See :class:`GetReply`." def request(self, rpc_command, source=None, filter=None): """ *rpc_command* specifies rpc command to be dispatched either in plain text or in xml element format (depending on command) *source* name of the configuration datastore being queried *filter* specifies the portion of the configuration to retrieve (by default entire configuration is retrieved) :seealso: :ref:`filter_params` Examples of usage:: dispatch('clear-arp-table') or dispatch element like :: xsd_fetch = new_ele('get-xnm-information') sub_ele(xsd_fetch, 'type').text="xml-schema" sub_ele(xsd_fetch, 'namespace').text="junos-configuration" dispatch(xsd_fetch) """ if etree.iselement(rpc_command): node = rpc_command else: node = new_ele(rpc_command) if source is not None: node.append(util.datastore_or_url("source", source, self._assert)) if filter is not None: node.append(util.build_filter(filter)) return self._request(node)
29.039063
129
0.652677
79429b0ba7e1cef55e3c24d6b0ac0bb04ab52c35
55
py
Python
syncio/__init__.py
davidbrochart/syncio
6d7451ce83186ff3d1b28bd22bfb6374938858fe
[ "MIT" ]
5
2021-10-18T08:15:24.000Z
2021-11-02T06:28:33.000Z
syncio/__init__.py
davidbrochart/syncio
6d7451ce83186ff3d1b28bd22bfb6374938858fe
[ "MIT" ]
null
null
null
syncio/__init__.py
davidbrochart/syncio
6d7451ce83186ff3d1b28bd22bfb6374938858fe
[ "MIT" ]
null
null
null
from .syncio import sync, sleep __version__ = "0.0.1"
13.75
31
0.709091
79429b3f555f9e204edc0947a8326dcf00a01f90
1,920
py
Python
google/cloud/aiplatform_v1beta1/types/lineage_subgraph.py
TheMichaelHu/python-aiplatform
e03f373a7e44c354eda88875a41c771f6d7e3ce1
[ "Apache-2.0" ]
null
null
null
google/cloud/aiplatform_v1beta1/types/lineage_subgraph.py
TheMichaelHu/python-aiplatform
e03f373a7e44c354eda88875a41c771f6d7e3ce1
[ "Apache-2.0" ]
null
null
null
google/cloud/aiplatform_v1beta1/types/lineage_subgraph.py
TheMichaelHu/python-aiplatform
e03f373a7e44c354eda88875a41c771f6d7e3ce1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.cloud.aiplatform_v1beta1.types import artifact from google.cloud.aiplatform_v1beta1.types import event from google.cloud.aiplatform_v1beta1.types import execution __protobuf__ = proto.module( package="google.cloud.aiplatform.v1beta1", manifest={ "LineageSubgraph", }, ) class LineageSubgraph(proto.Message): r"""A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes. Attributes: artifacts (Sequence[google.cloud.aiplatform_v1beta1.types.Artifact]): The Artifact nodes in the subgraph. executions (Sequence[google.cloud.aiplatform_v1beta1.types.Execution]): The Execution nodes in the subgraph. events (Sequence[google.cloud.aiplatform_v1beta1.types.Event]): The Event edges between Artifacts and Executions in the subgraph. """ artifacts = proto.RepeatedField( proto.MESSAGE, number=1, message=artifact.Artifact, ) executions = proto.RepeatedField( proto.MESSAGE, number=2, message=execution.Execution, ) events = proto.RepeatedField( proto.MESSAGE, number=3, message=event.Event, ) __all__ = tuple(sorted(__protobuf__.manifest))
30.47619
79
0.702083
79429b50d41e76c2e1909a244980ca0b9f70b48c
9,099
py
Python
pirates/leveleditor/worldData/SwampAreaA.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
3
2021-02-25T06:38:13.000Z
2022-03-22T07:00:15.000Z
pirates/leveleditor/worldData/SwampAreaA.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
null
null
null
pirates/leveleditor/worldData/SwampAreaA.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
1
2021-02-25T06:38:17.000Z
2021-02-25T06:38:17.000Z
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.leveleditor.worldData.SwampAreaA from pandac.PandaModules import Point3, VBase3 objectStruct = {'Objects': {'1152910301.05sdnaik': {'Type': 'Island Game Area', 'Name': 'SwampAreaA', 'File': '', 'Objects': {'1152839242.37jubutler': {'Type': 'Townsperson', 'Category': 'Gypsy', 'DNA': '1152839242.37jubutler', 'Hpr': VBase3(-162.596, 0.0, 0.0), 'Pos': Point3(-101.512, -18.535, 1.149), 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'Start State': 'Idle', 'Team': 'Villager'}, '1153424527.2sdnaik': {'Type': 'Locator Node', 'Name': 'portal_interior_1', 'Hpr': VBase3(-7.207, 0.0, 0.0), 'Pos': Point3(-228.544, -32.226, 9.648), 'Scale': VBase3(1.0, 1.0, 1.0)}, '1153424527.2sdnaik0': {'Type': 'Locator Node', 'Name': 'portal_interior_2', 'Hpr': VBase3(172.793, 0.0, 0.0), 'Pos': Point3(350.771, 207.569, 9.648), 'Scale': VBase3(1.0, 1.0, 1.0)}, '1153424659.83sdnaik': {'Type': 'Spawn Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Min Population': '1', 'Pos': Point3(-62.013, -40.396, -0.376), 'Scale': VBase3(1.0, 1.0, 1.0), 'Spawnables': 'Skeleton', 'Team': '1'}, '1153424672.19sdnaik': {'Type': 'Spawn Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Min Population': '1', 'Pos': Point3(-41.646, -78.756, 0.006), 'Scale': VBase3(1.0, 1.0, 1.0), 'Spawnables': 'Skeleton', 'Team': '1'}, '1153424709.64sdnaik': {'Type': 'Spawn Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Min Population': '1', 'Pos': Point3(207.369, 82.797, 13.753), 'Scale': VBase3(1.0, 1.0, 1.0), 'Spawnables': 'Skeleton', 'Team': '1'}, '1153424723.64sdnaik': {'Type': 'Movement Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(193.97, 103.772, 13.735), 'Scale': VBase3(1.0, 1.0, 1.0)}, '1153424726.66sdnaik': {'Type': 'Movement Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(215.256, 102.547, 13.754), 'Scale': VBase3(1.0, 1.0, 1.0)}, '1153424744.5sdnaik': {'Type': 'Movement Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(170.618, 73.537, 9.679), 'Scale': VBase3(1.0, 1.0, 1.0)}, '1153424752.06sdnaik': {'Type': 'Movement Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(176.803, 63.891, 9.891), 'Scale': VBase3(1.0, 1.0, 1.0)}, '1153424892.06sdnaik': {'Type': 'Spawn Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Min Population': '1', 'Pos': Point3(264.33, 147.449, 0.414), 'Scale': VBase3(1.0, 1.0, 1.0), 'Spawnables': 'Skeleton', 'Team': '1'}, '1154501246.82jubutler': {'Type': 'Spawn Node', 'Hpr': Point3(0.0, 0.0, 0.0), 'Min Population': '1', 'Pos': Point3(321.312, 179.83, -10.0), 'Scale': VBase3(1.0, 1.0, 1.0), 'Spawnables': 'Skeleton', 'Team': '1'}, '1154501366.24jubutler': {'Type': 'Tree', 'Hpr': VBase3(-4.84, 0.0, 0.0), 'Pos': Point3(291.544, 276.427, -11.094), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.4000000059604645, 0.4000000059604645, 0.4000000059604645, 1.0), 'Model': 'models/vegetation/gen_tree_e'}}, '1154501485.11jubutler': {'Type': 'Tree', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(329.141, 278.075, -10.116), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.4000000059604645, 0.4000000059604645, 0.4000000059604645, 1.0), 'Model': 'models/vegetation/gen_tree_b'}}, '1154501557.28jubutler': {'Type': 'Tree', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(184.73, 204.266, -13.826), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.4000000059604645, 0.4000000059604645, 0.4000000059604645, 1.0), 'Model': 'models/vegetation/gen_tree_a'}}, '1154567223.28sdnaik': {'Type': 'Rock', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(895.16, 310.005, -498.915), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/zz_dont_use_rock_Dk_1F'}}, '1154567458.89sdnaik': {'Type': 'Tree', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(373.213, 215.386, -3.01), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/vegetation/fern_tree_a'}}, '1154567518.56sdnaik': {'Type': 'Tree', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(368.763, 206.674, -3.01), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/vegetation/fern_tree_a'}}, '1154567528.52sdnaik': {'Type': 'Tree', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(368.98, 212.788, -3.01), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/vegetation/fern_tree_d'}}, '1154567543.67sdnaik': {'Type': 'Tree', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(371.757, 202.476, -3.01), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/vegetation/fern_tree_c'}}, '1154567555.73sdnaik': {'Type': 'Tree', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(372.529, 198.822, -3.01), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/vegetation/fern_tree_b'}}, '1154577668.63jubutler': {'Type': 'Creature', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(228.037, 226.146, -10.0), 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'Species': 'FlyTrap', 'Start State': 'Idle'}, '1154577691.57jubutler': {'Type': 'Creature', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(191.92, 171.456, -3.009), 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'Species': 'FlyTrap', 'Start State': 'Idle'}, '1154577700.0jubutler': {'Type': 'Creature', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(132.196, 90.191, -3.009), 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'Species': 'FlyTrap', 'Start State': 'Idle'}, '1154577724.85jubutler': {'Type': 'Creature', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(86.804, -5.279, -3.009), 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'Species': 'FlyTrap', 'Start State': 'Idle'}, '1154633129.0jubutler': {'Type': 'NavySailor', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(25.57, -27.24, -10.0), 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'Start State': 'Walk'}, '1154633139.96jubutler': {'Type': 'NavySailor', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(42.362, -25.277, -3.01), 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'Start State': 'Walk'}}, 'Visual': {'Model': 'models/swamps/pir_m_are_swm_a'}}}, 'Node Links': [['1153424709.64sdnaik', '1153424726.66sdnaik', 'Bi-directional'], ['1153424709.64sdnaik', '1153424723.64sdnaik', 'Bi-directional'], ['1153424709.64sdnaik', '1153424744.5sdnaik', 'Bi-directional'], ['1153424726.66sdnaik', '1153424723.64sdnaik', 'Bi-directional'], ['1153424723.64sdnaik', '1153424752.06sdnaik', 'Bi-directional'], ['1153424744.5sdnaik', '1153424752.06sdnaik', 'Bi-directional']], 'Layers': {}, 'ObjectIds': {'1152839242.37jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1152839242.37jubutler"]', '1152910301.05sdnaik': '["Objects"]["1152910301.05sdnaik"]', '1153424527.2sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424527.2sdnaik"]', '1153424527.2sdnaik0': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424527.2sdnaik0"]', '1153424659.83sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424659.83sdnaik"]', '1153424672.19sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424672.19sdnaik"]', '1153424709.64sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424709.64sdnaik"]', '1153424723.64sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424723.64sdnaik"]', '1153424726.66sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424726.66sdnaik"]', '1153424744.5sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424744.5sdnaik"]', '1153424752.06sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424752.06sdnaik"]', '1153424892.06sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1153424892.06sdnaik"]', '1154501246.82jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154501246.82jubutler"]', '1154501366.24jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154501366.24jubutler"]', '1154501485.11jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154501485.11jubutler"]', '1154501557.28jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154501557.28jubutler"]', '1154567223.28sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154567223.28sdnaik"]', '1154567458.89sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154567458.89sdnaik"]', '1154567518.56sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154567518.56sdnaik"]', '1154567528.52sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154567528.52sdnaik"]', '1154567543.67sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154567543.67sdnaik"]', '1154567555.73sdnaik': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154567555.73sdnaik"]', '1154577668.63jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154577668.63jubutler"]', '1154577691.57jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154577691.57jubutler"]', '1154577700.0jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154577700.0jubutler"]', '1154577724.85jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154577724.85jubutler"]', '1154633129.0jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154633129.0jubutler"]', '1154633139.96jubutler': '["Objects"]["1152910301.05sdnaik"]["Objects"]["1154633139.96jubutler"]'}}
1,516.5
8,827
0.652379
79429bcf1aeb56c9202ee557e67cec98109fd3cd
4,135
py
Python
paramak/parametric_components/poloidal_field_coil_case_fc.py
generein/paramak
cec738b278c285a17eaa69fc1f35ea4788204a8c
[ "MIT" ]
null
null
null
paramak/parametric_components/poloidal_field_coil_case_fc.py
generein/paramak
cec738b278c285a17eaa69fc1f35ea4788204a8c
[ "MIT" ]
null
null
null
paramak/parametric_components/poloidal_field_coil_case_fc.py
generein/paramak
cec738b278c285a17eaa69fc1f35ea4788204a8c
[ "MIT" ]
null
null
null
from typing import Optional, Tuple from paramak import RotateStraightShape class PoloidalFieldCoilCaseFC(RotateStraightShape): """Creates a casing for a rectangular poloidal field coil by building around an existing coil (which is passed as an argument on construction). Args: pf_coil (paramak.PoloidalFieldCoil): a pf coil object with a set width, height and center point. casing_thickness (float): the thickness of the coil casing (cm). """ def __init__( self, pf_coil, casing_thickness, color: Tuple[float, float, float, Optional[float]] = (1.0, 1.0, 0.498), **kwargs ): super().__init__(color=color, **kwargs) self.pf_coil = pf_coil self.center_point = pf_coil.center_point self.height = pf_coil.height self.width = pf_coil.width self.casing_thickness = casing_thickness @property def center_point(self): return self._center_point @center_point.setter def center_point(self, value): self._center_point = value @property def height(self): return self._height @height.setter def height(self, height): self._height = height @property def width(self): return self._width @width.setter def width(self, width): self._width = width def find_points(self): """Finds the XZ points joined by straight connections that describe the 2D profile of the poloidal field coil case shape.""" points = [ ( self.center_point[0] + self.width / 2.0, self.center_point[1] + self.height / 2.0, ), # upper right ( self.center_point[0] + self.width / 2.0, self.center_point[1] - self.height / 2.0, ), # lower right ( self.center_point[0] - self.width / 2.0, self.center_point[1] - self.height / 2.0, ), # lower left ( self.center_point[0] - self.width / 2.0, self.center_point[1] + self.height / 2.0, ), # upper left ( self.center_point[0] + self.width / 2.0, self.center_point[1] + self.height / 2.0, ), # upper right ( self.center_point[0] + (self.casing_thickness + self.width / 2.0), self.center_point[1] + (self.casing_thickness + self.height / 2.0), ), ( self.center_point[0] + (self.casing_thickness + self.width / 2.0), self.center_point[1] - (self.casing_thickness + self.height / 2.0), ), ( self.center_point[0] - (self.casing_thickness + self.width / 2.0), self.center_point[1] - (self.casing_thickness + self.height / 2.0), ), ( self.center_point[0] - (self.casing_thickness + self.width / 2.0), self.center_point[1] + (self.casing_thickness + self.height / 2.0), ), ( self.center_point[0] + (self.casing_thickness + self.width / 2.0), self.center_point[1] + (self.casing_thickness + self.height / 2.0), ), ] self.points = points def create_solid(self): # creates a small box that surrounds the geometry inner_box = self.pf_coil # creates a large box that surrounds the smaller box outer_box = RotateStraightShape( points=self.points[5:9], rotation_axis=inner_box.rotation_axis, rotation_angle=inner_box.rotation_angle, azimuth_placement_angle=inner_box.azimuth_placement_angle, workplane=inner_box.workplane, cut=self.cut, intersect=self.intersect, union=self.union, ) # subtracts the two boxes to leave a hollow box new_shape = outer_box.solid.cut(inner_box.solid) self.solid = new_shape return new_shape
32.304688
83
0.561548
79429c3689c82a9d8ee2371c5c13aebcc653abca
147
py
Python
gitogether/__init__.py
nklapste/gitogether
9190ea4a1a32e62f985b3694d3a1b949f1fb819c
[ "MIT" ]
null
null
null
gitogether/__init__.py
nklapste/gitogether
9190ea4a1a32e62f985b3694d3a1b949f1fb819c
[ "MIT" ]
null
null
null
gitogether/__init__.py
nklapste/gitogether
9190ea4a1a32e62f985b3694d3a1b949f1fb819c
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- """gitogether Scripts: + :mod:`.__main__` - argparse entry point Module: """ __version__ = (0, 0, 0)
12.25
42
0.598639
79429c5fe9d35872f7b7dcd813152048010a21ef
821
py
Python
lib/taniumpy/object_types/cache_info.py
c1rdan/pytan
5e537a6dcf4136e3b9c3905a39f073396e7f044f
[ "MIT" ]
1
2019-01-29T21:22:06.000Z
2019-01-29T21:22:06.000Z
lib/taniumpy/object_types/cache_info.py
c1rdan/pytan
5e537a6dcf4136e3b9c3905a39f073396e7f044f
[ "MIT" ]
null
null
null
lib/taniumpy/object_types/cache_info.py
c1rdan/pytan
5e537a6dcf4136e3b9c3905a39f073396e7f044f
[ "MIT" ]
null
null
null
# Copyright (c) 2015 Tanium Inc # # Generated from console.wsdl version 0.0.1 # # from .base import BaseType class CacheInfo(BaseType): _soap_tag = 'cache_info' def __init__(self): BaseType.__init__( self, simple_properties={'cache_id': int, 'page_row_count': int, 'filtered_row_count': int, 'cache_row_count': int, 'expiration': str}, complex_properties={'errors': ErrorList}, list_properties={}, ) self.cache_id = None self.page_row_count = None self.filtered_row_count = None self.cache_row_count = None self.expiration = None self.errors = None from .error_list import ErrorList
22.805556
53
0.545676
79429e32af6661df8b341c63293326f69baab703
1,089
py
Python
loss_fn/detection_loss_fns/__init__.py
KelOdgSmile/ml-cvnets
503ec3b4ec187cfa0ed451d0f61de22f669b0081
[ "AML" ]
1
2021-12-20T09:25:18.000Z
2021-12-20T09:25:18.000Z
loss_fn/detection_loss_fns/__init__.py
footh/ml-cvnets
d9064fe7e7a2d6a7a9817df936432856a0500a25
[ "AML" ]
null
null
null
loss_fn/detection_loss_fns/__init__.py
footh/ml-cvnets
d9064fe7e7a2d6a7a9817df936432856a0500a25
[ "AML" ]
null
null
null
# # For licensing see accompanying LICENSE file. # Copyright (C) 2020 Apple Inc. All Rights Reserved. # import importlib import os SUPPORTED_DETECTION_LOSS_FNS = [] def register_detection_loss_fn(name): def register_fn(fn): if name in SUPPORTED_DETECTION_LOSS_FNS: raise ValueError("Cannot register duplicate detection loss function ({})".format(name)) SUPPORTED_DETECTION_LOSS_FNS.append(name) return fn return register_fn # automatically import different loss functions loss_fn_dir = os.path.dirname(__file__) for file in os.listdir(loss_fn_dir): path = os.path.join(loss_fn_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("loss_fn.detection_loss_fns." + model_name) # import these after loading loss_fn names to avoid looping from loss_fn.detection_loss_fns.ssd_multibox_loss import SSDLoss
31.114286
99
0.706152
79429e5d78d7585785060aee96bc86d8d5629e84
8,606
py
Python
util/DataBank.py
F-Stuckmann/PATARA
26b5c821e356e33e949817a1475ef38e75880a03
[ "MIT" ]
2
2021-11-04T06:48:45.000Z
2022-01-19T16:25:20.000Z
util/DataBank.py
F-Stuckmann/PATARA
26b5c821e356e33e949817a1475ef38e75880a03
[ "MIT" ]
1
2021-05-05T09:05:22.000Z
2021-05-05T09:05:22.000Z
util/DataBank.py
F-Stuckmann/PATARA
26b5c821e356e33e949817a1475ef38e75880a03
[ "MIT" ]
2
2021-05-05T08:42:57.000Z
2021-11-04T06:48:49.000Z
import copy import csv import os, glob from typing import List import xmltodict import Constants from Constants import * from util.Instruction import Instruction from util.Processor import Processor from util.TestInstruction import TestInstruction class DataBank: class __Databank: def __init__(self): self._dict = {} self._readImmediateAssembly() self.read_xml() self._read_comparison_xml() self._read_init_register() self._readPostInit() n=3 def _isInstruction(self, instr): if instr == COMPARISON: return False if instr == INSTRUCTION_DEFAULT_MODES: return False if instr == INIT: return False if instr == POST_INIT: return False if instr == IMMEDIATE_ASSEMBLY: return False if instr == CONDITIONAL_READ: return False return True def __parseInstructions(self, dictInstruction): result = [] instructions = dictInstruction if not isinstance(dictInstruction, list): instructions = [dictInstruction] # instructions = [dictInstruction] if isinstance(dictInstruction, str) else dictInstruction for instr in instructions: i = Instruction(instr) mandatoryFeatures = {IMMEDIATE: IMMEDIATE_LONG} if isinstance(instr, dict): if instr[MANDATORY_FEATURE]: mandatoryFeatures = {} for key, value in instr[MANDATORY_FEATURE].items(): mandatoryFeatures[key] = Processor().getProcessorFeatureList(key)[value] i.setGlobalMandatoryFeatures(mandatoryFeatures) result.append(i) return result def _readImmediateAssembly(self): self.immediateAssembly = None file = open(Constants.PATH_INSTRUCTION) xml_content = xmltodict.parse(file.read()) for group in xml_content[INST_LIST]: if group == IMMEDIATE_ASSEMBLY: immidateVariants = xml_content[INST_LIST][IMMEDIATE_ASSEMBLY] self.immediateAssembly = {} for imm in immidateVariants: assemlby = Processor().getProcessorFeatureAssembly(IMMEDIATE, imm) self.immediateAssembly[assemlby] = {} if INSTR in xml_content[INST_LIST][IMMEDIATE_ASSEMBLY][imm]: instr = xml_content[INST_LIST][IMMEDIATE_ASSEMBLY][imm][INSTR] instructions = self.__parseInstructions(instr) self.immediateAssembly[assemlby][vMutable] = instructions else: for simd in xml_content[INST_LIST][IMMEDIATE_ASSEMBLY][imm]: instr = xml_content[INST_LIST][IMMEDIATE_ASSEMBLY][imm][simd][INSTR] instructions = self.__parseInstructions(instr) self.immediateAssembly[assemlby][simd] = instructions # instruction = [instr] if isinstance(instr, str) else instr # for instr in instruction: # i = Instruction_v1(instr) # i.setGlobalMandatoryFeatures({IMMEDIATE: IMMEDIATE_LONG}) # self.immediateAssembly[assemlby].append(i) n=3 def read_xml(self): file = open(Constants.PATH_INSTRUCTION) self.xml_content = xmltodict.parse(file.read()) self.testinstruction_list = [] self.instructionList = [] # generate Characteristics Dictionary about Instructions for instr in self.xml_content[INST_LIST]: if not self._isInstruction(instr): continue self._addDictEntry(instr) self.instructionList.append(instr) # generate TestInstructions for instr in self.xml_content[INST_LIST]: if not self._isInstruction(instr): continue temp = self.xml_content[INST_LIST][instr] original = temp[INSTR] original = [original] if isinstance(original, str) else original reverse = self._extractReverseSIMD(temp) specialization = {} if SPECIALIZATION in self.xml_content[INST_LIST][instr]: specialization = self.xml_content[INST_LIST][instr][SPECIALIZATION] testInstruction = TestInstruction(original, reverse, instr, specialization, self.instructionList, copy.deepcopy(self.immediateAssembly)) self.testinstruction_list.append(testInstruction) file.close() def _addDictEntry(self, instr): self._dict[instr] = copy.deepcopy(self.xml_content[INST_LIST][instr]) del self._dict[instr][INSTR] del self._dict[instr][REVERSE] def _extractReverseSIMD(self, temp): reverse = temp[REVERSE] reverseDict = {} if isinstance(reverse, dict): simdVersions = Processor().getSIMD() for (simdKey, simdValue) in simdVersions.items(): if simdKey in reverse: reverseDict[simdValue] = [reverse[simdKey][REVERSE]] if isinstance(reverse[simdKey][REVERSE], str) else reverse[simdKey][ REVERSE] else: reverseList = [reverse] if isinstance(reverse, str) else reverse reverseDict[vMutable] = reverseList return reverseDict def _read_comparison_xml(self) -> list: """Reads xml to parse the comparison code.""" file = open(Constants.PATH_INSTRUCTION) parser = xmltodict.parse(file.read()) return_list = parser[INST_LIST][COMPARISON][INSTR] self._comparisonCode = return_list def _read_init_register(self) -> list: file = open(Constants.PATH_INSTRUCTION) parser = xmltodict.parse(file.read()) return_list = parser[INST_LIST][INIT][REGISTER] # guarantee a list if not isinstance(return_list, list): return_list = [return_list] self._listInitRegister = return_list def _readPostInit(self): file = open(Constants.PATH_INSTRUCTION) parser = xmltodict.parse(file.read()) return_list = parser[INST_LIST][POST_INIT][INSTR] self._listPostInit = return_list instance = None def __init__(self): if not DataBank.instance: DataBank.instance = DataBank.__Databank() def printdatabase(self): for k, v in self.instance._dict.items(): print("-------------- %s" % (k)) print(v) print(Processor().getAvailableInstructionFeatures(k)) # find TestInstruction for testInstr in self.instance.testinstruction_list: if k == testInstr.getInstruction(): # print Instructions for instruction in testInstr.getAssemblyInstructions(): print(instruction.getRawString()) print() for simdVariant in testInstr.getReversiAssemblyInstructions(): print("SIMD: " ,simdVariant) for instruction in testInstr.getReversiAssemblyInstructions()[simdVariant]: print(instruction.getRawString()) print("\n\n") def getTestInstructions(self) -> List[TestInstruction]: return self.instance.testinstruction_list def getComparisonCode(self): return self.instance._comparisonCode def getInitRegister(self): return self.instance._listInitRegister def getSpecificTestInstruction(self, testInstructionName): for testInstruction in self.instance.testinstruction_list: if testInstruction.getInstruction() == testInstructionName: return testInstruction return None def getPostInitCode(self): return self.instance._listPostInit
38.591928
152
0.570067
7942a064c81545418fd8a287ae3d24160109fc05
127
py
Python
dosirak/middleware.py
drexly/tonginBlobStore
28d355b63184ad168a1467bef8a58a1a871289d2
[ "BSD-3-Clause" ]
null
null
null
dosirak/middleware.py
drexly/tonginBlobStore
28d355b63184ad168a1467bef8a58a1a871289d2
[ "BSD-3-Clause" ]
null
null
null
dosirak/middleware.py
drexly/tonginBlobStore
28d355b63184ad168a1467bef8a58a1a871289d2
[ "BSD-3-Clause" ]
1
2020-11-04T08:42:35.000Z
2020-11-04T08:42:35.000Z
class DisableCSRF(object): def process_request(self, request): setattr(request, '_dont_enforce_csrf_checks', True)
31.75
59
0.740157
7942a0b03b0b209a6077449fa4a20bf50a99c166
1,664
py
Python
test/knn_test.py
haomingdouranggouqil/cuml
4fbbc2bcf381f57333be99fa8490eccb3168b641
[ "MIT" ]
null
null
null
test/knn_test.py
haomingdouranggouqil/cuml
4fbbc2bcf381f57333be99fa8490eccb3168b641
[ "MIT" ]
null
null
null
test/knn_test.py
haomingdouranggouqil/cuml
4fbbc2bcf381f57333be99fa8490eccb3168b641
[ "MIT" ]
null
null
null
from mlcu.ml.KNN import * from sklearn import datasets #datasets模块 from sklearn.model_selection import train_test_split #分离训练集和测试集数据 from sklearn.neighbors import KNeighborsClassifier #k近邻分类器模块 from sklearn.neighbors import KNeighborsRegressor import time if __name__ == '__main__': #测试数据 train_data = [[1, 1, 1], [2, 2, 2], [10, 10, 10], [13, 13, 13]] #数字标签 train_label = [1, 2, 30, 60] #非数字标签 #train_label = ['aa', 'aa', 'bb', 'bb'] #测试数据 test_data = [[3, 2, 4], [9, 13, 11], [10, 20, 10]] #默认分类 knn = KNN() #knn回归任务 #knn = KNN(task_type = 'regression') #训练 knn.fit(train_data, train_label) #预测 preds = knn.predict(test_data, k=2) print(preds) ''' #鸢尾花测试 #准备数据 loaded_data = datasets.load_iris() #加载鸢尾花数据 X = loaded_data.data #x有4个属性 y = loaded_data.target #y 有三类 ''' ''' #生成大数据测试 X = np.random.rand(100000,4).tolist() y = np.random.randint(1,4,size=(100000)).tolist() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)#测试数据占30% #在此数据量下,cuml模型运算12s,用了相同算法(暴力搜索)的sklearn运算了31s,numpy模型运算192s ''' ''' #cuml knn = KNN(task_type = 'regression') knn.fit(X_train, y_train) start_time = time.time() preds = knn.predict(X_test) end_time = time.time() consum_time = end_time-start_time print(consum_time) ''' ''' knn = KNeighborsRegressor(algorithm = 'brute') #k近邻分离器 knn.fit(X_train, y_train) #fit学习函数 start_time = time.time() knn.predict(X_test) end_time = time.time() consum_time = end_time-start_time print(consum_time) '''
25.6
85
0.623197
7942a0fc718c326f0ea186fd6b41a7110909afca
9,087
py
Python
records_mover/db/driver.py
cwegrzyn/records-mover
e3b71d6c09d99d0bcd6a956b9d09d20f8abe98d2
[ "Apache-2.0" ]
36
2020-03-17T11:56:51.000Z
2022-01-19T16:03:32.000Z
records_mover/db/driver.py
cwegrzyn/records-mover
e3b71d6c09d99d0bcd6a956b9d09d20f8abe98d2
[ "Apache-2.0" ]
60
2020-03-02T23:13:29.000Z
2021-05-19T15:05:42.000Z
records_mover/db/driver.py
cwegrzyn/records-mover
e3b71d6c09d99d0bcd6a956b9d09d20f8abe98d2
[ "Apache-2.0" ]
4
2020-08-11T13:17:37.000Z
2021-11-05T21:11:52.000Z
from sqlalchemy.schema import CreateTable from ..records.records_format import BaseRecordsFormat from .loader import LoaderFromFileobj, LoaderFromRecordsDirectory from .unloader import Unloader import logging import sqlalchemy from sqlalchemy import MetaData from sqlalchemy.schema import Table from records_mover.db.quoting import quote_group_name, quote_user_name, quote_schema_and_table from abc import ABCMeta, abstractmethod from records_mover.records import RecordsSchema from typing import Union, Dict, List, Tuple, Optional, TYPE_CHECKING if TYPE_CHECKING: from typing_extensions import Literal # noqa logger = logging.getLogger(__name__) class DBDriver(metaclass=ABCMeta): def __init__(self, db: Union[sqlalchemy.engine.Engine, sqlalchemy.engine.Connection], **kwargs) -> None: self.db = db self.db_engine = db.engine self.meta = MetaData() def has_table(self, schema: str, table: str) -> bool: return self.db.dialect.has_table(self.db, table_name=table, schema=schema) def table(self, schema: str, table: str) -> Table: return Table(table, self.meta, schema=schema, autoload=True, autoload_with=self.db_engine) def schema_sql(self, schema: str, table: str) -> str: """Generate DDL which will recreate the specified table and return it as a string. Returns None if database or permissions don't support operation. """ # http://docs.sqlalchemy.org/en/latest/core/reflection.html table_obj = self.table(schema, table) return str(CreateTable(table_obj, bind=self.db)) def varchar_length_is_in_chars(self) -> bool: """True if the 'n' in VARCHAR(n) is represented in natural language characters, rather than in post-encoding bytes. This varies by database - override it to control""" return False def set_grant_permissions_for_groups(self, schema_name: str, table: str, groups: Dict[str, List[str]], db: Union[sqlalchemy.engine.Engine, sqlalchemy.engine.Connection]) -> None: schema_and_table: str = quote_schema_and_table(self.db.engine, schema_name, table) for perm_type in groups: groups_list = groups[perm_type] for group in groups_list: group_name: str = quote_group_name(self.db.engine, group) if not perm_type.isalpha(): raise TypeError("Please make sure your permission types" " are an acceptable value.") perms_sql = f'GRANT {perm_type} ON TABLE {schema_and_table} TO {group_name}' db.execute(perms_sql) def set_grant_permissions_for_users(self, schema_name: str, table: str, users: Dict[str, List[str]], db: Union[sqlalchemy.engine.Engine, sqlalchemy.engine.Connection]) -> None: schema_and_table: str = quote_schema_and_table(self.db.engine, schema_name, table) for perm_type in users: user_list = users[perm_type] for user in user_list: user_name: str = quote_user_name(self.db.engine, user) if not perm_type.isalpha(): raise TypeError("Please make sure your permission types" " are an acceptable value.") perms_sql = f'GRANT {perm_type} ON TABLE {schema_and_table} TO {user_name}' db.execute(perms_sql) def supports_time_type(self) -> bool: return True def type_for_date_plus_time(self, has_tz: bool=False) -> sqlalchemy.sql.sqltypes.DateTime: """Different DB vendors have different names for a date, a time, and an optional timezone""" return sqlalchemy.sql.sqltypes.DateTime(timezone=has_tz) def type_for_integer(self, min_value: Optional[int], max_value: Optional[int]) -> sqlalchemy.types.TypeEngine: """Find correct integral column type to fit data matching the given min and max integer values""" logger.warning("Using default integer type") return sqlalchemy.sql.sqltypes.Integer() def type_for_fixed_point(self, precision: int, scale: int) -> sqlalchemy.sql.sqltypes.Numeric: """Find correct decimal column type to fit data from the given fixed point type""" return sqlalchemy.sql.sqltypes.Numeric(precision=precision, scale=scale) @abstractmethod def loader(self) -> Optional[LoaderFromRecordsDirectory]: ... @abstractmethod def loader_from_fileobj(self) -> Optional[LoaderFromFileobj]: ... @abstractmethod def unloader(self) -> Optional[Unloader]: ... def type_for_floating_point(self, fp_total_bits: int, fp_significand_bits: int) -> sqlalchemy.sql.sqltypes.Numeric: """Find correct decimal column type to fit data from the given floating point type""" # SQL spec (at least in the publically available pre-release # 1992 version) declares the meaning of the precision in type # "FLOAT(precision)" to be defined by the database vendor: # # 49)Subclause 6.1, "<data type>": The binary precision of a # data type defined as FLOAT for each value specified by # <precision> is implementation-defined. # # http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt # # That said, at least Postgres, MySQL and ORacle agree that # the 'precision' in their cases mean the significand_bits of # either an IEEE or Intel-flavored float , so let's default to # that: # # https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html#targetText=MySQL%20permits%20a%20nonstandard%20syntax,look%20like%20%2D999.9999%20when%20displayed. # https://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqlj27281.html # https://www.postgresql.org/docs/10/datatype-numeric.html return sqlalchemy.sql.sqltypes.Float(precision=fp_significand_bits) def make_column_name_valid(self, colname: str) -> str: return colname def integer_limits(self, type_: sqlalchemy.types.Integer) ->\ Optional[Tuple[int, int]]: """returns the integer limits (min and max value as a tuple) of the given column type for this database type. These are represented as a Python int, which is of arbitrary length. Since SQLAlchemy doesn't track this detail, if details of this database type aren't known in the DBDriver hierarchy, None will be returned. """ logger.warning(f"{type(self)} does not know how to gather limits of {type(type_)}") return None def fp_constraints(self, type_: sqlalchemy.types.Float) ->\ Optional[Tuple[int, int]]: """returns the floating point representation (total floating point bits minus padding and significand bits as a tuple) of the given column type for this database type. Since SQLAlchemy doesn't track this detail, if details of this database type aren't known in the DBDriver hierarchy, None will be returned. """ logger.warning(f"{type(self)} does not know how to gather limits of {type(type_)}") return None def fixed_point_constraints(self, type_: sqlalchemy.types.Numeric) ->\ Optional[Tuple[int, int]]: """returns the fixed-point representation - total number of digits (precision) and number of those digits to the right of the decimal point (scale) - as a tuple for the given column type for this database type. """ if type_.precision is None or type_.scale is None: return None return (type_.precision, type_.scale) def tweak_records_schema_for_load(self, records_schema: RecordsSchema, records_format: BaseRecordsFormat) -> RecordsSchema: return records_schema def tweak_records_schema_after_unload(self, records_schema: RecordsSchema, records_format: BaseRecordsFormat) -> RecordsSchema: return records_schema class GenericDBDriver(DBDriver): def loader_from_fileobj(self) -> None: return None def loader(self) -> None: return None def unloader(self) -> Optional[Unloader]: return None
44.11165
175
0.617586
7942a1cbefdf6550f59be223ea7864d115e4f3df
2,989
py
Python
find_all_sites.py
Pudit/FarewellSI126
91e92d869a6930797e8b05ab9a6920af901cde62
[ "MIT" ]
null
null
null
find_all_sites.py
Pudit/FarewellSI126
91e92d869a6930797e8b05ab9a6920af901cde62
[ "MIT" ]
null
null
null
find_all_sites.py
Pudit/FarewellSI126
91e92d869a6930797e8b05ab9a6920af901cde62
[ "MIT" ]
null
null
null
#import libraries from bs4 import BeautifulSoup from urllib.request import urlopen import urllib.error import pandas as pd #define func to find subfolder def find_folder(student_id: int): if student_id < 1 : return None elif student_id <= 50 : return "001-050" elif student_id <= 100 : return "051-100" elif student_id <= 150 : return "101-150" elif student_id <= 200 : return "151-200" elif student_id <= 250 : return "201-250" elif student_id <= 300 : return "251-300" elif student_id <= 326 : return "301-326" else: return None # define func to get url def url_si(student_id): return f"https://sites.google.com/view/seniorfarewell2021/mirror/{find_folder(i)}/{i:03d}" # create blank list to collect url and HTTP response code urllist = list() checkerlist = list() for i in range(326 + 1): urllist.append(url_si(i)) urllist[0] = "" #check that each person is exist or not for i in range(327): try: urlopen(url_si(i)) except urllib.error.HTTPError as e: checkerlist.append(404) else: checkerlist.append(200) # finding name and real google doc path namelist = list() formlist = list() for i in range(327): if checkerlist[i] == 200: bsObj = BeautifulSoup(urlopen(urllist[i])) title = bsObj.find("h1").getText() gform = bsObj.find_all("a", href=True)[-2]['href'] namelist.append(title) formlist.append(gform) else: namelist.append("NotFound 404") formlist.append("404 Not Found") #Check GSX, send to my high-school classmates #Because of duplicated nickname, plz check manually is_gsx = [False] * 327 #0 to 326 people in SI126 code is_gsx[11] = True # Max is_gsx[12] = True # Film is_gsx[23] = True # Pea is_gsx[26] = True # Poom is_gsx[28] = True # Win Sukrit is_gsx[33] = True # Krit Kitty is_gsx[37] = True # Ball is_gsx[59] = True # Ji is_gsx[61] = True # Tong is_gsx[104] = True # Now is_gsx[130] = True # Pond is_gsx[139] = True # Thames is_gsx[142] = True # Win Nawin is_gsx[147] = True # Jan is_gsx[164] = True # Mhee is_gsx[185] = True # Jane Glasses is_gsx[200] = True # Ana is_gsx[209] = True # Jane Juice is_gsx[232] = True # Fangpao is_gsx[277] = True # Guggug is_gsx[285] = True # Ken Whale is_gsx[290] = True # Bell Tao #create pandas dataframe from lists si126_df = pd.DataFrame({ 'url': urllist, 'formlink':formlist, 'title' : namelist, 'status': checkerlist, "GSX" : is_gsx }) #save dataframe to csv si126_df.to_csv("si126_namelist.csv") #cleaning some minor texts manually!, add some missing names, strip texts, do on text editors #read csv file after cleaning some dirts si126_df = pd.read_csv("si126_namelist.csv") #find his/her nickname si126_df["nickname"] = si126_df.title.str.split(" ",expand = True,n=1)[0] #export to csv again si126_df.to_csv("si126_namelist.csv")
24.104839
94
0.653061
7942a1e66c4f7555505395cbeac8d199485809d6
1,831
py
Python
setup.py
thehomebrewnerd/featuretools
c704cea13e7ed5332712b053e80de360d54f1429
[ "BSD-3-Clause" ]
1
2019-05-31T04:40:03.000Z
2019-05-31T04:40:03.000Z
setup.py
BillyOtieno/featuretools
5a7e09edf02b463ad903c6d8c40daa86f208c0c0
[ "BSD-3-Clause" ]
null
null
null
setup.py
BillyOtieno/featuretools
5a7e09edf02b463ad903c6d8c40daa86f208c0c0
[ "BSD-3-Clause" ]
null
null
null
from os import path from setuptools import find_packages, setup from setuptools.command.build_ext import build_ext as _build_ext dirname = path.abspath(path.dirname(__file__)) with open(path.join(dirname, 'README.md')) as f: long_description = f.read() # Bootstrap numpy install class build_ext(_build_ext): def finalize_options(self): _build_ext.finalize_options(self) # Prevent numpy from thinking it is still in its setup process: __builtins__.__NUMPY_SETUP__ = False import numpy self.include_dirs.append(numpy.get_include()) setup( name='featuretools', version='0.7.1', packages=find_packages(), description='a framework for automated feature engineering', url='http://featuretools.com', license='BSD 3-clause', author='Feature Labs, Inc.', author_email='[email protected]', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7' ], install_requires=open('requirements.txt').readlines(), setup_requires=open('setup-requirements.txt').readlines(), python_requires='>=2.7, <4', cmdclass={'build_ext': build_ext}, test_suite='featuretools/tests', tests_require=open('test-requirements.txt').readlines(), keywords='feature engineering data science machine learning', include_package_data=True, entry_points={ 'console_scripts': [ 'featuretools = featuretools.__main__:cli' ] }, long_description=long_description, long_description_content_type='text/markdown' )
32.696429
71
0.676679
7942a26f6981b6ae3ec7be71fb36e552b3d4122c
9,546
py
Python
Packs/Whois/Integrations/Whois/Whois_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
null
null
null
Packs/Whois/Integrations/Whois/Whois_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
null
null
null
Packs/Whois/Integrations/Whois/Whois_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
null
null
null
import datetime import Whois import demistomock as demisto import pytest import subprocess import time import tempfile import sys from CommonServerPython import DBotScoreReliability import json INTEGRATION_NAME = 'Whois' @pytest.fixture(autouse=True) def handle_calling_context(mocker): mocker.patch.object(demisto, 'callingContext', {'context': {'IntegrationBrand': INTEGRATION_NAME}}) def load_test_data(json_path): with open(json_path) as f: return json.load(f) def assert_results_ok(): assert demisto.results.call_count == 1 # call_args is tuple (args list, kwargs). we only need the first one results = demisto.results.call_args[0] assert len(results) == 1 assert results[0] == 'ok' def test_test_command(mocker): mocker.patch.object(demisto, 'results') mocker.patch.object(demisto, 'command', return_value='test-module') Whois.main() assert_results_ok() @pytest.mark.parametrize( 'query,expected', [("app.paloaltonetwork.com", "paloaltonetwork.com"), ("test.this.google.co.il", "google.co.il"), ("app.XSOAR.test", "app.XSOAR.test")] ) def test_get_domain_from_query(query, expected): from Whois import get_domain_from_query assert get_domain_from_query(query) == expected def test_socks_proxy_fail(mocker): mocker.patch.object(demisto, 'params', return_value={'proxy_url': 'socks5://localhost:1180'}) mocker.patch.object(demisto, 'command', return_value='test-module') mocker.patch.object(demisto, 'results') with pytest.raises(SystemExit) as err: Whois.main() assert err.type == SystemExit assert demisto.results.call_count == 1 # call_args is tuple (args list, kwargs). we only need the first one results = demisto.results.call_args[0] assert len(results) == 1 assert "Couldn't connect with the socket-server" in results[0]['Contents'] def test_socks_proxy(mocker, request): mocker.patch.object(demisto, 'params', return_value={'proxy_url': 'socks5h://localhost:9980'}) mocker.patch.object(demisto, 'command', return_value='test-module') mocker.patch.object(demisto, 'results') tmp = tempfile.TemporaryFile('w+') microsocks = './test_data/microsocks_darwin' if 'darwin' in sys.platform else './test_data/microsocks' process = subprocess.Popen([microsocks, "-p", "9980"], stderr=subprocess.STDOUT, stdout=tmp) def cleanup(): process.kill() request.addfinalizer(cleanup) time.sleep(1) Whois.main() assert_results_ok() tmp.seek(0) assert 'connected to' in tmp.read() # make sure we went through microsocks TEST_QUERY_RESULT_INPUT = [ ( {'contacts': {'admin': None, 'billing': None, 'registrant': None, 'tech': None}, 'raw': ['NOT FOUND\n>>> Last update of WHOIS database: 2020-05-07T13:55:34Z <<<']}, 'rsqupuo.info', DBotScoreReliability.B, False ), ( {'contacts': {'admin': None, 'billing': None, 'registrant': None, 'tech': None}, 'raw': ['No match for "BLABLA43213422342AS.COM".>>> Last update of whois database: 2020-05-20T08:39:17Z <<<']}, "BLABLA43213422342AS.COM", DBotScoreReliability.B, False ), ( {'status': ['clientUpdateProhibited (https://www.icann.org/epp#clientUpdateProhibited)'], 'updated_date': [datetime.datetime(2019, 9, 9, 8, 39, 4)], 'contacts': {'admin': {'country': 'US', 'state': 'CA', 'name': 'Google LLC'}, 'tech': {'organization': 'Google LLC', 'state': 'CA', 'country': 'US'}, 'registrant': {'organization': 'Google LLC', 'state': 'CA', 'country': 'US'}, 'billing': None}, 'nameservers': ['ns1.google.com', 'ns4.google.com', 'ns3.google.com', 'ns2.google.com'], 'expiration_date': [datetime.datetime(2028, 9, 13, 0, 0), datetime.datetime(2028, 9, 13, 0, 0)], 'emails': ['[email protected]', '[email protected]'], 'raw': ['Domain Name: google.com\nRegistry Domain ID: 2138514_DOMAIN_COM-VRSN'], 'creation_date': [datetime.datetime(1997, 9, 15, 0, 0)], 'id': ['2138514_DOMAIN_COM-VRSN']}, 'google.com', DBotScoreReliability.B, True ), ( {'contacts': {'admin': None, 'billing': None, 'registrant': None, 'tech': None}}, 'rsqupuo.info', DBotScoreReliability.B, False ), ( {'status': ['clientUpdateProhibited (https://www.icann.org/epp#clientUpdateProhibited)'], 'updated_date': [datetime.datetime(2019, 9, 9, 8, 39, 4)], 'contacts': {'admin': {'country': 'US', 'state': 'CA', 'name': 'Google LLC'}, 'tech': {'organization': 'Google LLC', 'state': 'CA', 'country': 'US'}, 'registrant': {'organization': 'Google LLC', 'state': 'CA', 'country': 'US'}, 'billing': None}, 'nameservers': ['ns1.google.com', 'ns4.google.com', 'ns3.google.com', 'ns2.google.com'], 'expiration_date': [datetime.datetime(2028, 9, 13, 0, 0), datetime.datetime(2028, 9, 13, 0, 0)], 'emails': ['[email protected]', '[email protected]'], 'raw': 'Domain Name: google.com\nRegistry Domain ID: 2138514_DOMAIN_COM-VRSN', 'creation_date': [datetime.datetime(1997, 9, 15, 0, 0)], 'id': ['2138514_DOMAIN_COM-VRSN']}, 'google.com', DBotScoreReliability.B, True ), ( {'status': ['clientUpdateProhibited (https://www.icann.org/epp#clientUpdateProhibited)'], 'updated_date': [datetime.datetime(2019, 9, 9, 8, 39, 4)], 'contacts': {'admin': {'country': 'US', 'state': 'CA', 'name': 'Google LLC'}, 'tech': {'organization': 'Google LLC', 'state': 'CA', 'country': 'US'}, 'registrant': {'organization': 'Google LLC', 'state': 'CA', 'country': 'US'}, 'billing': None}, 'nameservers': ['ns1.google.com', 'ns4.google.com', 'ns3.google.com', 'ns2.google.com'], 'expiration_date': [datetime.datetime(2028, 9, 13, 0, 0), datetime.datetime(2028, 9, 13, 0, 0)], 'emails': ['[email protected]', '[email protected]'], 'raw': {'data': 'Domain Name: google.com\nRegistry Domain ID: 2138514_DOMAIN_COM-VRSN'}, 'creation_date': [datetime.datetime(1997, 9, 15, 0, 0)], 'id': ['2138514_DOMAIN_COM-VRSN']}, 'google.com', DBotScoreReliability.B, True ), ( {'contacts': {'admin': None, 'billing': None, 'registrant': None, 'tech': None}, 'raw': {'data': 'Domain Name: google.com\nRegistry Domain ID: 2138514_DOMAIN_COM-VRSN'}}, 'rsqupuo.info', DBotScoreReliability.B, True ), ] @pytest.mark.parametrize('whois_result, domain, reliability, expected', TEST_QUERY_RESULT_INPUT) def test_query_result(whois_result, domain, reliability, expected): from Whois import create_outputs md, standard_ec, dbot_score = create_outputs(whois_result, domain, reliability) assert standard_ec['Whois']['QueryResult'] == expected assert dbot_score.get('DBotScore(val.Indicator && val.Indicator == obj.Indicator && val.Vendor == obj.Vendor && ' 'val.Type == obj.Type)').get('Reliability') == 'B - Usually reliable' def test_ip_command(mocker): """ Given: - IP addresses When: - running the IP command Then: - Verify the result is as expected - Verify support list of IPs """ from Whois import ip_command response = load_test_data('./test_data/ip_output.json') mocker.patch.object(Whois, 'get_whois_ip', return_value=response) result = ip_command(['4.4.4.4', '4.4.4.4'], DBotScoreReliability.B) assert len(result) == 2 assert result[0].outputs_prefix == 'Whois.IP' assert result[0].outputs.get('query') == '4.4.4.4' assert result[0].indicator.to_context() == { 'IP(val.Address && val.Address == obj.Address)': { 'Organization': {'Name': u'LEVEL3, US'}, 'FeedRelatedIndicators': [{'type': 'CIDR', 'description': None, 'value': u'4.4.0.0/16'}], 'Geo': {'Country': u'US'}, 'ASN': u'3356', 'Address': '4.4.4.4'}, 'DBotScore(' 'val.Indicator && val.Indicator == obj.Indicator && val.Vendor == obj.Vendor && val.Type == obj.Type)': {'Reliability': 'B - Usually reliable', 'Vendor': 'Whois', 'Indicator': '4.4.4.4', 'Score': 0, 'Type': 'ip'}} def test_get_whois_ip_proxy_param(mocker): """ Given: - proxy address When: - running the get_whois_ip function Then: - Verify the function doesn't fail due to type errors """ from Whois import get_whois_ip mocker.patch.object(demisto, 'params', return_value={"proxy": True}) result = get_whois_ip('1.1.1.1') assert result def test_indian_tld(): """ Given: - indian domain When: - running the get_root_server function Then: - Verify the function returns the correct Whois server """ from Whois import get_root_server result = get_root_server("google.in") assert result == "in.whois-servers.net" def test_parse_raw_whois(): with open('test_data/EU domains.text', 'r') as f: raw_data = f.read() result = Whois.parse_raw_whois([raw_data], [], never_query_handles=False, handle_server='whois.eu') assert result['registrar'] == ['IONOS SE']
39.122951
120
0.621726
7942a3d5b03bf5233ad4110585a526bf6162ad3f
30,632
py
Python
tests/plugins/test_resolve_remote_source.py
chmeliik/atomic-reactor
ca5a804dcb0aecf8b6bc0c8b16a84ac6847b4d15
[ "BSD-3-Clause" ]
null
null
null
tests/plugins/test_resolve_remote_source.py
chmeliik/atomic-reactor
ca5a804dcb0aecf8b6bc0c8b16a84ac6847b4d15
[ "BSD-3-Clause" ]
16
2021-12-07T09:12:31.000Z
2022-03-30T07:24:04.000Z
tests/plugins/test_resolve_remote_source.py
chmeliik/atomic-reactor
ca5a804dcb0aecf8b6bc0c8b16a84ac6847b4d15
[ "BSD-3-Clause" ]
null
null
null
""" Copyright (c) 2019-2022 Red Hat, Inc All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. """ import base64 import io import sys import tarfile from pathlib import Path from textwrap import dedent from typing import Callable, Dict from flexmock import flexmock import pytest import koji import yaml from atomic_reactor.dirs import BuildDir import atomic_reactor.utils.koji as koji_util from atomic_reactor.utils.cachito import CachitoAPI, CFG_TYPE_B64 from atomic_reactor.constants import ( CACHITO_ENV_ARG_ALIAS, CACHITO_ENV_FILENAME, PLUGIN_BUILD_ORCHESTRATE_KEY, REMOTE_SOURCE_DIR, REMOTE_SOURCE_TARBALL_FILENAME, REMOTE_SOURCE_JSON_FILENAME, ) from atomic_reactor.plugin import PreBuildPluginsRunner, PluginFailedException from atomic_reactor.plugins.pre_resolve_remote_source import ( RemoteSource, ResolveRemoteSourcePlugin, ) from atomic_reactor.source import SourceConfig from tests.stubs import StubSource KOJI_HUB = 'http://koji.com/hub' KOJI_TASK_ID = 123 KOJI_TASK_OWNER = 'spam' CACHITO_URL = 'https://cachito.example.com' CACHITO_REQUEST_ID = 98765 SECOND_CACHITO_REQUEST_ID = 98766 CACHITO_REQUEST_DOWNLOAD_URL = '{}/api/v1/{}/download'.format(CACHITO_URL, CACHITO_REQUEST_ID) SECOND_CACHITO_REQUEST_DOWNLOAD_URL = '{}/api/v1/{}/download'.format(CACHITO_URL, SECOND_CACHITO_REQUEST_ID) CACHITO_REQUEST_CONFIG_URL = '{}/api/v1/requests/{}/configuration-files'.format( CACHITO_URL, CACHITO_REQUEST_ID ) SECOND_CACHITO_REQUEST_CONFIG_URL = '{}/api/v1/requests/{}/configuration-files'.format( CACHITO_URL, SECOND_CACHITO_REQUEST_ID ) CACHITO_ICM_URL = '{}/api/v1/content-manifest?requests={}'.format( CACHITO_URL, CACHITO_REQUEST_ID ) SECOND_CACHITO_ICM_URL = '{}/api/v1/content-manifest?requests={}'.format( CACHITO_URL, SECOND_CACHITO_REQUEST_ID ) REMOTE_SOURCE_REPO = 'https://git.example.com/team/repo.git' REMOTE_SOURCE_REF = 'b55c00f45ec3dfee0c766cea3d395d6e21cc2e5a' REMOTE_SOURCE_PACKAGES = [ { 'name': 'test-package', 'type': 'npm', 'version': '0.0.1' } ] SECOND_REMOTE_SOURCE_REPO = 'https://git.example.com/other-team/other-repo.git' SECOND_REMOTE_SOURCE_REF = 'd55c00f45ec3dfee0c766cea3d395d6e21cc2e5c' CACHITO_SOURCE_REQUEST = { 'id': CACHITO_REQUEST_ID, 'repo': REMOTE_SOURCE_REPO, 'ref': REMOTE_SOURCE_REF, 'environment_variables': { 'GO111MODULE': 'on', 'GOPATH': 'deps/gomod', 'GOCACHE': 'deps/gomod', }, 'flags': ['enable-confeti', 'enable-party-popper'], 'pkg_managers': ['gomod'], 'dependencies': [ { 'name': 'github.com/op/go-logging', 'type': 'gomod', 'version': 'v0.1.1', } ], 'packages': [ { 'name': 'github.com/spam/bacon/v2', 'type': 'gomod', 'version': 'v2.0.3' } ], 'configuration_files': CACHITO_REQUEST_CONFIG_URL, 'content_manifest': CACHITO_ICM_URL, 'extra_cruft': 'ignored', } SECOND_CACHITO_SOURCE_REQUEST = { 'id': SECOND_CACHITO_REQUEST_ID, 'repo': SECOND_REMOTE_SOURCE_REPO, 'ref': SECOND_REMOTE_SOURCE_REF, 'environment_variables': { 'PIP_CERT': 'app/package-index-ca.pem', 'PIP_INDEX_URL': 'http://example-pip-index.url/stuff' }, 'flags': [], 'pkg_managers': ['pip'], 'dependencies': [ { 'name': 'click', 'type': 'pip', 'version': '5.0', } ], 'packages': [ { 'name': 'osbs/cachito-pip-with-deps', 'type': 'pip', 'version': '1.0.0' } ], 'configuration_files': SECOND_CACHITO_REQUEST_CONFIG_URL, 'content_manifest': SECOND_CACHITO_ICM_URL, 'extra_cruft': 'ignored', } REMOTE_SOURCE_JSON = { 'repo': REMOTE_SOURCE_REPO, 'ref': REMOTE_SOURCE_REF, 'environment_variables': { 'GO111MODULE': 'on', 'GOPATH': 'deps/gomod', 'GOCACHE': 'deps/gomod', }, 'flags': ['enable-confeti', 'enable-party-popper'], 'pkg_managers': ['gomod'], 'dependencies': [ { 'name': 'github.com/op/go-logging', 'type': 'gomod', 'version': 'v0.1.1', } ], 'packages': [ { 'name': 'github.com/spam/bacon/v2', 'type': 'gomod', 'version': 'v2.0.3' } ], 'configuration_files': CACHITO_REQUEST_CONFIG_URL, 'content_manifest': CACHITO_ICM_URL, } SECOND_REMOTE_SOURCE_JSON = { 'repo': SECOND_REMOTE_SOURCE_REPO, 'ref': SECOND_REMOTE_SOURCE_REF, 'environment_variables': { 'PIP_CERT': 'app/package-index-ca.pem', 'PIP_INDEX_URL': 'http://example-pip-index.url/stuff' }, 'flags': [], 'pkg_managers': ['pip'], 'dependencies': [ { 'name': 'click', 'type': 'pip', 'version': '5.0', } ], 'packages': [ { 'name': 'osbs/cachito-pip-with-deps', 'type': 'pip', 'version': '1.0.0' } ], 'configuration_files': SECOND_CACHITO_REQUEST_CONFIG_URL, 'content_manifest': SECOND_CACHITO_ICM_URL, } CACHITO_ENV_VARS_JSON = { 'GO111MODULE': {'kind': 'literal', 'value': 'on'}, 'GOPATH': {'kind': 'path', 'value': 'deps/gomod'}, 'GOCACHE': {'kind': 'path', 'value': 'deps/gomod'}, } # Assert this with the CACHITO_ENV_VARS_JSON CACHITO_BUILD_ARGS = { 'GO111MODULE': 'on', 'GOPATH': '/remote-source/deps/gomod', 'GOCACHE': '/remote-source/deps/gomod', } SECOND_CACHITO_ENV_VARS_JSON = { 'PIP_CERT': {'kind': 'path', 'value': 'app/package-index-ca.pem'}, 'PIP_INDEX_URL': {'kind': 'literal', 'value': 'http://example-pip-index.url/stuff'}, } # The response from CACHITO_REQUEST_CONFIG_URL CACHITO_CONFIG_FILES = [ { "path": "app/some-config.txt", "type": CFG_TYPE_B64, "content": base64.b64encode(b"gomod requests don't actually have configs").decode(), }, ] # The response from SECOND_CACHITO_REQUEST_CONFIG_URL SECOND_CACHITO_CONFIG_FILES = [ { "path": "app/package-index-ca.pem", "type": CFG_TYPE_B64, "content": base64.b64encode(b"-----BEGIN CERTIFICATE-----").decode(), }, ] def mock_reactor_config(workflow, data=None): if data is None: data = dedent("""\ version: 1 cachito: api_url: {} auth: ssl_certs_dir: {} koji: hub_url: / root_url: '' auth: {{}} """.format(CACHITO_URL, workflow._tmpdir)) workflow._tmpdir.joinpath('cert').touch() config = yaml.safe_load(data) workflow.conf.conf = config def mock_user_params(workflow, user_params): if not workflow.user_params: workflow.user_params = user_params else: workflow.user_params.update(user_params) def mock_repo_config(workflow, data=None): if data is None: data = dedent("""\ remote_source: repo: {} ref: {} """.format(REMOTE_SOURCE_REPO, REMOTE_SOURCE_REF)) workflow._tmpdir.joinpath('container.yaml').write_text(data, "utf-8") # The repo config is read when SourceConfig is initialized. Force # reloading here to make usage easier. workflow.source.config = SourceConfig(str(workflow._tmpdir)) @pytest.fixture def workflow(workflow, source_dir): # Stash the tmpdir in workflow so it can be used later workflow._tmpdir = source_dir class MockSource(StubSource): def __init__(self, workdir): super(MockSource, self).__init__() self.workdir = workdir self.path = workdir workflow.source = MockSource(str(source_dir)) workflow.buildstep_plugins_conf = [{'name': PLUGIN_BUILD_ORCHESTRATE_KEY}] workflow.user_params = {'koji_task_id': KOJI_TASK_ID} mock_repo_config(workflow) mock_reactor_config(workflow) mock_koji() workflow.build_dir.init_build_dirs(["x86_64", "ppc64le"], workflow.source) return workflow def expected_build_dir(workflow) -> str: """The primary build_dir that the plugin is expected to work with.""" return str(workflow.build_dir.any_platform.path) def expected_dowload_path(workflow, remote_source_name=None) -> str: if remote_source_name: filename = f'remote-source-{remote_source_name}.tar.gz' else: filename = 'remote-source.tar.gz' path = Path(expected_build_dir(workflow), filename) return str(path) def mock_cachito_tarball(create_at_path) -> str: """Create a mocked tarball for a remote source at the specified path.""" create_at_path = Path(create_at_path) file_content = f"Content of {create_at_path.name}".encode("utf-8") readme = tarfile.TarInfo("app/README.txt") readme.size = len(file_content) with tarfile.open(create_at_path, 'w:gz') as tf: tf.addfile(readme, io.BytesIO(file_content)) return str(create_at_path) def mock_cachito_api_multiple_remote_sources(workflow, user=KOJI_TASK_OWNER): ( flexmock(CachitoAPI) .should_receive("request_sources") .with_args( repo=REMOTE_SOURCE_REPO, ref=REMOTE_SOURCE_REF, user=user, dependency_replacements=None, ) .and_return({"id": CACHITO_REQUEST_ID}) .ordered() ) ( flexmock(CachitoAPI) .should_receive("request_sources") .with_args( repo=SECOND_REMOTE_SOURCE_REPO, ref=SECOND_REMOTE_SOURCE_REF, user=user, dependency_replacements=None, ) .and_return({"id": SECOND_CACHITO_REQUEST_ID}) .ordered() ) ( flexmock(CachitoAPI) .should_receive("wait_for_request") .with_args({"id": CACHITO_REQUEST_ID}) .and_return(CACHITO_SOURCE_REQUEST) .ordered() ) ( flexmock(CachitoAPI) .should_receive("wait_for_request") .with_args({"id": SECOND_CACHITO_REQUEST_ID}) .and_return(SECOND_CACHITO_SOURCE_REQUEST) .ordered() ) ( flexmock(CachitoAPI) .should_receive("download_sources") .with_args( CACHITO_SOURCE_REQUEST, dest_dir=expected_build_dir(workflow), dest_filename="remote-source-gomod.tar.gz", ) .and_return(mock_cachito_tarball(expected_dowload_path(workflow, "gomod"))) .ordered() ) ( flexmock(CachitoAPI) .should_receive("get_request_env_vars") .with_args(CACHITO_SOURCE_REQUEST["id"]) .and_return(CACHITO_ENV_VARS_JSON) .ordered() ) ( flexmock(CachitoAPI) .should_receive("download_sources") .with_args( SECOND_CACHITO_SOURCE_REQUEST, dest_dir=expected_build_dir(workflow), dest_filename="remote-source-pip.tar.gz", ) .and_return(mock_cachito_tarball(expected_dowload_path(workflow, "pip"))) .ordered() ) ( flexmock(CachitoAPI) .should_receive("get_request_env_vars") .with_args(SECOND_CACHITO_SOURCE_REQUEST["id"]) .and_return(SECOND_CACHITO_ENV_VARS_JSON) .ordered() ) ( flexmock(CachitoAPI) .should_receive("get_request_config_files") .with_args(CACHITO_SOURCE_REQUEST["id"]) .and_return(CACHITO_CONFIG_FILES) .ordered() ) ( flexmock(CachitoAPI) .should_receive("get_request_config_files") .with_args(SECOND_CACHITO_SOURCE_REQUEST["id"]) .and_return(SECOND_CACHITO_CONFIG_FILES) .ordered() ) ( flexmock(CachitoAPI) .should_receive("assemble_download_url") .with_args(CACHITO_REQUEST_ID) .and_return(CACHITO_REQUEST_DOWNLOAD_URL) .ordered() ) ( flexmock(CachitoAPI) .should_receive("assemble_download_url") .with_args(SECOND_CACHITO_REQUEST_ID) .and_return(SECOND_CACHITO_REQUEST_DOWNLOAD_URL) .ordered() ) def mock_cachito_api(workflow, user=KOJI_TASK_OWNER, source_request=None, dependency_replacements=None, env_vars_json=None): if source_request is None: source_request = CACHITO_SOURCE_REQUEST (flexmock(CachitoAPI) .should_receive('request_sources') .with_args( repo=REMOTE_SOURCE_REPO, ref=REMOTE_SOURCE_REF, user=user, dependency_replacements=dependency_replacements, ) .and_return({'id': CACHITO_REQUEST_ID})) (flexmock(CachitoAPI) .should_receive('wait_for_request') .with_args({'id': CACHITO_REQUEST_ID}) .and_return(source_request)) (flexmock(CachitoAPI) .should_receive('download_sources') .with_args(source_request, dest_dir=expected_build_dir(workflow), dest_filename=REMOTE_SOURCE_TARBALL_FILENAME) .and_return(mock_cachito_tarball(expected_dowload_path(workflow)))) (flexmock(CachitoAPI) .should_receive('assemble_download_url') .with_args(CACHITO_REQUEST_ID) .and_return(CACHITO_REQUEST_DOWNLOAD_URL)) (flexmock(CachitoAPI) .should_receive('get_request_env_vars') .with_args(source_request['id']) .and_return(env_vars_json or CACHITO_ENV_VARS_JSON)) (flexmock(CachitoAPI) .should_receive('get_request_config_files') .with_args(source_request['id']) .and_return(CACHITO_CONFIG_FILES)) def mock_koji(user=KOJI_TASK_OWNER): koji_session = flexmock(krb_login=lambda: 'some') flexmock(koji, ClientSession=lambda hub, opts: koji_session) flexmock(koji_util).should_receive('get_koji_task_owner').and_return({'name': user}) def check_injected_files(expected_files: Dict[str, str]) -> Callable[[BuildDir], None]: """Make a callable that checks expected files in a BuildDir.""" def check_files(build_dir: BuildDir) -> None: """Check the presence and content of files in the unpacked_remote_sources directory.""" unpacked_remote_sources = build_dir.path / ResolveRemoteSourcePlugin.REMOTE_SOURCE for path, expected_content in expected_files.items(): abspath = unpacked_remote_sources / path assert abspath.read_text() == expected_content return check_files def setup_function(*args): # IMPORTANT: This needs to be done to ensure mocks at the module # level are reset between test cases. sys.modules.pop('pre_resolve_remote_source', None) def teardown_function(*args): # IMPORTANT: This needs to be done to ensure mocks at the module # level are reset between test cases. sys.modules.pop('pre_resolve_remote_source', None) def test_source_request_to_json_missing_optional_keys(workflow): p = ResolveRemoteSourcePlugin(workflow) source_request = { "repo": REMOTE_SOURCE_REPO, "ref": REMOTE_SOURCE_REF, "packages": [], } # test that missing optional keys are ignored as expected assert p.source_request_to_json(source_request) == source_request @pytest.mark.parametrize('scratch', (True, False)) @pytest.mark.parametrize('dr_strs, dependency_replacements', ((None, None), (['gomod:foo.bar/project:2'], [{ 'name': 'foo.bar/project', 'type': 'gomod', 'version': '2'}]), (['gomod:foo.bar/project:2:newproject'], [{ 'name': 'foo.bar/project', 'type': 'gomod', 'new_name': 'newproject', 'version': '2'}]), (['gomod:foo.bar/project'], None))) def test_resolve_remote_source(workflow, scratch, dr_strs, dependency_replacements): mock_cachito_api(workflow, dependency_replacements=dependency_replacements) workflow.user_params['scratch'] = scratch err = None if dr_strs and not scratch: err = 'Cachito dependency replacements are only allowed for scratch builds' if dr_strs and any(len(dr.split(':')) < 3 for dr in dr_strs): err = 'Cachito dependency replacements must be' expected_plugin_results = [ { "name": None, "url": CACHITO_REQUEST_DOWNLOAD_URL, "remote_source_json": { "json": REMOTE_SOURCE_JSON, "filename": REMOTE_SOURCE_JSON_FILENAME, }, "remote_source_tarball": { "filename": REMOTE_SOURCE_TARBALL_FILENAME, "path": expected_dowload_path(workflow), }, }, ] run_plugin_with_args( workflow, dependency_replacements=dr_strs, expect_error=err, expected_plugin_results=expected_plugin_results, ) if err: return cachito_env_content = dedent( """\ #!/bin/bash export GO111MODULE=on export GOPATH=/remote-source/deps/gomod export GOCACHE=/remote-source/deps/gomod """ ) workflow.build_dir.for_each_platform( check_injected_files( { "cachito.env": cachito_env_content, "app/README.txt": "Content of remote-source.tar.gz", "app/some-config.txt": "gomod requests don't actually have configs", }, ) ) assert workflow.buildargs == { **CACHITO_BUILD_ARGS, "REMOTE_SOURCE": ResolveRemoteSourcePlugin.REMOTE_SOURCE, "REMOTE_SOURCE_DIR": REMOTE_SOURCE_DIR, CACHITO_ENV_ARG_ALIAS: str(Path(REMOTE_SOURCE_DIR, CACHITO_ENV_FILENAME)), } # https://github.com/openshift/imagebuilder/issues/139 assert not workflow.buildargs["REMOTE_SOURCE"].startswith("/") @pytest.mark.parametrize( 'env_vars_json', [ { 'GOPATH': {'kind': 'path', 'value': 'deps/gomod'}, 'GOCACHE': {'kind': 'path', 'value': 'deps/gomod'}, 'GO111MODULE': {'kind': 'literal', 'value': 'on'}, 'GOX': {'kind': 'new', 'value': 'new-kind'}, }, ] ) def test_fail_build_if_unknown_kind(workflow, env_vars_json): mock_cachito_api(workflow, env_vars_json=env_vars_json) run_plugin_with_args(workflow, expect_error=r'.*Unknown kind new got from Cachito') def test_no_koji_user(workflow, caplog): reactor_config = dedent("""\ version: 1 cachito: api_url: {} auth: ssl_certs_dir: {} koji: hub_url: / root_url: '' auth: {{}} """.format(CACHITO_URL, workflow._tmpdir)) mock_reactor_config(workflow, reactor_config) mock_cachito_api(workflow, user='unknown_user') workflow.user_params['koji_task_id'] = 'x' log_msg = 'Invalid Koji task ID' expected_plugin_results = [ { "name": None, "url": CACHITO_REQUEST_DOWNLOAD_URL, "remote_source_json": { "json": REMOTE_SOURCE_JSON, "filename": REMOTE_SOURCE_JSON_FILENAME, }, "remote_source_tarball": { "filename": REMOTE_SOURCE_TARBALL_FILENAME, "path": expected_dowload_path(workflow), }, }, ] run_plugin_with_args(workflow, expected_plugin_results=expected_plugin_results) assert log_msg in caplog.text @pytest.mark.parametrize('pop_key', ('repo', 'ref', 'packages')) def test_invalid_remote_source_structure(workflow, pop_key): source_request = { 'id': CACHITO_REQUEST_ID, 'repo': REMOTE_SOURCE_REPO, 'ref': REMOTE_SOURCE_REF, 'packages': REMOTE_SOURCE_PACKAGES, } source_request.pop(pop_key) mock_cachito_api(workflow, source_request=source_request) run_plugin_with_args(workflow, expect_error='Received invalid source request') def test_fail_when_missing_cachito_config(workflow): reactor_config = dedent("""\ version: 1 koji: hub_url: / root_url: '' auth: {} """) mock_reactor_config(workflow, reactor_config) with pytest.raises(PluginFailedException) as exc: run_plugin_with_args(workflow, expect_result=False) assert 'No Cachito configuration defined' in str(exc.value) def test_invalid_cert_reference(workflow): bad_certs_dir = str(workflow._tmpdir / 'invalid-dir') reactor_config = dedent("""\ version: 1 cachito: api_url: {} auth: ssl_certs_dir: {} koji: hub_url: / root_url: '' auth: {{}} """.format(CACHITO_URL, bad_certs_dir)) mock_reactor_config(workflow, reactor_config) run_plugin_with_args(workflow, expect_error="Cachito ssl_certs_dir doesn't exist") def test_ignore_when_missing_remote_source_config(workflow): remote_source_config = dedent("""---""") mock_repo_config(workflow, remote_source_config) result = run_plugin_with_args(workflow, expect_result=False) assert result is None @pytest.mark.parametrize(('task_id', 'log_entry'), ( (None, 'Invalid Koji task ID'), ('not-an-int', 'Invalid Koji task ID'), )) def test_bad_build_metadata(workflow, task_id, log_entry, caplog): workflow.user_params['koji_task_id'] = task_id mock_cachito_api(workflow, user='unknown_user') expected_plugin_results = [ { "name": None, "url": CACHITO_REQUEST_DOWNLOAD_URL, "remote_source_json": { "json": REMOTE_SOURCE_JSON, "filename": REMOTE_SOURCE_JSON_FILENAME, }, "remote_source_tarball": { "filename": REMOTE_SOURCE_TARBALL_FILENAME, "path": expected_dowload_path(workflow), }, }, ] run_plugin_with_args(workflow, expected_plugin_results=expected_plugin_results) assert log_entry in caplog.text assert 'unknown_user' in caplog.text @pytest.mark.parametrize('allow_multiple_remote_sources', [True, False]) def test_allow_multiple_remote_sources(workflow, allow_multiple_remote_sources): first_remote_source_name = 'gomod' first_remote_tarball_filename = 'remote-source-gomod.tar.gz' first_remote_json_filename = 'remote-source-gomod.json' second_remote_source_name = 'pip' second_remote_tarball_filename = 'remote-source-pip.tar.gz' second_remote_json_filename = 'remote-source-pip.json' container_yaml_config = dedent( """\ remote_sources: - name: {} remote_source: repo: {} ref: {} - name: {} remote_source: repo: {} ref: {} """ ).format( first_remote_source_name, REMOTE_SOURCE_REPO, REMOTE_SOURCE_REF, second_remote_source_name, SECOND_REMOTE_SOURCE_REPO, SECOND_REMOTE_SOURCE_REF, ) reactor_config = dedent("""\ version: 1 cachito: api_url: {} auth: ssl_certs_dir: {} koji: hub_url: / root_url: '' auth: {{}} allow_multiple_remote_sources: {} """.format(CACHITO_URL, workflow._tmpdir, allow_multiple_remote_sources)) mock_repo_config(workflow, data=container_yaml_config) mock_reactor_config(workflow, reactor_config) mock_cachito_api_multiple_remote_sources(workflow) if not allow_multiple_remote_sources: err_msg = ( "Multiple remote sources are not enabled, " "use single remote source in container.yaml" ) result = run_plugin_with_args(workflow, expect_result=False, expect_error=err_msg) assert result is None else: expected_plugin_results = [ { "name": first_remote_source_name, "url": CACHITO_REQUEST_DOWNLOAD_URL, "remote_source_json": { "json": REMOTE_SOURCE_JSON, "filename": first_remote_json_filename, }, "remote_source_tarball": { "filename": first_remote_tarball_filename, "path": expected_dowload_path(workflow, "gomod"), }, }, { "name": second_remote_source_name, "url": SECOND_CACHITO_REQUEST_DOWNLOAD_URL, "remote_source_json": { "json": SECOND_REMOTE_SOURCE_JSON, "filename": second_remote_json_filename, }, "remote_source_tarball": { "filename": second_remote_tarball_filename, "path": expected_dowload_path(workflow, "pip"), }, }, ] run_plugin_with_args(workflow, expected_plugin_results=expected_plugin_results) first_cachito_env = dedent( """\ #!/bin/bash export GO111MODULE=on export GOPATH=/remote-source/gomod/deps/gomod export GOCACHE=/remote-source/gomod/deps/gomod """ ) second_cachito_env = dedent( """\ #!/bin/bash export PIP_CERT=/remote-source/pip/app/package-index-ca.pem export PIP_INDEX_URL=http://example-pip-index.url/stuff """ ) workflow.build_dir.for_each_platform( check_injected_files( { "gomod/cachito.env": first_cachito_env, "gomod/app/README.txt": "Content of remote-source-gomod.tar.gz", "gomod/app/some-config.txt": "gomod requests don't actually have configs", "pip/cachito.env": second_cachito_env, "pip/app/README.txt": "Content of remote-source-pip.tar.gz", "pip/app/package-index-ca.pem": "-----BEGIN CERTIFICATE-----", }, ) ) assert workflow.buildargs == { "REMOTE_SOURCES": ResolveRemoteSourcePlugin.REMOTE_SOURCE, "REMOTE_SOURCES_DIR": REMOTE_SOURCE_DIR, } # https://github.com/openshift/imagebuilder/issues/139 assert not workflow.buildargs["REMOTE_SOURCES"].startswith("/") def test_multiple_remote_sources_non_unique_names(workflow): container_yaml_config = dedent("""\ remote_sources: - name: same remote_source: repo: https://git.example.com/team/repo.git ref: a55c00f45ec3dfee0c766cea3d395d6e21cc2e5a - name: same remote_source: repo: https://git.example.com/team/repo.git ref: a55c00f45ec3dfee0c766cea3d395d6e21cc2e5a - name: bit-different remote_source: repo: https://git.example.com/team/repo.git ref: a55c00f45ec3dfee0c766cea3d395d6e21cc2e5a """) reactor_config = dedent("""\ version: 1 cachito: api_url: {} auth: ssl_certs_dir: {} koji: hub_url: / root_url: '' auth: {{}} allow_multiple_remote_sources: True """.format(CACHITO_URL, workflow._tmpdir)) mock_repo_config(workflow, data=container_yaml_config) mock_reactor_config(workflow, reactor_config) err_msg = ( r"Provided remote sources parameters contain non unique names: \['same'\]" ) result = run_plugin_with_args(workflow, expect_result=False, expect_error=err_msg) assert result is None def run_plugin_with_args(workflow, dependency_replacements=None, expect_error=None, expect_result=True, expected_plugin_results=None): runner = PreBuildPluginsRunner( workflow, [ { "name": ResolveRemoteSourcePlugin.key, "args": {"dependency_replacements": dependency_replacements}, }, ], ) if expect_error: with pytest.raises(PluginFailedException, match=expect_error): runner.run() return results = runner.run()[ResolveRemoteSourcePlugin.key] if expect_result: assert results == expected_plugin_results return results def test_inject_remote_sources_dest_already_exists(workflow): plugin = ResolveRemoteSourcePlugin(workflow) processed_remote_sources = [ RemoteSource( id=CACHITO_REQUEST_ID, name=None, json_data={}, build_args={}, tarball_path=Path("/does/not/matter"), ), ] builddir_path = Path(expected_build_dir(workflow)) builddir_path.joinpath(ResolveRemoteSourcePlugin.REMOTE_SOURCE).mkdir() err_msg = "Conflicting path unpacked_remote_sources already exists" with pytest.raises(RuntimeError, match=err_msg): plugin.inject_remote_sources(processed_remote_sources) def test_generate_cachito_env_file_shell_quoting(workflow): plugin = ResolveRemoteSourcePlugin(workflow) dest_dir = Path(expected_build_dir(workflow)) plugin.generate_cachito_env_file(dest_dir, {"foo": "somefile; rm -rf ~"}) cachito_env = dest_dir / "cachito.env" assert cachito_env.read_text() == dedent( """\ #!/bin/bash export foo='somefile; rm -rf ~' """ ) def test_generate_cachito_config_files_unknown_type(workflow): plugin = ResolveRemoteSourcePlugin(workflow) dest_dir = Path(expected_build_dir(workflow)) cfg_files = [{"path": "foo", "type": "unknown", "content": "does not matter"}] with pytest.raises(ValueError, match="Unknown cachito configuration file data type 'unknown'"): plugin.generate_cachito_config_files(dest_dir, cfg_files)
31.775934
99
0.614488
7942a48d10c6b50997b0302eb21dfad6d431e0aa
16,351
py
Python
train_mask_rcnn.py
maktu6/garment_segmentation
8a010fa1087ba6d0c9e77299ab13a9266750d0c1
[ "MIT" ]
2
2019-12-20T07:36:16.000Z
2020-12-31T23:40:05.000Z
train_mask_rcnn.py
maktu6/garment_segmentation
8a010fa1087ba6d0c9e77299ab13a9266750d0c1
[ "MIT" ]
null
null
null
train_mask_rcnn.py
maktu6/garment_segmentation
8a010fa1087ba6d0c9e77299ab13a9266750d0c1
[ "MIT" ]
null
null
null
"""Train Mask RCNN end to end.""" import os # disable autotune os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0' import logging import time import numpy as np import cv2 import mxnet as mx from mxnet import gluon from mxnet import autograd import gluoncv as gcv from gluoncv import data as gdata from gluoncv import utils as gutils from gluoncv.model_zoo import get_model from gluoncv.data import batchify from gluoncv.data.transforms.presets.rcnn import MaskRCNNDefaultTrainTransform, \ MaskRCNNDefaultValTransform from gluoncv.utils.metrics.coco_instance import COCOInstanceMetric from utils.metric import RCNNAccMetric, RCNNL1LossMetric, RPNAccMetric, RPNL1LossMetric, \ MaskAccMetric, MaskFGAccMetric from utils.argument import parse_args_for_rcnn as parse_args from utils.logger import build_logger def get_dataset(dataset, args): if dataset.lower() == 'coco': train_dataset = gdata.COCOInstance(splits='instances_train2017') val_dataset = gdata.COCOInstance(splits='instances_val2017', skip_empty=False) val_metric = COCOInstanceMetric(val_dataset, args.save_prefix + '_eval', cleanup=True) elif dataset.lower() == 'imaterialist': from utils.iMaterialistDataset import COCOiMaterialist train_dataset = COCOiMaterialist(root='datasets/imaterialist/', splits='rle_instances_train') val_dataset = COCOiMaterialist(root='datasets/imaterialist/', splits='resize_rle_instances_val', skip_empty=False) val_metric = COCOInstanceMetric(val_dataset, args.save_prefix + '_eval', cleanup=True) else: raise NotImplementedError('Dataset: {} not implemented.'.format(dataset)) return train_dataset, val_dataset, val_metric def get_dataloader(net, train_dataset, val_dataset, train_transform, val_transform, batch_size, num_workers, multi_stage): """Get dataloader.""" # allow different shapes in same batch train_bfn = batchify.Tuple(*[batchify.Append() for _ in range(6)]) train_loader = mx.gluon.data.DataLoader( train_dataset.transform(train_transform(net.short, net.max_size, net, ashape=net.ashape, multi_stage=multi_stage)), batch_size, True, batchify_fn=train_bfn, last_batch='rollover', num_workers=num_workers) val_bfn = batchify.Tuple(*[batchify.Append() for _ in range(2)]) val_loader = mx.gluon.data.DataLoader( val_dataset.transform(val_transform(net.short, net.max_size)), batch_size, False, batchify_fn=val_bfn, last_batch='keep', num_workers=num_workers) return train_loader, val_loader def save_params(net, logger, best_map, current_map, epoch, save_interval, prefix): current_map = float(current_map) if current_map > best_map[0]: logger.info('[Epoch {}] mAP {} higher than current best {} saving to {}'.format( epoch, current_map, best_map, '{:s}_best.params'.format(prefix))) best_map[0] = current_map net.save_parameters('{:s}_best.params'.format(prefix)) with open(prefix + '_best_map.log', 'a') as f: f.write('\n{:04d}:\t{:.4f}'.format(epoch, current_map)) if save_interval and (epoch + 1) % save_interval == 0: logger.info('[Epoch {}] Saving parameters to {}'.format( epoch, '{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map))) net.save_parameters('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map)) def split_and_load(batch, ctx_list): """Split data to 1 batch each device.""" num_ctx = len(ctx_list) new_batch = [] for i, data in enumerate(batch): new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)] new_batch.append(new_data) return new_batch def validate(net, val_data, ctx, eval_metric, args): """Test on validation dataset.""" clipper = gcv.nn.bbox.BBoxClipToImage() eval_metric.reset() if not args.disable_hybridization: net.hybridize(static_alloc=args.static_alloc) for ib, batch in enumerate(val_data): batch = split_and_load(batch, ctx_list=ctx) det_bboxes = [] det_ids = [] det_scores = [] det_masks = [] det_infos = [] for x, im_info in zip(*batch): # get prediction results ids, scores, bboxes, masks = net(x) det_bboxes.append(clipper(bboxes, x)) det_ids.append(ids) det_scores.append(scores) det_masks.append(masks) det_infos.append(im_info) # update metric for det_bbox, det_id, det_score, det_mask, det_info in zip(det_bboxes, det_ids, det_scores, det_masks, det_infos): for i in range(det_info.shape[0]): # numpy everything det_bbox = det_bbox[i].asnumpy() det_id = det_id[i].asnumpy() det_score = det_score[i].asnumpy() det_mask = det_mask[i].asnumpy() det_info = det_info[i].asnumpy() # filter by conf threshold im_height, im_width, im_scale = det_info valid = np.where(((det_id >= 0) & (det_score >= 0.001)))[0] det_id = det_id[valid] det_score = det_score[valid] det_bbox = det_bbox[valid] / im_scale det_mask = det_mask[valid] # fill full mask im_height, im_width = int(round(im_height / im_scale)), int( round(im_width / im_scale)) full_masks = [] for bbox, mask in zip(det_bbox, det_mask): mask = gdata.transforms.mask.fill(mask, bbox, (im_width, im_height)) if args.dataset.lower() == 'imaterialist': # compute metric at size (512, 512) mask = cv2.resize(mask, (512, 512), cv2.INTER_NEAREST) full_masks.append(mask) full_masks = np.array(full_masks) eval_metric.update(det_bbox, det_id, det_score, full_masks) return eval_metric.get() def get_lr_at_iter(alpha): return 1. / 3. * (1 - alpha) + alpha def train(net, train_data, val_data, eval_metric, ctx, args): """Training pipeline""" net.collect_params().setattr('grad_req', 'null') net.collect_train_params().setattr('grad_req', 'write') trainer = gluon.Trainer( net.collect_train_params(), # fix batchnorm, fix first stage, etc... 'sgd', {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum, 'clip_gradient': 5}) # lr decay policy lr_decay = float(args.lr_decay) lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()]) lr_warmup = float(args.lr_warmup) # avoid int division rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False) rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1 / 9.) # == smoothl1 rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss() rcnn_box_loss = mx.gluon.loss.HuberLoss() # == smoothl1 rcnn_mask_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False) metrics = [mx.metric.Loss('RPN_Conf'), mx.metric.Loss('RPN_SmoothL1'), mx.metric.Loss('RCNN_CrossEntropy'), mx.metric.Loss('RCNN_SmoothL1'), mx.metric.Loss('RCNN_Mask')] rpn_acc_metric = RPNAccMetric() rpn_bbox_metric = RPNL1LossMetric() rcnn_acc_metric = RCNNAccMetric() rcnn_bbox_metric = RCNNL1LossMetric() rcnn_mask_metric = MaskAccMetric() rcnn_fgmask_metric = MaskFGAccMetric() metrics2 = [rpn_acc_metric, rpn_bbox_metric, rcnn_acc_metric, rcnn_bbox_metric, rcnn_mask_metric, rcnn_fgmask_metric] # set up logger log_file_path = args.save_prefix + '_train.log' logger = build_logger(log_file_path) logger.info(args) if args.verbose: logger.info('Trainable parameters:') logger.info(net.collect_train_params().keys()) logger.info('Start training from [Epoch {}]'.format(args.start_epoch)) best_map = [0] for epoch in range(args.start_epoch, args.epochs): while lr_steps and epoch >= lr_steps[0]: new_lr = trainer.learning_rate * lr_decay lr_steps.pop(0) trainer.set_learning_rate(new_lr) logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr)) for metric in metrics: metric.reset() tic = time.time() btic = time.time() if not args.disable_hybridization: net.hybridize(static_alloc=args.static_alloc) base_lr = trainer.learning_rate for i, batch in enumerate(train_data): if epoch == 0 and i <= lr_warmup: # adjust based on real percentage new_lr = base_lr * get_lr_at_iter(i / lr_warmup) if new_lr != trainer.learning_rate: if i % args.log_interval == 0: logger.info( '[Epoch 0 Iteration {}] Set learning rate to {}'.format(i, new_lr)) trainer.set_learning_rate(new_lr) batch = split_and_load(batch, ctx_list=ctx) batch_size = len(batch[0]) losses = [] metric_losses = [[] for _ in metrics] add_losses = [[] for _ in metrics2] with autograd.record(): for data, label, gt_mask, rpn_cls_targets, rpn_box_targets, rpn_box_masks in zip( *batch): gt_label = label[:, :, 4:5] gt_box = label[:, :, :4] cls_pred, box_pred, mask_pred, roi, samples, matches, rpn_score, rpn_box, anchors = net( data, gt_box) # losses of rpn rpn_score = rpn_score.squeeze(axis=-1) num_rpn_pos = (rpn_cls_targets >= 0).sum() rpn_loss1 = rpn_cls_loss(rpn_score, rpn_cls_targets, rpn_cls_targets >= 0) * rpn_cls_targets.size / num_rpn_pos rpn_loss2 = rpn_box_loss(rpn_box, rpn_box_targets, rpn_box_masks) * rpn_box.size / num_rpn_pos # rpn overall loss, use sum rather than average rpn_loss = rpn_loss1 + rpn_loss2 # generate targets for rcnn cls_targets, box_targets, box_masks = net.target_generator(roi, samples, matches, gt_label, gt_box) # losses of rcnn num_rcnn_pos = (cls_targets >= 0).sum() rcnn_loss1 = rcnn_cls_loss(cls_pred, cls_targets, cls_targets >= 0) * cls_targets.size / \ cls_targets.shape[0] / num_rcnn_pos rcnn_loss2 = rcnn_box_loss(box_pred, box_targets, box_masks) * box_pred.size / \ box_pred.shape[0] / num_rcnn_pos rcnn_loss = rcnn_loss1 + rcnn_loss2 # generate targets for mask mask_targets, mask_masks = net.mask_target(roi, gt_mask, matches, cls_targets) # loss of mask mask_loss = rcnn_mask_loss(mask_pred, mask_targets, mask_masks) * \ mask_targets.size / mask_targets.shape[0] / mask_masks.sum() # overall losses losses.append(rpn_loss.sum() + rcnn_loss.sum() + mask_loss.sum()) metric_losses[0].append(rpn_loss1.sum()) metric_losses[1].append(rpn_loss2.sum()) metric_losses[2].append(rcnn_loss1.sum()) metric_losses[3].append(rcnn_loss2.sum()) metric_losses[4].append(mask_loss.sum()) add_losses[0].append([[rpn_cls_targets, rpn_cls_targets >= 0], [rpn_score]]) add_losses[1].append([[rpn_box_targets, rpn_box_masks], [rpn_box]]) add_losses[2].append([[cls_targets], [cls_pred]]) add_losses[3].append([[box_targets, box_masks], [box_pred]]) add_losses[4].append([[mask_targets, mask_masks], [mask_pred]]) add_losses[5].append([[mask_targets, mask_masks], [mask_pred]]) autograd.backward(losses) for metric, record in zip(metrics, metric_losses): metric.update(0, record) for metric, records in zip(metrics2, add_losses): for pred in records: metric.update(pred[0], pred[1]) trainer.step(batch_size) # update metrics if args.log_interval and not (i + 1) % args.log_interval: msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics + metrics2]) logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}'.format( epoch, i, args.log_interval * batch_size / (time.time() - btic), msg)) btic = time.time() msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics]) logger.info('[Epoch {}] Training cost: {:.3f}, {}'.format( epoch, (time.time() - tic), msg)) if not (epoch + 1) % args.val_interval: # consider reduce the frequency of validation to save time map_name, mean_ap = validate(net, val_data, ctx, eval_metric, args) val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)]) logger.info('[Epoch {}] Validation: \n{}'.format(epoch, val_msg)) current_map = float(mean_ap[-1]) else: current_map = 0. save_params(net, logger, best_map, current_map, epoch, args.save_interval, args.save_prefix) if __name__ == '__main__': args = parse_args() # fix seed for mxnet, numpy and python builtin random generator. gutils.random.seed(args.seed) # training contexts ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()] ctx = ctx if ctx else [mx.cpu()] args.batch_size = len(ctx) # 1 batch per device # training data train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args) # network module_list = [] if args.use_fpn: module_list.append('fpn') if args.dataset.lower() == 'imaterialist': # pretrained on coco dataset net_name = '_'.join(('mask_rcnn', *module_list, args.network, 'coco')) # 'mask_rcnn_%s_coco'%(args.network) net = get_model(net_name, pretrained=True) # reuse the previously trained weights for specified classes # {'tie':'tie', 'umbrella':'umbrella', 'bag, wallet':'handbag', 'glove':'baseball glove'} net.reset_class(train_dataset.CLASSES, reuse_weights={16: 27, 26: 25, 24: 26, 17: 35}) else: net_name = '_'.join(('mask_rcnn', *module_list, args.network, args.dataset)) net = get_model(net_name, pretrained_base=True) args.save_prefix += net_name if args.resume.strip(): net.load_parameters(args.resume.strip()) else: for param in net.collect_params().values(): if param._data is not None: continue param.initialize() net.collect_params().reset_ctx(ctx) # modify train transform to support RLE segmentations if args.dataset.lower() == 'imaterialist': from utils.rle_transform import MaskRCNNTrainTransformRLE MaskRCNNDefaultTrainTransform = MaskRCNNTrainTransformRLE train_data, val_data = get_dataloader( net, train_dataset, val_dataset, MaskRCNNDefaultTrainTransform, MaskRCNNDefaultValTransform, args.batch_size, args.num_workers, args.use_fpn) # training train(net, train_data, val_data, eval_metric, ctx, args)
48.37574
108
0.596844
7942a52862dc5a42e9c877e4070213a3bcbafebe
16
py
Python
factory-ai-vision/EdgeSolution/modules/WebModule/backend/vision_on_edge/cameras/tests/conftest.py
kaka-lin/azure-intelligent-edge-patterns
766833c7c25d2458cec697937be288202d1763bc
[ "MIT" ]
176
2019-07-03T00:20:15.000Z
2022-03-14T07:51:22.000Z
factory-ai-vision/EdgeSolution/modules/WebModule/backend/vision_on_edge/cameras/tests/conftest.py
kaka-lin/azure-intelligent-edge-patterns
766833c7c25d2458cec697937be288202d1763bc
[ "MIT" ]
121
2019-06-24T20:47:27.000Z
2022-03-28T02:16:18.000Z
factory-ai-vision/EdgeSolution/modules/WebModule/backend/vision_on_edge/cameras/tests/conftest.py
kaka-lin/azure-intelligent-edge-patterns
766833c7c25d2458cec697937be288202d1763bc
[ "MIT" ]
144
2019-06-18T18:48:43.000Z
2022-03-31T12:14:46.000Z
"""Conftest """
5.333333
11
0.5
7942a5bec2d9dd4850f3e16fdab852582f538c65
8,271
py
Python
28_train_cars_new_rotation_labels_rotation_norm.py
Florian-Barthel/stylegan2
4ef87038bf9370596cf2b729e1d1a1bc3ebcddd8
[ "BSD-Source-Code" ]
null
null
null
28_train_cars_new_rotation_labels_rotation_norm.py
Florian-Barthel/stylegan2
4ef87038bf9370596cf2b729e1d1a1bc3ebcddd8
[ "BSD-Source-Code" ]
null
null
null
28_train_cars_new_rotation_labels_rotation_norm.py
Florian-Barthel/stylegan2
4ef87038bf9370596cf2b729e1d1a1bc3ebcddd8
[ "BSD-Source-Code" ]
null
null
null
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html import argparse import copy import sys import os import dnnlib from dnnlib import EasyDict from metrics.metric_defaults import metric_defaults #---------------------------------------------------------------------------- _valid_configs = [ # Table 1 'config-a', # Baseline StyleGAN 'config-b', # + Weight demodulation 'config-c', # + Lazy regularization 'config-d', # + Path length regularization 'config-e', # + No growing, new G & D arch. 'config-f', # + Large networks (default) # Table 2 'config-e-Gorig-Dorig', 'config-e-Gorig-Dresnet', 'config-e-Gorig-Dskip', 'config-e-Gresnet-Dorig', 'config-e-Gresnet-Dresnet', 'config-e-Gresnet-Dskip', 'config-e-Gskip-Dorig', 'config-e-Gskip-Dresnet', 'config-e-Gskip-Dskip', ] #---------------------------------------------------------------------------- def run(dataset, data_dir, result_dir, config_id, num_gpus, total_kimg, gamma, mirror_augment, metrics): train = EasyDict(run_func_name='training.training_loop.training_loop_mirror_v6.training_loop') G = EasyDict(func_name='training.networks.networks_stylegan2.G_main') D = EasyDict(func_name='training.networks.networks_stylegan2_discriminator_new_rotation.D_stylegan2_new_rotaion') # Options for discriminator network. G_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) D_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) G_loss = EasyDict(func_name='training.loss.loss_G_new_rotation_label_normalize.G_logistic_ns_pathreg') D_loss = EasyDict(func_name='training.loss.loss_D_logistic_r1_new_rotation_label_normalize.D_logistic_r1_new_rotation') sched = EasyDict() grid = EasyDict(size='1080p', layout='random') sc = dnnlib.SubmitConfig() tf_config = {'rnd.np_random_seed': 1000} train.data_dir = data_dir train.total_kimg = total_kimg train.mirror_augment = mirror_augment train.image_snapshot_ticks = train.network_snapshot_ticks = 10 sched.G_lrate_base = sched.D_lrate_base = 0.002 sched.minibatch_size_base = 32 sched.minibatch_gpu_base = 4 D_loss.gamma = 10 metrics = [metric_defaults[x] for x in metrics] desc = 'stylegan2' G.style_mixing_prob = None desc += '-' + dataset label_file = 'datasets/car_labels/cars_v8-rxx.labels' desc += '-v8' dataset_args = EasyDict(tfrecord_dir=dataset, label_file=label_file) assert num_gpus in [1, 2, 4, 8] sc.num_gpus = num_gpus desc += '-%dgpu' % num_gpus assert config_id in _valid_configs # desc += '-' + config_id desc += '-new_rotation_label' # Configs A-E: Shrink networks to match original StyleGAN. if config_id != 'config-f': G.fmap_base = D.fmap_base = 8 << 10 # Config E: Set gamma to 100 and override G & D architecture. if config_id.startswith('config-e'): D_loss.gamma = 100 if 'Gorig' in config_id: G.architecture = 'orig' if 'Gskip' in config_id: G.architecture = 'skip' # (default) if 'Gresnet' in config_id: G.architecture = 'resnet' if 'Dorig' in config_id: D.architecture = 'orig' if 'Dskip' in config_id: D.architecture = 'skip' if 'Dresnet' in config_id: D.architecture = 'resnet' # (default) # Configs A-D: Enable progressive growing and switch to networks that support it. if config_id in ['config-a', 'config-b', 'config-c', 'config-d']: sched.lod_initial_resolution = 8 sched.G_lrate_base = sched.D_lrate_base = 0.001 sched.G_lrate_dict = sched.D_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003} sched.minibatch_size_base = 32 # (default) sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32} sched.minibatch_gpu_base = 4 # (default) sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4} G.synthesis_func = 'G_synthesis_stylegan_revised' D.func_name = 'training.networks_stylegan2.D_stylegan' # Configs A-C: Disable path length regularization. if config_id in ['config-a', 'config-b', 'config-c']: G_loss = EasyDict(func_name='training.loss.G_logistic_ns') # Configs A-B: Disable lazy regularization. if config_id in ['config-a', 'config-b']: train.lazy_regularization = False # Config A: Switch to original StyleGAN networks. if config_id == 'config-a': G = EasyDict(func_name='training.networks_stylegan.G_style') D = EasyDict(func_name='training.networks_stylegan.D_basic') if gamma is not None: D_loss.gamma = gamma sc.submit_target = dnnlib.SubmitTarget.LOCAL sc.local.do_not_copy_source_files = True kwargs = EasyDict(train) kwargs.update(G_args=G, D_args=D, G_opt_args=G_opt, D_opt_args=D_opt, G_loss_args=G_loss, D_loss_args=D_loss) kwargs.update(dataset_args=dataset_args, sched_args=sched, grid_args=grid, metric_arg_list=metrics, tf_config=tf_config) kwargs.submit_config = copy.deepcopy(sc) kwargs.submit_config.run_dir_root = result_dir kwargs.submit_config.run_desc = desc dnnlib.submit_run(**kwargs) #---------------------------------------------------------------------------- def _str_to_bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def _parse_comma_sep(s): if s is None or s.lower() == 'none' or s == '': return [] return s.split(',') #---------------------------------------------------------------------------- _examples = '''examples: # Train StyleGAN2 using the FFHQ dataset python %(prog)s --num-gpus=8 --data-dir=~/datasets --config=config-f --dataset=ffhq --mirror-augment=true valid configs: ''' + ', '.join(_valid_configs) + ''' valid metrics: ''' + ', '.join(sorted([x for x in metric_defaults.keys()])) + ''' ''' def main(): parser = argparse.ArgumentParser( description='Train StyleGAN2.', epilog=_examples, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument('--result-dir', help='Root directory for run results (default: %(default)s)', default='results', metavar='DIR') parser.add_argument('--data-dir', help='Dataset root directory', required=True) parser.add_argument('--dataset', help='Training dataset', required=True) parser.add_argument('--config', help='Training config (default: %(default)s)', default='config-f', required=True, dest='config_id', metavar='CONFIG') parser.add_argument('--num-gpus', help='Number of GPUs (default: %(default)s)', default=1, type=int, metavar='N') parser.add_argument('--total-kimg', help='Training length in thousands of images (default: %(default)s)', metavar='KIMG', default=25000, type=int) parser.add_argument('--gamma', help='R1 regularization weight (default is config dependent)', default=None, type=float) parser.add_argument('--mirror-augment', help='Mirror augment (default: %(default)s)', default=False, metavar='BOOL', type=_str_to_bool) parser.add_argument('--metrics', help='Comma-separated list of metrics or "none" (default: %(default)s)', default='fid50k', type=_parse_comma_sep) args = parser.parse_args() if not os.path.exists(args.data_dir): print ('Error: dataset root directory does not exist.') sys.exit(1) if args.config_id not in _valid_configs: print ('Error: --config value must be one of: ', ', '.join(_valid_configs)) sys.exit(1) for metric in args.metrics: if metric not in metric_defaults: print ('Error: unknown metric \'%s\'' % metric) sys.exit(1) run(**vars(args)) #---------------------------------------------------------------------------- if __name__ == "__main__": main() #----------------------------------------------------------------------------
40.743842
163
0.637891
7942a6b51f2c12124eae3aac1c29bba63d4ae55d
2,614
py
Python
darts/tests/test_filters.py
muliliao/darts
2b5f5c3aa81c6962f4d0d2ba5f280d42f5dc5eb0
[ "Apache-2.0" ]
null
null
null
darts/tests/test_filters.py
muliliao/darts
2b5f5c3aa81c6962f4d0d2ba5f280d42f5dc5eb0
[ "Apache-2.0" ]
null
null
null
darts/tests/test_filters.py
muliliao/darts
2b5f5c3aa81c6962f4d0d2ba5f280d42f5dc5eb0
[ "Apache-2.0" ]
null
null
null
import numpy as np import pandas as pd from .base_test_class import DartsBaseTestClass from ..models.kalman_filter import KalmanFilter from ..models.filtering_model import MovingAverage from ..timeseries import TimeSeries from ..utils import timeseries_generation as tg class KalmanFilterTestCase(DartsBaseTestClass): def test_kalman(self): """ KalmanFilter test. Creates an increasing sequence of numbers, adds noise and assumes the kalman filter predicts values closer to real values """ testing_signal = np.arange(1, 5, 0.1) noise = np.random.normal(0, 0.7, testing_signal.shape) testing_signal_with_noise = testing_signal + noise df = pd.DataFrame(data=testing_signal_with_noise, columns=['signal']) testing_signal_with_noise_ts = TimeSeries.from_dataframe(df, value_cols=['signal']) kf = KalmanFilter(dim_x=1) filtered_ts = kf.filter(testing_signal_with_noise_ts, num_samples=1).univariate_values() noise_distance = testing_signal_with_noise - testing_signal prediction_distance = filtered_ts - testing_signal self.assertGreater(noise_distance.std(), prediction_distance.std()) def test_kalman_multivariate(self): kf = KalmanFilter(dim_x=3) sine_ts = tg.sine_timeseries(length=30, value_frequency=0.1) noise_ts = tg.gaussian_timeseries(length=30) * 0.1 ts = sine_ts.stack(noise_ts) prediction = kf.filter(ts) self.assertEqual(prediction.width, 3) class MovingAverageTestCase(DartsBaseTestClass): def test_moving_average_univariate(self): ma = MovingAverage(window=3, centered=False) sine_ts = tg.sine_timeseries(length=30, value_frequency=0.1) sine_filtered = ma.filter(sine_ts) self.assertGreater(np.mean(np.abs(sine_ts.values())), np.mean(np.abs(sine_filtered.values()))) def test_moving_average_multivariate(self): ma = MovingAverage(window=3) sine_ts = tg.sine_timeseries(length=30, value_frequency=0.1) noise_ts = tg.gaussian_timeseries(length=30) * 0.1 ts = sine_ts.stack(noise_ts) ts_filtered = ma.filter(ts) self.assertGreater(np.mean(np.abs(ts.values()[:, 0])), np.mean(np.abs(ts_filtered.values()[:, 0]))) self.assertGreater(np.mean(np.abs(ts.values()[:, 1])), np.mean(np.abs(ts_filtered.values()[:, 1]))) if __name__ == '__main__': KalmanFilterTestCase().test_kalman() MovingAverageTestCase().test_moving_average_univariate() MovingAverageTestCase().test_moving_average_multivariate()
37.884058
107
0.706197
7942a72b97f8b1a9efa46c1cffd28b3ce7d2852c
481
py
Python
functions/filterForTarget.py
JRJurman/persistent-number-generator
4f531e88c94ae9ea1c6aa241e3ae9086c48fd80d
[ "MIT" ]
1
2019-04-10T04:07:50.000Z
2019-04-10T04:07:50.000Z
functions/filterForTarget.py
JRJurman/persistent-number-generator
4f531e88c94ae9ea1c6aa241e3ae9086c48fd80d
[ "MIT" ]
1
2019-04-10T04:09:43.000Z
2019-04-12T01:46:18.000Z
functions/filterForTarget.py
JRJurman/persistent-number-generator
4f531e88c94ae9ea1c6aa241e3ae9086c48fd80d
[ "MIT" ]
null
null
null
import numpy as np from functions.multiplyDigits import multiplyDigits def filterForTarget(listOfNumbers, target, base = 10): """ given a list of numbers, find which numbers multiply to get our number Example: ([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], 8) -> [24] Parameters: listOfNumbers: nDim integers target: (n-1)Dim integers Returns: nDim results """ products = multiplyDigits(listOfNumbers, base) return listOfNumbers[products == target]
24.05
72
0.698545
7942a75029a14023e1c3082afa6492759dbd4e3b
11,523
py
Python
third_party/buildbot_8_4p1/buildbot/manhole.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
null
null
null
third_party/buildbot_8_4p1/buildbot/manhole.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
null
null
null
third_party/buildbot_8_4p1/buildbot/manhole.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
1
2020-07-23T11:05:06.000Z
2020-07-23T11:05:06.000Z
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members import os import types import binascii import base64 from twisted.python import log from twisted.application import service, strports from twisted.cred import checkers, portal from twisted.conch import manhole, telnet, manhole_ssh, checkers as conchc from twisted.conch.insults import insults from twisted.internet import protocol from buildbot.util import ComparableMixin from zope.interface import implements # requires Twisted-2.0 or later # makeTelnetProtocol and _TelnetRealm are for the TelnetManhole class makeTelnetProtocol: # this curries the 'portal' argument into a later call to # TelnetTransport() def __init__(self, portal): self.portal = portal def __call__(self): auth = telnet.AuthenticatingTelnetProtocol return telnet.TelnetTransport(auth, self.portal) class _TelnetRealm: implements(portal.IRealm) def __init__(self, namespace_maker): self.namespace_maker = namespace_maker def requestAvatar(self, avatarId, *interfaces): if telnet.ITelnetProtocol in interfaces: namespace = self.namespace_maker() p = telnet.TelnetBootstrapProtocol(insults.ServerProtocol, manhole.ColoredManhole, namespace) return (telnet.ITelnetProtocol, p, lambda: None) raise NotImplementedError() class chainedProtocolFactory: # this curries the 'namespace' argument into a later call to # chainedProtocolFactory() def __init__(self, namespace): self.namespace = namespace def __call__(self): return insults.ServerProtocol(manhole.ColoredManhole, self.namespace) class AuthorizedKeysChecker(conchc.SSHPublicKeyDatabase): """Accept connections using SSH keys from a given file. SSHPublicKeyDatabase takes the username that the prospective client has requested and attempts to get a ~/.ssh/authorized_keys file for that username. This requires root access, so it isn't as useful as you'd like. Instead, this subclass looks for keys in a single file, given as an argument. This file is typically kept in the buildmaster's basedir. The file should have 'ssh-dss ....' lines in it, just like authorized_keys. """ def __init__(self, authorized_keys_file): self.authorized_keys_file = os.path.expanduser(authorized_keys_file) def checkKey(self, credentials): f = open(self.authorized_keys_file) for l in f.readlines(): l2 = l.split() if len(l2) < 2: continue try: if base64.decodestring(l2[1]) == credentials.blob: return 1 except binascii.Error: continue return 0 class _BaseManhole(service.MultiService): """This provides remote access to a python interpreter (a read/exec/print loop) embedded in the buildmaster via an internal SSH server. This allows detailed inspection of the buildmaster state. It is of most use to buildbot developers. Connect to this by running an ssh client. """ def __init__(self, port, checker, using_ssh=True): """ @type port: string or int @param port: what port should the Manhole listen on? This is a strports specification string, like 'tcp:12345' or 'tcp:12345:interface=127.0.0.1'. Bare integers are treated as a simple tcp port. @type checker: an object providing the L{twisted.cred.checkers.ICredentialsChecker} interface @param checker: if provided, this checker is used to authenticate the client instead of using the username/password scheme. You must either provide a username/password or a Checker. Some useful values are:: import twisted.cred.checkers as credc import twisted.conch.checkers as conchc c = credc.AllowAnonymousAccess # completely open c = credc.FilePasswordDB(passwd_filename) # file of name:passwd c = conchc.UNIXPasswordDatabase # getpwnam() (probably /etc/passwd) @type using_ssh: bool @param using_ssh: If True, accept SSH connections. If False, accept regular unencrypted telnet connections. """ # unfortunately, these don't work unless we're running as root #c = credc.PluggableAuthenticationModulesChecker: PAM #c = conchc.SSHPublicKeyDatabase() # ~/.ssh/authorized_keys # and I can't get UNIXPasswordDatabase to work service.MultiService.__init__(self) if type(port) is int: port = "tcp:%d" % port self.port = port # for comparison later self.checker = checker # to maybe compare later def makeNamespace(): # close over 'self' so we can get access to .parent later master = self.parent namespace = { 'master': master, 'status': master.getStatus(), 'show': show, } return namespace def makeProtocol(): namespace = makeNamespace() p = insults.ServerProtocol(manhole.ColoredManhole, namespace) return p self.using_ssh = using_ssh if using_ssh: r = manhole_ssh.TerminalRealm() r.chainedProtocolFactory = makeProtocol p = portal.Portal(r, [self.checker]) f = manhole_ssh.ConchFactory(p) else: r = _TelnetRealm(makeNamespace) p = portal.Portal(r, [self.checker]) f = protocol.ServerFactory() f.protocol = makeTelnetProtocol(p) s = strports.service(self.port, f) s.setServiceParent(self) def startService(self): service.MultiService.startService(self) if self.using_ssh: via = "via SSH" else: via = "via telnet" log.msg("Manhole listening %s on port %s" % (via, self.port)) class TelnetManhole(_BaseManhole, ComparableMixin): """This Manhole accepts unencrypted (telnet) connections, and requires a username and password authorize access. You are encouraged to use the encrypted ssh-based manhole classes instead.""" compare_attrs = ["port", "username", "password"] def __init__(self, port, username, password): """ @type port: string or int @param port: what port should the Manhole listen on? This is a strports specification string, like 'tcp:12345' or 'tcp:12345:interface=127.0.0.1'. Bare integers are treated as a simple tcp port. @param username: @param password: username= and password= form a pair of strings to use when authenticating the remote user. """ self.username = username self.password = password c = checkers.InMemoryUsernamePasswordDatabaseDontUse() c.addUser(username, password) _BaseManhole.__init__(self, port, c, using_ssh=False) class PasswordManhole(_BaseManhole, ComparableMixin): """This Manhole accepts encrypted (ssh) connections, and requires a username and password to authorize access. """ compare_attrs = ["port", "username", "password"] def __init__(self, port, username, password): """ @type port: string or int @param port: what port should the Manhole listen on? This is a strports specification string, like 'tcp:12345' or 'tcp:12345:interface=127.0.0.1'. Bare integers are treated as a simple tcp port. @param username: @param password: username= and password= form a pair of strings to use when authenticating the remote user. """ self.username = username self.password = password c = checkers.InMemoryUsernamePasswordDatabaseDontUse() c.addUser(username, password) _BaseManhole.__init__(self, port, c) class AuthorizedKeysManhole(_BaseManhole, ComparableMixin): """This Manhole accepts ssh connections, and requires that the prospective client have an ssh private key that matches one of the public keys in our authorized_keys file. It is created with the name of a file that contains the public keys that we will accept.""" compare_attrs = ["port", "keyfile"] def __init__(self, port, keyfile): """ @type port: string or int @param port: what port should the Manhole listen on? This is a strports specification string, like 'tcp:12345' or 'tcp:12345:interface=127.0.0.1'. Bare integers are treated as a simple tcp port. @param keyfile: the name of a file (relative to the buildmaster's basedir) that contains SSH public keys of authorized users, one per line. This is the exact same format as used by sshd in ~/.ssh/authorized_keys . """ # TODO: expanduser this, and make it relative to the buildmaster's # basedir self.keyfile = keyfile c = AuthorizedKeysChecker(keyfile) _BaseManhole.__init__(self, port, c) class ArbitraryCheckerManhole(_BaseManhole, ComparableMixin): """This Manhole accepts ssh connections, but uses an arbitrary user-supplied 'checker' object to perform authentication.""" compare_attrs = ["port", "checker"] def __init__(self, port, checker): """ @type port: string or int @param port: what port should the Manhole listen on? This is a strports specification string, like 'tcp:12345' or 'tcp:12345:interface=127.0.0.1'. Bare integers are treated as a simple tcp port. @param checker: an instance of a twisted.cred 'checker' which will perform authentication """ _BaseManhole.__init__(self, port, checker) ## utility functions for the manhole def show(x): """Display the data attributes of an object in a readable format""" print "data attributes of %r" % (x,) names = dir(x) maxlen = max([0] + [len(n) for n in names]) for k in names: v = getattr(x,k) t = type(v) if t == types.MethodType: continue if k[:2] == '__' and k[-2:] == '__': continue if t is types.StringType or t is types.UnicodeType: if len(v) > 80 - maxlen - 5: v = `v[:80 - maxlen - 5]` + "..." elif t in (types.IntType, types.NoneType): v = str(v) elif v in (types.ListType, types.TupleType, types.DictType): v = "%s (%d elements)" % (v, len(v)) else: v = str(t) print "%*s : %s" % (maxlen, k, v) return x
37.656863
79
0.644884
7942a8193b318d313a7b184c1634b4f772f19de5
4,520
py
Python
tests/components/modbus/conftest.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
5
2020-12-15T04:09:01.000Z
2022-03-11T21:34:24.000Z
tests/components/modbus/conftest.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
69
2020-08-04T09:03:43.000Z
2022-03-31T06:13:01.000Z
tests/components/modbus/conftest.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
11
2020-12-16T13:48:14.000Z
2022-02-01T00:28:05.000Z
"""The tests for the Modbus sensor component.""" import copy from dataclasses import dataclass from datetime import timedelta import logging from unittest import mock from pymodbus.exceptions import ModbusException import pytest from homeassistant.components.modbus.const import MODBUS_DOMAIN as DOMAIN, TCP from homeassistant.const import CONF_HOST, CONF_NAME, CONF_PORT, CONF_TYPE from homeassistant.setup import async_setup_component import homeassistant.util.dt as dt_util from tests.common import async_fire_time_changed, mock_restore_cache TEST_MODBUS_NAME = "modbusTest" TEST_ENTITY_NAME = "test_entity" TEST_MODBUS_HOST = "modbusHost" TEST_PORT_TCP = 5501 TEST_PORT_SERIAL = "usb01" _LOGGER = logging.getLogger(__name__) @dataclass class ReadResult: """Storage class for register read results.""" def __init__(self, register_words): """Init.""" self.registers = register_words self.bits = register_words @pytest.fixture def mock_pymodbus(): """Mock pymodbus.""" mock_pb = mock.MagicMock() with mock.patch( "homeassistant.components.modbus.modbus.ModbusTcpClient", return_value=mock_pb ), mock.patch( "homeassistant.components.modbus.modbus.ModbusSerialClient", return_value=mock_pb, ), mock.patch( "homeassistant.components.modbus.modbus.ModbusUdpClient", return_value=mock_pb ): yield mock_pb @pytest.fixture def check_config_loaded(): """Set default for check_config_loaded.""" return True @pytest.fixture def register_words(): """Set default for register_words.""" return [0x00, 0x00] @pytest.fixture def config_addon(): """Add entra configuration items.""" return None @pytest.fixture def do_exception(): """Remove side_effect to pymodbus calls.""" return False @pytest.fixture async def mock_modbus( hass, caplog, register_words, check_config_loaded, config_addon, do_config ): """Load integration modbus using mocked pymodbus.""" conf = copy.deepcopy(do_config) if config_addon: for key in conf.keys(): conf[key][0].update(config_addon) caplog.set_level(logging.WARNING) config = { DOMAIN: [ { CONF_TYPE: TCP, CONF_HOST: TEST_MODBUS_HOST, CONF_PORT: TEST_PORT_TCP, CONF_NAME: TEST_MODBUS_NAME, **conf, } ] } mock_pb = mock.MagicMock() with mock.patch( "homeassistant.components.modbus.modbus.ModbusTcpClient", return_value=mock_pb ): now = dt_util.utcnow() with mock.patch("homeassistant.helpers.event.dt_util.utcnow", return_value=now): result = await async_setup_component(hass, DOMAIN, config) assert result or not check_config_loaded await hass.async_block_till_done() yield mock_pb @pytest.fixture async def mock_pymodbus_exception(hass, do_exception, mock_modbus): """Trigger update call with time_changed event.""" if do_exception: exc = ModbusException("fail read_coils") mock_modbus.read_coils.side_effect = exc mock_modbus.read_discrete_inputs.side_effect = exc mock_modbus.read_input_registers.side_effect = exc mock_modbus.read_holding_registers.side_effect = exc @pytest.fixture async def mock_pymodbus_return(hass, register_words, mock_modbus): """Trigger update call with time_changed event.""" read_result = ReadResult(register_words) mock_modbus.read_coils.return_value = read_result mock_modbus.read_discrete_inputs.return_value = read_result mock_modbus.read_input_registers.return_value = read_result mock_modbus.read_holding_registers.return_value = read_result @pytest.fixture async def mock_do_cycle(hass, mock_pymodbus_exception, mock_pymodbus_return): """Trigger update call with time_changed event.""" now = dt_util.utcnow() + timedelta(seconds=90) with mock.patch("homeassistant.helpers.event.dt_util.utcnow", return_value=now): async_fire_time_changed(hass, now) await hass.async_block_till_done() @pytest.fixture async def mock_test_state(hass, request): """Mock restore cache.""" mock_restore_cache(hass, request.param) return request.param @pytest.fixture async def mock_ha(hass, mock_pymodbus_return): """Load homeassistant to allow service calls.""" assert await async_setup_component(hass, "homeassistant", {}) await hass.async_block_till_done()
29.933775
88
0.718805
7942a93999bbaf769278bc5892c43e06d41bd3ba
1,775
py
Python
Medium/275.H-IndexII.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
39
2020-07-04T11:15:13.000Z
2022-02-04T22:33:42.000Z
Medium/275.H-IndexII.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
1
2020-07-15T11:53:37.000Z
2020-07-15T11:53:37.000Z
Medium/275.H-IndexII.py
YuriSpiridonov/LeetCode
2dfcc9c71466ffa2ebc1c89e461ddfca92e2e781
[ "MIT" ]
20
2020-07-14T19:12:53.000Z
2022-03-02T06:28:17.000Z
""" Given an array of citations sorted in ascending order (each citation is a non-negative integer) of a researcher, write a function to compute the researcher's h-index. According to the definition of h-index on Wikipedia: "A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each." Example: Input: citations = [0,1,3,5,6] Output: 3 Explanation: [0,1,3,5,6] means the researcher has 5 papers in total and each of them had received 0, 1, 3, 5, 6 citations respectively. Since the researcher has 3 papers with at least 3 citations each and the remaining two with no more than 3 citations each, her h-index is 3. Note: If there are several possible values for h, the maximum one is taken as the h-index. Follow up: - This is a follow up problem to H-Index, where citations is now guaranteed to be sorted in ascending order. - Could you solve it in logarithmic time complexity? """ #Difficulty: Medium #84 / 84 test cases passed. #Runtime: 144 ms #Memory Usage: 20.4 MB #Runtime: 144 ms, faster than 89.79% of Python3 online submissions for H-Index II. #Memory Usage: 20.4 MB, less than 50.00% of Python3 online submissions for H-Index II. class Solution: def hIndex(self, citations: List[int]) -> int: if not citations: return 0 if len(citations) == 1: return min(len(citations), citations[0]) citations = sorted(citations, reverse = True) for i, h in enumerate(citations): if h <= i: return i return len(citations)
38.586957
86
0.635493
7942a9b2c7789bb97d204f50ad37a8cbd782cdc6
163
py
Python
python/helpers/tests/generator3_tests/data/SkeletonGeneration/skeleton_regenerated_for_changed_module/before/cache/9ce58f4a1c/mod.py
tgodzik/intellij-community
f5ef4191fc30b69db945633951fb160c1cfb7b6f
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/helpers/tests/generator3_tests/data/SkeletonGeneration/skeleton_regenerated_for_changed_module/before/cache/9ce58f4a1c/mod.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2022-02-19T09:45:05.000Z
2022-02-27T20:32:55.000Z
python/helpers/tests/generator3_tests/data/SkeletonGeneration/skeleton_regenerated_for_changed_module/before/cache/9ce58f4a1c/mod.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
# encoding: utf-8 # module mod # from mod.py # by generator 1000.0 # no doc # no imports # Variables with simple values version = 1 # no functions # no classes
11.642857
30
0.693252
7942aa477c947ebecd74d0dc87e0b3f4a8d3bd31
7,974
py
Python
meta_pseudo_labels/flag_utils.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-13T21:48:52.000Z
2022-03-13T21:48:52.000Z
meta_pseudo_labels/flag_utils.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
null
null
null
meta_pseudo_labels/flag_utils.py
shaun95/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-30T07:20:29.000Z
2022-03-30T07:20:29.000Z
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=logging-format-interpolation,unused-import r"""Define all the relevant flags for these experiments in this file.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import sys from absl import flags from absl import logging import tensorflow.compat.v1 as tf if 'gfile' not in sys.modules: gfile = tf.gfile _flags = [] def define_string(name, default_value, helper): flags.DEFINE_string(name, default_value, helper) global _flags _flags.append(name) def define_integer(name, default_value, helper): flags.DEFINE_integer(name, default_value, helper) global _flags _flags.append(name) def define_float(name, default_value, helper): flags.DEFINE_float(name, default_value, helper) global _flags _flags.append(name) def define_boolean(name, default_value, helper): flags.DEFINE_boolean(name, default_value, helper) global _flags _flags.append(name) define_boolean('running_local_dev', False, '') define_boolean('reset_output_dir', False, '') define_string('load_checkpoint', None, '') define_boolean('load_checkpoint_and_restart_global_step', False, '') define_string('master', None, 'Should be `/bns/el-d/...`') define_string('tpu_topology', '', 'Should be `2x2`, `4x4`, etc.') define_boolean('use_tpu', False, '') define_integer('num_infeed_threads', 4, '') define_boolean('use_bfloat16', False, '') define_integer('save_every', 1000, '') define_integer('log_every', 10, '') define_string('dataset_name', None, '') define_integer('num_shards_per_worker', None, '') define_string('task_mode', None, '') define_string('output_dir', None, '') define_float('batch_norm_decay', 0.99, '') define_float('batch_norm_epsilon', 1e-3, '') define_integer('batch_norm_batch_size', None, '') define_integer('train_batch_size', 128, '') define_integer('eval_batch_size', 128, '') define_integer('image_size', 32, '') define_integer('num_classes', 10, '') define_integer('num_warmup_steps', 0, '') define_integer('num_train_steps', 10000, '') define_integer('num_decay_steps', 750, '') define_float('weight_decay', 1e-4, '') define_float('dense_dropout_rate', 0.1, '') define_float('stochastic_depth_drop_rate', 0., '') define_float('grad_bound', 1e9, '') define_float('lr', 0.016, 'Per-256-examples start LR for RMSprop') define_string('lr_decay_type', 'exponential', '') define_string('optim_type', 'momentum', '') define_string('model_type', 'wrn-28-2', '') define_float('lr_decay_rate', 0.97, '') define_float('rmsprop_rho', 0.9, '') define_float('rmsprop_momentum', 0.9, '') define_float('rmsprop_epsilon', 1e-3, '') define_float('teacher_lr', 0.1, '') define_float('ema_decay', 0., 'Set to 0 to not use moving_average') define_integer('ema_start', 0, 'Step to start using ema at this step') define_boolean('use_augment', False, None) define_integer('augment_magnitude', 5, '') define_string('inference_ckpt', None, '') define_string('inference_ckpt_ensemble', None, 'Comma-separated list') define_integer('inference_class_id', 0, '') define_integer('inference_num_threads', None, '') define_integer('inference_thread_index', 0, '') define_integer('dataset_service_replicas', None, '') define_string('dataset_service_bns_prefix', None, '') define_float('label_smoothing', 0., '') define_float('teacher_base_lr', 1e-3, '') define_float('teacher_grad_bound', 20., '') define_float('teacher_eps', 1e-7, '') define_float('teacher_weight_decay', 1e-4, '') define_float('teacher_temperature', 0.5, '') define_float('teacher_grad_dot_moving_average_decay', 0.99, '') define_float('teacher_init_range', 0.1, '') define_float('teacher_one_hot_w', 0.9, '') define_integer('teacher_num_samples', 10, '') # UDA define_integer('uda_warmup_steps', 2000, '') define_integer('uda_data', 4, '') define_integer('uda_steps', 10000, '') define_float('uda_temp', 0.75, '') define_float('uda_weight', 1., '') define_float('uda_threshold', 0.6, '') # MPL define_float('mpl_temp', 0.75, '') define_float('mpl_threshold', 0.6, '') define_float('mpl_dot_product_bound', 0.1, '') define_integer('mpl_student_wait_steps', 2500, '') define_string('mpl_teacher_checkpoint', None, 'for MPL teacher') define_string('mpl_student_checkpoint', None, 'for MPL student') define_float('mpl_student_lr', 0.1, '') define_integer('mpl_student_lr_wait_steps', 500, '') define_integer('mpl_student_lr_warmup_steps', 5000, '') define_float('mpl_teacher_lr', 0.1, '') define_integer('mpl_teacher_lr_warmup_steps', 5000, '') class HParams(object): """Implementing the interface of `tf.contrib.training.HParams`.""" def __init__(self, **kwargs): self.params_dict = {} for k, v in kwargs.items(): self.params_dict[k] = v def add_hparam(self, k, v): self.params_dict[k] = v def set_hparam(self, k, v): self.params_dict[k] = v def to_json(self, indent=0): return json.dumps( {k: self.params_dict[k] for k in sorted(self.params_dict.keys())}, indent=indent) def __getattr__(self, k): return self.params_dict[k] def __contains__(self, k): return k in self.params_dict def __getitem__(self, k): return self.params_dict[k] def __setitem__(self, k, v): self.params_dict[k] = v def _deduce_num_classes(params): """Set `num_classes` for `params`.""" if 'imagenet' in params.dataset_name.lower(): num_classes = 1000 elif 'cifar100' in params.dataset_name.lower(): num_classes = 100 else: logging.info('Cannot infer `num_classes` from dataset {0}. Use 10'.format( params.dataset_name)) num_classes = 10 if 'num_classes' in params and num_classes != params.num_classes: logging.info('Replace `params.num_classes` from {0} to {1}'.format( params.num_classes, num_classes)) params.set_hparam('num_classes', num_classes) def build_params_from_flags(): """Build and return a `tf.HParams` object.""" FLAGS = flags.FLAGS # pylint: disable=invalid-name # Make sure not to delete trained checkpoints if FLAGS.task_mode == 'evals': assert not FLAGS.reset_output_dir, '`eval` tasks cannot `reset_output_dir`' # Figure out `output_dir` output_dir = FLAGS.output_dir logging.info(f'Checkpoints are at: {output_dir}') # Create or delete `output_dir` if not gfile.IsDirectory(output_dir): logging.info(f'Path `{output_dir}` does not exist. Creating') gfile.MakeDirs(output_dir, mode=0o777) elif FLAGS.reset_output_dir: logging.info(f'Path `{output_dir}` exists. Removing') gfile.DeleteRecursively(output_dir) gfile.MakeDirs(output_dir, mode=0o777) global _flags params = HParams( inf=float('inf'), output_dir=output_dir, ) for flag_name in _flags: flag_value = getattr(FLAGS, flag_name) if flag_name not in params: params.add_hparam(flag_name, flag_value) # Try to infer `num_classes` to avoid mistakes, eg. ImageNet with 10 classes. _deduce_num_classes(params) pretty_print_params = params.to_json(indent=2) logging.info(pretty_print_params) if params.task_mode not in ['inference', 'evals', 'eval_forever']: params_filename = os.path.join(params.output_dir, 'hparams.json') if not gfile.Exists(params_filename): with gfile.GFile(params_filename, 'w') as fout: fout.write(pretty_print_params) fout.flush() return params
31.027237
79
0.727489
7942aaad0418a90353515e6450eb87ada404f59b
1,000
py
Python
Week4/Tarefa 02/Exercicio_02_Ordenacao_selection_sort.py
WesGtoX/Intro-Computer-Science-with-Python-Part02
9dc53362c32575b63d8d1c06c201bc7a01bc07b6
[ "MIT" ]
null
null
null
Week4/Tarefa 02/Exercicio_02_Ordenacao_selection_sort.py
WesGtoX/Intro-Computer-Science-with-Python-Part02
9dc53362c32575b63d8d1c06c201bc7a01bc07b6
[ "MIT" ]
null
null
null
Week4/Tarefa 02/Exercicio_02_Ordenacao_selection_sort.py
WesGtoX/Intro-Computer-Science-with-Python-Part02
9dc53362c32575b63d8d1c06c201bc7a01bc07b6
[ "MIT" ]
null
null
null
def ordena(lista): tamanho_lista = len(lista) for i in range(tamanho_lista - 1): menor_visto = i for j in range(i + 1, tamanho_lista): if lista[j] < lista[menor_visto]: menor_visto = j lista[i], lista[menor_visto] = lista[menor_visto], lista[i] return lista # def lista_grande(n): # import random # lista_g = [] # for i in range(n): # lista_g.append(random.randrange(9999)) # return lista_g # # # def ordenada(lista): # for i in range(len(lista)): # if i < len(lista) - 1: # if lista[i] > lista[i+1]: # return False # return True # # # def test_ordena_01(): # assert ordenada(ordena(lista_grande(15))) == True # # # def test_ordena_03(): # assert ordenada(ordena(lista_grande(10))) == True # # # def test_ordena_04(): # assert ordenada(ordena(lista_grande(5))) == True # # # def test_ordena_06(): # assert ordenada(ordena(lista_grande(20))) == True
23.255814
67
0.583
7942aac9d2f04b8caf7da238fb64f3f186fe9957
353
py
Python
src/genie/libs/parser/ios/show_config.py
nujo/genieparser
083b01efc46afc32abe1a1858729578beab50cd3
[ "Apache-2.0" ]
204
2018-06-27T00:55:27.000Z
2022-03-06T21:12:18.000Z
src/genie/libs/parser/ios/show_config.py
nujo/genieparser
083b01efc46afc32abe1a1858729578beab50cd3
[ "Apache-2.0" ]
468
2018-06-19T00:33:18.000Z
2022-03-31T23:23:35.000Z
src/genie/libs/parser/ios/show_config.py
nujo/genieparser
083b01efc46afc32abe1a1858729578beab50cd3
[ "Apache-2.0" ]
309
2019-01-16T20:21:07.000Z
2022-03-30T12:56:41.000Z
''' show_config.py IOS parsers for the following show commands: * show configuration lock ''' # import iosxe parser from genie.libs.parser.iosxe.show_config import ShowConfigurationLock as \ ShowConfigurationLock_iosxe class ShowConfigurationLock(ShowConfigurationLock_iosxe): """ Parser for show configuration lock """ pass
23.533333
74
0.753541
7942ab7e65542cfa4f00c046fb759fae434343f9
3,601
py
Python
venv/lib/python3.6/site-packages/channels/routing.py
AzamatGla/channelChokan
0dbcc8b701d57dcd4c8fe9c0573738c573797c21
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/channels/routing.py
AzamatGla/channelChokan
0dbcc8b701d57dcd4c8fe9c0573738c573797c21
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/channels/routing.py
AzamatGla/channelChokan
0dbcc8b701d57dcd4c8fe9c0573738c573797c21
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import importlib from django.conf import settings from django.core.exceptions import ImproperlyConfigured from channels.http import AsgiHandler """ All Routing instances inside this file are also valid ASGI applications - with new Channels routing, whatever you end up with as the top level object is just served up as the "ASGI application". """ def get_default_application(): """ Gets the default application, set in the ASGI_APPLICATION setting. """ try: path, name = settings.ASGI_APPLICATION.rsplit(".", 1) except (ValueError, AttributeError): raise ImproperlyConfigured("Cannot find ASGI_APPLICATION setting.") try: module = importlib.import_module(path) except ImportError: raise ImproperlyConfigured("Cannot import ASGI_APPLICATION module %r" % path) try: value = getattr(module, name) except AttributeError: raise ImproperlyConfigured("Cannot find %r in ASGI_APPLICATION module %s" % (name, path)) return value class ProtocolTypeRouter: """ Takes a mapping of protocol type names to other Application instances, and dispatches to the right one based on protocol name (or raises an error) """ def __init__(self, application_mapping): self.application_mapping = application_mapping if "http" not in self.application_mapping: self.application_mapping["http"] = AsgiHandler def __call__(self, scope): if scope["type"] in self.application_mapping: return self.application_mapping[scope["type"]](scope) else: raise ValueError("No application configured for scope type %r" % scope["type"]) class URLRouter: """ Routes to different applications/consumers based on the URL path. Works with anything that has a ``path`` key, but intended for WebSocket and HTTP. Uses Django's django.conf.urls objects for resolution - url() or path(). """ def __init__(self, routes): self.routes = routes def __call__(self, scope): # Get the path path = scope.get("path", None) if path is None: raise ValueError("No 'path' key in connection scope, cannot route URLs") # Remove leading / to match Django's handling path = path.lstrip("/") # Run through the routes we have until one matches for route in self.routes: match = route.resolve(path) if match is not None: # Add args or kwargs into the scope scope["url_route"] = { "args": match.args, "kwargs": match.kwargs, } return match.func(scope) else: raise ValueError("No route found for path %r." % path) class ChannelNameRouter: """ Maps to different applications based on a "channel" key in the scope (intended for the Channels worker mode) """ def __init__(self, application_mapping): self.application_mapping = application_mapping def __call__(self, scope): if "channel" not in scope: raise ValueError( "ChannelNameRouter got a scope without a 'channel' key. " + "Did you make sure it's only being used for 'channel' type messages?" ) if scope["channel"] in self.application_mapping: return self.application_mapping[scope["channel"]](scope) else: raise ValueError("No application configured for channel name %r" % scope["channel"])
33.654206
97
0.647876
7942ab81d584e5e7d97f3b522e04a1322a76faf7
7,800
py
Python
realtime-visualisation/main.py
deets/beehive-monitor
6fc0626e94f2cfc576a406fce9798319336b6006
[ "MIT" ]
null
null
null
realtime-visualisation/main.py
deets/beehive-monitor
6fc0626e94f2cfc576a406fce9798319336b6006
[ "MIT" ]
null
null
null
realtime-visualisation/main.py
deets/beehive-monitor
6fc0626e94f2cfc576a406fce9798319336b6006
[ "MIT" ]
null
null
null
# Copyright: 2021, Diez B. Roggisch, Berlin . All rights reserved. import paho.mqtt.client as mqtt import threading import queue import argparse import datetime as dt import pathlib from bokeh.models import ColumnDataSource from bokeh.plotting import curdoc, figure from bokeh.layouts import column def regroup_line(sdcard_data): # the V2 format contains a trailing , because it's easier to write that. sequence, timestamp, *rest = sdcard_data.rstrip(",").split(",") entries = [] for index in range(0, len(rest), 4): busno, address, humidity, temperature = rest[index:index + 4] entry = f"{busno}{address},{temperature},{humidity}" entries.append(entry) return ";".join([f"{sequence},{timestamp}"] + entries) def raw2humidity(humidity): return humidity * 100 / 65535.0 def raw2temperature(temperature): return temperature * 175.0 / 65535.0 - 45.0 def process_sensor_payload(sensor_payload): id_, temperature, humidity = sensor_payload.split(",") assert temperature[0] == "T" assert humidity[0] == "H" return id_, int(temperature[1:], 16), int(humidity[1:], 16) def process_payload(payload): header, *sensors = payload.decode("ascii").split(";") _sequence, timestamp = header.split(",") timestamp = dt.datetime.fromisoformat(timestamp.split("+")[0]) sensors = [process_sensor_payload(sensor) for sensor in sensors] return timestamp, sensors class Visualisation: def __init__(self): opts = self._parse_args() self._topic = opts.topic self._size = opts.size if opts.input is None: self._acquisition_task = self._mqtt_task else: self._acquisition_task = lambda: self._acquire_from_file(opts.input) self._temperature_converter = lambda x: x self._humidity_converter = lambda x: x if opts.convert: self._temperature_converter = raw2temperature self._humidity_converter = raw2humidity self._data_q = queue.Queue() doc = self._doc = curdoc() data = dict( time=[], ) self._source = ColumnDataSource( data=data, ) self._temperature_figure = figure( width=600, height=200, y_axis_label="Temperature", x_axis_type="datetime", ) self._humidity_figure = figure( width=600, height=200, y_axis_label="Humidity", x_axis_type="datetime", ) children = [self._temperature_figure, self._humidity_figure] self._layout = column( children, sizing_mode="scale_width" ) doc.add_root(self._layout) self._writer = lambda payload: None if opts.output: outf = open(opts.output, "wb") def writer(payload): outf.write(payload) if not payload[-1] == b"\n": outf.write(b"\n") outf.flush() self._writer = writer def _parse_args(self): parser = argparse.ArgumentParser() parser.add_argument("-o", "--output", help="Record data into file") parser.add_argument("-i", "--input", help="Load data from this file instead of MQTT") parser.add_argument("-s", "--size", type=int, default=None, help="The limit of measurements shown.") parser.add_argument("-c", "--convert", action="store_true", default=False, help="Convert acconding to SHT3XDIS datasheet.") parser.add_argument("--topic", default="beehive/beehive") return parser.parse_args() def start_acquisition(self): t = threading.Thread(target=self._acquisition_task) t.daemon = True t.start() def _mqtt_task(self): client = mqtt.Client() client.on_connect = self._on_connect client.on_message = self._on_message client.connect("singlemalt.local", 1883, 60) # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. client.loop_forever() def _acquire_from_file(self, path): path = pathlib.Path(path) # Data from the SD-Card itself if path.name.startswith("BEE"): self._acquire_from_sdcard_data(path) else: with path.open("rb") as inf: for line in inf: line = line.strip() if line: self._data_q.put(line) self._doc.add_next_tick_callback(self._process_data) def _acquire_from_sdcard_data(self, path): all_files = sorted(path.parent.glob(path.name)) for file_ in all_files: for line in file_.read_text().split("\n"): line = line.strip() if line: assert line.startswith("#V2,") line = regroup_line(line[4:]).encode("ascii") self._data_q.put(line) self._doc.add_next_tick_callback(self._process_data) def _on_connect(self, client, userdata, flags, rc): # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe(self._topic) def _on_message(self, client, userdata, msg): #print(msg.topic, str(msg.payload)) self._data_q.put(msg.payload) self._writer(msg.payload) self._doc.add_next_tick_callback(self._process_data) def _add_graph(self, id_, temperature, humidity, data): data[f"temp-{id_}"] = [temperature] * len(data["time"]) data[f"hum-{id_}"] = [humidity] * len(data["time"]) self._temperature_figure.line( x="time", y=f"temp-{id_}", alpha=0.5, source=self._source, legend_label=f"{id_}C" ) self._humidity_figure.line( x="time", y=f"hum-{id_}", alpha=0.5, source=self._source, legend_label=f"{id_}%" ) for p in [self._temperature_figure, self._humidity_figure]: p.legend.click_policy="hide" def _process_data(self): # For some reason we get multiple callbacks # in the mainloop. So instead of relying on # one callback per line, we gather them # and process as many of them as we find. source = self._source for _ in range(self._data_q.qsize()): incoming_data = self._data_q.get() timestamp, sensor_data = process_payload(incoming_data) # this is needed to "clean up" the data # as bokeh otherwise complains in the update data = dict(source.data) data["time"].append(timestamp) if self._size is not None: data["time"] = data["time"][-self._size:] time_len = len(data["time"]) for id_, temperature, humidity in sensor_data: temperature = self._temperature_converter(temperature) humidity = self._humidity_converter(humidity) if f"temp-{id_}" not in data: self._add_graph(id_, temperature, humidity, data) data[f"temp-{id_}"].append(temperature) data[f"temp-{id_}"] = data[f"temp-{id_}"][-time_len:] data[f"hum-{id_}"].append(humidity) data[f"hum-{id_}"] = data[f"hum-{id_}"][-time_len:] source.update(data=data) def main(): visualisation = Visualisation() visualisation.start_acquisition() main()
32.365145
131
0.593974
7942abab6a268bb91ae4bfbf4e27310935458aa3
4,304
py
Python
accountsynchr/tests/test_models.py
uw-it-aca/eventcal
1d0800fa1f218577f470de127f22a47584db37be
[ "Apache-2.0" ]
null
null
null
accountsynchr/tests/test_models.py
uw-it-aca/eventcal
1d0800fa1f218577f470de127f22a47584db37be
[ "Apache-2.0" ]
119
2016-12-17T05:02:32.000Z
2022-02-01T22:14:25.000Z
accountsynchr/tests/test_models.py
uw-it-aca/eventcal
1d0800fa1f218577f470de127f22a47584db37be
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 from django.test import TestCase from uw_gws.models import GroupReference from uw_trumba.models import TrumbaCalendar from accountsynchr.models import ( UwcalGroup, new_editor_group, new_showon_group, get_cal_name) class TestModels(TestCase): def test_uwcalgroup(self): trumba_cal = TrumbaCalendar(calendarid=2, campus="bot") editor_gr = new_editor_group(trumba_cal) editor_gr.set_calendar_name("Bothell >> Dean's Office") self.assertEqual(trumba_cal.name, "Bothell >> Dean's Office") showon_gr = new_showon_group(trumba_cal) # UwcalGroup methods self.assertEqual(editor_gr.get_calendarid(), 2) self.assertEqual(editor_gr.get_campus_code(), "bot") self.assertFalse(editor_gr.has_group_ref()) self.assertIsNone(editor_gr.get_regid()) self.assertEqual(editor_gr.get_group_id(), "u_eventcal_bot_2-editor") self.assertEqual(editor_gr.get_group_name(), "u_eventcal_bot_2-editor") self.assertEqual(editor_gr.get_group_admin(), "u_eventcal_support") self.assertIsNotNone(editor_gr.get_group_desc()) self.assertEqual(editor_gr.get_group_title(), "Bothell >> Dean's Office calendar editor group") self.assertEqual(editor_gr.get_member_manager(), "u_eventcal_bot_2-editor") self.assertTrue(editor_gr.is_editor_group()) self.assertFalse(showon_gr.is_editor_group()) self.assertFalse(editor_gr.is_showon_group()) self.assertTrue(showon_gr.is_showon_group()) # group_ref is None self.assertFalse(editor_gr.same_name(trumba_cal)) self.assertFalse(showon_gr.same_name(trumba_cal)) self.assertEqual(editor_gr.to_json(), {'calendar': {'calendarid': 2, 'campus': 'bot', 'name': "Bothell >> Dean's Office", 'permissions': {}}, 'group_ref': None, 'gtype': 'editor', 'members': []}) editor_gr.group_ref = GroupReference( name="u_eventcal_bot_2-editor", display_name="Bothell >> Dean's Office") self.assertTrue(editor_gr.same_name(trumba_cal)) showon_gr.group_ref = GroupReference( name="u_eventcal_bot_2-showon", display_name="Bothell >> Dean's Office calendar showon group") self.assertTrue(showon_gr.same_name(trumba_cal)) self.assertTrue(editor_gr == editor_gr) self.assertFalse(editor_gr == showon_gr) self.assertEqual( editor_gr.to_json(), {'calendar': {'calendarid': 2, 'campus': 'bot', 'name': "Bothell >> Dean's Office", 'permissions': {}}, 'group_ref': { 'displayName': "Bothell >> Dean's Office", 'id': 'u_eventcal_bot_2-editor', 'regid': ''}, 'gtype': 'editor', 'members': []}) self.assertIsNotNone(str(editor_gr)) def test_get_cal_name(self): self.assertEqual(get_cal_name("UW Tacoma Campus Events"), "UW Tacoma Campus Events") self.assertEqual(get_cal_name("Tacoma Campus calendar editor group"), "Tacoma Campus") self.assertEqual(get_cal_name("Tacoma Campus calendar showon group"), "Tacoma Campus") self.assertEqual(get_cal_name( "Foster School of Business >> Mktg & Int'l Business " + "calendar showon group"), "Foster School of Business >> Mktg & Int'l Business") self.assertEqual(get_cal_name("Integrated Service Center (ISC) >>" + " Training >> Seminar >> Workday 101 " + "- Bothell calendar editor group"), "Integrated Service Center (ISC) >>" + " Training >> Seminar >> Workday 101 - Bothell")
44.833333
78
0.575046
7942acc9060fb2b30c2105f2ab903b1d84deb4e4
846
py
Python
biobb_ml/test/unitests/test_classification/test_k_neighbors.py
bioexcel/biobb_ml
f99346ef7885d3a62de47dab738a01db4b27467a
[ "Apache-2.0" ]
null
null
null
biobb_ml/test/unitests/test_classification/test_k_neighbors.py
bioexcel/biobb_ml
f99346ef7885d3a62de47dab738a01db4b27467a
[ "Apache-2.0" ]
5
2021-06-30T11:24:14.000Z
2021-08-04T12:53:00.000Z
biobb_ml/test/unitests/test_classification/test_k_neighbors.py
bioexcel/biobb_ml
f99346ef7885d3a62de47dab738a01db4b27467a
[ "Apache-2.0" ]
null
null
null
from biobb_common.tools import test_fixtures as fx from biobb_ml.classification.k_neighbors import k_neighbors class TestKNeighborsTrain(): def setUp(self): fx.test_setup(self,'k_neighbors') def tearDown(self): fx.test_teardown(self) pass def test_k_neighbors(self): k_neighbors(properties=self.properties, **self.paths) assert fx.not_empty(self.paths['output_model_path']) assert fx.equal(self.paths['output_model_path'], self.paths['ref_output_model_path']) assert fx.not_empty(self.paths['output_test_table_path']) assert fx.equal(self.paths['output_test_table_path'], self.paths['ref_output_test_table_path']) assert fx.not_empty(self.paths['output_plot_path']) assert fx.equal(self.paths['output_plot_path'], self.paths['ref_output_plot_path'])
40.285714
103
0.725768
7942acd5dba2d5eed64c8ce45ea754c775ad0b0a
4,813
py
Python
nova/virt/disk/vfs/api.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
null
null
null
nova/virt/disk/vfs/api.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
null
null
null
nova/virt/disk/vfs/api.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova import exception from nova.i18n import _LI from nova.openstack.common import log as logging from oslo.utils import importutils LOG = logging.getLogger(__name__) class VFS(object): """Interface for manipulating disk image. The VFS class defines an interface for manipulating files within a virtual disk image filesystem. This allows file injection code to avoid the assumption that the virtual disk image can be mounted in the host filesystem. All paths provided to the APIs in this class should be relative to the root of the virtual disk image filesystem. Subclasses will translate paths as required by their implementation. """ # Class level flag to indicate whether we can consider # that guestfs is ready to be used. guestfs_ready = False @staticmethod def instance_for_image(imgfile, imgfmt, partition): LOG.debug("Instance for image imgfile=%(imgfile)s " "imgfmt=%(imgfmt)s partition=%(partition)s", {'imgfile': imgfile, 'imgfmt': imgfmt, 'partition': partition}) vfs = None try: LOG.debug("Using primary VFSGuestFS") vfs = importutils.import_object( "nova.virt.disk.vfs.guestfs.VFSGuestFS", imgfile, imgfmt, partition) if not VFS.guestfs_ready: # Inspect for capabilities and keep # track of the result only if succeeded. vfs.inspect_capabilities() VFS.guestfs_ready = True return vfs except exception.NovaException: if vfs is not None: # We are able to load libguestfs but # something wrong happens when trying to # check for capabilities. raise else: LOG.info(_LI("Unable to import guestfs" "falling back to VFSLocalFS")) return importutils.import_object( "nova.virt.disk.vfs.localfs.VFSLocalFS", imgfile, imgfmt, partition) def __init__(self, imgfile, imgfmt, partition): self.imgfile = imgfile self.imgfmt = imgfmt self.partition = partition def setup(self): """Performs any one-time setup. Perform any one-time setup tasks to make the virtual filesystem available to future API calls. """ pass def teardown(self): """Releases all resources initialized in the setup method.""" pass def make_path(self, path): """Creates a directory @path. Create a directory @path, including all intermedia path components if they do not already exist. """ pass def append_file(self, path, content): """Appends @content to the end of the file. Append @content to the end of the file identified by @path, creating the file if it does not already exist. """ pass def replace_file(self, path, content): """Replaces contents of the file. Replace the entire contents of the file identified by @path, with @content, creating the file if it does not already exist. """ pass def read_file(self, path): """Returns the entire contents of the file identified by @path.""" pass def has_file(self, path): """Returns a True if the file identified by @path exists.""" pass def set_permissions(self, path, mode): """Sets the permissions on the file. Set the permissions on the file identified by @path to @mode. The file must exist prior to this call. """ pass def set_ownership(self, path, user, group): """Sets the ownership on the file. Set the ownership on the file identified by @path to the username @user and groupname @group. Either of @user or @group may be None, in which case the current ownership will be left unchanged. The ownership must be passed in string form, allowing subclasses to translate to uid/gid form as required. The file must exist prior to this call. """ pass
33.894366
78
0.635363
7942ad26d061b085f232f705d8d52d46f5b4ee14
232
py
Python
P08/ex03_pickle_test_in.py
ChanganXLTZ/project_test
b6aa323de105beb6281045bf7b89ed3857ed3d9f
[ "CNRI-Python" ]
1
2018-09-16T13:51:06.000Z
2018-09-16T13:51:06.000Z
P08/ex03_pickle_test_in.py
ChanganXLTZ/project_test
b6aa323de105beb6281045bf7b89ed3857ed3d9f
[ "CNRI-Python" ]
null
null
null
P08/ex03_pickle_test_in.py
ChanganXLTZ/project_test
b6aa323de105beb6281045bf7b89ed3857ed3d9f
[ "CNRI-Python" ]
null
null
null
# -*- coding:UTF-8 -*- #! /usr/bin/python3 import pickle import pprint with open('test.pkl','rb') as Input: data_1 = pickle.load(Input) data_2 = pickle.load(Input) print(data_1) pprint.pprint(data_2) print(data_2)
21.090909
37
0.659483
7942ae669276c2bcaad09fa4d19745a62ce043a0
2,301
py
Python
WrightTools/data/_brunold.py
untzag/WrightTools
05480d2f91ceeca422d9e5ac381fce1840207cb0
[ "MIT" ]
12
2017-07-11T15:58:12.000Z
2021-05-10T20:33:26.000Z
WrightTools/data/_brunold.py
untzag/WrightTools
05480d2f91ceeca422d9e5ac381fce1840207cb0
[ "MIT" ]
808
2015-04-12T00:36:08.000Z
2022-03-27T21:06:06.000Z
WrightTools/data/_brunold.py
untzag/WrightTools
05480d2f91ceeca422d9e5ac381fce1840207cb0
[ "MIT" ]
9
2017-07-22T18:54:23.000Z
2022-02-17T20:31:05.000Z
"""Brunold.""" # --- import -------------------------------------------------------------------------------------- import os import pathlib import numpy as np from ._data import Data from .. import exceptions as wt_exceptions # --- define -------------------------------------------------------------------------------------- __all__ = ["from_BrunoldrRaman"] # --- from function ------------------------------------------------------------------------------- def from_BrunoldrRaman(filepath, name=None, parent=None, verbose=True) -> Data: """Create a data object from the Brunold rRaman instrument. Expects one energy (in wavenumbers) and one counts value. Parameters ---------- filepath : path-like Path to .txt file. Can be either a local or remote file (http/ftp). Can be compressed with gz/bz2, decompression based on file name. name : string (optional) Name to give to the created data object. If None, filename is used. Default is None. parent : WrightTools.Collection (optional) Collection to place new data object within. Default is None. verbose : boolean (optional) Toggle talkback. Default is True. Returns ------- data New data object(s). """ # parse filepath filestr = os.fspath(filepath) filepath = pathlib.Path(filepath) if not ".txt" in filepath.suffixes: wt_exceptions.WrongFileTypeWarning.warn(filepath, ".txt") # parse name if not name: name = filepath.name.split(".")[0] # create data kwargs = {"name": name, "kind": "BrunoldrRaman", "source": filestr} if parent is None: data = Data(**kwargs) else: data = parent.create_data(**kwargs) # array ds = np.DataSource(None) f = ds.open(filestr, "rt") arr = np.genfromtxt(f, delimiter="\t").T f.close() # chew through all scans data.create_variable(name="energy", values=arr[0], units="wn") data.create_channel(name="signal", values=arr[1]) data.transform("energy") # finish if verbose: print("data created at {0}".format(data.fullpath)) print(" range: {0} to {1} (wn)".format(data.energy[0], data.energy[-1])) print(" size: {0}".format(data.size)) return data
29.126582
99
0.557584
7942ae915f7490410c146420b70dc71a86c5f37e
637
py
Python
natlas-server/app/models/__init__.py
m4rcu5/natlas
d1057c5349a5443cecffb3db9a6428f7271b07ad
[ "Apache-2.0" ]
null
null
null
natlas-server/app/models/__init__.py
m4rcu5/natlas
d1057c5349a5443cecffb3db9a6428f7271b07ad
[ "Apache-2.0" ]
null
null
null
natlas-server/app/models/__init__.py
m4rcu5/natlas
d1057c5349a5443cecffb3db9a6428f7271b07ad
[ "Apache-2.0" ]
null
null
null
from app.models.agent import Agent from app.models.agent_config import AgentConfig from app.models.agent_script import AgentScript from app.models.config_item import ConfigItem from app.models.email_token import EmailToken from app.models.natlas_services import NatlasServices from app.models.rescan_task import RescanTask from app.models.scope_item import ScopeItem from app.models.tag import Tag from app.models.user import User from app.models.scope_log import ScopeLog __all__ = [ 'Agent', 'AgentConfig', 'AgentScript', 'ConfigItem', 'EmailToken', 'NatlasServices', 'RescanTask', 'ScopeItem', 'ScopeLog', 'Tag', 'User' ]
24.5
53
0.799058
7942aee6457ef82054b24475b21c8d5b4a766398
11,269
py
Python
python/dgl/nn/pytorch/conv/sageconv.py
dongbowen8/dgl
f1c6948171cc7581e582bf2028776c7e08d448a1
[ "Apache-2.0" ]
null
null
null
python/dgl/nn/pytorch/conv/sageconv.py
dongbowen8/dgl
f1c6948171cc7581e582bf2028776c7e08d448a1
[ "Apache-2.0" ]
null
null
null
python/dgl/nn/pytorch/conv/sageconv.py
dongbowen8/dgl
f1c6948171cc7581e582bf2028776c7e08d448a1
[ "Apache-2.0" ]
null
null
null
"""Torch Module for GraphSAGE layer""" # pylint: disable= no-member, arguments-differ, invalid-name import torch from torch import nn from torch.nn import functional as F from .... import function as fn from ....utils import expand_as_pair, check_eq_shape, dgl_warning class SAGEConv(nn.Module): r""" Description ----------- GraphSAGE layer from paper `Inductive Representation Learning on Large Graphs <https://arxiv.org/pdf/1706.02216.pdf>`__. .. math:: h_{\mathcal{N}(i)}^{(l+1)} &= \mathrm{aggregate} \left(\{h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right) h_{i}^{(l+1)} &= \sigma \left(W \cdot \mathrm{concat} (h_{i}^{l}, h_{\mathcal{N}(i)}^{l+1}) \right) h_{i}^{(l+1)} &= \mathrm{norm}(h_{i}^{l}) If a weight tensor on each edge is provided, the aggregation becomes: .. math:: h_{\mathcal{N}(i)}^{(l+1)} = \mathrm{aggregate} \left(\{e_{ji} h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right) where :math:`e_{ji}` is the scalar weight on the edge from node :math:`j` to node :math:`i`. Please make sure that :math:`e_{ji}` is broadcastable with :math:`h_j^{l}`. Parameters ---------- in_feats : int, or pair of ints Input feature size; i.e, the number of dimensions of :math:`h_i^{(l)}`. SAGEConv can be applied on homogeneous graph and unidirectional `bipartite graph <https://docs.dgl.ai/generated/dgl.bipartite.html?highlight=bipartite>`__. If the layer applies on a unidirectional bipartite graph, ``in_feats`` specifies the input feature size on both the source and destination nodes. If a scalar is given, the source and destination node feature size would take the same value. If aggregator type is ``gcn``, the feature size of source and destination nodes are required to be the same. out_feats : int Output feature size; i.e, the number of dimensions of :math:`h_i^{(l+1)}`. aggregator_type : str Aggregator type to use (``mean``, ``gcn``, ``pool``, ``lstm``). feat_drop : float Dropout rate on features, default: ``0``. bias : bool If True, adds a learnable bias to the output. Default: ``True``. norm : callable activation function/layer or None, optional If not None, applies normalization to the updated node features. activation : callable activation function/layer or None, optional If not None, applies an activation function to the updated node features. Default: ``None``. Examples -------- >>> import dgl >>> import numpy as np >>> import torch as th >>> from dgl.nn import SAGEConv >>> # Case 1: Homogeneous graph >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> g = dgl.add_self_loop(g) >>> feat = th.ones(6, 10) >>> conv = SAGEConv(10, 2, 'pool') >>> res = conv(g, feat) >>> res tensor([[-1.0888, -2.1099], [-1.0888, -2.1099], [-1.0888, -2.1099], [-1.0888, -2.1099], [-1.0888, -2.1099], [-1.0888, -2.1099]], grad_fn=<AddBackward0>) >>> # Case 2: Unidirectional bipartite graph >>> u = [0, 1, 0, 0, 1] >>> v = [0, 1, 2, 3, 2] >>> g = dgl.bipartite((u, v)) >>> u_fea = th.rand(2, 5) >>> v_fea = th.rand(4, 10) >>> conv = SAGEConv((5, 10), 2, 'mean') >>> res = conv(g, (u_fea, v_fea)) >>> res tensor([[ 0.3163, 3.1166], [ 0.3866, 2.5398], [ 0.5873, 1.6597], [-0.2502, 2.8068]], grad_fn=<AddBackward0>) """ def __init__(self, in_feats, out_feats, aggregator_type, feat_drop=0., bias=True, norm=None, activation=None): super(SAGEConv, self).__init__() self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats) self._out_feats = out_feats self._aggre_type = aggregator_type self.norm = norm self.feat_drop = nn.Dropout(feat_drop) self.activation = activation # aggregator type: mean/pool/lstm/gcn if aggregator_type == 'pool': self.fc_pool = nn.Linear(self._in_src_feats, self._in_src_feats) if aggregator_type == 'lstm': self.lstm = nn.LSTM(self._in_src_feats, self._in_src_feats, batch_first=True) if aggregator_type != 'gcn': self.fc_self = nn.Linear(self._in_dst_feats, out_feats, bias=False) self.fc_neigh = nn.Linear(self._in_src_feats, out_feats, bias=False) if bias: self.bias = nn.parameter.Parameter(torch.zeros(self._out_feats)) else: self.register_buffer('bias', None) self.reset_parameters() def reset_parameters(self): r""" Description ----------- Reinitialize learnable parameters. Note ---- The linear weights :math:`W^{(l)}` are initialized using Glorot uniform initialization. The LSTM module is using xavier initialization method for its weights. """ gain = nn.init.calculate_gain('relu') if self._aggre_type == 'pool': nn.init.xavier_uniform_(self.fc_pool.weight, gain=gain) if self._aggre_type == 'lstm': self.lstm.reset_parameters() if self._aggre_type != 'gcn': nn.init.xavier_uniform_(self.fc_self.weight, gain=gain) nn.init.xavier_uniform_(self.fc_neigh.weight, gain=gain) def _compatibility_check(self): """Address the backward compatibility issue brought by #2747""" if not hasattr(self, 'bias'): dgl_warning("You are loading a GraphSAGE model trained from a old version of DGL, " "DGL automatically convert it to be compatible with latest version.") bias = self.fc_neigh.bias self.fc_neigh.bias = None if hasattr(self, 'fc_self'): if bias is not None: bias = bias + self.fc_self.bias self.fc_self.bias = None self.bias = bias def _lstm_reducer(self, nodes): """LSTM reducer NOTE(zihao): lstm reducer with default schedule (degree bucketing) is slow, we could accelerate this with degree padding in the future. """ m = nodes.mailbox['m'] # (B, L, D) batch_size = m.shape[0] h = (m.new_zeros((1, batch_size, self._in_src_feats)), m.new_zeros((1, batch_size, self._in_src_feats))) _, (rst, _) = self.lstm(m, h) return {'neigh': rst.squeeze(0)} def forward(self, graph, feat, edge_weight=None): r""" Description ----------- Compute GraphSAGE layer. Parameters ---------- graph : DGLGraph The graph. feat : torch.Tensor or pair of torch.Tensor If a torch.Tensor is given, it represents the input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. If a pair of torch.Tensor is given, the pair must contain two tensors of shape :math:`(N_{in}, D_{in_{src}})` and :math:`(N_{out}, D_{in_{dst}})`. edge_weight : torch.Tensor, optional Optional tensor on the edge. If given, the convolution will weight with regard to the message. Returns ------- torch.Tensor The output feature of shape :math:`(N_{dst}, D_{out})` where :math:`N_{dst}` is the number of destination nodes in the input graph, :math:`D_{out}` is the size of the output feature. """ self._compatibility_check() with graph.local_scope(): if isinstance(feat, tuple): feat_src = self.feat_drop(feat[0]) feat_dst = self.feat_drop(feat[1]) else: feat_src = feat_dst = self.feat_drop(feat) if graph.is_block: feat_dst = feat_src[:graph.number_of_dst_nodes()] msg_fn = fn.copy_src('h', 'm') if edge_weight is not None: assert edge_weight.shape[0] == graph.number_of_edges() graph.edata['_edge_weight'] = edge_weight msg_fn = fn.u_mul_e('h', '_edge_weight', 'm') h_self = feat_dst # Handle the case of graphs without edges if graph.number_of_edges() == 0: graph.dstdata['neigh'] = torch.zeros( feat_dst.shape[0], self._in_src_feats).to(feat_dst) # Determine whether to apply linear transformation before message passing A(XW) lin_before_mp = self._in_src_feats > self._out_feats # Message Passing if self._aggre_type == 'mean': graph.srcdata['h'] = self.fc_neigh(feat_src) if lin_before_mp else feat_src graph.update_all(msg_fn, fn.mean('m', 'neigh')) h_neigh = graph.dstdata['neigh'] if not lin_before_mp: h_neigh = self.fc_neigh(h_neigh) elif self._aggre_type == 'gcn': check_eq_shape(feat) graph.srcdata['h'] = self.fc_neigh(feat_src) if lin_before_mp else feat_src if isinstance(feat, tuple): # heterogeneous graph.dstdata['h'] = self.fc_neigh(feat_dst) if lin_before_mp else feat_dst else: if graph.is_block: graph.dstdata['h'] = graph.srcdata['h'][:graph.num_dst_nodes()] else: graph.dstdata['h'] = graph.srcdata['h'] graph.update_all(msg_fn, fn.sum('m', 'neigh')) # divide in_degrees degs = graph.in_degrees().to(feat_dst) h_neigh = (graph.dstdata['neigh'] + graph.dstdata['h']) / (degs.unsqueeze(-1) + 1) if not lin_before_mp: h_neigh = self.fc_neigh(h_neigh) elif self._aggre_type == 'pool': graph.srcdata['h'] = F.relu(self.fc_pool(feat_src)) graph.update_all(msg_fn, fn.max('m', 'neigh')) h_neigh = self.fc_neigh(graph.dstdata['neigh']) elif self._aggre_type == 'lstm': graph.srcdata['h'] = feat_src graph.update_all(msg_fn, self._lstm_reducer) h_neigh = self.fc_neigh(graph.dstdata['neigh']) else: raise KeyError('Aggregator type {} not recognized.'.format(self._aggre_type)) # GraphSAGE GCN does not require fc_self. if self._aggre_type == 'gcn': rst = h_neigh else: rst = self.fc_self(h_self) + h_neigh # bias term if self.bias is not None: rst = rst + self.bias # activation if self.activation is not None: rst = self.activation(rst) # normalization if self.norm is not None: rst = self.norm(rst) return rst
40.246429
99
0.560919
7942afca92c0b8d94bdf9023f3ded99f877df4dd
8,090
py
Python
sdk/cosmos/azure-cosmos/azure/cosmos/_execution_context/multi_execution_aggregator.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
null
null
null
sdk/cosmos/azure-cosmos/azure/cosmos/_execution_context/multi_execution_aggregator.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
null
null
null
sdk/cosmos/azure-cosmos/azure/cosmos/_execution_context/multi_execution_aggregator.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
null
null
null
# The MIT License (MIT) # Copyright (c) 2014 Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Internal class for multi execution context aggregator implementation in the Azure Cosmos database service. """ import heapq from azure.cosmos._execution_context.base_execution_context import _QueryExecutionContextBase from azure.cosmos._execution_context import document_producer from azure.cosmos._routing import routing_range from azure.cosmos import exceptions # pylint: disable=protected-access class _MultiExecutionContextAggregator(_QueryExecutionContextBase): """This class is capable of queries which requires rewriting based on backend's returned query execution info. This class maintains the execution context for each partition key range and aggregates the corresponding results from each execution context. When handling an orderby query, _MultiExecutionContextAggregator instantiates one instance of DocumentProducer per target partition key range and aggregates the result of each. """ # TODO improvement: this class needs to be parallelized class PriorityQueue: """Provides a Priority Queue abstraction data structure""" def __init__(self): self._heap = [] def pop(self): return heapq.heappop(self._heap) def push(self, item): heapq.heappush(self._heap, item) def peek(self): return self._heap[0] def size(self): return len(self._heap) def __init__(self, client, resource_link, query, options, partitioned_query_ex_info): super(_MultiExecutionContextAggregator, self).__init__(client, options) # use the routing provider in the client self._routing_provider = client._routing_map_provider self._client = client self._resource_link = resource_link self._query = query self._partitioned_query_ex_info = partitioned_query_ex_info self._sort_orders = partitioned_query_ex_info.get_order_by() if self._sort_orders: self._document_producer_comparator = document_producer._OrderByDocumentProducerComparator(self._sort_orders) else: self._document_producer_comparator = document_producer._PartitionKeyRangeDocumentProduerComparator() # will be a list of (partition_min, partition_max) tuples targetPartitionRanges = self._get_target_partition_key_range() targetPartitionQueryExecutionContextList = [] for partitionTargetRange in targetPartitionRanges: # create and add the child execution context for the target range targetPartitionQueryExecutionContextList.append( self._createTargetPartitionQueryExecutionContext(partitionTargetRange) ) self._orderByPQ = _MultiExecutionContextAggregator.PriorityQueue() for targetQueryExContext in targetPartitionQueryExecutionContextList: try: # TODO: we can also use more_itertools.peekable to be more python friendly targetQueryExContext.peek() # if there are matching results in the target ex range add it to the priority queue self._orderByPQ.push(targetQueryExContext) except exceptions.CosmosHttpResponseError as e: if exceptions.partition_range_is_gone(e): # repairing document producer context on partition split self._repair_document_producer() else: raise except StopIteration: continue def __next__(self): """Returns the next result :return: The next result. :rtype: dict :raises StopIteration: If no more result is left. """ if self._orderByPQ.size() > 0: targetRangeExContext = self._orderByPQ.pop() res = next(targetRangeExContext) try: # TODO: we can also use more_itertools.peekable to be more python friendly targetRangeExContext.peek() self._orderByPQ.push(targetRangeExContext) except StopIteration: pass return res raise StopIteration def fetch_next_block(self): raise NotImplementedError("You should use pipeline's fetch_next_block.") def _repair_document_producer(self): """Repairs the document producer context by using the re-initialized routing map provider in the client, which loads in a refreshed partition key range cache to re-create the partition key ranges. After loading this new cache, the document producers get re-created with the new valid ranges. """ # refresh the routing provider to get the newly initialized one post-refresh self._routing_provider = self._client._routing_map_provider # will be a list of (partition_min, partition_max) tuples targetPartitionRanges = self._get_target_partition_key_range() targetPartitionQueryExecutionContextList = [] for partitionTargetRange in targetPartitionRanges: # create and add the child execution context for the target range targetPartitionQueryExecutionContextList.append( self._createTargetPartitionQueryExecutionContext(partitionTargetRange) ) self._orderByPQ = _MultiExecutionContextAggregator.PriorityQueue() for targetQueryExContext in targetPartitionQueryExecutionContextList: try: # TODO: we can also use more_itertools.peekable to be more python friendly targetQueryExContext.peek() # if there are matching results in the target ex range add it to the priority queue self._orderByPQ.push(targetQueryExContext) except StopIteration: continue def _createTargetPartitionQueryExecutionContext(self, partition_key_target_range): rewritten_query = self._partitioned_query_ex_info.get_rewritten_query() if rewritten_query: if isinstance(self._query, dict): # this is a parameterized query, collect all the parameters query = dict(self._query) query["query"] = rewritten_query else: query = rewritten_query else: query = self._query return document_producer._DocumentProducer( partition_key_target_range, self._client, self._resource_link, query, self._document_producer_comparator, self._options, ) def _get_target_partition_key_range(self): query_ranges = self._partitioned_query_ex_info.get_query_ranges() return self._routing_provider.get_overlapping_ranges( self._resource_link, [routing_range.Range.ParseFromDict(range_as_dict) for range_as_dict in query_ranges] ) next = __next__ # Python 2 compatibility.
40.653266
120
0.696292
7942b1268f03d31051b5a30880cd0f1e8c953bce
1,388
py
Python
project.py
salazardetroya/2DHEVF
02cc327bcfb8a9a01bc5991a3849acaa1ebe271e
[ "MIT" ]
1
2022-01-28T03:11:10.000Z
2022-01-28T03:11:10.000Z
project.py
salazardetroya/2DHEVF
02cc327bcfb8a9a01bc5991a3849acaa1ebe271e
[ "MIT" ]
null
null
null
project.py
salazardetroya/2DHEVF
02cc327bcfb8a9a01bc5991a3849acaa1ebe271e
[ "MIT" ]
1
2021-11-15T23:26:51.000Z
2021-11-15T23:26:51.000Z
# project.py import flow from flow import FlowProject @FlowProject.label def check_100_iterations(job): return job.isfile("control_iterations_f_10.vtu") and \ job.isfile("final_output.txt")# Check the job at least has > 1500 iterations. @FlowProject.operation @flow.cmd @FlowProject.post(check_100_iterations) def launch_opti(job): import os output = job.ws + "/output.txt" simulation = "source /g/g92/miguel/workspace/firedrake_setup.sh && \ srun --output={3} python3 he_volume_frac.py \ --mu {0:.5f} \ --enthalpy_scale {1:.5f} \ --alphabar {4:.8f} \ --filter {5:.8f} \ --output_dir {2}".format(job.sp.mu, job.sp.enthalpy_scale, job.ws, output, job.sp.alphabar, job.sp.filter) return simulation @FlowProject.label def check_design(job): return job.isfile(job.id + ".png") @FlowProject.operation @flow.cmd @FlowProject.pre(check_100_iterations) @FlowProject.post(check_design) def post_process_design(job): parameters = "".join([key + " " + f"{job.sp[key]}" + "\n" for key in job.sp.keys()]) import os post_process = "srun pvpython screenshot_design.py \ --parameters '{0}' \ --filename {1} \ --results_dir {2}".format(parameters, job.id, job.ws) return post_process if __name__ == '__main__': FlowProject().main()
28.916667
118
0.642651
7942b14d4182264241f1e643b25e1c9c7a4a010b
58,529
py
Python
flask/lib/python2.7/site-packages/sqlalchemy/orm/strategies.py
ccellis/WHACK2016
5ef4ddadaa60ef8ca07702a0a82df8a9776b9741
[ "BSD-3-Clause" ]
1
2018-04-09T07:37:54.000Z
2018-04-09T07:37:54.000Z
flask/lib/python2.7/site-packages/sqlalchemy/orm/strategies.py
ccellis/WHACK2016
5ef4ddadaa60ef8ca07702a0a82df8a9776b9741
[ "BSD-3-Clause" ]
1
2016-05-25T15:38:50.000Z
2016-05-25T15:38:50.000Z
flask/lib/python2.7/site-packages/sqlalchemy/orm/strategies.py
ccellis/WHACK2016
5ef4ddadaa60ef8ca07702a0a82df8a9776b9741
[ "BSD-3-Clause" ]
null
null
null
# orm/strategies.py # Copyright (C) 2005-2016 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """sqlalchemy.orm.interfaces.LoaderStrategy implementations, and related MapperOptions.""" from .. import exc as sa_exc, inspect from .. import util, log, event from ..sql import util as sql_util, visitors from .. import sql from . import ( attributes, interfaces, exc as orm_exc, loading, unitofwork, util as orm_util ) from .state import InstanceState from .util import _none_set from . import properties from .interfaces import ( LoaderStrategy, StrategizedProperty ) from .base import _SET_DEFERRED_EXPIRED, _DEFER_FOR_STATE from .session import _state_session import itertools def _register_attribute( strategy, mapper, useobject, compare_function=None, typecallable=None, uselist=False, callable_=None, proxy_property=None, active_history=False, impl_class=None, **kw ): prop = strategy.parent_property attribute_ext = list(util.to_list(prop.extension, default=[])) listen_hooks = [] if useobject and prop.single_parent: listen_hooks.append(single_parent_validator) if prop.key in prop.parent.validators: fn, opts = prop.parent.validators[prop.key] listen_hooks.append( lambda desc, prop: orm_util._validator_events( desc, prop.key, fn, **opts) ) if useobject: listen_hooks.append(unitofwork.track_cascade_events) # need to assemble backref listeners # after the singleparentvalidator, mapper validator backref = kw.pop('backref', None) if backref: listen_hooks.append( lambda desc, prop: attributes.backref_listeners( desc, backref, uselist ) ) for m in mapper.self_and_descendants: if prop is m._props.get(prop.key): desc = attributes.register_attribute_impl( m.class_, prop.key, parent_token=prop, uselist=uselist, compare_function=compare_function, useobject=useobject, extension=attribute_ext, trackparent=useobject and ( prop.single_parent or prop.direction is interfaces.ONETOMANY), typecallable=typecallable, callable_=callable_, active_history=active_history, impl_class=impl_class, send_modified_events=not useobject or not prop.viewonly, doc=prop.doc, **kw ) for hook in listen_hooks: hook(desc, prop) @properties.ColumnProperty.strategy_for(instrument=False, deferred=False) class UninstrumentedColumnLoader(LoaderStrategy): """Represent the a non-instrumented MapperProperty. The polymorphic_on argument of mapper() often results in this, if the argument is against the with_polymorphic selectable. """ __slots__ = 'columns', def __init__(self, parent): super(UninstrumentedColumnLoader, self).__init__(parent) self.columns = self.parent_property.columns def setup_query( self, context, entity, path, loadopt, adapter, column_collection=None, **kwargs): for c in self.columns: if adapter: c = adapter.columns[c] column_collection.append(c) def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators): pass @log.class_logger @properties.ColumnProperty.strategy_for(instrument=True, deferred=False) class ColumnLoader(LoaderStrategy): """Provide loading behavior for a :class:`.ColumnProperty`.""" __slots__ = 'columns', 'is_composite' def __init__(self, parent): super(ColumnLoader, self).__init__(parent) self.columns = self.parent_property.columns self.is_composite = hasattr(self.parent_property, 'composite_class') def setup_query( self, context, entity, path, loadopt, adapter, column_collection, memoized_populators, **kwargs): for c in self.columns: if adapter: c = adapter.columns[c] column_collection.append(c) fetch = self.columns[0] if adapter: fetch = adapter.columns[fetch] memoized_populators[self.parent_property] = fetch def init_class_attribute(self, mapper): self.is_class_level = True coltype = self.columns[0].type # TODO: check all columns ? check for foreign key as well? active_history = self.parent_property.active_history or \ self.columns[0].primary_key or \ mapper.version_id_col in set(self.columns) _register_attribute( self, mapper, useobject=False, compare_function=coltype.compare_values, active_history=active_history ) def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators): # look through list of columns represented here # to see which, if any, is present in the row. for col in self.columns: if adapter: col = adapter.columns[col] getter = result._getter(col) if getter: populators["quick"].append((self.key, getter)) break else: populators["expire"].append((self.key, True)) @log.class_logger @properties.ColumnProperty.strategy_for(deferred=True, instrument=True) class DeferredColumnLoader(LoaderStrategy): """Provide loading behavior for a deferred :class:`.ColumnProperty`.""" __slots__ = 'columns', 'group' def __init__(self, parent): super(DeferredColumnLoader, self).__init__(parent) if hasattr(self.parent_property, 'composite_class'): raise NotImplementedError("Deferred loading for composite " "types not implemented yet") self.columns = self.parent_property.columns self.group = self.parent_property.group def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators): # this path currently does not check the result # for the column; this is because in most cases we are # working just with the setup_query() directive which does # not support this, and the behavior here should be consistent. if not self.is_class_level: set_deferred_for_local_state = \ self.parent_property._deferred_column_loader populators["new"].append((self.key, set_deferred_for_local_state)) else: populators["expire"].append((self.key, False)) def init_class_attribute(self, mapper): self.is_class_level = True _register_attribute( self, mapper, useobject=False, compare_function=self.columns[0].type.compare_values, callable_=self._load_for_state, expire_missing=False ) def setup_query( self, context, entity, path, loadopt, adapter, column_collection, memoized_populators, only_load_props=None, **kw): if ( ( loadopt and 'undefer_pks' in loadopt.local_opts and set(self.columns).intersection( self.parent._should_undefer_in_wildcard) ) or ( loadopt and self.group and loadopt.local_opts.get('undefer_group_%s' % self.group, False) ) or ( only_load_props and self.key in only_load_props ) ): self.parent_property._get_strategy_by_cls(ColumnLoader).\ setup_query(context, entity, path, loadopt, adapter, column_collection, memoized_populators, **kw) elif self.is_class_level: memoized_populators[self.parent_property] = _SET_DEFERRED_EXPIRED else: memoized_populators[self.parent_property] = _DEFER_FOR_STATE def _load_for_state(self, state, passive): if not state.key: return attributes.ATTR_EMPTY if not passive & attributes.SQL_OK: return attributes.PASSIVE_NO_RESULT localparent = state.manager.mapper if self.group: toload = [ p.key for p in localparent.iterate_properties if isinstance(p, StrategizedProperty) and isinstance(p.strategy, DeferredColumnLoader) and p.group == self.group ] else: toload = [self.key] # narrow the keys down to just those which have no history group = [k for k in toload if k in state.unmodified] session = _state_session(state) if session is None: raise orm_exc.DetachedInstanceError( "Parent instance %s is not bound to a Session; " "deferred load operation of attribute '%s' cannot proceed" % (orm_util.state_str(state), self.key) ) query = session.query(localparent) if loading.load_on_ident( query, state.key, only_load_props=group, refresh_state=state) is None: raise orm_exc.ObjectDeletedError(state) return attributes.ATTR_WAS_SET class LoadDeferredColumns(object): """serializable loader object used by DeferredColumnLoader""" def __init__(self, key): self.key = key def __call__(self, state, passive=attributes.PASSIVE_OFF): key = self.key localparent = state.manager.mapper prop = localparent._props[key] strategy = prop._strategies[DeferredColumnLoader] return strategy._load_for_state(state, passive) class AbstractRelationshipLoader(LoaderStrategy): """LoaderStratgies which deal with related objects.""" __slots__ = 'mapper', 'target', 'uselist' def __init__(self, parent): super(AbstractRelationshipLoader, self).__init__(parent) self.mapper = self.parent_property.mapper self.target = self.parent_property.target self.uselist = self.parent_property.uselist @log.class_logger @properties.RelationshipProperty.strategy_for(lazy="noload") @properties.RelationshipProperty.strategy_for(lazy=None) class NoLoader(AbstractRelationshipLoader): """Provide loading behavior for a :class:`.RelationshipProperty` with "lazy=None". """ __slots__ = () def init_class_attribute(self, mapper): self.is_class_level = True _register_attribute( self, mapper, useobject=True, uselist=self.parent_property.uselist, typecallable=self.parent_property.collection_class, ) def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators): def invoke_no_load(state, dict_, row): if self.uselist: state.manager.get_impl(self.key).initialize(state, dict_) else: dict_[self.key] = None populators["new"].append((self.key, invoke_no_load)) @log.class_logger @properties.RelationshipProperty.strategy_for(lazy=True) @properties.RelationshipProperty.strategy_for(lazy="select") class LazyLoader(AbstractRelationshipLoader, util.MemoizedSlots): """Provide loading behavior for a :class:`.RelationshipProperty` with "lazy=True", that is loads when first accessed. """ __slots__ = ( '_lazywhere', '_rev_lazywhere', 'use_get', '_bind_to_col', '_equated_columns', '_rev_bind_to_col', '_rev_equated_columns', '_simple_lazy_clause') def __init__(self, parent): super(LazyLoader, self).__init__(parent) join_condition = self.parent_property._join_condition self._lazywhere, \ self._bind_to_col, \ self._equated_columns = join_condition.create_lazy_clause() self._rev_lazywhere, \ self._rev_bind_to_col, \ self._rev_equated_columns = join_condition.create_lazy_clause( reverse_direction=True) self.logger.info("%s lazy loading clause %s", self, self._lazywhere) # determine if our "lazywhere" clause is the same as the mapper's # get() clause. then we can just use mapper.get() self.use_get = not self.uselist and \ self.mapper._get_clause[0].compare( self._lazywhere, use_proxies=True, equivalents=self.mapper._equivalent_columns ) if self.use_get: for col in list(self._equated_columns): if col in self.mapper._equivalent_columns: for c in self.mapper._equivalent_columns[col]: self._equated_columns[c] = self._equated_columns[col] self.logger.info("%s will use query.get() to " "optimize instance loads", self) def init_class_attribute(self, mapper): self.is_class_level = True active_history = ( self.parent_property.active_history or self.parent_property.direction is not interfaces.MANYTOONE or not self.use_get ) # MANYTOONE currently only needs the # "old" value for delete-orphan # cascades. the required _SingleParentValidator # will enable active_history # in that case. otherwise we don't need the # "old" value during backref operations. _register_attribute( self, mapper, useobject=True, callable_=self._load_for_state, uselist=self.parent_property.uselist, backref=self.parent_property.back_populates, typecallable=self.parent_property.collection_class, active_history=active_history ) def _memoized_attr__simple_lazy_clause(self): criterion, bind_to_col = ( self._lazywhere, self._bind_to_col ) params = [] def visit_bindparam(bindparam): bindparam.unique = False if bindparam._identifying_key in bind_to_col: params.append(( bindparam.key, bind_to_col[bindparam._identifying_key], None)) else: params.append((bindparam.key, None, bindparam.value)) criterion = visitors.cloned_traverse( criterion, {}, {'bindparam': visit_bindparam} ) return criterion, params def _generate_lazy_clause(self, state, passive): criterion, param_keys = self._simple_lazy_clause if state is None: return sql_util.adapt_criterion_to_null( criterion, [key for key, ident, value in param_keys]) mapper = self.parent_property.parent o = state.obj() # strong ref dict_ = attributes.instance_dict(o) if passive & attributes.INIT_OK: passive ^= attributes.INIT_OK params = {} for key, ident, value in param_keys: if ident is not None: if passive and passive & attributes.LOAD_AGAINST_COMMITTED: value = mapper._get_committed_state_attr_by_column( state, dict_, ident, passive) else: value = mapper._get_state_attr_by_column( state, dict_, ident, passive) params[key] = value return criterion, params def _load_for_state(self, state, passive): if not state.key and ( ( not self.parent_property.load_on_pending and not state._load_pending ) or not state.session_id ): return attributes.ATTR_EMPTY pending = not state.key ident_key = None if ( (not passive & attributes.SQL_OK and not self.use_get) or (not passive & attributes.NON_PERSISTENT_OK and pending) ): return attributes.PASSIVE_NO_RESULT session = _state_session(state) if not session: raise orm_exc.DetachedInstanceError( "Parent instance %s is not bound to a Session; " "lazy load operation of attribute '%s' cannot proceed" % (orm_util.state_str(state), self.key) ) # if we have a simple primary key load, check the # identity map without generating a Query at all if self.use_get: ident = self._get_ident_for_use_get( session, state, passive ) if attributes.PASSIVE_NO_RESULT in ident: return attributes.PASSIVE_NO_RESULT elif attributes.NEVER_SET in ident: return attributes.NEVER_SET if _none_set.issuperset(ident): return None ident_key = self.mapper.identity_key_from_primary_key(ident) instance = loading.get_from_identity(session, ident_key, passive) if instance is not None: return instance elif not passive & attributes.SQL_OK or \ not passive & attributes.RELATED_OBJECT_OK: return attributes.PASSIVE_NO_RESULT return self._emit_lazyload(session, state, ident_key, passive) def _get_ident_for_use_get(self, session, state, passive): instance_mapper = state.manager.mapper if passive & attributes.LOAD_AGAINST_COMMITTED: get_attr = instance_mapper._get_committed_state_attr_by_column else: get_attr = instance_mapper._get_state_attr_by_column dict_ = state.dict return [ get_attr( state, dict_, self._equated_columns[pk], passive=passive) for pk in self.mapper.primary_key ] @util.dependencies("sqlalchemy.orm.strategy_options") def _emit_lazyload( self, strategy_options, session, state, ident_key, passive): q = session.query(self.mapper)._adapt_all_clauses() if self.parent_property.secondary is not None: q = q.select_from(self.mapper, self.parent_property.secondary) q = q._with_invoke_all_eagers(False) pending = not state.key # don't autoflush on pending if pending or passive & attributes.NO_AUTOFLUSH: q = q.autoflush(False) if state.load_path: q = q._with_current_path(state.load_path[self.parent_property]) if state.load_options: q = q._conditional_options(*state.load_options) if self.use_get: return loading.load_on_ident(q, ident_key) if self.parent_property.order_by: q = q.order_by(*util.to_list(self.parent_property.order_by)) for rev in self.parent_property._reverse_property: # reverse props that are MANYTOONE are loading *this* # object from get(), so don't need to eager out to those. if rev.direction is interfaces.MANYTOONE and \ rev._use_get and \ not isinstance(rev.strategy, LazyLoader): q = q.options( strategy_options.Load(rev.parent).lazyload(rev.key)) lazy_clause, params = self._generate_lazy_clause( state, passive=passive) if pending: if util.has_intersection( orm_util._none_set, params.values()): return None elif util.has_intersection(orm_util._never_set, params.values()): return None q = q.filter(lazy_clause).params(params) result = q.all() if self.uselist: return result else: l = len(result) if l: if l > 1: util.warn( "Multiple rows returned with " "uselist=False for lazily-loaded attribute '%s' " % self.parent_property) return result[0] else: return None def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators): key = self.key if not self.is_class_level: # we are not the primary manager for this attribute # on this class - set up a # per-instance lazyloader, which will override the # class-level behavior. # this currently only happens when using a # "lazyload" option on a "no load" # attribute - "eager" attributes always have a # class-level lazyloader installed. set_lazy_callable = InstanceState._instance_level_callable_processor( mapper.class_manager, LoadLazyAttribute(key, self._strategy_keys[0]), key) populators["new"].append((self.key, set_lazy_callable)) elif context.populate_existing or mapper.always_refresh: def reset_for_lazy_callable(state, dict_, row): # we are the primary manager for this attribute on # this class - reset its # per-instance attribute state, so that the class-level # lazy loader is # executed when next referenced on this instance. # this is needed in # populate_existing() types of scenarios to reset # any existing state. state._reset(dict_, key) populators["new"].append((self.key, reset_for_lazy_callable)) class LoadLazyAttribute(object): """serializable loader object used by LazyLoader""" def __init__(self, key, strategy_key=(('lazy', 'select'),)): self.key = key self.strategy_key = strategy_key def __call__(self, state, passive=attributes.PASSIVE_OFF): key = self.key instance_mapper = state.manager.mapper prop = instance_mapper._props[key] strategy = prop._strategies[self.strategy_key] return strategy._load_for_state(state, passive) @properties.RelationshipProperty.strategy_for(lazy="immediate") class ImmediateLoader(AbstractRelationshipLoader): __slots__ = () def init_class_attribute(self, mapper): self.parent_property.\ _get_strategy_by_cls(LazyLoader).\ init_class_attribute(mapper) def setup_query( self, context, entity, path, loadopt, adapter, column_collection=None, parentmapper=None, **kwargs): pass def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators): def load_immediate(state, dict_, row): state.get_impl(self.key).get(state, dict_) populators["delayed"].append((self.key, load_immediate)) @log.class_logger @properties.RelationshipProperty.strategy_for(lazy="subquery") class SubqueryLoader(AbstractRelationshipLoader): __slots__ = 'join_depth', def __init__(self, parent): super(SubqueryLoader, self).__init__(parent) self.join_depth = self.parent_property.join_depth def init_class_attribute(self, mapper): self.parent_property.\ _get_strategy_by_cls(LazyLoader).\ init_class_attribute(mapper) def setup_query( self, context, entity, path, loadopt, adapter, column_collection=None, parentmapper=None, **kwargs): if not context.query._enable_eagerloads: return elif context.query._yield_per: context.query._no_yield_per("subquery") path = path[self.parent_property] # build up a path indicating the path from the leftmost # entity to the thing we're subquery loading. with_poly_info = path.get( context.attributes, "path_with_polymorphic", None) if with_poly_info is not None: effective_entity = with_poly_info.entity else: effective_entity = self.mapper subq_path = context.attributes.get( ('subquery_path', None), orm_util.PathRegistry.root) subq_path = subq_path + path # if not via query option, check for # a cycle if not path.contains(context.attributes, "loader"): if self.join_depth: if path.length / 2 > self.join_depth: return elif subq_path.contains_mapper(self.mapper): return leftmost_mapper, leftmost_attr, leftmost_relationship = \ self._get_leftmost(subq_path) orig_query = context.attributes.get( ("orig_query", SubqueryLoader), context.query) # generate a new Query from the original, then # produce a subquery from it. left_alias = self._generate_from_original_query( orig_query, leftmost_mapper, leftmost_attr, leftmost_relationship, entity.entity_zero ) # generate another Query that will join the # left alias to the target relationships. # basically doing a longhand # "from_self()". (from_self() itself not quite industrial # strength enough for all contingencies...but very close) q = orig_query.session.query(effective_entity) q._attributes = { ("orig_query", SubqueryLoader): orig_query, ('subquery_path', None): subq_path } q = q._set_enable_single_crit(False) to_join, local_attr, parent_alias = \ self._prep_for_joins(left_alias, subq_path) q = q.order_by(*local_attr) q = q.add_columns(*local_attr) q = self._apply_joins( q, to_join, left_alias, parent_alias, effective_entity) q = self._setup_options(q, subq_path, orig_query, effective_entity) q = self._setup_outermost_orderby(q) # add new query to attributes to be picked up # by create_row_processor path.set(context.attributes, "subquery", q) def _get_leftmost(self, subq_path): subq_path = subq_path.path subq_mapper = orm_util._class_to_mapper(subq_path[0]) # determine attributes of the leftmost mapper if self.parent.isa(subq_mapper) and \ self.parent_property is subq_path[1]: leftmost_mapper, leftmost_prop = \ self.parent, self.parent_property else: leftmost_mapper, leftmost_prop = \ subq_mapper, \ subq_path[1] leftmost_cols = leftmost_prop.local_columns leftmost_attr = [ getattr( subq_path[0].entity, leftmost_mapper._columntoproperty[c].key) for c in leftmost_cols ] return leftmost_mapper, leftmost_attr, leftmost_prop def _generate_from_original_query( self, orig_query, leftmost_mapper, leftmost_attr, leftmost_relationship, orig_entity ): # reformat the original query # to look only for significant columns q = orig_query._clone().correlate(None) # set a real "from" if not present, as this is more # accurate than just going off of the column expression if not q._from_obj and orig_entity.mapper.isa(leftmost_mapper): q._set_select_from([orig_entity], False) target_cols = q._adapt_col_list(leftmost_attr) # select from the identity columns of the outer q._set_entities(target_cols) distinct_target_key = leftmost_relationship.distinct_target_key if distinct_target_key is True: q._distinct = True elif distinct_target_key is None: # if target_cols refer to a non-primary key or only # part of a composite primary key, set the q as distinct for t in set(c.table for c in target_cols): if not set(target_cols).issuperset(t.primary_key): q._distinct = True break if q._order_by is False: q._order_by = leftmost_mapper.order_by # don't need ORDER BY if no limit/offset if q._limit is None and q._offset is None: q._order_by = None # the original query now becomes a subquery # which we'll join onto. embed_q = q.with_labels().subquery() left_alias = orm_util.AliasedClass( leftmost_mapper, embed_q, use_mapper_path=True) return left_alias def _prep_for_joins(self, left_alias, subq_path): # figure out what's being joined. a.k.a. the fun part to_join = [] pairs = list(subq_path.pairs()) for i, (mapper, prop) in enumerate(pairs): if i > 0: # look at the previous mapper in the chain - # if it is as or more specific than this prop's # mapper, use that instead. # note we have an assumption here that # the non-first element is always going to be a mapper, # not an AliasedClass prev_mapper = pairs[i - 1][1].mapper to_append = prev_mapper if prev_mapper.isa(mapper) else mapper else: to_append = mapper to_join.append((to_append, prop.key)) # determine the immediate parent class we are joining from, # which needs to be aliased. if len(to_join) > 1: info = inspect(to_join[-1][0]) if len(to_join) < 2: # in the case of a one level eager load, this is the # leftmost "left_alias". parent_alias = left_alias elif info.mapper.isa(self.parent): # In the case of multiple levels, retrieve # it from subq_path[-2]. This is the same as self.parent # in the vast majority of cases, and [ticket:2014] # illustrates a case where sub_path[-2] is a subclass # of self.parent parent_alias = orm_util.AliasedClass( to_join[-1][0], use_mapper_path=True) else: # if of_type() were used leading to this relationship, # self.parent is more specific than subq_path[-2] parent_alias = orm_util.AliasedClass( self.parent, use_mapper_path=True) local_cols = self.parent_property.local_columns local_attr = [ getattr(parent_alias, self.parent._columntoproperty[c].key) for c in local_cols ] return to_join, local_attr, parent_alias def _apply_joins( self, q, to_join, left_alias, parent_alias, effective_entity): for i, (mapper, key) in enumerate(to_join): # we need to use query.join() as opposed to # orm.join() here because of the # rich behavior it brings when dealing with # "with_polymorphic" mappers. "aliased" # and "from_joinpoint" take care of most of # the chaining and aliasing for us. first = i == 0 middle = i < len(to_join) - 1 second_to_last = i == len(to_join) - 2 last = i == len(to_join) - 1 if first: attr = getattr(left_alias, key) if last and effective_entity is not self.mapper: attr = attr.of_type(effective_entity) else: if last and effective_entity is not self.mapper: attr = getattr(parent_alias, key).\ of_type(effective_entity) else: attr = getattr(mapper.entity, key) if second_to_last: q = q.join(parent_alias, attr, from_joinpoint=True) else: q = q.join(attr, aliased=middle, from_joinpoint=True) return q def _setup_options(self, q, subq_path, orig_query, effective_entity): # propagate loader options etc. to the new query. # these will fire relative to subq_path. q = q._with_current_path(subq_path) q = q._conditional_options(*orig_query._with_options) if orig_query._populate_existing: q._populate_existing = orig_query._populate_existing return q def _setup_outermost_orderby(self, q): if self.parent_property.order_by: # if there's an ORDER BY, alias it the same # way joinedloader does, but we have to pull out # the "eagerjoin" from the query. # this really only picks up the "secondary" table # right now. eagerjoin = q._from_obj[0] eager_order_by = \ eagerjoin._target_adapter.\ copy_and_process( util.to_list( self.parent_property.order_by ) ) q = q.order_by(*eager_order_by) return q class _SubqCollections(object): """Given a :class:`.Query` used to emit the "subquery load", provide a load interface that executes the query at the first moment a value is needed. """ _data = None def __init__(self, subq): self.subq = subq def get(self, key, default): if self._data is None: self._load() return self._data.get(key, default) def _load(self): self._data = dict( (k, [vv[0] for vv in v]) for k, v in itertools.groupby( self.subq, lambda x: x[1:] ) ) def loader(self, state, dict_, row): if self._data is None: self._load() def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators): if not self.parent.class_manager[self.key].impl.supports_population: raise sa_exc.InvalidRequestError( "'%s' does not support object " "population - eager loading cannot be applied." % self) path = path[self.parent_property] subq = path.get(context.attributes, 'subquery') if subq is None: return assert subq.session is context.session, ( "Subquery session doesn't refer to that of " "our context. Are there broken context caching " "schemes being used?" ) local_cols = self.parent_property.local_columns # cache the loaded collections in the context # so that inheriting mappers don't re-load when they # call upon create_row_processor again collections = path.get(context.attributes, "collections") if collections is None: collections = self._SubqCollections(subq) path.set(context.attributes, 'collections', collections) if adapter: local_cols = [adapter.columns[c] for c in local_cols] if self.uselist: self._create_collection_loader( context, collections, local_cols, populators) else: self._create_scalar_loader( context, collections, local_cols, populators) def _create_collection_loader( self, context, collections, local_cols, populators): def load_collection_from_subq(state, dict_, row): collection = collections.get( tuple([row[col] for col in local_cols]), () ) state.get_impl(self.key).\ set_committed_value(state, dict_, collection) populators["new"].append((self.key, load_collection_from_subq)) if context.invoke_all_eagers: populators["eager"].append((self.key, collections.loader)) def _create_scalar_loader( self, context, collections, local_cols, populators): def load_scalar_from_subq(state, dict_, row): collection = collections.get( tuple([row[col] for col in local_cols]), (None,) ) if len(collection) > 1: util.warn( "Multiple rows returned with " "uselist=False for eagerly-loaded attribute '%s' " % self) scalar = collection[0] state.get_impl(self.key).\ set_committed_value(state, dict_, scalar) populators["new"].append((self.key, load_scalar_from_subq)) if context.invoke_all_eagers: populators["eager"].append((self.key, collections.loader)) @log.class_logger @properties.RelationshipProperty.strategy_for(lazy="joined") @properties.RelationshipProperty.strategy_for(lazy=False) class JoinedLoader(AbstractRelationshipLoader): """Provide loading behavior for a :class:`.RelationshipProperty` using joined eager loading. """ __slots__ = 'join_depth', def __init__(self, parent): super(JoinedLoader, self).__init__(parent) self.join_depth = self.parent_property.join_depth def init_class_attribute(self, mapper): self.parent_property.\ _get_strategy_by_cls(LazyLoader).init_class_attribute(mapper) def setup_query( self, context, entity, path, loadopt, adapter, column_collection=None, parentmapper=None, chained_from_outerjoin=False, **kwargs): """Add a left outer join to the statement that's being constructed.""" if not context.query._enable_eagerloads: return elif context.query._yield_per and self.uselist: context.query._no_yield_per("joined collection") path = path[self.parent_property] with_polymorphic = None user_defined_adapter = self._init_user_defined_eager_proc( loadopt, context) if loadopt else False if user_defined_adapter is not False: clauses, adapter, add_to_collection = \ self._setup_query_on_user_defined_adapter( context, entity, path, adapter, user_defined_adapter ) else: # if not via query option, check for # a cycle if not path.contains(context.attributes, "loader"): if self.join_depth: if path.length / 2 > self.join_depth: return elif path.contains_mapper(self.mapper): return clauses, adapter, add_to_collection, chained_from_outerjoin = \ self._generate_row_adapter( context, entity, path, loadopt, adapter, column_collection, parentmapper, chained_from_outerjoin ) with_poly_info = path.get( context.attributes, "path_with_polymorphic", None ) if with_poly_info is not None: with_polymorphic = with_poly_info.with_polymorphic_mappers else: with_polymorphic = None path = path[self.mapper] loading._setup_entity_query( context, self.mapper, entity, path, clauses, add_to_collection, with_polymorphic=with_polymorphic, parentmapper=self.mapper, chained_from_outerjoin=chained_from_outerjoin) if with_poly_info is not None and \ None in set(context.secondary_columns): raise sa_exc.InvalidRequestError( "Detected unaliased columns when generating joined " "load. Make sure to use aliased=True or flat=True " "when using joined loading with with_polymorphic()." ) def _init_user_defined_eager_proc(self, loadopt, context): # check if the opt applies at all if "eager_from_alias" not in loadopt.local_opts: # nope return False path = loadopt.path.parent # the option applies. check if the "user_defined_eager_row_processor" # has been built up. adapter = path.get( context.attributes, "user_defined_eager_row_processor", False) if adapter is not False: # just return it return adapter # otherwise figure it out. alias = loadopt.local_opts["eager_from_alias"] root_mapper, prop = path[-2:] #from .mapper import Mapper #from .interfaces import MapperProperty #assert isinstance(root_mapper, Mapper) #assert isinstance(prop, MapperProperty) if alias is not None: if isinstance(alias, str): alias = prop.target.alias(alias) adapter = sql_util.ColumnAdapter( alias, equivalents=prop.mapper._equivalent_columns) else: if path.contains(context.attributes, "path_with_polymorphic"): with_poly_info = path.get( context.attributes, "path_with_polymorphic") adapter = orm_util.ORMAdapter( with_poly_info.entity, equivalents=prop.mapper._equivalent_columns) else: adapter = context.query._polymorphic_adapters.get( prop.mapper, None) path.set( context.attributes, "user_defined_eager_row_processor", adapter) return adapter def _setup_query_on_user_defined_adapter( self, context, entity, path, adapter, user_defined_adapter): # apply some more wrapping to the "user defined adapter" # if we are setting up the query for SQL render. adapter = entity._get_entity_clauses(context.query, context) if adapter and user_defined_adapter: user_defined_adapter = user_defined_adapter.wrap(adapter) path.set( context.attributes, "user_defined_eager_row_processor", user_defined_adapter) elif adapter: user_defined_adapter = adapter path.set( context.attributes, "user_defined_eager_row_processor", user_defined_adapter) add_to_collection = context.primary_columns return user_defined_adapter, adapter, add_to_collection def _generate_row_adapter( self, context, entity, path, loadopt, adapter, column_collection, parentmapper, chained_from_outerjoin): with_poly_info = path.get( context.attributes, "path_with_polymorphic", None ) if with_poly_info: to_adapt = with_poly_info.entity else: to_adapt = orm_util.AliasedClass( self.mapper, flat=True, use_mapper_path=True) clauses = orm_util.ORMAdapter( to_adapt, equivalents=self.mapper._equivalent_columns, adapt_required=True, allow_label_resolve=False, anonymize_labels=True) assert clauses.aliased_class is not None if self.parent_property.uselist: context.multi_row_eager_loaders = True innerjoin = ( loadopt.local_opts.get( 'innerjoin', self.parent_property.innerjoin) if loadopt is not None else self.parent_property.innerjoin ) if not innerjoin: # if this is an outer join, all non-nested eager joins from # this path must also be outer joins chained_from_outerjoin = True context.create_eager_joins.append( ( self._create_eager_join, context, entity, path, adapter, parentmapper, clauses, innerjoin, chained_from_outerjoin ) ) add_to_collection = context.secondary_columns path.set(context.attributes, "eager_row_processor", clauses) return clauses, adapter, add_to_collection, chained_from_outerjoin def _create_eager_join( self, context, entity, path, adapter, parentmapper, clauses, innerjoin, chained_from_outerjoin): if parentmapper is None: localparent = entity.mapper else: localparent = parentmapper # whether or not the Query will wrap the selectable in a subquery, # and then attach eager load joins to that (i.e., in the case of # LIMIT/OFFSET etc.) should_nest_selectable = context.multi_row_eager_loaders and \ context.query._should_nest_selectable entity_key = None if entity not in context.eager_joins and \ not should_nest_selectable and \ context.from_clause: index, clause = sql_util.find_join_source( context.from_clause, entity.selectable) if clause is not None: # join to an existing FROM clause on the query. # key it to its list index in the eager_joins dict. # Query._compile_context will adapt as needed and # append to the FROM clause of the select(). entity_key, default_towrap = index, clause if entity_key is None: entity_key, default_towrap = entity, entity.selectable towrap = context.eager_joins.setdefault(entity_key, default_towrap) if adapter: if getattr(adapter, 'aliased_class', None): # joining from an adapted entity. The adapted entity # might be a "with_polymorphic", so resolve that to our # specific mapper's entity before looking for our attribute # name on it. efm = inspect(adapter.aliased_class).\ _entity_for_mapper( parentmapper if parentmapper.isa(self.parent) else self.parent) # look for our attribute on the adapted entity, else fall back # to our straight property onclause = getattr( efm.entity, self.key, self.parent_property) else: onclause = getattr( orm_util.AliasedClass( self.parent, adapter.selectable, use_mapper_path=True ), self.key, self.parent_property ) else: onclause = self.parent_property assert clauses.aliased_class is not None attach_on_outside = ( not chained_from_outerjoin or not innerjoin or innerjoin == 'unnested') if attach_on_outside: # this is the "classic" eager join case. eagerjoin = orm_util._ORMJoin( towrap, clauses.aliased_class, onclause, isouter=not innerjoin or ( chained_from_outerjoin and isinstance(towrap, sql.Join) ), _left_memo=self.parent, _right_memo=self.mapper ) else: # all other cases are innerjoin=='nested' approach eagerjoin = self._splice_nested_inner_join( path, towrap, clauses, onclause) context.eager_joins[entity_key] = eagerjoin # send a hint to the Query as to where it may "splice" this join eagerjoin.stop_on = entity.selectable if not parentmapper: # for parentclause that is the non-eager end of the join, # ensure all the parent cols in the primaryjoin are actually # in the # columns clause (i.e. are not deferred), so that aliasing applied # by the Query propagates those columns outward. # This has the effect # of "undefering" those columns. for col in sql_util._find_columns( self.parent_property.primaryjoin): if localparent.mapped_table.c.contains_column(col): if adapter: col = adapter.columns[col] context.primary_columns.append(col) if self.parent_property.order_by: context.eager_order_by += eagerjoin._target_adapter.\ copy_and_process( util.to_list( self.parent_property.order_by ) ) def _splice_nested_inner_join( self, path, join_obj, clauses, onclause, splicing=False): if splicing is False: # first call is always handed a join object # from the outside assert isinstance(join_obj, orm_util._ORMJoin) elif isinstance(join_obj, sql.selectable.FromGrouping): return self._splice_nested_inner_join( path, join_obj.element, clauses, onclause, splicing ) elif not isinstance(join_obj, orm_util._ORMJoin): if path[-2] is splicing: return orm_util._ORMJoin( join_obj, clauses.aliased_class, onclause, isouter=False, _left_memo=splicing, _right_memo=path[-1].mapper ) else: # only here if splicing == True return None target_join = self._splice_nested_inner_join( path, join_obj.right, clauses, onclause, join_obj._right_memo) if target_join is None: right_splice = False target_join = self._splice_nested_inner_join( path, join_obj.left, clauses, onclause, join_obj._left_memo) if target_join is None: # should only return None when recursively called, # e.g. splicing==True assert splicing is not False, \ "assertion failed attempting to produce joined eager loads" return None else: right_splice = True if right_splice: # for a right splice, attempt to flatten out # a JOIN b JOIN c JOIN .. to avoid needless # parenthesis nesting if not join_obj.isouter and not target_join.isouter: eagerjoin = join_obj._splice_into_center(target_join) else: eagerjoin = orm_util._ORMJoin( join_obj.left, target_join, join_obj.onclause, isouter=join_obj.isouter, _left_memo=join_obj._left_memo) else: eagerjoin = orm_util._ORMJoin( target_join, join_obj.right, join_obj.onclause, isouter=join_obj.isouter, _right_memo=join_obj._right_memo) eagerjoin._target_adapter = target_join._target_adapter return eagerjoin def _create_eager_adapter(self, context, result, adapter, path, loadopt): user_defined_adapter = self._init_user_defined_eager_proc( loadopt, context) if loadopt else False if user_defined_adapter is not False: decorator = user_defined_adapter # user defined eagerloads are part of the "primary" # portion of the load. # the adapters applied to the Query should be honored. if context.adapter and decorator: decorator = decorator.wrap(context.adapter) elif context.adapter: decorator = context.adapter else: decorator = path.get(context.attributes, "eager_row_processor") if decorator is None: return False if self.mapper._result_has_identity_key(result, decorator): return decorator else: # no identity key - don't return a row # processor, will cause a degrade to lazy return False def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators): if not self.parent.class_manager[self.key].impl.supports_population: raise sa_exc.InvalidRequestError( "'%s' does not support object " "population - eager loading cannot be applied." % self ) our_path = path[self.parent_property] eager_adapter = self._create_eager_adapter( context, result, adapter, our_path, loadopt) if eager_adapter is not False: key = self.key _instance = loading._instance_processor( self.mapper, context, result, our_path[self.mapper], eager_adapter) if not self.uselist: self._create_scalar_loader(context, key, _instance, populators) else: self._create_collection_loader( context, key, _instance, populators) else: self.parent_property._get_strategy_by_cls(LazyLoader).\ create_row_processor( context, path, loadopt, mapper, result, adapter, populators) def _create_collection_loader(self, context, key, _instance, populators): def load_collection_from_joined_new_row(state, dict_, row): collection = attributes.init_state_collection( state, dict_, key) result_list = util.UniqueAppender(collection, 'append_without_event') context.attributes[(state, key)] = result_list inst = _instance(row) if inst is not None: result_list.append(inst) def load_collection_from_joined_existing_row(state, dict_, row): if (state, key) in context.attributes: result_list = context.attributes[(state, key)] else: # appender_key can be absent from context.attributes # with isnew=False when self-referential eager loading # is used; the same instance may be present in two # distinct sets of result columns collection = attributes.init_state_collection( state, dict_, key) result_list = util.UniqueAppender( collection, 'append_without_event') context.attributes[(state, key)] = result_list inst = _instance(row) if inst is not None: result_list.append(inst) def load_collection_from_joined_exec(state, dict_, row): _instance(row) populators["new"].append((self.key, load_collection_from_joined_new_row)) populators["existing"].append( (self.key, load_collection_from_joined_existing_row)) if context.invoke_all_eagers: populators["eager"].append( (self.key, load_collection_from_joined_exec)) def _create_scalar_loader(self, context, key, _instance, populators): def load_scalar_from_joined_new_row(state, dict_, row): # set a scalar object instance directly on the parent # object, bypassing InstrumentedAttribute event handlers. dict_[key] = _instance(row) def load_scalar_from_joined_existing_row(state, dict_, row): # call _instance on the row, even though the object has # been created, so that we further descend into properties existing = _instance(row) if existing is not None \ and key in dict_ \ and existing is not dict_[key]: util.warn( "Multiple rows returned with " "uselist=False for eagerly-loaded attribute '%s' " % self) def load_scalar_from_joined_exec(state, dict_, row): _instance(row) populators["new"].append((self.key, load_scalar_from_joined_new_row)) populators["existing"].append( (self.key, load_scalar_from_joined_existing_row)) if context.invoke_all_eagers: populators["eager"].append((self.key, load_scalar_from_joined_exec)) def single_parent_validator(desc, prop): def _do_check(state, value, oldvalue, initiator): if value is not None and initiator.key == prop.key: hasparent = initiator.hasparent(attributes.instance_state(value)) if hasparent and oldvalue is not value: raise sa_exc.InvalidRequestError( "Instance %s is already associated with an instance " "of %s via its %s attribute, and is only allowed a " "single parent." % (orm_util.instance_str(value), state.class_, prop) ) return value def append(state, value, initiator): return _do_check(state, value, None, initiator) def set_(state, value, oldvalue, initiator): return _do_check(state, value, oldvalue, initiator) event.listen( desc, 'append', append, raw=True, retval=True, active_history=True) event.listen( desc, 'set', set_, raw=True, retval=True, active_history=True)
36.151328
81
0.594457
7942b2d8d69bef44ed495b0a5dc2aa7369f59957
1,288
py
Python
src/nyko/grammar.py
stevencox/nyko
0619b4691e82d874110bae3388df1ef40865dd5e
[ "MIT" ]
null
null
null
src/nyko/grammar.py
stevencox/nyko
0619b4691e82d874110bae3388df1ef40865dd5e
[ "MIT" ]
null
null
null
src/nyko/grammar.py
stevencox/nyko
0619b4691e82d874110bae3388df1ef40865dd5e
[ "MIT" ]
null
null
null
from pyparsing import ( Combine, Word, White, Literal, delimitedList, Optional, Empty, Suppress, Group, alphas, alphanums, printables, Forward, oneOf, quotedString, QuotedString, ZeroOrMore, restOfLine, CaselessKeyword, ParserElement, LineEnd, removeQuotes, Regex, nestedExpr, pyparsing_common as ppc ) """ A program is a list of statements. """ optWhite = ZeroOrMore(LineEnd() | White()) string = Word(alphas, alphanums + '.') quotedName = QuotedString(quoteChar='"', unquoteResults=True) SEMI,COLON,LPAR,RPAR,LBRACE,RBRACE,LBRACK,RBRACK,DOT,COMMA,EQ = map( Literal, ";:(){}[].,=") """ Tokens. """ INCLUDE, VLAN, VID, DESCRIPTION = map( CaselessKeyword, "include vlan vid description".split()) vlan_name = Word(alphas, alphanums) vlan_vid = ppc.integer("vid") """ Grammar productions. """ statement = Forward() statement <<= ( Group( Group(VLAN + vlan_name) + optWhite + Group(VID + vlan_vid) + optWhite + Group(Optional(DESCRIPTION + quotedName)) + optWhite ) | Group ( INCLUDE + string ) )("statement") """ Make a program a series of statements. """ program_grammar = statement + ZeroOrMore(statement) """ Make rest-of-line comments. """ comment = "--" + restOfLine program_grammar.ignore (comment)
29.953488
76
0.677795
7942b3ae87102044944beb6285f42147df81b775
1,321
py
Python
android/build.py
MNannig/Vulkan-Examples
9d76cea05fadf3a6eefae3094c500f84020f706b
[ "MIT" ]
2
2019-08-06T04:33:35.000Z
2019-10-06T20:03:58.000Z
android/build.py
LiangYue1981816/GraphicsSamples-Vulkan
d15daabc582d4f8b198fdd6ec5651ec4298182a1
[ "MIT" ]
null
null
null
android/build.py
LiangYue1981816/GraphicsSamples-Vulkan
d15daabc582d4f8b198fdd6ec5651ec4298182a1
[ "MIT" ]
1
2022-03-23T20:26:33.000Z
2022-03-23T20:26:33.000Z
# Single example build and deploy script import os import subprocess import sys import shutil import glob # Android SDK version used SDK_VERSION = "android-23" PROJECT_FOLDER = "" # Name/folder of the project to build if len(sys.argv) > 1: PROJECT_FOLDER = sys.argv[1] if not os.path.exists(PROJECT_FOLDER): print("Please specify a valid project folder to build!") sys.exit(-1) # Check if a build file is present, if not create one using the android SDK version specified if not os.path.isfile(os.path.join(PROJECT_FOLDER, "build.xml")): print("Build.xml not present, generating with %s " % SDK_VERSION) if subprocess.call("android.bat update project -p ./%s -t %s" % (PROJECT_FOLDER, SDK_VERSION)) != 0: print("Error: Project update failed!") sys.exit(-1) # Run actual build script from example folder if not os.path.isfile(os.path.join(PROJECT_FOLDER, "build.py")): print("Error: No build script present!") sys.exit(-1) BUILD_ARGUMENTS = " ".join(sys.argv[2:]) os.chdir(PROJECT_FOLDER) if subprocess.call("python build.py %s" % BUILD_ARGUMENTS) != 0: print("Error during build process!") sys.exit(-1) # Move apk to bin folder os.makedirs("../bin", exist_ok=True) for file in glob.glob("vulkan*.apk"): print(file) shutil.move(file, "../bin/%s" % file)
30.022727
104
0.697199
7942b48cc05d832558c769b85fc0f8f6b8518744
5,109
py
Python
seleniumbase/core/style_sheet.py
yyb27638/py_scripts
691f0cff1de712b6d325acbe535461c27fa3659c
[ "MIT" ]
5
2021-07-30T10:08:29.000Z
2022-01-23T12:22:42.000Z
seleniumbase/core/style_sheet.py
yyb27638/py_scripts
691f0cff1de712b6d325acbe535461c27fa3659c
[ "MIT" ]
null
null
null
seleniumbase/core/style_sheet.py
yyb27638/py_scripts
691f0cff1de712b6d325acbe535461c27fa3659c
[ "MIT" ]
11
2020-08-08T02:34:18.000Z
2022-01-23T12:22:43.000Z
title = '''<meta id="OGTitle" property="og:title" content="SeleniumBase"> <title>Test Report</title> <link rel="SHORTCUT ICON" href="%s" /> ''' % ( "https://raw.githubusercontent.com/seleniumbase/SeleniumBase" "/master/seleniumbase/resources/favicon.ico") style = title + '''<style type="text/css"> html { background-color: #9988ad; } html, body { font-size: 100%; box-sizing: border-box; } body { background-image: none; background-origin: padding-box; background-color: #c6d6f0; padding: 30; margin: 10; font-family: "Proxima Nova","proxima-nova", "Helvetica Neue",Helvetica,Arial,sans-serif !important; text-rendering: optimizelegibility; -moz-osx-font-smoothing: grayscale; box-shadow: 0px 2px 5px 1px rgba(0, 0, 0, 0.24), 1px 2px 12px 0px rgba(0, 0, 0, 0.18) !important; } table { width: 100%; border-collapse: collapse; border-spacing: 0; box-shadow: 0px 2px 5px 1px rgba(0, 0, 0, 0.27), 1px 2px 12px 0px rgba(0, 0, 0, 0.21) !important; transition: all 0.15s ease-out 0s; transition-property: all; transition-duration: 0.1s; transition-timing-function: ease-out; transition-delay: 0s; } table:hover { box-shadow: 0px 2px 5px 1px rgba(0, 0, 0, 0.35), 1px 2px 12px 0px rgba(0, 0, 0, 0.28) !important; } thead th, thead td { padding: 0.5rem 0.625rem 0.625rem; font-weight: bold; text-align: left; } thead { text-align: center; border: 1px solid #e1e1e1; width: 150%; color: #0C8CDF; background-color: #c0f0ff; } tbody tr:nth-child(even) { background-color: #f1f1f1; } tbody tr:nth-child(odd) { background-color: #ffffff; } tbody tr:nth-child(even):hover { background-color: #f8f8d2; } tbody tr:nth-child(odd):hover { background-color: #ffffe0; } tbody th, tbody td { padding: 0.5rem 0.625rem 0.625rem; } tbody { border: 1px solid #e1e1e1; background-color: #fefefe; } td { padding: 5px 5px 5px 0; vertical-align: top; } h1 table { font-size: 27px; text-align: left; padding: 0.5rem 0.625rem 0.625rem; font-weight: bold; padding-right: 10px; padding-left: 20px; padding: 15px 15px 15px 0; } h2 table { color: #0C8CDF; font-size: 16px; text-align: left; font-weight: bold; padding: 5px 5px 5px 0; padding-right: 10px; padding-left: 20px; } </style>''' # Bootstrap Tour Backdrop Style bt_backdrop_style = ( ''' .tour-tour-element { box-shadow: 0 0 0 99999px rgba(0, 0, 0, 0.20); pointer-events: none !important; z-index: 9999; } :not(.tour-tour-element) .orphan.tour-tour { box-shadow: 0 0 0 99999px rgba(0, 0, 0, 0.20); } .tour-tour { pointer-events: auto; z-index: 9999; } ''') # DriverJS Tour Backdrop Style dt_backdrop_style = ( ''' .driver-fix-stacking { pointer-events: none !important; } #driver-popover-item, .popover-class { pointer-events: auto !important; } ''') messenger_style = ( ''' .messenger-message-inner { font-family: "Proxima Nova","proxima-nova",Arial,sans-serif !important; font-size: 17px; } ''') sh_style_test = ( ''' var test_tour = new Shepherd.Tour({ defaults: { classes: 'shepherd-theme-dark', scrollTo: true } }); ''') # Hopscotch Backdrop Style hops_backdrop_style = ( ''' .hopscotch-bubble-container { font-size: 110%; } ''') # Shepherd Backdrop Style sh_backdrop_style = ( ''' body.shepherd-active .shepherd-target.shepherd-enabled { box-shadow: 0 0 0 99999px rgba(0, 0, 0, 0.20); pointer-events: none !important; z-index: 9999; } body.shepherd-active .shepherd-orphan { box-shadow: 0 0 0 99999px rgba(0, 0, 0, 0.20); pointer-events: auto; z-index: 9999; } body.shepherd-active .shepherd-enabled.shepherd-element-attached-top { position: relative; } body.shepherd-active .shepherd-enabled.shepherd-element-attached-bottom { position: relative; } body.shepherd-active .shepherd-step { pointer-events: auto; z-index: 9999; } body.shepherd-active { pointer-events: none !important; } ''')
26.889474
79
0.517322
7942b49f4d4fe582683c0a7bf7093c28959771af
1,903
py
Python
stubs.min/System/ComponentModel/__init___parts/CharConverter.py
ricardyn/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
1
2021-02-02T13:39:16.000Z
2021-02-02T13:39:16.000Z
stubs.min/System/ComponentModel/__init___parts/CharConverter.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
stubs.min/System/ComponentModel/__init___parts/CharConverter.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
class CharConverter(TypeConverter): """ Provides a type converter to convert Unicode character objects to and from various other representations. CharConverter() """ def CanConvertFrom(self,*__args): """ CanConvertFrom(self: CharConverter,context: ITypeDescriptorContext,sourceType: Type) -> bool Gets a value indicating whether this converter can convert an object in the given source type to a Unicode character object using the specified context. context: An System.ComponentModel.ITypeDescriptorContext that provides a format context. sourceType: A System.Type that represents the type you want to convert from. Returns: true if this converter can perform the conversion; otherwise,false. """ pass def ConvertFrom(self,*__args): """ ConvertFrom(self: CharConverter,context: ITypeDescriptorContext,culture: CultureInfo,value: object) -> object Converts the given object to a Unicode character object. context: An System.ComponentModel.ITypeDescriptorContext that provides a format context. culture: The culture into which value will be converted. value: The System.Object to convert. Returns: An System.Object that represents the converted value. """ pass def ConvertTo(self,*__args): """ ConvertTo(self: CharConverter,context: ITypeDescriptorContext,culture: CultureInfo,value: object,destinationType: Type) -> object Converts the given value object to a Unicode character object using the arguments. context: An System.ComponentModel.ITypeDescriptorContext that provides a format context. culture: The culture into which value will be converted. value: The System.Object to convert. destinationType: The System.Type to convert the value to. Returns: An System.Object that represents the converted value. """ pass
40.489362
133
0.73463
7942b4bd1f5da5f2585853afd177ead4344e6a16
3,311
py
Python
cgi-bin/download.py
fanuware/pybrowser
910cebaee45524248c18d86605ba9e7f1b862c47
[ "MIT" ]
null
null
null
cgi-bin/download.py
fanuware/pybrowser
910cebaee45524248c18d86605ba9e7f1b862c47
[ "MIT" ]
null
null
null
cgi-bin/download.py
fanuware/pybrowser
910cebaee45524248c18d86605ba9e7f1b862c47
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import cgi import cgitb import os import sys import zipfile import mimetypes import templates from userlogger import UserLogger cgitb.enable() def getRecbin(): if not os.path.isdir('recbin') and not os.path.isdir('../recbin'): os.mkdir('recbin') return os.path.abspath('recbin' if os.path.isdir('recbin') else '../recbin') def getUnusedName(file): if not os.path.exists(file): return file basepath, basename = os.path.split(file) p = basename.rfind('.') extension = basename[p:] if p > 0 else "" name = basename[:len(basename)-len(extension)] counter = 0 outFile = file while os.path.exists(outFile): counter += 1 outFile = os.path.join(basepath, name + str(counter) + extension) return outFile ################################################## # main # create instance of field storage form = cgi.FieldStorage() userLogger = UserLogger() # receive filepath try: file = form.getvalue("path") except: pass # allows browser to display known content inline isInline = True try: w = form.getvalue("inline").lower() #isInline = w != "0" and w != "false" isInline = False except: pass ################################################## # permission guard userPermission = userLogger.getPermission(os.path.dirname(file)) # make sure user is allowed to read if (userPermission < UserLogger.PERMISSION_READ): if "redirect" not in form: args = '&'.join([key + '=' + str(form[key].value) for key in form.keys()]) if args: url = os.path.basename(os.environ['SCRIPT_NAME']) + '?redirect=True&' + args else: url = os.path.basename(os.environ['SCRIPT_NAME']) + '?redirect=True' templates.redirect(url) else: userLogger.showLogin('Identification required') ################################################## # create download def createDownload(fullname, **kwargs): mime_type = mimetypes.guess_type(fullname)[0] if not mime_type: mime_type = 'application/octet-stream' print ("Content-Type: " + mime_type) name = os.path.basename(fullname) if 'name' not in kwargs else kwargs['name'] if 'inline' not in kwargs or kwargs['inline'] is False: print ("Content-Disposition: attachment; filename=" + name) print ("") sys.stdout.flush() sys.stdout.buffer.write(open(fullname, "rb").read()) if os.path.isfile(file): createDownload(file, inline=(isInline)) elif os.path.isdir(file): def zipdir(path, ziph, ignore): for root, dirs, files in os.walk(path): if ignore in root: continue for file in files: try: absPath = os.path.join(root, file) ziph.write( absPath, os.path.relpath(absPath, os.path.dirname(path))) except PermissionError as e: pass recbin = getRecbin() tmpZipName = getUnusedName(os.path.join(recbin, 'tmpZip.zip')) zipf = zipfile.ZipFile(tmpZipName, 'w', zipfile.ZIP_DEFLATED) zipdir(file, zipf, recbin) zipf.close() createDownload(tmpZipName, name=(os.path.basename(file) + '.zip')) os.remove(tmpZipName) else: templates.error(file)
29.5625
88
0.601027
7942b4e04bf63ca7bcee39b528705c213128119b
25,832
py
Python
wnf.py
saurabh6790/OFF-RISLIB
eb7866227c5ff085ea714f79576281d82365f4fe
[ "MIT" ]
null
null
null
wnf.py
saurabh6790/OFF-RISLIB
eb7866227c5ff085ea714f79576281d82365f4fe
[ "MIT" ]
null
null
null
wnf.py
saurabh6790/OFF-RISLIB
eb7866227c5ff085ea714f79576281d82365f4fe
[ "MIT" ]
null
null
null
#!/usr/bin/env python2.7 # Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import sys if __name__=="__main__": sys.path = [".", "lib", "app"] + sys.path import webnotes def main(): parsed_args = webnotes._dict(vars(setup_parser())) fn = get_function(parsed_args) if parsed_args.get("site")=="all": for site in get_sites(): args = parsed_args.copy() args["site"] = site run(fn, args) else: run(fn, parsed_args) def cmd(fn): def new_fn(*args, **kwargs): import inspect fnargs, varargs, varkw, defaults = inspect.getargspec(fn) new_kwargs = {} for a in fnargs: if a in kwargs: new_kwargs[a] = kwargs.get(a) return fn(*args, **new_kwargs) return new_fn def run(fn, args): if isinstance(args.get(fn), (list, tuple)): out = globals().get(fn)(*args.get(fn), **args) else: out = globals().get(fn)(**args) return out def get_function(args): for fn, val in args.items(): if (val or isinstance(val, list)) and globals().get(fn): return fn def get_sites(): import os import conf return [site for site in os.listdir(conf.sites_dir) if not os.path.islink(os.path.join(conf.sites_dir, site)) and os.path.isdir(os.path.join(conf.sites_dir, site))] def setup_parser(): import argparse parser = argparse.ArgumentParser(description="Run webnotes utility functions") setup_install(parser) setup_utilities(parser) setup_translation(parser) setup_git(parser) # common parser.add_argument("-f", "--force", default=False, action="store_true", help="Force execution where applicable (look for [-f] in help)") parser.add_argument("--quiet", default=True, action="store_false", dest="verbose", help="Don't show verbose output where applicable") parser.add_argument("--site", nargs="?", metavar="SITE-NAME or all", help="Run for a particular site") parser.add_argument("--plugin", nargs="?", metavar="PLUGIN-NAME", help="Run for a particular plugin") return parser.parse_args() def setup_install(parser): parser.add_argument("--install", metavar="DB-NAME", nargs=1, help="Install a new app") parser.add_argument("--root-password", nargs=1, help="Root password for new app") parser.add_argument("--reinstall", default=False, action="store_true", help="Install a fresh app in db_name specified in conf.py") parser.add_argument("--restore", metavar=("DB-NAME", "SQL-FILE"), nargs=2, help="Restore from an sql file") parser.add_argument("--install_fixtures", default=False, action="store_true", help="(Re)Install install-fixtures from app/startup/install_fixtures") parser.add_argument("--make_demo", default=False, action="store_true", help="Install demo in demo_db_name specified in conf.py") parser.add_argument("--make_demo_fresh", default=False, action="store_true", help="(Re)Install demo in demo_db_name specified in conf.py") parser.add_argument("--add_system_manager", nargs="+", metavar=("EMAIL", "[FIRST-NAME] [LAST-NAME]"), help="Add a user with all roles") def setup_utilities(parser): # update parser.add_argument("-u", "--update", nargs="*", metavar=("REMOTE", "BRANCH"), help="Perform git pull, run patches, sync schema and rebuild files/translations") parser.add_argument("--reload_gunicorn", default=False, action="store_true", help="reload gunicorn on update") parser.add_argument("--patch", nargs=1, metavar="PATCH-MODULE", help="Run a particular patch [-f]") parser.add_argument("-l", "--latest", default=False, action="store_true", help="Run patches, sync schema and rebuild files/translations") parser.add_argument("--sync_all", default=False, action="store_true", help="Reload all doctypes, pages, etc. using txt files [-f]") parser.add_argument("--update_all_sites", nargs="*", metavar=("REMOTE", "BRANCH"), help="Perform git pull, run patches, sync schema and rebuild files/translations") parser.add_argument("--reload_doc", nargs=3, metavar=('"MODULE"', '"DOCTYPE"', '"DOCNAME"')) # build parser.add_argument("-b", "--build", default=False, action="store_true", help="Minify + concatenate JS and CSS files, build translations") parser.add_argument("-w", "--watch", default=False, action="store_true", help="Watch and concatenate JS and CSS files as and when they change") # misc parser.add_argument("--backup", default=False, action="store_true", help="Take backup of database in backup folder [--with_files]") parser.add_argument("--move", default=False, action="store_true", help="Move site to different directory defined by --dest_dir") parser.add_argument("--dest_dir", nargs=1, metavar="DEST-DIR", help="Move site to different directory") parser.add_argument("--with_files", default=False, action="store_true", help="Also take backup of files") parser.add_argument("--domain", nargs="*", help="Get or set domain in Website Settings") parser.add_argument("--make_conf", nargs="*", metavar=("DB-NAME", "DB-PASSWORD"), help="Create new conf.py file") parser.add_argument("--make_custom_server_script", nargs=1, metavar="DOCTYPE", help="Create new conf.py file") parser.add_argument("--set_admin_password", metavar='ADMIN-PASSWORD', nargs=1, help="Set administrator password") parser.add_argument("--mysql", action="store_true", help="get mysql shell for a site") parser.add_argument("--serve", action="store_true", help="Run development server") parser.add_argument("--profile", action="store_true", help="enable profiling in development server") parser.add_argument("--smtp", action="store_true", help="Run smtp debug server", dest="smtp_debug_server") parser.add_argument("--python", action="store_true", help="get python shell for a site") parser.add_argument("--ipython", action="store_true", help="get ipython shell for a site") parser.add_argument("--get_site_status", action="store_true", help="Get site details") parser.add_argument("--update_site_config", nargs=1, metavar="SITE-CONFIG-JSON", help="Update site_config.json for a given --site") parser.add_argument("--port", default=8000, type=int, help="port for development server") # clear parser.add_argument("--clear_web", default=False, action="store_true", help="Clear website cache") parser.add_argument("--build_sitemap", default=False, action="store_true", help="Build Website Sitemap") parser.add_argument("--rebuild_sitemap", default=False, action="store_true", help="Rebuild Website Sitemap") parser.add_argument("--clear_cache", default=False, action="store_true", help="Clear cache, doctype cache and defaults") parser.add_argument("--reset_perms", default=False, action="store_true", help="Reset permissions for all doctypes") # scheduler parser.add_argument("--run_scheduler", default=False, action="store_true", help="Trigger scheduler") parser.add_argument("--run_scheduler_event", nargs=1, metavar="all | daily | weekly | monthly", help="Run a scheduler event") # replace parser.add_argument("--replace", nargs=3, metavar=("SEARCH-REGEX", "REPLACE-BY", "FILE-EXTN"), help="Multi-file search-replace [-f]") # import/export parser.add_argument("--export_doc", nargs=2, metavar=('"DOCTYPE"', '"DOCNAME"')) parser.add_argument("--export_doclist", nargs=3, metavar=("DOCTYPE", "NAME", "PATH"), help="""Export doclist as json to the given path, use '-' as name for Singles.""") parser.add_argument("--export_csv", nargs=2, metavar=("DOCTYPE", "PATH"), help="""Dump DocType as csv""") parser.add_argument("--import_doclist", nargs=1, metavar="PATH", help="""Import (insert/update) doclist. If the argument is a directory, all files ending with .json are imported""") def setup_git(parser): parser.add_argument("--pull", nargs="*", metavar=("REMOTE", "BRANCH"), help="Run git pull for both repositories") parser.add_argument("-p", "--push", nargs="*", metavar=("REMOTE", "BRANCH"), help="Run git push for both repositories") parser.add_argument("--status", default=False, action="store_true", help="Run git status for both repositories") parser.add_argument("--commit", nargs=1, metavar="COMMIT-MSG", help="Run git commit COMMIT-MSG for both repositories") parser.add_argument("--checkout", nargs=1, metavar="BRANCH", help="Run git checkout BRANCH for both repositories") parser.add_argument("--git", nargs="*", metavar="OPTIONS", help="Run git command for both repositories") parser.add_argument("--bump", metavar=("REPO", "VERSION-TYPE"), nargs=2, help="Bump project version") def setup_translation(parser): parser.add_argument("--build_message_files", default=False, action="store_true", help="Build message files for translation") parser.add_argument("--export_messages", nargs=2, metavar=("LANG-CODE", "FILENAME"), help="""Export all messages for a language to translation in a csv file. Example, lib/wnf.py --export_messages hi hindi.csv""") parser.add_argument("--import_messages", nargs=2, metavar=("LANG-CODE", "FILENAME"), help="""Import messages for a language and make language files. Example, lib/wnf.py --import_messages hi hindi.csv""") parser.add_argument("--google_translate", nargs=3, metavar=("LANG-CODE", "INFILE", "OUTFILE"), help="Auto translate using Google Translate API") parser.add_argument("--translate", nargs=1, metavar="LANG-CODE", help="""Rebuild translation for the given langauge and use Google Translate to tranlate untranslated messages. use "all" """) # methods # install @cmd def install(db_name, source_sql=None, site=None, verbose=True, force=False, root_password=None, site_config=None, admin_password='admin'): from webnotes.install_lib.install import Installer inst = Installer('root', db_name=db_name, site=site, root_password=root_password, site_config=site_config) inst.install(db_name, source_sql=source_sql, verbose=verbose, force=force, admin_password=admin_password) webnotes.destroy() @cmd def reinstall(site=None, verbose=True): webnotes.init(site=site) install(webnotes.conf.db_name, site=site, verbose=verbose, force=True) @cmd def restore(db_name, source_sql, site=None, verbose=True, force=False): install(db_name, source_sql, site=site, verbose=verbose, force=force) @cmd def install_fixtures(site=None): webnotes.init(site=site) from webnotes.install_lib.install import install_fixtures install_fixtures() webnotes.destroy() @cmd def add_system_manager(email, first_name=None, last_name=None, site=None): webnotes.connect(site=site) webnotes.profile.add_system_manager(email, first_name, last_name) webnotes.conn.commit() webnotes.destroy() @cmd def make_demo(site=None): import utilities.demo.make_demo webnotes.init(site=site) utilities.demo.make_demo.make() webnotes.destroy() @cmd def make_demo_fresh(site=None): import utilities.demo.make_demo webnotes.init(site=site) utilities.demo.make_demo.make(reset=True) webnotes.destroy() # utilities @cmd def update(remote=None, branch=None, site=None, reload_gunicorn=False): pull(remote=remote, branch=branch, site=site) # maybe there are new framework changes, any consequences? reload(webnotes) if not site: build() latest(site=site) if reload_gunicorn: import subprocess subprocess.check_output("killall -HUP gunicorn".split()) @cmd def latest(site=None, verbose=True): import webnotes.modules.patch_handler import webnotes.model.sync import webnotes.plugins from website.doctype.website_sitemap_config.website_sitemap_config import build_website_sitemap_config webnotes.connect(site=site) try: # run patches webnotes.local.patch_log_list = [] webnotes.modules.patch_handler.run_all() if verbose: print "\n".join(webnotes.local.patch_log_list) # sync webnotes.model.sync.sync_all() # remove __init__.py from plugins webnotes.plugins.remove_init_files() # build website config if any changes in templates etc. build_website_sitemap_config() except webnotes.modules.patch_handler.PatchError, e: print "\n".join(webnotes.local.patch_log_list) raise finally: webnotes.destroy() @cmd def sync_all(site=None, force=False): import webnotes.model.sync webnotes.connect(site=site) webnotes.model.sync.sync_all(force=force) webnotes.destroy() @cmd def patch(patch_module, site=None, force=False): import webnotes.modules.patch_handler webnotes.connect(site=site) webnotes.local.patch_log_list = [] webnotes.modules.patch_handler.run_single(patch_module, force=force) print "\n".join(webnotes.local.patch_log_list) webnotes.destroy() @cmd def update_all_sites(remote=None, branch=None, verbose=True): pull(remote, branch) # maybe there are new framework changes, any consequences? reload(webnotes) build() for site in get_sites(): latest(site=site, verbose=verbose) @cmd def reload_doc(module, doctype, docname, plugin=None, site=None, force=False): webnotes.connect(site=site) webnotes.reload_doc(module, doctype, docname, plugin=plugin, force=force) webnotes.conn.commit() webnotes.destroy() @cmd def build(): import webnotes.build webnotes.build.bundle(False) @cmd def watch(): import webnotes.build webnotes.build.watch(True) @cmd def backup(site=None, with_files=False, verbose=True, backup_path_db=None, backup_path_files=None): from webnotes.utils.backups import scheduled_backup webnotes.connect(site=site) odb = scheduled_backup(ignore_files=not with_files, backup_path_db=backup_path_db, backup_path_files=backup_path_files) if verbose: from webnotes.utils import now print "database backup taken -", odb.backup_path_db, "- on", now() if with_files: print "files backup taken -", odb.backup_path_files, "- on", now() webnotes.destroy() return odb @cmd def move(site=None, dest_dir=None): import os if not dest_dir: raise Exception, "--dest_dir is required for --move" if not os.path.isdir(dest_dir): raise Exception, "destination is not a directory or does not exist" webnotes.init(site=site) old_path = webnotes.utils.get_site_path() new_path = os.path.join(dest_dir, site) # check if site dump of same name already exists site_dump_exists = True count = 0 while site_dump_exists: final_new_path = new_path + (count and str(count) or "") site_dump_exists = os.path.exists(final_new_path) count = int(count or 0) + 1 os.rename(old_path, final_new_path) webnotes.destroy() return os.path.basename(final_new_path) @cmd def domain(host_url=None, site=None): webnotes.connect(site=site) if host_url: webnotes.conn.set_value("Website Settings", None, "subdomain", host_url) webnotes.conn.commit() else: print webnotes.conn.get_value("Website Settings", None, "subdomain") webnotes.destroy() @cmd def make_conf(db_name=None, db_password=None, site=None, site_config=None): from webnotes.install_lib.install import make_conf make_conf(db_name=db_name, db_password=db_password, site=site, site_config=site_config) @cmd def make_custom_server_script(doctype, site=None): from core.doctype.custom_script.custom_script import make_custom_server_script_file webnotes.connect(site=site) make_custom_server_script_file(doctype) webnotes.destroy() # clear @cmd def clear_cache(site=None): import webnotes.sessions webnotes.connect(site=site) webnotes.sessions.clear_cache() webnotes.destroy() @cmd def clear_web(site=None): import webnotes.webutils webnotes.connect(site=site) from website.doctype.website_sitemap_config.website_sitemap_config import build_website_sitemap_config build_website_sitemap_config() webnotes.webutils.clear_cache() webnotes.destroy() @cmd def build_sitemap(site=None): from website.doctype.website_sitemap_config.website_sitemap_config import build_website_sitemap_config webnotes.connect(site=site) build_website_sitemap_config() webnotes.destroy() @cmd def rebuild_sitemap(site=None): from website.doctype.website_sitemap_config.website_sitemap_config import rebuild_website_sitemap_config webnotes.connect(site=site) rebuild_website_sitemap_config() webnotes.destroy() @cmd def reset_perms(site=None): webnotes.connect(site=site) for d in webnotes.conn.sql_list("""select name from `tabDocType` where ifnull(istable, 0)=0 and ifnull(custom, 0)=0"""): webnotes.clear_cache(doctype=d) webnotes.reset_perms(d) webnotes.destroy() # scheduler @cmd def run_scheduler(site=None): from webnotes.utils.file_lock import create_lock, delete_lock import webnotes.utils.scheduler webnotes.init(site=site) if create_lock('scheduler'): webnotes.connect(site=site) print webnotes.utils.scheduler.execute() delete_lock('scheduler') webnotes.destroy() @cmd def run_scheduler_event(event, site=None): import webnotes.utils.scheduler webnotes.connect(site=site) print webnotes.utils.scheduler.trigger("execute_" + event) webnotes.destroy() # replace @cmd def replace(search_regex, replacement, extn, force=False): print search_regex, replacement, extn replace_code('.', search_regex, replacement, extn, force=force) # import/export @cmd def export_doc(doctype, docname, site=None): import webnotes.modules webnotes.connect(site=site) webnotes.modules.export_doc(doctype, docname) webnotes.destroy() @cmd def export_doclist(doctype, name, path, site=None): from core.page.data_import_tool import data_import_tool webnotes.connect(site=site) data_import_tool.export_json(doctype, name, path) webnotes.destroy() @cmd def export_csv(doctype, path, site=None): from core.page.data_import_tool import data_import_tool webnotes.connect(site=site) data_import_tool.export_csv(doctype, path) webnotes.destroy() @cmd def import_doclist(path, site=None, force=False): from core.page.data_import_tool import data_import_tool webnotes.connect(site=site) data_import_tool.import_doclist(path, overwrite=force) webnotes.destroy() # translation @cmd def build_message_files(site=None): import webnotes.translate webnotes.connect(site=site) webnotes.translate.build_message_files() webnotes.destroy() @cmd def export_messages(lang, outfile, site=None): import webnotes.translate webnotes.connect(site=site) webnotes.translate.export_messages(lang, outfile) webnotes.destroy() @cmd def import_messages(lang, infile, site=None): import webnotes.translate webnotes.connect(site=site) webnotes.translate.import_messages(lang, infile) webnotes.destroy() @cmd def google_translate(lang, infile, outfile, site=None): import webnotes.translate webnotes.connect(site=site) webnotes.translate.google_translate(lang, infile, outfile) webnotes.destroy() @cmd def translate(lang, site=None): import webnotes.translate webnotes.connect(site=site) webnotes.translate.translate(lang) webnotes.destroy() # git @cmd def git(param): if isinstance(param, (list, tuple)): param = " ".join(param) import os os.system("""cd lib && git %s""" % param) os.system("""cd app && git %s""" % param) def get_remote_and_branch(remote=None, branch=None): if not (remote and branch): webnotes.init() if not webnotes.conf.branch: raise Exception("Please specify remote and branch") remote = remote or "origin" branch = branch or webnotes.conf.branch webnotes.destroy() return remote, branch @cmd def pull(remote=None, branch=None): remote, branch = get_remote_and_branch(remote, branch) git(("pull", remote, branch)) @cmd def push(remote=None, branch=None): remote, branch = get_remote_and_branch(remote, branch) git(("push", remote, branch)) @cmd def status(): git("status") @cmd def commit(message): git("""commit -a -m "%s" """ % message.replace('"', '\"')) @cmd def checkout(branch): git(("checkout", branch)) @cmd def set_admin_password(admin_password, site=None): import webnotes webnotes.connect(site=site) webnotes.conn.sql("""update __Auth set `password`=password(%s) where user='Administrator'""", (admin_password,)) webnotes.conn.commit() webnotes.destroy() @cmd def mysql(site=None): import webnotes import commands, os msq = commands.getoutput('which mysql') webnotes.init(site=site) os.execv(msq, [msq, '-u', webnotes.conf.db_name, '-p'+webnotes.conf.db_password, webnotes.conf.db_name, '-h', webnotes.conf.db_host or "localhost", "-A"]) webnotes.destroy() @cmd def python(site=None): import webnotes import commands, os python = commands.getoutput('which python') webnotes.init(site=site) if site: os.environ["site"] = site os.environ["PYTHONSTARTUP"] = os.path.join(os.path.dirname(__file__), "pythonrc.py") os.execv(python, [python]) webnotes.destroy() @cmd def ipython(site=None): import webnotes webnotes.connect(site=site) import IPython IPython.embed() @cmd def smtp_debug_server(): import commands, os python = commands.getoutput('which python') os.execv(python, [python, '-m', "smtpd", "-n", "-c", "DebuggingServer", "localhost:25"]) @cmd def serve(port=8000, profile=False): import webnotes.app webnotes.app.serve(port=port, profile=profile) def replace_code(start, txt1, txt2, extn, search=None, force=False): """replace all txt1 by txt2 in files with extension (extn)""" import webnotes.utils import os, re esc = webnotes.utils.make_esc('[]') if not search: search = esc(txt1) for wt in os.walk(start, followlinks=1): for fn in wt[2]: if fn.split('.')[-1]==extn: fpath = os.path.join(wt[0], fn) with open(fpath, 'r') as f: content = f.read() if re.search(search, content): res = search_replace_with_prompt(fpath, txt1, txt2, force) if res == 'skip': return 'skip' def search_replace_with_prompt(fpath, txt1, txt2, force=False): """ Search and replace all txt1 by txt2 in the file with confirmation""" from termcolor import colored with open(fpath, 'r') as f: content = f.readlines() tmp = [] for c in content: if c.find(txt1) != -1: print fpath print colored(txt1, 'red').join(c[:-1].split(txt1)) a = '' if force: c = c.replace(txt1, txt2) else: while a.lower() not in ['y', 'n', 'skip']: a = raw_input('Do you want to Change [y/n/skip]?') if a.lower() == 'y': c = c.replace(txt1, txt2) elif a.lower() == 'skip': return 'skip' tmp.append(c) with open(fpath, 'w') as f: f.write(''.join(tmp)) print colored('Updated', 'green') @cmd def get_site_status(site=None, verbose=False): import webnotes import webnotes.utils from webnotes.profile import get_system_managers from core.doctype.profile.profile import get_total_users, get_active_users, \ get_website_users, get_active_website_users import json webnotes.connect(site=site) ret = { 'last_backup_on': webnotes.local.conf.last_backup_on, 'active_users': get_active_users(), 'total_users': get_total_users(), 'active_website_users': get_active_website_users(), 'website_users': get_website_users(), 'system_managers': "\n".join(get_system_managers()), 'default_company': webnotes.conn.get_default("company"), 'disk_usage': webnotes.utils.get_disk_usage(), 'working_directory': webnotes.utils.get_base_path() } # country, timezone, industry control_panel_details = webnotes.conn.get_value("Control Panel", "Control Panel", ["country", "time_zone", "industry"], as_dict=True) if control_panel_details: ret.update(control_panel_details) # basic usage/progress analytics for doctype in ("Company", "Customer", "Item", "Quotation", "Sales Invoice", "Journal Voucher", "Stock Ledger Entry"): key = doctype.lower().replace(" ", "_") + "_exists" ret[key] = 1 if webnotes.conn.count(doctype) else 0 webnotes.destroy() if verbose: print json.dumps(ret, indent=1, sort_keys=True) return ret @cmd def update_site_config(site_config, site, verbose=False): import json if isinstance(site_config, basestring): site_config = json.loads(site_config) webnotes.init(site=site) webnotes.conf.site_config.update(site_config) site_config_path = webnotes.get_conf_path(webnotes.conf.sites_dir, site) with open(site_config_path, "w") as f: json.dump(webnotes.conf.site_config, f, indent=1, sort_keys=True) webnotes.destroy() @cmd def bump(repo, bump_type): import json assert repo in ['lib', 'app'] assert bump_type in ['minor', 'major', 'patch'] def validate(repo_path): import git repo = git.Repo(repo_path) if repo.active_branch != 'master': raise Exception, "Current branch not master in {}".format(repo_path) def bump_version(version, version_type): import semantic_version v = semantic_version.Version(version) if version_type == 'minor': v.minor += 1 elif version_type == 'major': v.major += 1 elif version_type == 'patch': v.patch += 1 return unicode(v) def add_tag(repo_path, version): import git repo = git.Repo(repo_path) repo.index.add(['config.json']) repo.index.commit('bumped to version {}'.format(version)) repo.create_tag('v' + version, repo.head) def update_framework_requirement(version): with open('app/config.json') as f: config = json.load(f) config['requires_framework_version'] = '==' + version with open('app/config.json', 'w') as f: json.dump(config, f, indent=1, sort_keys=True) validate('lib/') validate('app/') if repo == 'app': with open('app/config.json') as f: config = json.load(f) new_version = bump_version(config['app_version'], bump_type) config['app_version'] = new_version with open('app/config.json', 'w') as f: json.dump(config, f, indent=1, sort_keys=True) add_tag('app/', new_version) elif repo == 'lib': with open('lib/config.json') as f: config = json.load(f) new_version = bump_version(config['framework_version'], bump_type) config['framework_version'] = new_version with open('lib/config.json', 'w') as f: json.dump(config, f, indent=1, sort_keys=True) add_tag('lib/', new_version) update_framework_requirement(new_version) bump('app', bump_type) if __name__=="__main__": main()
32.129353
155
0.735638
7942b4f692246e4195064175c17251c84313ac8d
68,424
py
Python
perftests/resources/cross_validation.py
keynmol/fastparse
2907295ba3463ccba732b1f58c2704ffe2f22939
[ "MIT", "Unlicense" ]
929
2015-05-10T22:09:25.000Z
2021-02-20T04:28:18.000Z
perftests/resources/cross_validation.py
keynmol/fastparse
2907295ba3463ccba732b1f58c2704ffe2f22939
[ "MIT", "Unlicense" ]
212
2015-05-10T22:25:39.000Z
2021-01-19T20:13:24.000Z
perftests/resources/cross_validation.py
keynmol/fastparse
2907295ba3463ccba732b1f58c2704ffe2f22939
[ "MIT", "Unlicense" ]
160
2015-05-10T22:21:00.000Z
2021-01-27T08:01:51.000Z
""" The :mod:`sklearn.cross_validation` module includes utilities for cross- validation and performance evaluation. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from math import ceil, floor, factorial import numbers import time from abc import ABCMeta, abstractmethod import numpy as np import scipy.sparse as sp from .base import is_classifier, clone from .utils import indexable, check_random_state, safe_indexing from .utils.validation import (_is_arraylike, _num_samples, column_or_1d) from .utils.multiclass import type_of_target from .externals.joblib import Parallel, delayed, logger from .externals.six import with_metaclass from .externals.six.moves import zip from .metrics.scorer import check_scoring from .utils.fixes import bincount from .gaussian_process.kernels import Kernel as GPKernel from .exceptions import FitFailedWarning warnings.warn("This module has been deprecated in favor of the " "model_selection module into which all the refactored classes " "and functions are moved. Also note that the interface of the " "new CV iterators are different from that of this module. " "This module will be removed in 0.20.", DeprecationWarning) __all__ = ['KFold', 'LabelKFold', 'LeaveOneLabelOut', 'LeaveOneOut', 'LeavePLabelOut', 'LeavePOut', 'ShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'LabelShuffleSplit', 'check_cv', 'cross_val_score', 'cross_val_predict', 'permutation_test_score', 'train_test_split'] class _PartitionIterator(with_metaclass(ABCMeta)): """Base class for CV iterators where train_mask = ~test_mask Implementations must define `_iter_test_masks` or `_iter_test_indices`. Parameters ---------- n : int Total number of elements in dataset. """ def __init__(self, n): if abs(n - int(n)) >= np.finfo('f').eps: raise ValueError("n must be an integer") self.n = int(n) def __iter__(self): ind = np.arange(self.n) for test_index in self._iter_test_masks(): train_index = np.logical_not(test_index) train_index = ind[train_index] test_index = ind[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices() """ for test_index in self._iter_test_indices(): test_mask = self._empty_mask() test_mask[test_index] = True yield test_mask def _iter_test_indices(self): """Generates integer indices corresponding to test sets.""" raise NotImplementedError def _empty_mask(self): return np.zeros(self.n, dtype=np.bool) class LeaveOneOut(_PartitionIterator): """Leave-One-Out cross validation iterator. Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and ``LeavePOut(n, p=1)``. Due to the high number of test sets (which is the same as the number of samples) this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = cross_validation.LeaveOneOut(2) >>> len(loo) 2 >>> print(loo) sklearn.cross_validation.LeaveOneOut(n=2) >>> for train_index, test_index in loo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def _iter_test_indices(self): return range(self.n) def __repr__(self): return '%s.%s(n=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, ) def __len__(self): return self.n class LeavePOut(_PartitionIterator): """Leave-P-Out cross validation iterator Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. p : int Size of the test sets. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_validation.LeavePOut(4, 2) >>> len(lpo) 6 >>> print(lpo) sklearn.cross_validation.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, n, p): super(LeavePOut, self).__init__(n) self.p = p def _iter_test_indices(self): for comb in combinations(range(self.n), self.p): yield np.array(comb) def __repr__(self): return '%s.%s(n=%i, p=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.p, ) def __len__(self): return int(factorial(self.n) / factorial(self.n - self.p) / factorial(self.p)) class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)): """Base class to validate KFold approaches""" @abstractmethod def __init__(self, n, n_folds, shuffle, random_state): super(_BaseKFold, self).__init__(n) if abs(n_folds - int(n_folds)) >= np.finfo('f').eps: raise ValueError("n_folds must be an integer") self.n_folds = n_folds = int(n_folds) if n_folds <= 1: raise ValueError( "k-fold cross validation requires at least one" " train / test split by setting n_folds=2 or more," " got n_folds={0}.".format(n_folds)) if n_folds > self.n: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of samples: {1}.").format(n_folds, n)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.shuffle = shuffle self.random_state = random_state class KFold(_BaseKFold): """K-Folds cross validation iterator. Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used as a validation set once while the k - 1 remaining fold(s) form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.cross_validation import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(4, n_folds=2) >>> len(kf) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in kf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds. See also -------- StratifiedKFold take label information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, n, n_folds=3, shuffle=False, random_state=None): super(KFold, self).__init__(n, n_folds, shuffle, random_state) self.idxs = np.arange(n) if shuffle: rng = check_random_state(self.random_state) rng.shuffle(self.idxs) def _iter_test_indices(self): n = self.n n_folds = self.n_folds fold_sizes = n fold_sizes[:n % n_folds] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield self.idxs[start:stop] current = stop def __repr__(self): return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LabelKFold(_BaseKFold): """K-fold iterator variant with non-overlapping labels. The same label will not appear in two different folds (the number of distinct labels has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct labels is approximately the same in each fold. .. versionadded:: 0.17 Parameters ---------- labels : array-like with shape (n_samples, ) Contains a label for each sample. The folds are built so that the same label does not appear in two different folds. n_folds : int, default=3 Number of folds. Must be at least 2. Examples -------- >>> from sklearn.cross_validation import LabelKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> labels = np.array([0, 0, 2, 2]) >>> label_kfold = LabelKFold(labels, n_folds=2) >>> len(label_kfold) 2 >>> print(label_kfold) sklearn.cross_validation.LabelKFold(n_labels=4, n_folds=2) >>> for train_index, test_index in label_kfold: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def __init__(self, labels, n_folds=3): super(LabelKFold, self).__init__(len(labels), n_folds, shuffle=False, random_state=None) unique_labels, labels = np.unique(labels, return_inverse=True) n_labels = len(unique_labels) if n_folds > n_labels: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of labels: {1}.").format(n_folds, n_labels)) # Weight labels by their number of occurrences n_samples_per_label = np.bincount(labels) # Distribute the most frequent labels first indices = np.argsort(n_samples_per_label)[::-1] n_samples_per_label = n_samples_per_label[indices] # Total weight of each fold n_samples_per_fold = np.zeros(n_folds) # Mapping from label index to fold index label_to_fold = np.zeros(len(unique_labels)) # Distribute samples by adding the largest weight to the lightest fold for label_index, weight in enumerate(n_samples_per_label): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight label_to_fold[indices[label_index]] = lightest_fold self.idxs = label_to_fold[labels] def _iter_test_indices(self): for f in range(self.n_folds): yield np.where(self.idxs == f)[0] def __repr__(self): return '{0}.{1}(n_labels={2}, n_folds={3})'.format( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, ) def __len__(self): return self.n_folds class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array-like, [n_samples] Samples to split in K folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.cross_validation import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(y, n_folds=2) >>> len(skf) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in skf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size trunc(n_samples / n_folds), the last one has the complementary. See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, y, n_folds=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__( len(y), n_folds, shuffle, random_state) y = np.asarray(y) n_samples = y.shape[0] unique_labels, y_inversed = np.unique(y, return_inverse=True) label_counts = bincount(y_inversed) min_labels = np.min(label_counts) if np.all(self.n_folds > label_counts): raise ValueError("All the n_labels for individual classes" " are less than %d folds." % (self.n_folds)) if self.n_folds > min_labels: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of labels for any class cannot" " be less than n_folds=%d." % (min_labels, self.n_folds)), Warning) # don't want to use the same seed in each label's shuffle if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each label so as to respect the # balance of labels per_label_cvs = [ KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle, random_state=rng) for c in label_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)): for label, (_, test_split) in zip(unique_labels, per_label_splits): label_test_folds = test_folds[y == label] # the test split can be too big because we used # KFold(max(c, self.n_folds), self.n_folds) instead of # KFold(c, self.n_folds) to make it possible to not crash even # if the data is not 100% stratifiable for all the labels # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(label_test_folds)] label_test_folds[test_split] = test_fold_idx test_folds[y == label] = label_test_folds self.test_folds = test_folds self.y = y def _iter_test_masks(self): for i in range(self.n_folds): yield self.test_folds == i def __repr__(self): return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.y, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LeaveOneLabelOut(_PartitionIterator): """Leave-One-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> labels = np.array([1, 1, 2, 2]) >>> lol = cross_validation.LeaveOneLabelOut(labels) >>> len(lol) 2 >>> print(lol) sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2]) >>> for train_index, test_index in lol: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, labels): super(LeaveOneLabelOut, self).__init__(len(labels)) # We make a copy of labels to avoid side-effects during iteration self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) def _iter_test_masks(self): for i in self.unique_labels: yield self.labels == i def __repr__(self): return '%s.%s(labels=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, ) def __len__(self): return self.n_unique_labels class LeavePLabelOut(_PartitionIterator): """Leave-P-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the labels while the latter uses samples all assigned the same labels. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. p : int Number of samples to leave out in the test split. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print(lpl) sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, labels, p): # We make a copy of labels to avoid side-effects during iteration super(LeavePLabelOut, self).__init__(len(labels)) self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) self.p = p def _iter_test_masks(self): comb = combinations(range(self.n_unique_labels), self.p) for idx in comb: test_index = self._empty_mask() idx = np.array(idx) for l in self.unique_labels[idx]: test_index[self.labels == l] = True yield test_index def __repr__(self): return '%s.%s(labels=%s, p=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, self.p, ) def __len__(self): return int(factorial(self.n_unique_labels) / factorial(self.n_unique_labels - self.p) / factorial(self.p)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n, n_iter=10, test_size=0.1, train_size=None, random_state=None): self.n = n self.n_iter = n_iter self.test_size = test_size self.train_size = train_size self.random_state = random_state self.n_train, self.n_test = _validate_shuffle_split(n, test_size, train_size) def __iter__(self): for train, test in self._iter_indices(): yield train, test return @abstractmethod def _iter_indices(self): """Generate (train, test) indices""" class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validation iterator. Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in the dataset. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn import cross_validation >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... test_size=.25, random_state=0) >>> len(rs) 3 >>> print(rs) ... # doctest: +ELLIPSIS ShuffleSplit(4, n_iter=3, test_size=0.25, ...) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... train_size=0.5, test_size=.25, random_state=0) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self): rng = check_random_state(self.random_state) for i in range(self.n_iter): # random partition permutation = rng.permutation(self.n) ind_test = permutation[:self.n_test] ind_train = permutation[self.n_test:self.n_test + self.n_train] yield ind_train, ind_test def __repr__(self): return ('%s(%d, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.n, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _validate_shuffle_split(n, test_size, train_size): if test_size is None and train_size is None: raise ValueError( 'test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind == 'i': if test_size >= n: raise ValueError( 'test_size=%d should be smaller ' 'than the number of samples %d' % (test_size, n)) else: raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif np.asarray(test_size).dtype.kind == 'f' and \ train_size + test_size > 1.: raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind == 'i': if train_size >= n: raise ValueError("train_size=%d should be smaller " "than the number of samples %d" % (train_size, n)) else: raise ValueError("Invalid value for train_size: %r" % train_size) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n - n_test else: if np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n) else: n_train = float(train_size) if test_size is None: n_test = n - n_train if n_train + n_test > n: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n)) return int(n_train), int(n_test) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array, [n_samples] Labels of samples. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.cross_validation import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0) >>> len(sss) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...) >>> for train_index, test_index in sss: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, y, n_iter=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( len(y), n_iter, test_size, train_size, random_state) self.y = np.array(y) self.classes, self.y_indices = np.unique(y, return_inverse=True) n_cls = self.classes.shape[0] if np.min(bincount(self.y_indices)) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of labels for any class cannot" " be less than 2.") if self.n_train < n_cls: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_train, n_cls)) if self.n_test < n_cls: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_test, n_cls)) def _iter_indices(self): rng = check_random_state(self.random_state) cls_count = bincount(self.y_indices) p_i = cls_count / float(self.n) n_i = np.round(self.n_train * p_i).astype(int) t_i = np.minimum(cls_count - n_i, np.round(self.n_test * p_i).astype(int)) for n in range(self.n_iter): train = [] test = [] for i, cls in enumerate(self.classes): permutation = rng.permutation(cls_count[i]) cls_i = np.where((self.y == cls))[0][permutation] train.extend(cls_i[:n_i[i]]) test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]]) # Because of rounding issues (as n_train and n_test are not # dividers of the number of elements per class), we may end # up here with less samples in train and test than asked for. if len(train) + len(test) < self.n_train + self.n_test: # We complete by affecting randomly the missing indexes missing_idx = np.where(bincount(train + test, minlength=len(self.y)) == 0, )[0] missing_idx = rng.permutation(missing_idx) n_missing_train = self.n_train - len(train) n_missing_test = self.n_test - len(test) if n_missing_train > 0: train.extend(missing_idx[:n_missing_train]) if n_missing_test > 0: test.extend(missing_idx[-n_missing_test:]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.y, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter class PredefinedSplit(_PartitionIterator): """Predefined split cross validation iterator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- test_fold : "array-like, shape (n_samples,) test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corresponding sample is not part of any test set folds, but will instead always be put into the training fold. Examples -------- >>> from sklearn.cross_validation import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1]) >>> len(ps) 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1]) >>> for train_index, test_index in ps: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): super(PredefinedSplit, self).__init__(len(test_fold)) self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def _iter_test_indices(self): for f in self.unique_folds: yield np.where(self.test_fold == f)[0] def __repr__(self): return '%s.%s(test_fold=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.test_fold) def __len__(self): return len(self.unique_folds) class LabelShuffleSplit(ShuffleSplit): """Shuffle-Labels-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LabelShuffleSplit is that the former generates splits using all subsets of size ``p`` unique labels, whereas LabelShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique labels. For example, a less computationally intensive alternative to ``LeavePLabelOut(labels, p=10)`` would be ``LabelShuffleSplit(labels, test_size=10, n_iter=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to labels, and not to samples, as in ShuffleSplit. .. versionadded:: 0.17 Parameters ---------- labels : array, [n_samples] Labels of samples n_iter : int (default 5) Number of re-shuffling and splitting iterations. test_size : float (default 0.2), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the test split. If int, represents the absolute number of test labels. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the train split. If int, represents the absolute number of train labels. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. """ def __init__(self, labels, n_iter=5, test_size=0.2, train_size=None, random_state=None): classes, label_indices = np.unique(labels, return_inverse=True) super(LabelShuffleSplit, self).__init__( len(classes), n_iter=n_iter, test_size=test_size, train_size=train_size, random_state=random_state) self.labels = labels self.classes = classes self.label_indices = label_indices def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.labels, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _iter_indices(self): for label_train, label_test in super(LabelShuffleSplit, self)._iter_indices(): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(self.label_indices, label_train)) test = np.flatnonzero(np.in1d(self.label_indices, label_test)) yield train, test ############################################################################## def _index_param_value(X, v, indices): """Private helper function for parameter value indexing.""" if not _is_arraylike(v) or _num_samples(v) != _num_samples(X): # pass through: skip indexing return v if sp.issparse(v): v = v.tocsr() return safe_indexing(v, indices) def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Generate cross-validated estimates for each input data point Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- preds : ndarray This is the result of calling 'predict' Examples -------- >>> from sklearn import datasets, linear_model >>> from sklearn.cross_validation import cross_val_predict >>> diabetes = datasets.load_diabetes() >>> X = diabetes.data[:150] >>> y = diabetes.target[:150] >>> lasso = linear_model.Lasso() >>> y_pred = cross_val_predict(lasso, X, y) """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y, train, test, verbose, fit_params) for train, test in cv) preds = [p for p, _ in preds_blocks] locs = np.concatenate([loc for _, loc in preds_blocks]) if not _check_is_partition(locs, _num_samples(X)): raise ValueError('cross_val_predict only works for partitions') # Check for sparse predictions if sp.issparse(preds[0]): preds = sp.vstack(preds, format=preds[0].format) else: preds = np.concatenate(preds) return preds[inv_locs] def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params): """Fit estimator and predict values for a given dataset split. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. Returns ------- preds : sequence Result of calling 'estimator.predict' test : array-like This is the value of the test parameter """ # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) X_train, y_train = _safe_split(estimator, X, y, train) X_test, _ = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) preds = estimator.predict(X_test) return preds, test def _check_is_partition(locs, n): """Check whether locs is a reordering of the array np.arange(n) Parameters ---------- locs : ndarray integer array to test n : int number of expected elements Returns ------- is_partition : bool True iff sorted(locs) is range(n) """ if len(locs) != n: return False hit = np.zeros(n, bool) hit[locs] = True if not np.all(hit): return False return True def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. Examples -------- >>> from sklearn import datasets, linear_model >>> from sklearn.cross_validation import cross_val_score >>> diabetes = datasets.load_diabetes() >>> X = diabetes.data[:150] >>> y = diabetes.target[:150] >>> lasso = linear_model.Lasso() >>> print(cross_val_score(lasso, X, y)) # doctest: +ELLIPSIS [ 0.33150734 0.08022311 0.03531764] See Also --------- :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params) for train, test in cv) return np.array(scores)[:, 0] def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scorer : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. scoring_time : float Time spent for fitting and scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = '' else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warnings.warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e), FitFailedWarning) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)" ) else: test_score = _score(estimator, X_test, y_test, scorer) if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) scoring_time = time.time() - start_time if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score] if return_train_score else [] ret.extend([test_score, _num_samples(X_test), scoring_time]) if return_parameters: ret.append(parameters) return ret def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if hasattr(estimator, 'kernel') and callable(estimator.kernel) \ and not isinstance(estimator.kernel, GPKernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[idx] for idx in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if hasattr(score, 'item'): try: # e.g. unwrap memmapped scalars score = score.item() except ValueError: # non-scalar? pass if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def _permutation_test_score(estimator, X, y, cv, scorer): """Auxiliary function for permutation_test_score""" avg_score = [] for train, test in cv: estimator.fit(X[train], y[train]) avg_score.append(scorer(estimator, X[test], y[test])) return np.mean(avg_score) def _shuffle(y, labels, random_state): """Return a shuffled copy of y eventually shuffle among same labels.""" if labels is None: ind = random_state.permutation(len(y)) else: ind = np.arange(len(labels)) for label in np.unique(labels): this_mask = (labels == label) ind[this_mask] = random_state.permutation(ind[this_mask]) return y[ind] def check_cv(cv, X=None, y=None, classifier=False): """Input checker utility for building a CV in a user friendly way. Parameters ---------- cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if classifier is True and ``y`` is binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. X : array-like The data the cross-val object will be applied on. y : array-like The target variable for a supervised learning problem. classifier : boolean optional Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv: a cross-validation generator instance. The return value is guaranteed to be a cv generator instance, whatever the input type. """ is_sparse = sp.issparse(X) if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if classifier: if type_of_target(y) in ['binary', 'multiclass']: cv = StratifiedKFold(y, cv) else: cv = KFold(_num_samples(y), cv) else: if not is_sparse: n_samples = len(X) else: n_samples = X.shape[0] cv = KFold(n_samples, cv) return cv def permutation_test_score(estimator, X, y, cv=None, n_permutations=100, n_jobs=1, labels=None, random_state=0, verbose=0, scoring=None): """Evaluate the significance of a cross-validated score with permutations Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_permutations : integer, optional Number of times to permute ``y``. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. labels : array-like of shape [n_samples] (optional) Labels constrain the permutation among groups of samples with a same label. random_state : RandomState or an int seed (0 by default) A random number generator instance to define the state of the random permutations generator. verbose : integer, optional The verbosity level. Returns ------- score : float The true score without permuting targets. permutation_scores : array, shape (n_permutations,) The scores obtained for each permutations. pvalue : float The returned value equals p-value if `scoring` returns bigger numbers for better scores (e.g., accuracy_score). If `scoring` is rather a loss function (i.e. when lower is better such as with `mean_squared_error`) then this is actually the complement of the p-value: 1 - p-value. Notes ----- This function implements Test 1 in: Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine Learning Research (2010) vol. 11 """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) random_state = check_random_state(random_state) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. score = _permutation_test_score(clone(estimator), X, y, cv, scorer) permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_permutation_test_score)( clone(estimator), X, _shuffle(y, labels, random_state), cv, scorer) for _ in range(n_permutations)) permutation_scores = np.array(permutation_scores) pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1) return score, permutation_scores, pvalue permutation_test_score.__test__ = False # to avoid a pb with nosetests def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(iter(ShuffleSplit(n_samples)))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. .. versionadded:: 0.16 preserves input type instead of always casting to numpy array. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the labels array. .. versionadded:: 0.17 *stratify* splitting Returns ------- splitting : list, length = 2 * len(arrays), List containing train-test split of inputs. .. versionadded:: 0.16 Output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.cross_validation import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) stratify = options.pop('stratify', None) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: cv = StratifiedShuffleSplit(stratify, test_size=test_size, train_size=train_size, random_state=random_state) else: n_samples = _num_samples(arrays[0]) cv = ShuffleSplit(n_samples, test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(iter(cv)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests
35.0174
79
0.6085
7942b84baabccd7339a5ce7e7baeb83874dab736
1,647
py
Python
tests/samples.py
colltoaction/datafiles
a331b1fd0ed98b7685a1dae8c0efb73e683063d6
[ "MIT" ]
1
2019-02-14T08:08:41.000Z
2019-02-14T08:08:41.000Z
tests/samples.py
colltoaction/datafiles
a331b1fd0ed98b7685a1dae8c0efb73e683063d6
[ "MIT" ]
null
null
null
tests/samples.py
colltoaction/datafiles
a331b1fd0ed98b7685a1dae8c0efb73e683063d6
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from typing import List, Optional from datafiles import datafile from datafiles.converters import String @datafile('../tmp/sample.yml', manual=True) class Sample: bool_: bool int_: int float_: float str_: str @datafile('../tmp/sample.json', manual=True) class SampleAsJSON: bool_: bool int_: int float_: float str_: str @datafile('../tmp/sample.yml', manual=True) class SampleWithCustomFields: included: str exluced: str class Meta: datafile_attrs = {'included': String} @datafile('../tmp/sample.yml', manual=True) class SampleWithDefaults: without_default: str with_default: str = 'foo' @dataclass class _NestedSample1: name: str score: float @datafile('../tmp/sample.yml', manual=True) class SampleWithNesting: name: str score: float nested: _NestedSample1 @dataclass class _NestedSample2: name: str = 'b' score: float = 3.4 @datafile('../tmp/sample.yml', manual=True) class SampleWithNestingAndDefaults: name: str score: float = 1.2 nested: _NestedSample2 = field(default_factory=_NestedSample2) @datafile('../tmp/sample.yml', manual=True) class SampleWithList: items: List[float] @datafile('../tmp/sample.yml', manual=True) class SampleWithListAndDefaults: items: List[float] = field(default_factory=list) @datafile('../tmp/sample.yml', manual=True) class SampleWithListOfDataclasses: items: List[_NestedSample1] = field(default_factory=list) @datafile('../tmp/sample.yml', manual=True) class SampleWithOptionals: required: float optional: Optional[float]
19.607143
66
0.705525
7942b8a2544450ff15cdefc310a949f2423f8b4d
3,514
py
Python
bindings/python/ensmallen/datasets/string/agrobacteriumtumefaciensf2.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-02-17T00:44:45.000Z
2021-08-09T16:41:47.000Z
bindings/python/ensmallen/datasets/string/agrobacteriumtumefaciensf2.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/string/agrobacteriumtumefaciensf2.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph Agrobacterium tumefaciens F2. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def AgrobacteriumTumefaciensF2( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Agrobacterium tumefaciens F2 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Agrobacterium tumefaciens F2 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="AgrobacteriumTumefaciensF2", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
33.466667
223
0.680706
7942b96ec8c562a46a9a74e6820fee388eca74fc
766
py
Python
hist.py
aaavinash85/OpenCV_image-processing
ea9bf85454a9919ced82567c99d997314598cc5c
[ "MIT" ]
null
null
null
hist.py
aaavinash85/OpenCV_image-processing
ea9bf85454a9919ced82567c99d997314598cc5c
[ "MIT" ]
null
null
null
hist.py
aaavinash85/OpenCV_image-processing
ea9bf85454a9919ced82567c99d997314598cc5c
[ "MIT" ]
1
2021-07-25T08:17:03.000Z
2021-07-25T08:17:03.000Z
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('images/wave.png') cv2.imshow('img', img) ''' Cv2 has function to calculate the histogram cv2.calcHist([img], [channels], [mask], [size], [range]) channels - corrrespods to B G R we can calculate for individual channles or all three at once by using loop ''' # Calculating Histogram for Single channel col0 = 'b' col1 = 'g' col2 = 'r' hist = cv2.calcHist([img], [2], None, [256], [0,256]) plt.plot(hist, color = col2) plt.show() # Calculating Histogram for All three channels color = ('b', 'g', 'r') for i, col in enumerate(color): hist1 = cv2.calcHist([img], [i], None, [128], [0,256] ) plt.plot(hist1, color = col) plt.show() cv2.waitKey(0) cv2.destroyAllWindows()
25.533333
67
0.673629
7942ba397542cb0b0822df17abdba205fbdc9e7a
100,873
py
Python
tests/myapp/tests.py
jonasundderwolf/django-mptt
688f2dd3a2ff7957f2ba2f3c59349232cc1fa4b2
[ "MIT" ]
null
null
null
tests/myapp/tests.py
jonasundderwolf/django-mptt
688f2dd3a2ff7957f2ba2f3c59349232cc1fa4b2
[ "MIT" ]
null
null
null
tests/myapp/tests.py
jonasundderwolf/django-mptt
688f2dd3a2ff7957f2ba2f3c59349232cc1fa4b2
[ "MIT" ]
null
null
null
import io import os import re import sys import unittest from django.apps import apps from django.contrib.admin import ModelAdmin, site from django.contrib.admin.views.main import ChangeList from django.contrib.auth.models import Group, User from django.db.models import Q from django.db.models.query_utils import DeferredAttribute from django.template import Context, Template, TemplateSyntaxError from django.test import RequestFactory, TestCase from mptt.admin import TreeRelatedFieldListFilter from mptt.querysets import TreeQuerySet try: from mock_django import mock_signal_receiver except ImportError: mock_signal_receiver = None from myapp.models import ( AutoNowDateFieldModel, Book, Category, ConcreteModel, CustomPKName, CustomTreeManager, CustomTreeQueryset, DoubleProxyModel, Genre, Item, MultipleManagerModel, Node, NullableDescOrderedInsertionModel, NullableOrderedInsertionModel, OrderedInsertion, Person, SingleProxyModel, Student, SubItem, UniqueTogetherModel, UUIDNode, ) from mptt.exceptions import CantDisableUpdates, InvalidMove from mptt.managers import TreeManager from mptt.models import MPTTModel from mptt.signals import node_moved from mptt.templatetags.mptt_tags import cache_tree_children from mptt.utils import print_debug_info def get_tree_details(nodes): """ Creates pertinent tree details for the given list of nodes. The fields are: id parent_id tree_id level left right """ if hasattr(nodes, "order_by"): nodes = list(nodes.order_by("tree_id", "lft", "pk")) nodes = list(nodes) opts = nodes[0]._mptt_meta return "\n".join( [ "%s %s %s %s %s %s" % ( n.pk, getattr(n, "%s_id" % opts.parent_attr) or "-", getattr(n, opts.tree_id_attr), getattr(n, opts.level_attr), getattr(n, opts.left_attr), getattr(n, opts.right_attr), ) for n in nodes ] ) leading_whitespace_re = re.compile(r"^\s+", re.MULTILINE) def tree_details(text): """ Trims leading whitespace from the given text specifying tree details so triple-quoted strings can be used to provide tree details in a readable format (says who?), to be compared with the result of using the ``get_tree_details`` function. """ return leading_whitespace_re.sub("", text.rstrip()) class TreeTestCase(TestCase): def assertTreeEqual(self, tree1, tree2): if not isinstance(tree1, str): tree1 = get_tree_details(tree1) tree1 = tree_details(tree1) if not isinstance(tree2, str): tree2 = get_tree_details(tree2) tree2 = tree_details(tree2) return self.assertEqual(tree1, tree2, "\n%r\n != \n%r" % (tree1, tree2)) class DocTestTestCase(TreeTestCase): def test_run_doctest(self): import doctest class DummyStream: content = "" encoding = "utf8" def write(self, text): self.content += text def flush(self): pass dummy_stream = DummyStream() before = sys.stdout sys.stdout = dummy_stream doctest.testfile( os.path.join(os.path.dirname(__file__), "doctests.txt"), module_relative=False, optionflags=doctest.IGNORE_EXCEPTION_DETAIL | doctest.ELLIPSIS, encoding="utf-8", ) sys.stdout = before content = dummy_stream.content if content: before.write(content + "\n") self.fail() # genres.json defines the following tree structure # # 1 - 1 0 1 16 action # 2 1 1 1 2 9 +-- platformer # 3 2 1 2 3 4 | |-- platformer_2d # 4 2 1 2 5 6 | |-- platformer_3d # 5 2 1 2 7 8 | +-- platformer_4d # 6 1 1 1 10 15 +-- shmup # 7 6 1 2 11 12 |-- shmup_vertical # 8 6 1 2 13 14 +-- shmup_horizontal # 9 - 2 0 1 6 rpg # 10 9 2 1 2 3 |-- arpg # 11 9 2 1 4 5 +-- trpg class ReparentingTestCase(TreeTestCase): """ Test that trees are in the appropriate state after reparenting and that reparented items have the correct tree attributes defined, should they be required for use after a save. """ fixtures = ["genres.json"] def test_new_root_from_subtree(self): shmup = Genre.objects.get(id=6) shmup.parent = None shmup.save() self.assertTreeEqual([shmup], "6 - 3 0 1 6") self.assertTreeEqual( Genre.objects.all(), """ 1 - 1 0 1 10 2 1 1 1 2 9 3 2 1 2 3 4 4 2 1 2 5 6 5 2 1 2 7 8 9 - 2 0 1 6 10 9 2 1 2 3 11 9 2 1 4 5 6 - 3 0 1 6 7 6 3 1 2 3 8 6 3 1 4 5 """, ) def test_new_root_from_leaf_with_siblings(self): platformer_2d = Genre.objects.get(id=3) platformer_2d.parent = None platformer_2d.save() self.assertTreeEqual([platformer_2d], "3 - 3 0 1 2") self.assertTreeEqual( Genre.objects.all(), """ 1 - 1 0 1 14 2 1 1 1 2 7 4 2 1 2 3 4 5 2 1 2 5 6 6 1 1 1 8 13 7 6 1 2 9 10 8 6 1 2 11 12 9 - 2 0 1 6 10 9 2 1 2 3 11 9 2 1 4 5 3 - 3 0 1 2 """, ) def test_new_child_from_root(self): action = Genre.objects.get(id=1) rpg = Genre.objects.get(id=9) action.parent = rpg action.save() self.assertTreeEqual([action], "1 9 2 1 6 21") self.assertTreeEqual([rpg], "9 - 2 0 1 22") self.assertTreeEqual( Genre.objects.all(), """ 9 - 2 0 1 22 10 9 2 1 2 3 11 9 2 1 4 5 1 9 2 1 6 21 2 1 2 2 7 14 3 2 2 3 8 9 4 2 2 3 10 11 5 2 2 3 12 13 6 1 2 2 15 20 7 6 2 3 16 17 8 6 2 3 18 19 """, ) def test_move_leaf_to_other_tree(self): shmup_horizontal = Genre.objects.get(id=8) rpg = Genre.objects.get(id=9) shmup_horizontal.parent = rpg shmup_horizontal.save() self.assertTreeEqual([shmup_horizontal], "8 9 2 1 6 7") self.assertTreeEqual([rpg], "9 - 2 0 1 8") self.assertTreeEqual( Genre.objects.all(), """ 1 - 1 0 1 14 2 1 1 1 2 9 3 2 1 2 3 4 4 2 1 2 5 6 5 2 1 2 7 8 6 1 1 1 10 13 7 6 1 2 11 12 9 - 2 0 1 8 10 9 2 1 2 3 11 9 2 1 4 5 8 9 2 1 6 7 """, ) def test_move_subtree_to_other_tree(self): shmup = Genre.objects.get(id=6) trpg = Genre.objects.get(id=11) shmup.parent = trpg shmup.save() self.assertTreeEqual([shmup], "6 11 2 2 5 10") self.assertTreeEqual([trpg], "11 9 2 1 4 11") self.assertTreeEqual( Genre.objects.all(), """ 1 - 1 0 1 10 2 1 1 1 2 9 3 2 1 2 3 4 4 2 1 2 5 6 5 2 1 2 7 8 9 - 2 0 1 12 10 9 2 1 2 3 11 9 2 1 4 11 6 11 2 2 5 10 7 6 2 3 6 7 8 6 2 3 8 9 """, ) def test_move_child_up_level(self): shmup_horizontal = Genre.objects.get(id=8) action = Genre.objects.get(id=1) shmup_horizontal.parent = action shmup_horizontal.save() self.assertTreeEqual([shmup_horizontal], "8 1 1 1 14 15") self.assertTreeEqual([action], "1 - 1 0 1 16") self.assertTreeEqual( Genre.objects.all(), """ 1 - 1 0 1 16 2 1 1 1 2 9 3 2 1 2 3 4 4 2 1 2 5 6 5 2 1 2 7 8 6 1 1 1 10 13 7 6 1 2 11 12 8 1 1 1 14 15 9 - 2 0 1 6 10 9 2 1 2 3 11 9 2 1 4 5 """, ) def test_move_subtree_down_level(self): shmup = Genre.objects.get(id=6) platformer = Genre.objects.get(id=2) shmup.parent = platformer shmup.save() self.assertTreeEqual([shmup], "6 2 1 2 9 14") self.assertTreeEqual([platformer], "2 1 1 1 2 15") self.assertTreeEqual( Genre.objects.all(), """ 1 - 1 0 1 16 2 1 1 1 2 15 3 2 1 2 3 4 4 2 1 2 5 6 5 2 1 2 7 8 6 2 1 2 9 14 7 6 1 3 10 11 8 6 1 3 12 13 9 - 2 0 1 6 10 9 2 1 2 3 11 9 2 1 4 5 """, ) def test_move_to(self): rpg = Genre.objects.get(pk=9) action = Genre.objects.get(pk=1) rpg.move_to(action) rpg.save() self.assertEqual(rpg.parent, action) def test_invalid_moves(self): # A node may not be made a child of itself action = Genre.objects.get(id=1) action.parent = action platformer = Genre.objects.get(id=2) platformer.parent = platformer self.assertRaises(InvalidMove, action.save) self.assertRaises(InvalidMove, platformer.save) # A node may not be made a child of any of its descendants platformer_4d = Genre.objects.get(id=5) action.parent = platformer_4d platformer.parent = platformer_4d self.assertRaises(InvalidMove, action.save) self.assertRaises(InvalidMove, platformer.save) # New parent is still set when an error occurs self.assertEqual(action.parent, platformer_4d) self.assertEqual(platformer.parent, platformer_4d) class ConcurrencyTestCase(TreeTestCase): """ Test that tree structure remains intact when saving nodes (without setting new parent) after tree structure has been changed. """ def setUp(self): fruit = ConcreteModel.objects.create(name="Fruit") vegie = ConcreteModel.objects.create(name="Vegie") ConcreteModel.objects.create(name="Apple", parent=fruit) ConcreteModel.objects.create(name="Pear", parent=fruit) ConcreteModel.objects.create(name="Tomato", parent=vegie) ConcreteModel.objects.create(name="Carrot", parent=vegie) # sanity check self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 3 1 1 1 2 3 4 1 1 1 4 5 2 - 2 0 1 6 5 2 2 1 2 3 6 2 2 1 4 5 """, ) def _modify_tree(self): fruit = ConcreteModel.objects.get(name="Fruit") vegie = ConcreteModel.objects.get(name="Vegie") vegie.move_to(fruit) def _assert_modified_tree_state(self): carrot = ConcreteModel.objects.get(id=6) self.assertTreeEqual([carrot], "6 2 1 2 5 6") self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 12 2 1 1 1 2 7 5 2 1 2 3 4 6 2 1 2 5 6 3 1 1 1 8 9 4 1 1 1 10 11 """, ) def test_node_save_after_tree_restructuring(self): carrot = ConcreteModel.objects.get(id=6) self._modify_tree() carrot.name = "Purple carrot" carrot.save() self._assert_modified_tree_state() def test_node_save_after_tree_restructuring_with_update_fields(self): """ Test that model is saved properly when passing update_fields """ carrot = ConcreteModel.objects.get(id=6) self._modify_tree() # update with kwargs carrot.name = "Won't change" carrot.ghosts = "Will get updated" carrot.save(update_fields=["ghosts"]) self._assert_modified_tree_state() updated_carrot = ConcreteModel.objects.get(id=6) self.assertEqual(updated_carrot.ghosts, carrot.ghosts) self.assertNotEqual(updated_carrot.name, carrot.name) # update with positional arguments carrot.name = "Will change" carrot.ghosts = "Will not be updated" carrot.save(False, False, None, ["name"]) updated_carrot = ConcreteModel.objects.get(id=6) self.assertNotEqual(updated_carrot.ghosts, carrot.ghosts) self.assertEqual(updated_carrot.name, carrot.name) def test_update_fields_positional(self): """ Test that update_fields works as a positional argument Test for https://github.com/django-mptt/django-mptt/issues/384 """ carrot = ConcreteModel.objects.get(id=6) # Why would you do it this way? Meh. carrot.save(False, False, None, None) # categories.json defines the following tree structure: # # 1 - 1 0 1 20 games # 2 1 1 1 2 7 +-- wii # 3 2 1 2 3 4 | |-- wii_games # 4 2 1 2 5 6 | +-- wii_hardware # 5 1 1 1 8 13 +-- xbox360 # 6 5 1 2 9 10 | |-- xbox360_games # 7 5 1 2 11 12 | +-- xbox360_hardware # 8 1 1 1 14 19 +-- ps3 # 9 8 1 2 15 16 |-- ps3_games # 10 8 1 2 17 18 +-- ps3_hardware class DeletionTestCase(TreeTestCase): """ Tests that the tree structure is maintained appropriately in various deletion scenarios. """ fixtures = ["categories.json"] def test_delete_root_node(self): # Add a few other roots to verify that they aren't affected Category(name="Preceding root").insert_at( Category.objects.get(id=1), "left", save=True ) Category(name="Following root").insert_at( Category.objects.get(id=1), "right", save=True ) self.assertTreeEqual( Category.objects.all(), """ 11 - 1 0 1 2 1 - 2 0 1 20 2 1 2 1 2 7 3 2 2 2 3 4 4 2 2 2 5 6 5 1 2 1 8 13 6 5 2 2 9 10 7 5 2 2 11 12 8 1 2 1 14 19 9 8 2 2 15 16 10 8 2 2 17 18 12 - 3 0 1 2 """, ) Category.objects.get(id=1).delete() self.assertTreeEqual( Category.objects.all(), """ 11 - 1 0 1 2 12 - 3 0 1 2 """, ) def test_delete_last_node_with_siblings(self): Category.objects.get(id=9).delete() self.assertTreeEqual( Category.objects.all(), """ 1 - 1 0 1 18 2 1 1 1 2 7 3 2 1 2 3 4 4 2 1 2 5 6 5 1 1 1 8 13 6 5 1 2 9 10 7 5 1 2 11 12 8 1 1 1 14 17 10 8 1 2 15 16 """, ) def test_delete_last_node_with_descendants(self): Category.objects.get(id=8).delete() self.assertTreeEqual( Category.objects.all(), """ 1 - 1 0 1 14 2 1 1 1 2 7 3 2 1 2 3 4 4 2 1 2 5 6 5 1 1 1 8 13 6 5 1 2 9 10 7 5 1 2 11 12 """, ) def test_delete_node_with_siblings(self): child = Category.objects.get(id=6) parent = child.parent self.assertEqual(parent.get_descendant_count(), 2) child.delete() self.assertTreeEqual( Category.objects.all(), """ 1 - 1 0 1 18 2 1 1 1 2 7 3 2 1 2 3 4 4 2 1 2 5 6 5 1 1 1 8 11 7 5 1 2 9 10 8 1 1 1 12 17 9 8 1 2 13 14 10 8 1 2 15 16 """, ) self.assertEqual(parent.get_descendant_count(), 1) parent = Category.objects.get(pk=parent.pk) self.assertEqual(parent.get_descendant_count(), 1) def test_delete_node_with_descendants_and_siblings(self): """ Regression test for Issue 23 - we used to use pre_delete, which resulted in tree cleanup being performed for every node being deleted, rather than just the node on which ``delete()`` was called. """ Category.objects.get(id=5).delete() self.assertTreeEqual( Category.objects.all(), """ 1 - 1 0 1 14 2 1 1 1 2 7 3 2 1 2 3 4 4 2 1 2 5 6 8 1 1 1 8 13 9 8 1 2 9 10 10 8 1 2 11 12 """, ) def test_delete_multiple_nodes(self): """Regression test for Issue 576.""" queryset = Category.objects.filter(id__in=[6, 7]) for category in queryset: category.delete() self.assertTreeEqual( Category.objects.all(), """ 1 - 1 0 1 16 2 1 1 1 2 7 3 2 1 2 3 4 4 2 1 2 5 6 5 1 1 1 8 9 8 1 1 1 10 15 9 8 1 2 11 12 10 8 1 2 13 14""", ) class IntraTreeMovementTestCase(TreeTestCase): pass class InterTreeMovementTestCase(TreeTestCase): pass class PositionedInsertionTestCase(TreeTestCase): pass class CustomPKNameTestCase(TreeTestCase): def setUp(self): manager = CustomPKName.objects c1 = manager.create(name="c1") manager.create(name="c11", parent=c1) manager.create(name="c12", parent=c1) c2 = manager.create(name="c2") manager.create(name="c21", parent=c2) manager.create(name="c22", parent=c2) manager.create(name="c3") def test_get_next_sibling(self): root = CustomPKName.objects.get(name="c12") sib = root.get_next_sibling() self.assertTrue(sib is None) class DisabledUpdatesTestCase(TreeTestCase): def setUp(self): self.a = ConcreteModel.objects.create(name="a") self.b = ConcreteModel.objects.create(name="b", parent=self.a) self.c = ConcreteModel.objects.create(name="c", parent=self.a) self.d = ConcreteModel.objects.create(name="d") # state is now: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 """, ) def test_single_proxy(self): self.assertTrue(ConcreteModel._mptt_updates_enabled) self.assertTrue(SingleProxyModel._mptt_updates_enabled) self.assertRaises( CantDisableUpdates, SingleProxyModel.objects.disable_mptt_updates().__enter__, ) self.assertTrue(ConcreteModel._mptt_updates_enabled) self.assertTrue(SingleProxyModel._mptt_updates_enabled) with ConcreteModel.objects.disable_mptt_updates(): self.assertFalse(ConcreteModel._mptt_updates_enabled) self.assertFalse(SingleProxyModel._mptt_updates_enabled) self.assertTrue(ConcreteModel._mptt_updates_enabled) self.assertTrue(SingleProxyModel._mptt_updates_enabled) def test_double_proxy(self): self.assertTrue(ConcreteModel._mptt_updates_enabled) self.assertTrue(DoubleProxyModel._mptt_updates_enabled) self.assertRaises( CantDisableUpdates, DoubleProxyModel.objects.disable_mptt_updates().__enter__, ) self.assertTrue(ConcreteModel._mptt_updates_enabled) self.assertTrue(DoubleProxyModel._mptt_updates_enabled) with ConcreteModel.objects.disable_mptt_updates(): self.assertFalse(ConcreteModel._mptt_updates_enabled) self.assertFalse(DoubleProxyModel._mptt_updates_enabled) self.assertTrue(ConcreteModel._mptt_updates_enabled) self.assertTrue(DoubleProxyModel._mptt_updates_enabled) def test_insert_child(self): with self.assertNumQueries(2): with ConcreteModel.objects.disable_mptt_updates(): # 1 query here: with self.assertNumQueries(1): ConcreteModel.objects.create(name="e", parent=self.d) # 2nd query here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 5 4 2 1 2 3 """, ) # yes, this is wrong. that's what disable_mptt_updates() does :/ self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 5 4 2 1 2 3 """, ) def test_insert_root(self): with self.assertNumQueries(2): with ConcreteModel.objects.disable_mptt_updates(): with self.assertNumQueries(1): # 1 query here: ConcreteModel.objects.create(name="e") # 2nd query here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 5 - 0 0 1 2 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 """, ) self.assertTreeEqual( ConcreteModel.objects.all(), """ 5 - 0 0 1 2 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 """, ) def test_move_node_same_tree(self): with self.assertNumQueries(2): with ConcreteModel.objects.disable_mptt_updates(): with self.assertNumQueries(1): # 2 queries here: # (django does a query to determine if the row is in the db yet) self.c.parent = self.b self.c.save() # 3rd query here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 2 1 1 4 5 4 - 2 0 1 2 """, ) # yes, this is wrong. that's what disable_mptt_updates() does :/ self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 2 1 1 4 5 4 - 2 0 1 2 """, ) def test_move_node_different_tree(self): with self.assertNumQueries(2): with ConcreteModel.objects.disable_mptt_updates(): with self.assertNumQueries(1): # 1 update query self.c.parent = self.d self.c.save() # query 2 here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 4 1 1 4 5 4 - 2 0 1 2 """, ) # yes, this is wrong. that's what disable_mptt_updates() does :/ self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 4 1 1 4 5 4 - 2 0 1 2 """, ) def test_move_node_to_root(self): with self.assertNumQueries(2): with ConcreteModel.objects.disable_mptt_updates(): with self.assertNumQueries(1): # 1 update query self.c.parent = None self.c.save() # query 2 here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 - 1 1 4 5 4 - 2 0 1 2 """, ) # yes, this is wrong. that's what disable_mptt_updates() does :/ self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 - 1 1 4 5 4 - 2 0 1 2 """, ) def test_move_root_to_child(self): with self.assertNumQueries(2): with ConcreteModel.objects.disable_mptt_updates(): with self.assertNumQueries(1): # 1 update query self.d.parent = self.c self.d.save() # query 2 here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 3 2 0 1 2 """, ) # yes, this is wrong. that's what disable_mptt_updates() does :/ self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 3 2 0 1 2 """, ) class DelayedUpdatesTestCase(TreeTestCase): def setUp(self): self.a = ConcreteModel.objects.create(name="a") self.b = ConcreteModel.objects.create(name="b", parent=self.a) self.c = ConcreteModel.objects.create(name="c", parent=self.a) self.d = ConcreteModel.objects.create(name="d") self.z = ConcreteModel.objects.create(name="z") # state is now: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 5 - 3 0 1 2 """, ) def test_proxy(self): self.assertFalse(ConcreteModel._mptt_is_tracking) self.assertFalse(SingleProxyModel._mptt_is_tracking) self.assertRaises( CantDisableUpdates, SingleProxyModel.objects.delay_mptt_updates().__enter__ ) self.assertFalse(ConcreteModel._mptt_is_tracking) self.assertFalse(SingleProxyModel._mptt_is_tracking) with ConcreteModel.objects.delay_mptt_updates(): self.assertTrue(ConcreteModel._mptt_is_tracking) self.assertTrue(SingleProxyModel._mptt_is_tracking) self.assertFalse(ConcreteModel._mptt_is_tracking) self.assertFalse(SingleProxyModel._mptt_is_tracking) def test_double_context_manager(self): with ConcreteModel.objects.delay_mptt_updates(): self.assertTrue(ConcreteModel._mptt_is_tracking) with ConcreteModel.objects.delay_mptt_updates(): self.assertTrue(ConcreteModel._mptt_is_tracking) self.assertTrue(ConcreteModel._mptt_is_tracking) self.assertFalse(ConcreteModel._mptt_is_tracking) def test_insert_child(self): with self.assertNumQueries(8): with ConcreteModel.objects.delay_mptt_updates(): with self.assertNumQueries(2): # 1 query for target stale check, # 1 query to save node. ConcreteModel.objects.create(name="e", parent=self.d) # 3rd query here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 6 4 2 1 2 3 5 - 3 0 1 2 """, ) # remaining queries (4 through 8) are the partial rebuild process. self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 4 6 4 2 1 2 3 5 - 3 0 1 2 """, ) def test_insert_root(self): with self.assertNumQueries(3): with ConcreteModel.objects.delay_mptt_updates(): with self.assertNumQueries(2): # 2 queries required here: # (one to get the correct tree_id, then one to insert) ConcreteModel.objects.create(name="e") # 3rd query here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 5 - 3 0 1 2 6 - 4 0 1 2 """, ) # no partial rebuild necessary, as no trees were modified # (newly created tree is already okay) self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 5 - 3 0 1 2 6 - 4 0 1 2 """, ) def test_move_node_same_tree(self): with self.assertNumQueries(10): with ConcreteModel.objects.delay_mptt_updates(): with self.assertNumQueries(2): # 1 query to ensure target fields aren't stale # 1 update query self.c.parent = self.b self.c.save() # query 3 here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 2 1 2 3 4 4 - 2 0 1 2 5 - 3 0 1 2 """, ) # the remaining 7 queries are the partial rebuild. self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 5 3 2 1 2 3 4 4 - 2 0 1 2 5 - 3 0 1 2 """, ) def test_move_node_different_tree(self): with self.assertNumQueries(12): with ConcreteModel.objects.delay_mptt_updates(): with self.assertNumQueries(2): # 2 queries here: # 1. update the node # 2. collapse old tree since it is now empty. self.d.parent = self.c self.d.save() # query 3 here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 3 1 2 5 6 5 - 2 0 1 2 """, ) # the other 9 queries are the partial rebuild self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 8 2 1 1 1 2 3 3 1 1 1 4 7 4 3 1 2 5 6 5 - 2 0 1 2 """, ) def test_move_node_to_root(self): with self.assertNumQueries(4): with ConcreteModel.objects.delay_mptt_updates(): with self.assertNumQueries(3): # 3 queries here! # 1. find the next tree_id to move to # 2. update the tree_id on all nodes to the right of that # 3. update tree fields on self.c self.c.parent = None self.c.save() # 4th query here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 4 - 2 0 1 2 5 - 3 0 1 2 3 - 4 0 1 2 """, ) self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 4 - 2 0 1 2 5 - 3 0 1 2 3 - 4 0 1 2 """, ) def test_move_root_to_child(self): with self.assertNumQueries(12): with ConcreteModel.objects.delay_mptt_updates(): with self.assertNumQueries(2): # 2 queries here: # 1. update the node # 2. collapse old tree since it is now empty. self.d.parent = self.c self.d.save() # query 3 here: self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 3 1 2 5 6 5 - 2 0 1 2 """, ) # the remaining 9 queries are the partial rebuild. self.assertTreeEqual( ConcreteModel.objects.all(), """ 1 - 1 0 1 8 2 1 1 1 2 3 3 1 1 1 4 7 4 3 1 2 5 6 5 - 2 0 1 2 """, ) class OrderedInsertionSortingTestCase(TestCase): def test_insert_unordered_stuff(self): root = OrderedInsertion.objects.create(name="") # "b" gets inserted first, b = OrderedInsertion.objects.create(name="b", parent=root) # "a" gets inserted later, a = OrderedInsertion.objects.create(name="a", parent=root) # ... but specifying OrderedInsertion.MPTTMeta.order_insertion_by # tells django-mptt to order added items by the name. So basically # instance "a", added later, will get the first place in the # tree. So what's exactly seems to be the problem? # # The problem is, item "b" will not get refreshed in any # way. We need to reload it manually or else there will be problems # like the one demonstrated below: self.assertIn(a, a.get_ancestors(include_self=True)) # This will raise an AssertionError, unless we reload the item from # the database. As long as we won't come up with a sensible way # of reloading all Django instances pointing to a given row in the # database... # self.assertIn(b, b.get_ancestors(include_self=True))) self.assertRaises( AssertionError, self.assertIn, b, b.get_ancestors(include_self=True) ) # ... we need to reload it properly ourselves: b.refresh_from_db() self.assertIn(b, b.get_ancestors(include_self=True)) class OrderedInsertionDelayedUpdatesTestCase(TreeTestCase): def setUp(self): self.c = OrderedInsertion.objects.create(name="c") self.d = OrderedInsertion.objects.create(name="d", parent=self.c) self.e = OrderedInsertion.objects.create(name="e", parent=self.c) self.f = OrderedInsertion.objects.create(name="f") self.z = OrderedInsertion.objects.create(name="z") # state is now: self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 5 - 3 0 1 2 """, ) def test_insert_child(self): with self.assertNumQueries(12): with OrderedInsertion.objects.delay_mptt_updates(): with self.assertNumQueries(2): # 1 query here: OrderedInsertion.objects.create(name="dd", parent=self.c) # 2nd query here: self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 6 1 1 1 6 7 4 - 2 0 1 2 5 - 3 0 1 2 """, ) # remaining 9 queries are the partial rebuild process. self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 8 2 1 1 1 2 3 6 1 1 1 4 5 3 1 1 1 6 7 4 - 2 0 1 2 5 - 3 0 1 2 """, ) def test_insert_root(self): with self.assertNumQueries(4): with OrderedInsertion.objects.delay_mptt_updates(): with self.assertNumQueries(3): # 3 queries required here: # 1. get correct tree_id (delay_mptt_updates doesn't handle # root-level ordering when using ordered insertion) # 2. increment tree_id of all following trees # 3. insert the object OrderedInsertion.objects.create(name="ee") # 4th query here: self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 6 - 2 0 1 2 4 - 3 0 1 2 5 - 4 0 1 2 """, ) # no partial rebuild is required self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 6 - 2 0 1 2 4 - 3 0 1 2 5 - 4 0 1 2 """, ) def test_move_node_same_tree(self): with self.assertNumQueries(9): with OrderedInsertion.objects.delay_mptt_updates(): with self.assertNumQueries(1): # 1 update query self.e.name = "before d" self.e.save() # query 2 here: self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 - 2 0 1 2 5 - 3 0 1 2 """, ) # the remaining 7 queries are the partial rebuild. self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 3 1 1 1 2 3 2 1 1 1 4 5 4 - 2 0 1 2 5 - 3 0 1 2 """, ) def test_move_node_different_tree(self): with self.assertNumQueries(12): with OrderedInsertion.objects.delay_mptt_updates(): with self.assertNumQueries(2): # 2 queries here: # 1. update the node # 2. collapse old tree since it is now empty. self.f.parent = self.c self.f.name = "dd" self.f.save() # query 3 here: self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 4 1 1 1 2 3 3 1 1 1 4 5 5 - 2 0 1 2 """, ) # the remaining 9 queries are the partial rebuild self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 8 2 1 1 1 2 3 4 1 1 1 4 5 3 1 1 1 6 7 5 - 2 0 1 2 """, ) def test_move_node_to_root(self): with self.assertNumQueries(4): with OrderedInsertion.objects.delay_mptt_updates(): with self.assertNumQueries(3): # 3 queries here! # 1. find the next tree_id to move to # 2. update the tree_id on all nodes to the right of that # 3. update tree fields on self.c self.e.parent = None self.e.save() # query 4 here: self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 - 2 0 1 2 4 - 3 0 1 2 5 - 4 0 1 2 """, ) self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 - 2 0 1 2 4 - 3 0 1 2 5 - 4 0 1 2 """, ) def test_move_root_to_child(self): with self.assertNumQueries(12): with OrderedInsertion.objects.delay_mptt_updates(): with self.assertNumQueries(2): # 2 queries here: # 1. update the node # 2. collapse old tree since it is now empty. self.f.parent = self.e self.f.save() # query 3 here: self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 4 3 1 2 5 6 5 - 2 0 1 2 """, ) # the remaining 9 queries are the partial rebuild. self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 8 2 1 1 1 2 3 3 1 1 1 4 7 4 3 1 2 5 6 5 - 2 0 1 2 """, ) class ManagerTests(TreeTestCase): fixtures = ["categories.json", "genres.json", "persons.json"] def test_all_managers_are_different(self): # all tree managers should be different. otherwise, possible infinite recursion. seen = {} for model in apps.get_models(): if not issubclass(model, MPTTModel): continue tm = model._tree_manager if id(tm) in seen: self.fail( "Tree managers for %s and %s are the same manager" % (model.__name__, seen[id(tm)].__name__) ) seen[id(tm)] = model def test_manager_multi_table_inheritance(self): self.assertIs(Student._tree_manager.model, Student) self.assertIs(Student._tree_manager.tree_model, Person) self.assertIs(Person._tree_manager.model, Person) self.assertIs(Person._tree_manager.tree_model, Person) def test_all_managers_have_correct_model(self): # all tree managers should have the correct model. for model in apps.get_models(): if not issubclass(model, MPTTModel): continue self.assertEqual(model._tree_manager.model, model) def test_base_manager_infinite_recursion(self): # repeatedly calling _base_manager should eventually return None for model in apps.get_models(): if not issubclass(model, MPTTModel): continue manager = model._tree_manager for i in range(20): manager = manager._base_manager if manager is None: break else: self.fail( "Detected infinite recursion in %s._tree_manager._base_manager" % model ) def test_proxy_custom_manager(self): self.assertIsInstance(SingleProxyModel._tree_manager, CustomTreeManager) self.assertIsInstance(SingleProxyModel._tree_manager._base_manager, TreeManager) self.assertIsInstance(SingleProxyModel.objects, CustomTreeManager) self.assertIsInstance(SingleProxyModel.objects._base_manager, TreeManager) def test_get_queryset_descendants(self): def get_desc_names(qs, include_self=False): desc = qs.model.objects.get_queryset_descendants( qs, include_self=include_self ) return list(desc.values_list("name", flat=True).order_by("name")) qs = Category.objects.filter(Q(name="Nintendo Wii") | Q(name="PlayStation 3")) self.assertEqual( get_desc_names(qs), ["Games", "Games", "Hardware & Accessories", "Hardware & Accessories"], ) self.assertEqual( get_desc_names(qs, include_self=True), [ "Games", "Games", "Hardware & Accessories", "Hardware & Accessories", "Nintendo Wii", "PlayStation 3", ], ) qs = Genre.objects.filter(parent=None) self.assertEqual( get_desc_names(qs), [ "2D Platformer", "3D Platformer", "4D Platformer", "Action RPG", "Horizontal Scrolling Shootemup", "Platformer", "Shootemup", "Tactical RPG", "Vertical Scrolling Shootemup", ], ) self.assertEqual( get_desc_names(qs, include_self=True), [ "2D Platformer", "3D Platformer", "4D Platformer", "Action", "Action RPG", "Horizontal Scrolling Shootemup", "Platformer", "Role-playing Game", "Shootemup", "Tactical RPG", "Vertical Scrolling Shootemup", ], ) def _get_anc_names(self, qs, include_self=False): anc = qs.model.objects.get_queryset_ancestors(qs, include_self=include_self) return list(anc.values_list("name", flat=True).order_by("name")) def test_get_queryset_ancestors(self): qs = Category.objects.filter(Q(name="Nintendo Wii") | Q(name="PlayStation 3")) self.assertEqual(self._get_anc_names(qs), ["PC & Video Games"]) self.assertEqual( self._get_anc_names(qs, include_self=True), ["Nintendo Wii", "PC & Video Games", "PlayStation 3"], ) qs = Genre.objects.filter(parent=None) self.assertEqual(self._get_anc_names(qs), []) self.assertEqual( self._get_anc_names(qs, include_self=True), ["Action", "Role-playing Game"] ) def test_get_queryset_ancestors_regression_379(self): # https://github.com/django-mptt/django-mptt/issues/379 qs = Genre.objects.all() self.assertEqual( self._get_anc_names(qs, include_self=True), list(Genre.objects.values_list("name", flat=True).order_by("name")), ) def test_custom_querysets(self): """ Test that a custom manager also provides custom querysets. """ self.assertTrue(isinstance(Person.objects.all(), CustomTreeQueryset)) self.assertTrue( isinstance(Person.objects.all()[0].get_children(), CustomTreeQueryset) ) self.assertTrue(hasattr(Person.objects.none(), "custom_method")) # Check that empty querysets get custom methods self.assertTrue( hasattr(Person.objects.all()[0].get_children().none(), "custom_method") ) self.assertEqual(type(Person.objects.all()), type(Person.objects.root_nodes())) def test_manager_from_custom_queryset(self): """ Test that a manager created from a custom queryset works. Regression test for #378. """ TreeManager.from_queryset(CustomTreeQueryset)().contribute_to_class( Genre, "my_manager" ) self.assertIsInstance(Genre.my_manager.get_queryset(), CustomTreeQueryset) def test_num_queries_on_get_queryset_descendants(self): """ Test the number of queries to access descendants is not O(n). At the moment it is O(1)+1. Ideally we should aim for O(1). """ with self.assertNumQueries(2): qs = Category.objects.get_queryset_descendants( Category.objects.all(), include_self=True ) self.assertEqual(len(qs), 10) def test_default_manager_with_multiple_managers(self): """ Test that a model with multiple managers defined always uses the default manager as the tree manager. """ self.assertEqual(type(MultipleManagerModel._tree_manager), TreeManager) class CacheTreeChildrenTestCase(TreeTestCase): """ Tests for the ``cache_tree_children`` template filter. """ fixtures = ["categories.json"] def test_cache_tree_children_caches_parents(self): """ Ensures that each node's parent is cached by ``cache_tree_children``. """ # Ensure only 1 query is used during this test with self.assertNumQueries(1): roots = cache_tree_children(Category.objects.all()) games = roots[0] wii = games.get_children()[0] wii_games = wii.get_children()[0] # Ensure that ``wii`` is cached as ``parent`` on ``wii_games``, and # likewise for ``games`` being ``parent`` on the attached ``wii`` self.assertEqual(wii, wii_games.parent) self.assertEqual(games, wii_games.parent.parent) def test_cache_tree_children_with_invalid_ordering(self): """ Ensures that ``cache_tree_children`` fails with a ``ValueError`` when passed a list which is not in tree order. """ with self.assertNumQueries(1): with self.assertRaises(ValueError): cache_tree_children(list(Category.objects.order_by("-id"))) # Passing a list with correct ordering should work, though. with self.assertNumQueries(1): cache_tree_children(list(Category.objects.all())) # The exact ordering tuple doesn't matter, long as the nodes end up in depth-first order. cache_tree_children(Category.objects.order_by("tree_id", "lft", "name")) cache_tree_children(Category.objects.filter(tree_id=1).order_by("lft")) class RecurseTreeTestCase(TreeTestCase): """ Tests for the ``recursetree`` template filter. """ fixtures = ["categories.json"] template = re.sub( r"(?m)^[\s]+", "", """ {% load mptt_tags %} <ul> {% recursetree nodes %} <li> {{ node.name }} {% if not node.is_leaf_node %} <ul class="children"> {{ children }} </ul> {% endif %} </li> {% endrecursetree %} </ul> """, ) def test_leaf_html(self): html = ( Template(self.template) .render( Context( { "nodes": Category.objects.filter(pk=10), } ) ) .replace("\n", "") ) self.assertEqual(html, "<ul><li>Hardware &amp; Accessories</li></ul>") def test_nonleaf_html(self): qs = Category.objects.get(pk=8).get_descendants(include_self=True) html = ( Template(self.template) .render( Context( { "nodes": qs, } ) ) .replace("\n", "") ) self.assertEqual( html, ( '<ul><li>PlayStation 3<ul class="children">' "<li>Games</li><li>Hardware &amp; Accessories</li></ul></li></ul>" ), ) def test_parsing_fail(self): self.assertRaises( TemplateSyntaxError, Template, "{% load mptt_tags %}{% recursetree %}{% endrecursetree %}", ) def test_cached_ancestors(self): template = Template( """ {% load mptt_tags %} {% recursetree nodes %} {{ node.get_ancestors|join:" > " }} {{ node.name }} {% if not node.is_leaf_node %} {{ children }} {% endif %} {% endrecursetree %} """ ) with self.assertNumQueries(1): qs = Category.objects.all() template.render(Context({"nodes": qs})) class TreeInfoTestCase(TreeTestCase): fixtures = ["genres.json"] template = re.sub( r"(?m)^[\s]+", "", """ {% load mptt_tags %} {% for node, structure in nodes|tree_info %} {% if structure.new_level %}<ul><li>{% else %}</li><li>{% endif %} {{ node.pk }} {% for level in structure.closed_levels %}</li></ul>{% endfor %} {% endfor %}""", ) template_with_ancestors = re.sub( r"(?m)^[\s]+", "", """ {% load mptt_tags %} {% for node, structure in nodes|tree_info:"ancestors" %} {% if structure.new_level %}<ul><li>{% else %}</li><li>{% endif %} {{ node.pk }} {% for ancestor in structure.ancestors %} {% if forloop.first %}A:{% endif %} {{ ancestor }}{% if not forloop.last %},{% endif %} {% endfor %} {% for level in structure.closed_levels %}</li></ul>{% endfor %} {% endfor %}""", ) def test_tree_info_html(self): html = ( Template(self.template) .render( Context( { "nodes": Genre.objects.all(), } ) ) .replace("\n", "") ) self.assertEqual( html, "<ul><li>1<ul><li>2<ul><li>3</li><li>4</li><li>5</li></ul></li>" "<li>6<ul><li>7</li><li>8</li></ul></li></ul></li><li>9<ul>" "<li>10</li><li>11</li></ul></li></ul>", ) html = ( Template(self.template) .render( Context( { "nodes": Genre.objects.filter( **{ "%s__gte" % Genre._mptt_meta.level_attr: 1, "%s__lte" % Genre._mptt_meta.level_attr: 2, } ), } ) ) .replace("\n", "") ) self.assertEqual( html, "<ul><li>2<ul><li>3</li><li>4</li><li>5</li></ul></li><li>6<ul>" "<li>7</li><li>8</li></ul></li><li>10</li><li>11</li></ul>", ) html = ( Template(self.template_with_ancestors) .render( Context( { "nodes": Genre.objects.filter( **{ "%s__gte" % Genre._mptt_meta.level_attr: 1, "%s__lte" % Genre._mptt_meta.level_attr: 2, } ), } ) ) .replace("\n", "") ) self.assertEqual( html, "<ul><li>2<ul><li>3A:Platformer</li><li>4A:Platformer</li>" "<li>5A:Platformer</li></ul></li><li>6<ul><li>7A:Shootemup</li>" "<li>8A:Shootemup</li></ul></li><li>10</li><li>11</li></ul>", ) class FullTreeTestCase(TreeTestCase): fixtures = ["genres.json"] template = re.sub( r"(?m)^[\s]+", "", """ {% load mptt_tags %} {% full_tree_for_model myapp.Genre as tree %} {% for node in tree %}{{ node.pk }},{% endfor %} """, ) def test_full_tree_html(self): html = Template(self.template).render(Context({})).replace("\n", "") self.assertEqual(html, "1,2,3,4,5,6,7,8,9,10,11,") class DrilldownTreeTestCase(TreeTestCase): fixtures = ["genres.json"] template = re.sub( r"(?m)^[\s]+", "", """ {% load mptt_tags %} {% drilldown_tree_for_node node as tree count myapp.Game.genre in game_count %} {% for n in tree %} {% if n == node %}[{% endif %} {{ n.pk }}:{{ n.game_count }} {% if n == node %}]{% endif %}{% if not forloop.last %},{% endif %} {% endfor %} """, ) def render_for_node(self, pk, cumulative=False, m2m=False, all_descendants=False): template = self.template if all_descendants: template = template.replace( " count myapp.Game.genre in game_count ", " all_descendants " ) if cumulative: template = template.replace(" count ", " cumulative count ") if m2m: template = template.replace("Game.genre", "Game.genres_m2m") return ( Template(template) .render( Context( { "node": Genre.objects.get(pk=pk), } ) ) .replace("\n", "") ) def test_drilldown_html(self): for idx, genre in enumerate(Genre.objects.all()): for i in range(idx): game = genre.game_set.create(name="Game %s" % i) genre.games_m2m.add(game) self.assertEqual(self.render_for_node(1), "[1:],2:1,6:5") self.assertEqual(self.render_for_node(2), "1:,[2:],3:2,4:3,5:4") self.assertEqual(self.render_for_node(1, cumulative=True), "[1:],2:10,6:18") self.assertEqual( self.render_for_node(2, cumulative=True), "1:,[2:],3:2,4:3,5:4" ) self.assertEqual(self.render_for_node(1, m2m=True), "[1:],2:1,6:5") self.assertEqual(self.render_for_node(2, m2m=True), "1:,[2:],3:2,4:3,5:4") self.assertEqual( self.render_for_node(1, cumulative=True, m2m=True), "[1:],2:10,6:18" ) self.assertEqual( self.render_for_node(2, cumulative=True, m2m=True), "1:,[2:],3:2,4:3,5:4" ) self.assertEqual( self.render_for_node(1, all_descendants=True), "[1:],2:,3:,4:,5:,6:,7:,8:" ) self.assertEqual( self.render_for_node(2, all_descendants=True), "1:,[2:],3:,4:,5:" ) class TestAutoNowDateFieldModel(TreeTestCase): # https://github.com/django-mptt/django-mptt/issues/175 def test_save_auto_now_date_field_model(self): a = AutoNowDateFieldModel() a.save() class RegisteredRemoteModel(TreeTestCase): def test_save_registered_model(self): g1 = Group.objects.create(name="group 1") g1.save() class TestAltersData(TreeTestCase): def test_alters_data(self): node = Node() output = Template("{{ node.save }}").render( Context( { "node": node, } ) ) self.assertEqual(output, "") self.assertEqual(node.pk, None) node.save() self.assertNotEqual(node.pk, None) output = Template("{{ node.delete }}").render( Context( { "node": node, } ) ) self.assertEqual(node, Node.objects.get(pk=node.pk)) class TestDebugInfo(TreeTestCase): fixtures = ["categories.json"] def test_debug_info(self): with io.StringIO() as out: print_debug_info(Category.objects.all(), file=out) output = out.getvalue() self.assertIn("1,0,,1,1,20", output) def test_debug_info_with_non_ascii_representations(self): Category.objects.create(name="El niño") with io.StringIO() as out: print_debug_info(Category.objects.all(), file=out) output = out.getvalue() self.assertIn("El niño", output) class AdminBatch(TreeTestCase): fixtures = ["categories.json"] def test_changelist(self): user = User.objects.create_superuser("admin", "[email protected]", "p") self.client.login(username=user.username, password="p") response = self.client.get("/admin/myapp/category/") self.assertContains(response, 'name="_selected_action"', 10) mptt_opts = Category._mptt_meta self.assertSequenceEqual( response.context["cl"].result_list.query.order_by[:2], [mptt_opts.tree_id_attr, mptt_opts.left_attr], ) data = { "action": "delete_selected", "_selected_action": ["5", "8", "9"], } response = self.client.post("/admin/myapp/category/", data) self.assertRegex(response.rendered_content, r'value="Yes, I(\'|’)m sure"') data["post"] = "yes" response = self.client.post("/admin/myapp/category/", data) self.assertRedirects(response, "/admin/myapp/category/") self.assertEqual(Category.objects.count(), 4) # Batch deletion has not clobbered MPTT values, because our method # delete_selected_tree has been used. self.assertTreeEqual( Category.objects.all(), """ 1 - 1 0 1 8 2 1 1 1 2 7 3 2 1 2 3 4 4 2 1 2 5 6 """, ) class TestUnsaved(TreeTestCase): def test_unsaved(self): for method in [ "get_ancestors", "get_family", "get_children", "get_descendants", "get_leafnodes", "get_next_sibling", "get_previous_sibling", "get_root", "get_siblings", ]: self.assertRaisesRegex( ValueError, "Cannot call %s on unsaved Genre instances" % method, getattr(Genre(), method), ) class QuerySetTests(TreeTestCase): fixtures = ["categories.json"] def test_get_ancestors(self): self.assertEqual( [ c.pk for c in Category.objects.get(name="Nintendo Wii").get_ancestors( include_self=False ) ], [ c.pk for c in Category.objects.filter(name="Nintendo Wii").get_ancestors( include_self=False ) ], ) self.assertEqual( [ c.pk for c in Category.objects.get(name="Nintendo Wii").get_ancestors( include_self=True ) ], [ c.pk for c in Category.objects.filter(name="Nintendo Wii").get_ancestors( include_self=True ) ], ) def test_get_descendants(self): self.assertEqual( [ c.pk for c in Category.objects.get(name="Nintendo Wii").get_descendants( include_self=False ) ], [ c.pk for c in Category.objects.filter(name="Nintendo Wii").get_descendants( include_self=False ) ], ) self.assertEqual( [ c.pk for c in Category.objects.get(name="Nintendo Wii").get_descendants( include_self=True ) ], [ c.pk for c in Category.objects.filter(name="Nintendo Wii").get_descendants( include_self=True ) ], ) def test_as_manager(self): self.assertTrue(issubclass(TreeQuerySet.as_manager().__class__, TreeManager)) class TreeManagerTestCase(TreeTestCase): fixtures = ["categories.json", "items.json", "subitems.json"] def test_add_related_count_with_fk_to_natural_key(self): # Regression test for #284 queryset = Category.objects.filter(name="Xbox 360").order_by("id") # Test using FK that doesn't point to a primary key for c in Category.objects.add_related_count( queryset, Item, "category_fk", "item_count", cumulative=False ): self.assertEqual(c.item_count, c.items_by_pk.count()) # Also works when using the FK that *does* point to a primary key for c in Category.objects.add_related_count( queryset, Item, "category_pk", "item_count", cumulative=False ): self.assertEqual(c.item_count, c.items_by_pk.count()) def test_add_related_count_multistep(self): queryset = Category.objects.filter(name="Xbox 360").order_by("id") topqueryset = Category.objects.filter(name="PC & Video Games").order_by("id") # Test using FK that doesn't point to a primary key for c in Category.objects.add_related_count( queryset, SubItem, "item__category_fk", "subitem_count", cumulative=False ): self.assertEqual(c.subitem_count, 1) for topc in Category.objects.add_related_count( topqueryset, SubItem, "item__category_fk", "subitem_count", cumulative=False ): self.assertEqual(topc.subitem_count, 1) # Also works when using the FK that *does* point to a primary key for c in Category.objects.add_related_count( queryset, SubItem, "item__category_pk", "subitem_count", cumulative=False ): self.assertEqual(c.subitem_count, 1) for topc in Category.objects.add_related_count( topqueryset, SubItem, "item__category_pk", "subitem_count", cumulative=False ): self.assertEqual(topc.subitem_count, 1) # Test using FK that doesn't point to a primary key, cumulative for c in Category.objects.add_related_count( queryset, SubItem, "item__category_fk", "subitem_count", cumulative=True ): self.assertEqual(c.subitem_count, 1) for topc in Category.objects.add_related_count( topqueryset, SubItem, "item__category_fk", "subitem_count", cumulative=True ): self.assertEqual(topc.subitem_count, 2) # Also works when using the FK that *does* point to a primary key, cumulative for c in Category.objects.add_related_count( queryset, SubItem, "item__category_pk", "subitem_count", cumulative=True ): self.assertEqual(c.subitem_count, 1) for topc in Category.objects.add_related_count( topqueryset, SubItem, "item__category_pk", "subitem_count", cumulative=True ): self.assertEqual(topc.subitem_count, 2) def test_add_related_count_with_extra_filters(self): """ Test that filtering by extra_filters works """ queryset = Category.objects.all() # Test using FK that doesn't point to a primary key for c in Category.objects.add_related_count( queryset, Item, "category_fk", "item_count", cumulative=False, extra_filters={"name": "Halo: Reach"}, ): if c.pk == 5: self.assertEqual(c.item_count, 1) else: self.assertEqual(c.item_count, 0) # Also works when using the FK that *does* point to a primary key for c in Category.objects.add_related_count( queryset, Item, "category_pk", "item_count", cumulative=False, extra_filters={"name": "Halo: Reach"}, ): if c.pk == 5: self.assertEqual(c.item_count, 1) else: self.assertEqual(c.item_count, 0) # Test using FK that doesn't point to a primary key for c in Category.objects.add_related_count( queryset, Item, "category_fk", "item_count", cumulative=True, extra_filters={"name": "Halo: Reach"}, ): if c.pk in (5, 1): self.assertEqual(c.item_count, 1) else: self.assertEqual(c.item_count, 0) # Also works when using the FK that *does* point to a primary key for c in Category.objects.add_related_count( queryset, Item, "category_pk", "item_count", cumulative=True, extra_filters={"name": "Halo: Reach"}, ): if c.pk in (5, 1): self.assertEqual(c.item_count, 1) else: self.assertEqual(c.item_count, 0) class TestOrderedInsertionBFS(TreeTestCase): def test_insert_ordered_DFS_backwards_root_nodes(self): rock = OrderedInsertion.objects.create(name="Rock") OrderedInsertion.objects.create(name="Led Zeppelin", parent=rock) OrderedInsertion.objects.create(name="Classical") self.assertTreeEqual( OrderedInsertion.objects.all(), """ 3 - 1 0 1 2 1 - 2 0 1 4 2 1 2 1 2 3 """, ) def test_insert_ordered_BFS_backwards_root_nodes(self): rock = OrderedInsertion.objects.create(name="Rock") self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 2 """, ) OrderedInsertion.objects.create(name="Classical") self.assertTreeEqual( OrderedInsertion.objects.all(), """ 2 - 1 0 1 2 1 - 2 0 1 2 """, ) # This tends to fail if it uses `rock.tree_id`, which is 1, although # in the database Rock's tree_id has been updated to 2. OrderedInsertion.objects.create(name="Led Zeppelin", parent=rock) self.assertTreeEqual( OrderedInsertion.objects.all(), """ 2 - 1 0 1 2 1 - 2 0 1 4 3 1 2 1 2 3 """, ) def test_insert_ordered_DFS_backwards_nonroot_nodes(self): music = OrderedInsertion.objects.create(name="music") rock = OrderedInsertion.objects.create(name="Rock", parent=music) OrderedInsertion.objects.create(name="Led Zeppelin", parent=rock) OrderedInsertion.objects.create(name="Classical", parent=music) self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 8 4 1 1 1 2 3 2 1 1 1 4 7 3 2 1 2 5 6 """, ) def test_insert_ordered_BFS_backwards_nonroot_nodes(self): music = OrderedInsertion.objects.create(name="music") rock = OrderedInsertion.objects.create(name="Rock", parent=music) OrderedInsertion.objects.create(name="Classical", parent=music) self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 6 3 1 1 1 2 3 2 1 1 1 4 5 """, ) OrderedInsertion.objects.create(name="Led Zeppelin", parent=rock) self.assertTreeEqual( OrderedInsertion.objects.all(), """ 1 - 1 0 1 8 3 1 1 1 2 3 2 1 1 1 4 7 4 2 1 2 5 6 """, ) class CacheChildrenTestCase(TreeTestCase): """ Tests that the queryset function `get_cached_trees` results in a minimum number of database queries. """ fixtures = ["genres.json"] def test_genre_iter(self): """ Test a query with two root nodes. """ with self.assertNumQueries(1): root_nodes = Genre.objects.all().get_cached_trees() # `get_cached_trees` should only return the root nodes self.assertEqual(len(root_nodes), 2) # Getting the children of each node should not result in db hits. with self.assertNumQueries(0): for genre in root_nodes: self.assertIsInstance(genre, Genre) for child in genre.get_children(): self.assertIsInstance(child, Genre) for child2 in child.get_children(): self.assertIsInstance(child2, Genre) def test_hide_nodes(self): """ Test that caching a tree with missing nodes works """ root = Category.objects.create(name="Root", visible=False) child = Category.objects.create(name="Child", parent=root) root2 = Category.objects.create(name="Root2") list(Category.objects.all().get_cached_trees()) == [root, child, root2] list(Category.objects.filter(visible=True).get_cached_trees()) == [child, root2] @unittest.skipUnless( mock_signal_receiver, "Signals tests require mock_django installed" ) class Signals(TestCase): fixtures = ["categories.json"] def setUp(self): self.signal = node_moved self.wii = Category.objects.get(pk=2) self.ps3 = Category.objects.get(pk=8) def test_signal_should_not_be_sent_when_parent_hasnt_changed(self): with mock_signal_receiver(self.signal, sender=Category) as receiver: self.wii.name = "Woo" self.wii.save() self.assertEqual(receiver.call_count, 0) def test_signal_should_not_be_sent_when_model_created(self): with mock_signal_receiver(self.signal, sender=Category) as receiver: Category.objects.create(name="Descriptive name") self.assertEqual(receiver.call_count, 0) def test_move_by_using_move_to_should_send_signal(self): with mock_signal_receiver(self.signal, sender=Category) as receiver: self.wii.move_to(self.ps3) receiver.assert_called_once_with( instance=self.wii, signal=self.signal, target=self.ps3, sender=Category, position="first-child", ) def test_move_by_changing_parent_should_send_signal(self): """position is not set when sent from save(). I assume it would be the default(first-child) but didn't feel comfortable setting it. """ with mock_signal_receiver(self.signal, sender=Category) as receiver: self.wii.parent = self.ps3 self.wii.save() receiver.assert_called_once_with( instance=self.wii, signal=self.signal, target=self.ps3, sender=Category ) class DeferredAttributeTests(TreeTestCase): """ Regression tests for #176 and #424 """ def setUp(self): OrderedInsertion.objects.create(name="a") def test_deferred_order_insertion_by(self): qs = OrderedInsertion.objects.defer("name") with self.assertNumQueries(1): nodes = list(qs) with self.assertNumQueries(0): self.assertTreeEqual( nodes, """ 1 - 1 0 1 2 """, ) def test_deferred_cached_field_undeferred(self): obj = OrderedInsertion.objects.defer("name").get() self.assertEqual(obj._mptt_cached_fields["name"], DeferredAttribute) with self.assertNumQueries(1): obj.name with self.assertNumQueries(3): # does a node move, since the order_insertion_by field changed obj.save() self.assertEqual(obj._mptt_cached_fields["name"], "a") def test_deferred_cached_field_change(self): obj = OrderedInsertion.objects.defer("name").get() self.assertEqual(obj._mptt_cached_fields["name"], DeferredAttribute) with self.assertNumQueries(0): obj.name = "b" with self.assertNumQueries(3): # does a node move, since the order_insertion_by field changed obj.save() self.assertEqual(obj._mptt_cached_fields["name"], "b") class DraggableMPTTAdminTestCase(TreeTestCase): def setUp(self): self.user = User.objects.create_superuser("admin", "[email protected]", "p") self.client.login(username=self.user.username, password="p") def test_changelist(self): p1 = Person.objects.create(name="Franz") p2 = Person.objects.create(name="Fritz") p3 = Person.objects.create(name="Hans") self.assertNotEqual(p1._mpttfield("tree_id"), p2._mpttfield("tree_id")) response = self.client.get("/admin/myapp/person/") self.assertContains(response, 'class="drag-handle"', 3) self.assertContains(response, 'style="text-indent:0px"', 3) self.assertContains( response, 'src="/static/mptt/draggable-admin.js" data-context="{&quot;', ) self.assertContains(response, '}" id="draggable-admin-context"></script>') response = self.client.post( "/admin/myapp/person/", { "cmd": "move_node", "cut_item": p1.pk, "pasted_on": p2.pk, "position": "last-child", }, HTTP_X_REQUESTED_WITH="XMLHttpRequest", ) self.assertEqual(response.status_code, 200) p1.refresh_from_db() p2.refresh_from_db() self.assertEqual(p1.parent, p2) self.assertTreeEqual( Person.objects.all(), """ 2 - 2 0 1 4 1 2 2 1 2 3 3 - 3 0 1 2 """, ) response = self.client.get("/admin/myapp/person/") self.assertContains(response, 'style="text-indent:0px"', 2) self.assertContains(response, 'style="text-indent:20px"', 1) response = self.client.post( "/admin/myapp/person/", { "cmd": "move_node", "cut_item": p3.pk, "pasted_on": p1.pk, "position": "left", }, HTTP_X_REQUESTED_WITH="XMLHttpRequest", ) self.assertEqual(response.status_code, 200) self.assertTreeEqual( Person.objects.all(), """ 2 - 2 0 1 6 3 2 2 1 2 3 1 2 2 1 4 5 """, ) response = self.client.post( "/admin/myapp/person/", { "action": "delete_selected", "_selected_action": [1], }, ) self.assertContains(response, "Are you sure?") response = self.client.post( "/admin/myapp/person/", { "action": "delete_selected", "_selected_action": [1], "post": "yes", }, ) self.assertRedirects(response, "/admin/myapp/person/") self.assertTreeEqual( Person.objects.all(), """ 2 - 2 0 1 4 3 2 2 1 2 3 """, ) class BookAdmin(ModelAdmin): list_filter = ( ("fk", TreeRelatedFieldListFilter), ("m2m", TreeRelatedFieldListFilter), ) ordering = ("id",) class CategoryAdmin(ModelAdmin): list_filter = ( ("books_fk", TreeRelatedFieldListFilter), ("books_m2m", TreeRelatedFieldListFilter), ) ordering = ("id",) class ListFiltersTests(TestCase): def setUp(self): self.user = User.objects.create_superuser("admin", "[email protected]", "p") self.request_factory = RequestFactory() self.parent_category = Category.objects.create(name="Parent category") self.child_category1 = Category.objects.create( name="Child category1", parent=self.parent_category ) self.child_category2 = Category.objects.create( name="Child category2", parent=self.parent_category ) self.simple_category = Category.objects.create(name="Simple category") self.book1 = Book.objects.create(name="book1", fk=self.child_category1) self.book2 = Book.objects.create( name="book2", fk=self.parent_category, parent=self.book1 ) self.book3 = Book.objects.create( name="book3", fk=self.simple_category, parent=self.book1 ) self.book4 = Book.objects.create(name="book4") self.book1.m2m.add(self.child_category1) self.book2.m2m.add(self.parent_category) self.book3.m2m.add(self.simple_category) def get_request(self, path, params=None): req = self.request_factory.get(path, params) req.user = self.user return req def get_changelist(self, request, model, modeladmin): args = [ request, model, modeladmin.list_display, modeladmin.list_display_links, modeladmin.list_filter, modeladmin.date_hierarchy, modeladmin.search_fields, modeladmin.list_select_related, modeladmin.list_per_page, modeladmin.list_max_show_all, modeladmin.list_editable, modeladmin, ] if hasattr(modeladmin, "sortable_by"): # New in Django 2.1 args.append(modeladmin.sortable_by) return ChangeList(*args) def test_treerelatedfieldlistfilter_foreignkey(self): modeladmin = BookAdmin(Book, site) request = self.get_request("/") changelist = self.get_changelist(request, Book, modeladmin) # Make sure that all categories are present in the referencing model's list filter filterspec = changelist.get_filters(request)[0][0] expected = [ ( self.parent_category.pk, self.parent_category.name, ' style="padding-left:0px"', ), ( self.child_category1.pk, self.child_category1.name, ' style="padding-left:10px"', ), ( self.child_category2.pk, self.child_category2.name, ' style="padding-left:10px"', ), ( self.simple_category.pk, self.simple_category.name, ' style="padding-left:0px"', ), ] self.assertEqual(sorted(filterspec.lookup_choices), sorted(expected)) request = self.get_request("/", {"fk__isnull": "True"}) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual(list(queryset), [self.book4]) # Make sure the last choice is None and is selected filterspec = changelist.get_filters(request)[0][0] choices = list(filterspec.choices(changelist)) self.assertEqual(choices[-1]["selected"], True) self.assertEqual(choices[-1]["query_string"], "?fk__isnull=True") # Make sure child's categories books included request = self.get_request( "/", {"fk__id__inhierarchy": self.parent_category.pk} ) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual((list(queryset)), [self.book1, self.book2]) # Make sure filter for child category works as expected request = self.get_request( "/", {"fk__id__inhierarchy": self.child_category1.pk} ) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual((list(queryset)), [self.book1]) # Make sure filter for empty category works as expected request = self.get_request( "/", {"fk__id__inhierarchy": self.child_category2.pk} ) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual(queryset.count(), 0) # Make sure filter for simple category with no hierarchy works as expected request = self.get_request( "/", {"fk__id__inhierarchy": self.simple_category.pk} ) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual((list(queryset)), [self.book3]) def test_treerelatedfieldlistfilter_manytomany(self): modeladmin = BookAdmin(Book, site) request = self.get_request("/") changelist = self.get_changelist(request, Book, modeladmin) # Make sure that all categories are present in the referencing model's list filter filterspec = changelist.get_filters(request)[0][1] expected = [ ( self.parent_category.pk, self.parent_category.name, ' style="padding-left:0px"', ), ( self.child_category1.pk, self.child_category1.name, ' style="padding-left:10px"', ), ( self.child_category2.pk, self.child_category2.name, ' style="padding-left:10px"', ), ( self.simple_category.pk, self.simple_category.name, ' style="padding-left:0px"', ), ] self.assertEqual(sorted(filterspec.lookup_choices), sorted(expected)) request = self.get_request("/", {"m2m__isnull": "True"}) changelist = self.get_changelist(request, Book, modeladmin) # Make sure the correct queryset is returned queryset = changelist.get_queryset(request) self.assertEqual(list(queryset), [self.book4]) # Make sure the last choice is None and is selected filterspec = changelist.get_filters(request)[0][1] choices = list(filterspec.choices(changelist)) self.assertEqual(choices[-1]["selected"], True) self.assertEqual(choices[-1]["query_string"], "?m2m__isnull=True") # Make sure child's categories books included request = self.get_request( "/", {"m2m__id__inhierarchy": self.parent_category.pk} ) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual((list(queryset)), [self.book1, self.book2]) # Make sure filter for child category works as expected request = self.get_request( "/", {"m2m__id__inhierarchy": self.child_category1.pk} ) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual((list(queryset)), [self.book1]) # Make sure filter for empty category works as expected request = self.get_request( "/", {"fk__id__inhierarchy": self.child_category2.pk} ) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual(queryset.count(), 0) # Make sure filter for simple category with no hierarchy works as expected request = self.get_request( "/", {"m2m__id__inhierarchy": self.simple_category.pk} ) changelist = self.get_changelist(request, Book, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual((list(queryset)), [self.book3]) def test_treerelatedfieldlistfilter_reverse_relationships(self): modeladmin = CategoryAdmin(Category, site) # FK relationship ----- request = self.get_request("/", {"books_fk__isnull": "True"}) changelist = self.get_changelist(request, Category, modeladmin) # Make sure the correct queryset is returned queryset = changelist.get_queryset(request) self.assertEqual(list(queryset), [self.child_category2]) # Make sure the last choice is None and is selected filterspec = changelist.get_filters(request)[0][0] choices = list(filterspec.choices(changelist)) self.assertEqual(choices[-1]["selected"], True) self.assertEqual(choices[-1]["query_string"], "?books_fk__isnull=True") # Make sure child's books categories included request = self.get_request("/", {"books_fk__id__inhierarchy": self.book1.pk}) changelist = self.get_changelist(request, Category, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual( (list(queryset)), [self.parent_category, self.child_category1, self.simple_category], ) # Make sure filter for child book works as expected request = self.get_request("/", {"books_fk__id__inhierarchy": self.book2.pk}) changelist = self.get_changelist(request, Category, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual((list(queryset)), [self.parent_category]) # Make sure filter for book with no category works as expected request = self.get_request("/", {"books_fk__id__inhierarchy": self.book4.pk}) changelist = self.get_changelist(request, Category, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual(queryset.count(), 0) # M2M relationship ----- request = self.get_request("/", {"books_m2m__isnull": "True"}) changelist = self.get_changelist(request, Category, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual(list(queryset), [self.child_category2]) # Make sure the last choice is None and is selected filterspec = changelist.get_filters(request)[0][1] choices = list(filterspec.choices(changelist)) self.assertEqual(choices[-1]["selected"], True) self.assertEqual(choices[-1]["query_string"], "?books_m2m__isnull=True") # Make sure child's books categories included request = self.get_request("/", {"books_m2m__id__inhierarchy": self.book1.pk}) changelist = self.get_changelist(request, Category, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual( (list(queryset)), [self.parent_category, self.child_category1, self.simple_category], ) # Make sure filter for child book works as expected request = self.get_request("/", {"books_m2m__id__inhierarchy": self.book2.pk}) changelist = self.get_changelist(request, Category, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual((list(queryset)), [self.parent_category]) # Make sure filter for book with no category works as expected request = self.get_request("/", {"books_m2m__id__inhierarchy": self.book4.pk}) changelist = self.get_changelist(request, Category, modeladmin) queryset = changelist.get_queryset(request) self.assertEqual(queryset.count(), 0) class UUIDPrimaryKey(TreeTestCase): def test_save_uuid_model(self): n1 = UUIDNode.objects.create(name="node") n2 = UUIDNode.objects.create(name="sub_node", parent=n1) self.assertEqual(n1.name, "node") self.assertEqual(n1.tree_id, n2.tree_id) self.assertEqual(n2.parent, n1) def test_move_uuid_node(self): n1 = UUIDNode.objects.create(name="n1") n2 = UUIDNode.objects.create(name="n2", parent=n1) n3 = UUIDNode.objects.create(name="n3", parent=n1) self.assertEqual(list(n1.get_children()), [n2, n3]) n3.move_to(n2, "left") self.assertEqual(list(n1.get_children()), [n3, n2]) def test_move_root_node(self): root1 = UUIDNode.objects.create(name="n1") child = UUIDNode.objects.create(name="n2", parent=root1) root2 = UUIDNode.objects.create(name="n3") self.assertEqual(list(root1.get_children()), [child]) root2.move_to(child, "left") self.assertEqual(list(root1.get_children()), [root2, child]) def test_move_child_node(self): root1 = UUIDNode.objects.create(name="n1") child1 = UUIDNode.objects.create(name="n2", parent=root1) root2 = UUIDNode.objects.create(name="n3") child2 = UUIDNode.objects.create(name="n4", parent=root2) self.assertEqual(list(root1.get_children()), [child1]) child2.move_to(child1, "left") self.assertEqual(list(root1.get_children()), [child2, child1]) class DirectParentAssignment(TreeTestCase): def test_assignment(self): """Regression test for #428""" n1 = Node.objects.create() n2 = Node.objects.create() n1.parent_id = n2.id n1.save() class MovingNodeWithUniqueConstraint(TreeTestCase): def test_unique_together_move_to_same_parent_change_code(self): """Regression test for #466 1""" UniqueTogetherModel.objects.all().delete() a = UniqueTogetherModel.objects.create(code="a", parent=None) b = UniqueTogetherModel.objects.create(code="b", parent=None) a1 = UniqueTogetherModel.objects.create(code="1", parent=a) b1 = UniqueTogetherModel.objects.create(code="1", parent=b) b1.parent, b1.code = a, "2" # b1 -> a2 b1.save() self.assertTreeEqual( UniqueTogetherModel.objects.all(), """ 1 - 1 0 1 6 3 1 1 1 2 3 4 1 1 1 4 5 2 - 2 0 1 2 """, ) def test_unique_together_move_to_same_code_change_parent(self): """Regression test for #466 1""" UniqueTogetherModel.objects.all().delete() a = UniqueTogetherModel.objects.create(code="a", parent=None) b = UniqueTogetherModel.objects.create(code="b", parent=None) a1 = UniqueTogetherModel.objects.create(code="1", parent=a) a2 = UniqueTogetherModel.objects.create(code="2", parent=a) a2.parent, a2.code = b, "1" # a2 -> b1 a2.save() self.assertTreeEqual( UniqueTogetherModel.objects.all(), """ 1 - 1 0 1 4 3 1 1 1 2 3 2 - 2 0 1 4 4 2 2 1 2 3 """, ) class NullableOrderedInsertion(TreeTestCase): def test_nullable_ordered_insertion(self): genreA = NullableOrderedInsertionModel.objects.create(name="A", parent=None) genreA1 = NullableOrderedInsertionModel.objects.create(name="A1", parent=genreA) genreAnone = NullableOrderedInsertionModel.objects.create( name=None, parent=genreA ) self.assertTreeEqual( NullableOrderedInsertionModel.objects.all(), """ 1 - 1 0 1 6 3 1 1 1 2 3 2 1 1 1 4 5 """, ) def test_nullable_ordered_insertion_desc(self): genreA = NullableDescOrderedInsertionModel.objects.create(name="A", parent=None) genreA1 = NullableDescOrderedInsertionModel.objects.create( name="A1", parent=genreA ) genreAnone = NullableDescOrderedInsertionModel.objects.create( name=None, parent=genreA ) self.assertTreeEqual( NullableDescOrderedInsertionModel.objects.all(), """ 1 - 1 0 1 6 2 1 1 1 2 3 3 1 1 1 4 5 """, ) class ModelMetaIndexes(TreeTestCase): def test_no_index_set(self): class SomeModel(MPTTModel): class Meta: app_label = "myapp" tree_id_attr = getattr(SomeModel._mptt_meta, "tree_id_attr") self.assertTrue(SomeModel._meta.get_field(tree_id_attr).db_index) for key in ("right_attr", "left_attr", "level_attr"): field_name = getattr(SomeModel._mptt_meta, key) self.assertFalse(SomeModel._meta.get_field(field_name).db_index) def test_index_together(self): already_idx = [["tree_id", "lft"], ("tree_id", "lft")] no_idx = [tuple(), list()] some_idx = [["tree_id"], ("tree_id",), [["tree_id"]], (("tree_id",),)] for idx, case in enumerate(already_idx + no_idx + some_idx): class Meta: index_together = case app_label = "myapp" # Use type() here and in test_index_together_different_attr over # an explicit class X(MPTTModel):, as this throws a warning that # re-registering models with the same name (which is what an explicit # class does) could cause errors. Kind of... weird, but surprisingly # effective. SomeModel = type( str("model_{}".format(idx)), (MPTTModel,), { "Meta": Meta, "__module__": __name__, }, ) self.assertIn(("tree_id", "lft"), SomeModel._meta.index_together) def test_index_together_different_attr(self): already_idx = [["abc", "def"], ("abc", "def")] no_idx = [tuple(), list()] some_idx = [["abc"], ("abc",), [["abc"]], (("abc",),)] for idx, case in enumerate(already_idx + no_idx + some_idx): class MPTTMeta: tree_id_attr = "abc" left_attr = "def" class Meta: index_together = case app_label = "myapp" SomeModel = type( str("model__different_attr_{}".format(idx)), (MPTTModel,), {"MPTTMeta": MPTTMeta, "Meta": Meta, "__module__": str(__name__)}, ) self.assertIn(("abc", "def"), SomeModel._meta.index_together) class BulkLoadTests(TestCase): fixtures = ["categories.json"] def setUp(self): self.games = { "id": 11, "name": "Role-playing", "children": [ { "id": 12, "parent_id": 11, "name": "Single-player", }, { "id": 13, "parent_id": 11, "name": "Multi-player", }, ], } def test_bulk_root(self): data = { "id": 11, "name": "Enterprise Software", "children": [ { "id": 12, "parent_id": 11, "name": "Databases", }, { "id": 13, "parent_id": 11, "name": "Timekeeping", }, ], } records = Category.objects.build_tree_nodes(data) self.assertEqual(len(records), 3) self.assertEqual((records[0].lft, records[0].rght), (1, 6)) self.assertEqual((records[1].lft, records[1].rght), (2, 3)) self.assertEqual((records[2].lft, records[2].rght), (4, 5)) def test_bulk_last_child(self): games = Category.objects.get(id=3) records = Category.objects.build_tree_nodes(self.games, target=games) self.assertEqual(len(records), 3) for record in records: self.assertEqual(record.tree_id, games.tree_id) self.assertEqual((records[0].lft, records[0].rght), (4, 9)) self.assertEqual((records[1].lft, records[1].rght), (5, 6)) self.assertEqual((records[2].lft, records[2].rght), (7, 8)) games.refresh_from_db() self.assertEqual((games.lft, games.rght), (3, 10)) def test_bulk_left(self): games = Category.objects.get(id=3) records = Category.objects.build_tree_nodes( self.games, target=games, position="left" ) self.assertEqual(len(records), 3) for record in records: self.assertEqual(record.tree_id, games.tree_id) self.assertEqual((records[0].lft, records[0].rght), (3, 8)) self.assertEqual((records[1].lft, records[1].rght), (4, 5)) self.assertEqual((records[2].lft, records[2].rght), (6, 7)) games.refresh_from_db() self.assertEqual((games.lft, games.rght), (9, 10))
32.750974
97
0.530647
7942bac5969c49790f808c39a3fd13a23d7be837
1,827
py
Python
examples/features/mask_sensitive.py
vedkharche538/pandas-profiling
ba0a6df3a3dd126ab36045f5a69878f31627d450
[ "MIT" ]
null
null
null
examples/features/mask_sensitive.py
vedkharche538/pandas-profiling
ba0a6df3a3dd126ab36045f5a69878f31627d450
[ "MIT" ]
null
null
null
examples/features/mask_sensitive.py
vedkharche538/pandas-profiling
ba0a6df3a3dd126ab36045f5a69878f31627d450
[ "MIT" ]
null
null
null
from pathlib import Path import pandas as pd from pandas_profiling import ProfileReport from pandas_profiling.utils.cache import cache_file if __name__ == "__main__": file_name = cache_file("auto2.dta", "http://www.stata-press.com/data/r15/auto2.dta") df = pd.read_stata(file_name) # In case that a sample of the real data (cars) would disclose sensitive information, we can replace it with # mock data. For illustrative purposes, we use data based on cars from a popular game series. mock_data = pd.DataFrame( { "make": ["Blista Kanjo", "Sentinel", "Burrito"], "price": [58000, 95000, 65000], "mpg": [20, 30, 22], "rep78": ["Average", "Excellent", "Fair"], "headroom": [2.5, 3.0, 1.5], "trunk": [8, 10, 4], "weight": [1050, 1600, 2500], "length": [165, 170, 180], "turn": [40, 50, 32], "displacement": [80, 100, 60], "gear_ratio": [2.74, 3.51, 2.41], "foreign": ["Domestic", "Domestic", "Foreign"], } ) report = ProfileReport( df.sample(frac=0.25), title="Masked data", dataset=dict( description="This profiling report was generated using a sample of 5% of the original dataset.", copyright_holder="StataCorp LLC", copyright_year="2020", url="http://www.stata-press.com/data/r15/auto2.dta", ), sensitive=True, sample=dict( name="Mock data sample", data=mock_data, caption="Disclaimer: this is synthetic data generated based on the format of the data in this table.", ), vars=dict(cat=dict(unicode=True)), interactions=None, ) report.to_file(Path("masked_report.html"))
36.54
114
0.576355
7942bb1bad80012d5558602a969aa4128d6f41bf
82,021
py
Python
sympy/geometry/polygon.py
utkarshdeorah/sympy
dcdf59bbc6b13ddbc329431adf72fcee294b6389
[ "BSD-3-Clause" ]
1
2020-09-09T20:40:17.000Z
2020-09-09T20:40:17.000Z
sympy/geometry/polygon.py
utkarshdeorah/sympy
dcdf59bbc6b13ddbc329431adf72fcee294b6389
[ "BSD-3-Clause" ]
14
2018-02-08T10:11:03.000Z
2019-04-16T10:32:46.000Z
sympy/geometry/polygon.py
utkarshdeorah/sympy
dcdf59bbc6b13ddbc329431adf72fcee294b6389
[ "BSD-3-Clause" ]
1
2022-02-04T13:50:29.000Z
2022-02-04T13:50:29.000Z
from sympy.core import Expr, S, oo, pi, sympify from sympy.core.evalf import N from sympy.core.sorting import default_sort_key, ordered from sympy.core.symbol import _symbol, Dummy, symbols, Symbol from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import cos, sin, tan from .ellipse import Circle from .entity import GeometryEntity, GeometrySet from .exceptions import GeometryError from .line import Line, Segment, Ray from .point import Point from sympy.logic import And from sympy.matrices import Matrix from sympy.simplify.simplify import simplify from sympy.solvers.solvers import solve from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation from sympy.utilities.misc import as_int, func_name from mpmath.libmp.libmpf import prec_to_dps import warnings class Polygon(GeometrySet): """A two-dimensional polygon. A simple polygon in space. Can be constructed from a sequence of points or from a center, radius, number of sides and rotation angle. Parameters ========== vertices : sequence of Points Optional parameters ========== n : If > 0, an n-sided RegularPolygon is created. See below. Default value is 0. Attributes ========== area angles perimeter vertices centroid sides Raises ====== GeometryError If all parameters are not Points. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle Notes ===== Polygons are treated as closed paths rather than 2D areas so some calculations can be be negative or positive (e.g., area) based on the orientation of the points. Any consecutive identical points are reduced to a single point and any points collinear and between two points will be removed unless they are needed to define an explicit intersection (see examples). A Triangle, Segment or Point will be returned when there are 3 or fewer points provided. Examples ======== >>> from sympy import Polygon, pi >>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)] >>> Polygon(p1, p2, p3, p4) Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)) >>> Polygon(p1, p2) Segment2D(Point2D(0, 0), Point2D(1, 0)) >>> Polygon(p1, p2, p5) Segment2D(Point2D(0, 0), Point2D(3, 0)) The area of a polygon is calculated as positive when vertices are traversed in a ccw direction. When the sides of a polygon cross the area will have positive and negative contributions. The following defines a Z shape where the bottom right connects back to the top left. >>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area 0 When the keyword `n` is used to define the number of sides of the Polygon then a RegularPolygon is created and the other arguments are interpreted as center, radius and rotation. The unrotated RegularPolygon will always have a vertex at Point(r, 0) where `r` is the radius of the circle that circumscribes the RegularPolygon. Its method `spin` can be used to increment that angle. >>> p = Polygon((0,0), 1, n=3) >>> p RegularPolygon(Point2D(0, 0), 1, 3, 0) >>> p.vertices[0] Point2D(1, 0) >>> p.args[0] Point2D(0, 0) >>> p.spin(pi/2) >>> p.vertices[0] Point2D(0, 1) """ def __new__(cls, *args, n = 0, **kwargs): if n: args = list(args) # return a virtual polygon with n sides if len(args) == 2: # center, radius args.append(n) elif len(args) == 3: # center, radius, rotation args.insert(2, n) return RegularPolygon(*args, **kwargs) vertices = [Point(a, dim=2, **kwargs) for a in args] # remove consecutive duplicates nodup = [] for p in vertices: if nodup and p == nodup[-1]: continue nodup.append(p) if len(nodup) > 1 and nodup[-1] == nodup[0]: nodup.pop() # last point was same as first # remove collinear points i = -3 while i < len(nodup) - 3 and len(nodup) > 2: a, b, c = nodup[i], nodup[i + 1], nodup[i + 2] if Point.is_collinear(a, b, c): nodup.pop(i + 1) if a == c: nodup.pop(i) else: i += 1 vertices = list(nodup) if len(vertices) > 3: return GeometryEntity.__new__(cls, *vertices, **kwargs) elif len(vertices) == 3: return Triangle(*vertices, **kwargs) elif len(vertices) == 2: return Segment(*vertices, **kwargs) else: return Point(*vertices, **kwargs) @property def area(self): """ The area of the polygon. Notes ===== The area calculation can be positive or negative based on the orientation of the points. If any side of the polygon crosses any other side, there will be areas having opposite signs. See Also ======== sympy.geometry.ellipse.Ellipse.area Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.area 3 In the Z shaped polygon (with the lower right connecting back to the upper left) the areas cancel out: >>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0)) >>> Z.area 0 In the M shaped polygon, areas do not cancel because no side crosses any other (though there is a point of contact). >>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0)) >>> M.area -3/2 """ area = 0 args = self.args for i in range(len(args)): x1, y1 = args[i - 1].args x2, y2 = args[i].args area += x1*y2 - x2*y1 return simplify(area) / 2 @staticmethod def _isright(a, b, c): """Return True/False for cw/ccw orientation. Examples ======== >>> from sympy import Point, Polygon >>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]] >>> Polygon._isright(a, b, c) True >>> Polygon._isright(a, c, b) False """ ba = b - a ca = c - a t_area = simplify(ba.x*ca.y - ca.x*ba.y) res = t_area.is_nonpositive if res is None: raise ValueError("Can't determine orientation") return res @property def angles(self): """The internal angle at each vertex. Returns ======= angles : dict A dictionary where each key is a vertex and each value is the internal angle at that vertex. The vertices are represented as Points. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.angles[p1] pi/2 >>> poly.angles[p2] acos(-4*sqrt(17)/17) """ # Determine orientation of points args = self.vertices cw = self._isright(args[-1], args[0], args[1]) ret = {} for i in range(len(args)): a, b, c = args[i - 2], args[i - 1], args[i] ang = Ray(b, a).angle_between(Ray(b, c)) if cw ^ self._isright(a, b, c): ret[b] = 2*S.Pi - ang else: ret[b] = ang return ret @property def ambient_dimension(self): return self.vertices[0].ambient_dimension @property def perimeter(self): """The perimeter of the polygon. Returns ======= perimeter : number or Basic instance See Also ======== sympy.geometry.line.Segment.length Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.perimeter sqrt(17) + 7 """ p = 0 args = self.vertices for i in range(len(args)): p += args[i - 1].distance(args[i]) return simplify(p) @property def vertices(self): """The vertices of the polygon. Returns ======= vertices : list of Points Notes ===== When iterating over the vertices, it is more efficient to index self rather than to request the vertices and index them. Only use the vertices when you want to process all of them at once. This is even more important with RegularPolygons that calculate each vertex. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.vertices [Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)] >>> poly.vertices[0] Point2D(0, 0) """ return list(self.args) @property def centroid(self): """The centroid of the polygon. Returns ======= centroid : Point See Also ======== sympy.geometry.point.Point, sympy.geometry.util.centroid Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.centroid Point2D(31/18, 11/18) """ A = 1/(6*self.area) cx, cy = 0, 0 args = self.args for i in range(len(args)): x1, y1 = args[i - 1].args x2, y2 = args[i].args v = x1*y2 - x2*y1 cx += v*(x1 + x2) cy += v*(y1 + y2) return Point(simplify(A*cx), simplify(A*cy)) def second_moment_of_area(self, point=None): """Returns the second moment and product moment of area of a two dimensional polygon. Parameters ========== point : Point, two-tuple of sympifyable objects, or None(default=None) point is the point about which second moment of area is to be found. If "point=None" it will be calculated about the axis passing through the centroid of the polygon. Returns ======= I_xx, I_yy, I_xy : number or SymPy expression I_xx, I_yy are second moment of area of a two dimensional polygon. I_xy is product moment of area of a two dimensional polygon. Examples ======== >>> from sympy import Polygon, symbols >>> a, b = symbols('a, b') >>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)] >>> rectangle = Polygon(p1, p2, p3, p4) >>> rectangle.second_moment_of_area() (a*b**3/12, a**3*b/12, 0) >>> rectangle.second_moment_of_area(p5) (a*b**3/9, a**3*b/9, a**2*b**2/36) References ========== .. [1] https://en.wikipedia.org/wiki/Second_moment_of_area """ I_xx, I_yy, I_xy = 0, 0, 0 args = self.vertices for i in range(len(args)): x1, y1 = args[i-1].args x2, y2 = args[i].args v = x1*y2 - x2*y1 I_xx += (y1**2 + y1*y2 + y2**2)*v I_yy += (x1**2 + x1*x2 + x2**2)*v I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v A = self.area c_x = self.centroid[0] c_y = self.centroid[1] # parallel axis theorem I_xx_c = (I_xx/12) - (A*(c_y**2)) I_yy_c = (I_yy/12) - (A*(c_x**2)) I_xy_c = (I_xy/24) - (A*(c_x*c_y)) if point is None: return I_xx_c, I_yy_c, I_xy_c I_xx = (I_xx_c + A*((point[1]-c_y)**2)) I_yy = (I_yy_c + A*((point[0]-c_x)**2)) I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y))) return I_xx, I_yy, I_xy def first_moment_of_area(self, point=None): """ Returns the first moment of area of a two-dimensional polygon with respect to a certain point of interest. First moment of area is a measure of the distribution of the area of a polygon in relation to an axis. The first moment of area of the entire polygon about its own centroid is always zero. Therefore, here it is calculated for an area, above or below a certain point of interest, that makes up a smaller portion of the polygon. This area is bounded by the point of interest and the extreme end (top or bottom) of the polygon. The first moment for this area is is then determined about the centroidal axis of the initial polygon. References ========== .. [1] https://skyciv.com/docs/tutorials/section-tutorials/calculating-the-statical-or-first-moment-of-area-of-beam-sections/?cc=BMD .. [2] https://mechanicalc.com/reference/cross-sections Parameters ========== point: Point, two-tuple of sympifyable objects, or None (default=None) point is the point above or below which the area of interest lies If ``point=None`` then the centroid acts as the point of interest. Returns ======= Q_x, Q_y: number or SymPy expressions Q_x is the first moment of area about the x-axis Q_y is the first moment of area about the y-axis A negative sign indicates that the section modulus is determined for a section below (or left of) the centroidal axis Examples ======== >>> from sympy import Point, Polygon >>> a, b = 50, 10 >>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)] >>> p = Polygon(p1, p2, p3, p4) >>> p.first_moment_of_area() (625, 3125) >>> p.first_moment_of_area(point=Point(30, 7)) (525, 3000) """ if point: xc, yc = self.centroid else: point = self.centroid xc, yc = point h_line = Line(point, slope=0) v_line = Line(point, slope=S.Infinity) h_poly = self.cut_section(h_line) v_poly = self.cut_section(v_line) poly_1 = h_poly[0] if h_poly[0].area <= h_poly[1].area else h_poly[1] poly_2 = v_poly[0] if v_poly[0].area <= v_poly[1].area else v_poly[1] Q_x = (poly_1.centroid.y - yc)*poly_1.area Q_y = (poly_2.centroid.x - xc)*poly_2.area return Q_x, Q_y def polar_second_moment_of_area(self): """Returns the polar modulus of a two-dimensional polygon It is a constituent of the second moment of area, linked through the perpendicular axis theorem. While the planar second moment of area describes an object's resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object's resistance to deflection when subjected to a moment applied in a plane perpendicular to the object's central axis (i.e. parallel to the cross-section) Examples ======== >>> from sympy import Polygon, symbols >>> a, b = symbols('a, b') >>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b)) >>> rectangle.polar_second_moment_of_area() a**3*b/12 + a*b**3/12 References ========== .. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia """ second_moment = self.second_moment_of_area() return second_moment[0] + second_moment[1] def section_modulus(self, point=None): """Returns a tuple with the section modulus of a two-dimensional polygon. Section modulus is a geometric property of a polygon defined as the ratio of second moment of area to the distance of the extreme end of the polygon from the centroidal axis. Parameters ========== point : Point, two-tuple of sympifyable objects, or None(default=None) point is the point at which section modulus is to be found. If "point=None" it will be calculated for the point farthest from the centroidal axis of the polygon. Returns ======= S_x, S_y: numbers or SymPy expressions S_x is the section modulus with respect to the x-axis S_y is the section modulus with respect to the y-axis A negative sign indicates that the section modulus is determined for a point below the centroidal axis Examples ======== >>> from sympy import symbols, Polygon, Point >>> a, b = symbols('a, b', positive=True) >>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b)) >>> rectangle.section_modulus() (a*b**2/6, a**2*b/6) >>> rectangle.section_modulus(Point(a/4, b/4)) (-a*b**2/3, -a**2*b/3) References ========== .. [1] https://en.wikipedia.org/wiki/Section_modulus """ x_c, y_c = self.centroid if point is None: # taking x and y as maximum distances from centroid x_min, y_min, x_max, y_max = self.bounds y = max(y_c - y_min, y_max - y_c) x = max(x_c - x_min, x_max - x_c) else: # taking x and y as distances of the given point from the centroid y = point.y - y_c x = point.x - x_c second_moment= self.second_moment_of_area() S_x = second_moment[0]/y S_y = second_moment[1]/x return S_x, S_y @property def sides(self): """The directed line segments that form the sides of the polygon. Returns ======= sides : list of sides Each side is a directed Segment. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.sides [Segment2D(Point2D(0, 0), Point2D(1, 0)), Segment2D(Point2D(1, 0), Point2D(5, 1)), Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))] """ res = [] args = self.vertices for i in range(-len(args), 0): res.append(Segment(args[i], args[i + 1])) return res @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ verts = self.vertices xs = [p.x for p in verts] ys = [p.y for p in verts] return (min(xs), min(ys), max(xs), max(ys)) def is_convex(self): """Is the polygon convex? A polygon is convex if all its interior angles are less than 180 degrees and there are no intersections between sides. Returns ======= is_convex : boolean True if this polygon is convex, False otherwise. See Also ======== sympy.geometry.util.convex_hull Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.is_convex() True """ # Determine orientation of points args = self.vertices cw = self._isright(args[-2], args[-1], args[0]) for i in range(1, len(args)): if cw ^ self._isright(args[i - 2], args[i - 1], args[i]): return False # check for intersecting sides sides = self.sides for i, si in enumerate(sides): pts = si.args # exclude the sides connected to si for j in range(1 if i == len(sides) - 1 else 0, i - 1): sj = sides[j] if sj.p1 not in pts and sj.p2 not in pts: hit = si.intersection(sj) if hit: return False return True def encloses_point(self, p): """ Return True if p is enclosed by (is inside of) self. Notes ===== Being on the border of self is considered False. Parameters ========== p : Point Returns ======= encloses_point : True, False or None See Also ======== sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point Examples ======== >>> from sympy import Polygon, Point >>> p = Polygon((0, 0), (4, 0), (4, 4)) >>> p.encloses_point(Point(2, 1)) True >>> p.encloses_point(Point(2, 2)) False >>> p.encloses_point(Point(5, 5)) False References ========== .. [1] http://paulbourke.net/geometry/polygonmesh/#insidepoly """ p = Point(p, dim=2) if p in self.vertices or any(p in s for s in self.sides): return False # move to p, checking that the result is numeric lit = [] for v in self.vertices: lit.append(v - p) # the difference is simplified if lit[-1].free_symbols: return None poly = Polygon(*lit) # polygon closure is assumed in the following test but Polygon removes duplicate pts so # the last point has to be added so all sides are computed. Using Polygon.sides is # not good since Segments are unordered. args = poly.args indices = list(range(-len(args), 1)) if poly.is_convex(): orientation = None for i in indices: a = args[i] b = args[i + 1] test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative if orientation is None: orientation = test elif test is not orientation: return False return True hit_odd = False p1x, p1y = args[0].args for i in indices[1:]: p2x, p2y = args[i].args if 0 > min(p1y, p2y): if 0 <= max(p1y, p2y): if 0 <= max(p1x, p2x): if p1y != p2y: xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x if p1x == p2x or 0 <= xinters: hit_odd = not hit_odd p1x, p1y = p2x, p2y return hit_odd def arbitrary_point(self, parameter='t'): """A parameterized point on the polygon. The parameter, varying from 0 to 1, assigns points to the position on the perimeter that is that fraction of the total perimeter. So the point evaluated at t=1/2 would return the point from the first vertex that is 1/2 way around the polygon. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= arbitrary_point : Point Raises ====== ValueError When `parameter` already appears in the Polygon's definition. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Polygon, Symbol >>> t = Symbol('t', real=True) >>> tri = Polygon((0, 0), (1, 0), (1, 1)) >>> p = tri.arbitrary_point('t') >>> perimeter = tri.perimeter >>> s1, s2 = [s.length for s in tri.sides[:2]] >>> p.subs(t, (s1 + s2/2)/perimeter) Point2D(1, 1/2) """ t = _symbol(parameter, real=True) if t.name in (f.name for f in self.free_symbols): raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name) sides = [] perimeter = self.perimeter perim_fraction_start = 0 for s in self.sides: side_perim_fraction = s.length/perimeter perim_fraction_end = perim_fraction_start + side_perim_fraction pt = s.arbitrary_point(parameter).subs( t, (t - perim_fraction_start)/side_perim_fraction) sides.append( (pt, (And(perim_fraction_start <= t, t < perim_fraction_end)))) perim_fraction_start = perim_fraction_end return Piecewise(*sides) def parameter_value(self, other, t): if not isinstance(other,GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other,Point): raise ValueError("other must be a point") if other.free_symbols: raise NotImplementedError('non-numeric coordinates') unknown = False T = Dummy('t', real=True) p = self.arbitrary_point(T) for pt, cond in p.args: sol = solve(pt - other, T, dict=True) if not sol: continue value = sol[0][T] if simplify(cond.subs(T, value)) == True: return {t: value} unknown = True if unknown: raise ValueError("Given point may not be on %s" % func_name(self)) raise ValueError("Given point is not on %s" % func_name(self)) def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the polygon. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list (plot interval) [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Polygon >>> p = Polygon((0, 0), (1, 0), (1, 1)) >>> p.plot_interval() [t, 0, 1] """ t = Symbol(parameter, real=True) return [t, 0, 1] def intersection(self, o): """The intersection of polygon and geometry entity. The intersection may be empty and can contain individual Points and complete Line Segments. Parameters ========== other: GeometryEntity Returns ======= intersection : list The list of Segments and Points See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy import Point, Polygon, Line >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly1 = Polygon(p1, p2, p3, p4) >>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)]) >>> poly2 = Polygon(p5, p6, p7) >>> poly1.intersection(poly2) [Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)] >>> poly1.intersection(Line(p1, p2)) [Segment2D(Point2D(0, 0), Point2D(1, 0))] >>> poly1.intersection(p1) [Point2D(0, 0)] """ intersection_result = [] k = o.sides if isinstance(o, Polygon) else [o] for side in self.sides: for side1 in k: intersection_result.extend(side.intersection(side1)) intersection_result = list(uniq(intersection_result)) points = [entity for entity in intersection_result if isinstance(entity, Point)] segments = [entity for entity in intersection_result if isinstance(entity, Segment)] if points and segments: points_in_segments = list(uniq([point for point in points for segment in segments if point in segment])) if points_in_segments: for i in points_in_segments: points.remove(i) return list(ordered(segments + points)) else: return list(ordered(intersection_result)) def cut_section(self, line): """ Returns a tuple of two polygon segments that lie above and below the intersecting line respectively. Parameters ========== line: Line object of geometry module line which cuts the Polygon. The part of the Polygon that lies above and below this line is returned. Returns ======= upper_polygon, lower_polygon: Polygon objects or None upper_polygon is the polygon that lies above the given line. lower_polygon is the polygon that lies below the given line. upper_polygon and lower polygon are ``None`` when no polygon exists above the line or below the line. Raises ====== ValueError: When the line does not intersect the polygon Examples ======== >>> from sympy import Polygon, Line >>> a, b = 20, 10 >>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)] >>> rectangle = Polygon(p1, p2, p3, p4) >>> t = rectangle.cut_section(Line((0, 5), slope=0)) >>> t (Polygon(Point2D(0, 10), Point2D(0, 5), Point2D(20, 5), Point2D(20, 10)), Polygon(Point2D(0, 5), Point2D(0, 0), Point2D(20, 0), Point2D(20, 5))) >>> upper_segment, lower_segment = t >>> upper_segment.area 100 >>> upper_segment.centroid Point2D(10, 15/2) >>> lower_segment.centroid Point2D(10, 5/2) References ========== .. [1] https://github.com/sympy/sympy/wiki/A-method-to-return-a-cut-section-of-any-polygon-geometry """ intersection_points = self.intersection(line) if not intersection_points: raise ValueError("This line does not intersect the polygon") points = list(self.vertices) points.append(points[0]) x, y = symbols('x, y', real=True, cls=Dummy) eq = line.equation(x, y) # considering equation of line to be `ax +by + c` a = eq.coeff(x) b = eq.coeff(y) upper_vertices = [] lower_vertices = [] # prev is true when previous point is above the line prev = True prev_point = None for point in points: # when coefficient of y is 0, right side of the line is # considered compare = eq.subs({x: point.x, y: point.y})/b if b \ else eq.subs(x, point.x)/a # if point lies above line if compare > 0: if not prev: # if previous point lies below the line, the intersection # point of the polygon egde and the line has to be included edge = Line(point, prev_point) new_point = edge.intersection(line) upper_vertices.append(new_point[0]) lower_vertices.append(new_point[0]) upper_vertices.append(point) prev = True else: if prev and prev_point: edge = Line(point, prev_point) new_point = edge.intersection(line) upper_vertices.append(new_point[0]) lower_vertices.append(new_point[0]) lower_vertices.append(point) prev = False prev_point = point upper_polygon, lower_polygon = None, None if upper_vertices and isinstance(Polygon(*upper_vertices), Polygon): upper_polygon = Polygon(*upper_vertices) if lower_vertices and isinstance(Polygon(*lower_vertices), Polygon): lower_polygon = Polygon(*lower_vertices) return upper_polygon, lower_polygon def distance(self, o): """ Returns the shortest distance between self and o. If o is a point, then self does not need to be convex. If o is another polygon self and o must be convex. Examples ======== >>> from sympy import Point, Polygon, RegularPolygon >>> p1, p2 = map(Point, [(0, 0), (7, 5)]) >>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices) >>> poly.distance(p2) sqrt(61) """ if isinstance(o, Point): dist = oo for side in self.sides: current = side.distance(o) if current == 0: return S.Zero elif current < dist: dist = current return dist elif isinstance(o, Polygon) and self.is_convex() and o.is_convex(): return self._do_poly_distance(o) raise NotImplementedError() def _do_poly_distance(self, e2): """ Calculates the least distance between the exteriors of two convex polygons e1 and e2. Does not check for the convexity of the polygons as this is checked by Polygon.distance. Notes ===== - Prints a warning if the two polygons possibly intersect as the return value will not be valid in such a case. For a more through test of intersection use intersection(). See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy.geometry import Point, Polygon >>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)) >>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) >>> square._do_poly_distance(triangle) sqrt(2)/2 Description of method used ========================== Method: [1] http://cgm.cs.mcgill.ca/~orm/mind2p.html Uses rotating calipers: [2] https://en.wikipedia.org/wiki/Rotating_calipers and antipodal points: [3] https://en.wikipedia.org/wiki/Antipodal_point """ e1 = self '''Tests for a possible intersection between the polygons and outputs a warning''' e1_center = e1.centroid e2_center = e2.centroid e1_max_radius = S.Zero e2_max_radius = S.Zero for vertex in e1.vertices: r = Point.distance(e1_center, vertex) if e1_max_radius < r: e1_max_radius = r for vertex in e2.vertices: r = Point.distance(e2_center, vertex) if e2_max_radius < r: e2_max_radius = r center_dist = Point.distance(e1_center, e2_center) if center_dist <= e1_max_radius + e2_max_radius: warnings.warn("Polygons may intersect producing erroneous output") ''' Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2 ''' e1_ymax = Point(0, -oo) e2_ymin = Point(0, oo) for vertex in e1.vertices: if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x): e1_ymax = vertex for vertex in e2.vertices: if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x): e2_ymin = vertex min_dist = Point.distance(e1_ymax, e2_ymin) ''' Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points to which the vertex is connected as its value. The same is then done for e2. ''' e1_connections = {} e2_connections = {} for side in e1.sides: if side.p1 in e1_connections: e1_connections[side.p1].append(side.p2) else: e1_connections[side.p1] = [side.p2] if side.p2 in e1_connections: e1_connections[side.p2].append(side.p1) else: e1_connections[side.p2] = [side.p1] for side in e2.sides: if side.p1 in e2_connections: e2_connections[side.p1].append(side.p2) else: e2_connections[side.p1] = [side.p2] if side.p2 in e2_connections: e2_connections[side.p2].append(side.p1) else: e2_connections[side.p2] = [side.p1] e1_current = e1_ymax e2_current = e2_ymin support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero)) ''' Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax, this information combined with the above produced dictionaries determines the path that will be taken around the polygons ''' point1 = e1_connections[e1_ymax][0] point2 = e1_connections[e1_ymax][1] angle1 = support_line.angle_between(Line(e1_ymax, point1)) angle2 = support_line.angle_between(Line(e1_ymax, point2)) if angle1 < angle2: e1_next = point1 elif angle2 < angle1: e1_next = point2 elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2): e1_next = point2 else: e1_next = point1 point1 = e2_connections[e2_ymin][0] point2 = e2_connections[e2_ymin][1] angle1 = support_line.angle_between(Line(e2_ymin, point1)) angle2 = support_line.angle_between(Line(e2_ymin, point2)) if angle1 > angle2: e2_next = point1 elif angle2 > angle1: e2_next = point2 elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2): e2_next = point2 else: e2_next = point1 ''' Loop which determines the distance between anti-podal pairs and updates the minimum distance accordingly. It repeats until it reaches the starting position. ''' while True: e1_angle = support_line.angle_between(Line(e1_current, e1_next)) e2_angle = pi - support_line.angle_between(Line( e2_current, e2_next)) if (e1_angle < e2_angle) is True: support_line = Line(e1_current, e1_next) e1_segment = Segment(e1_current, e1_next) min_dist_current = e1_segment.distance(e2_current) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e1_connections[e1_next][0] != e1_current: e1_current = e1_next e1_next = e1_connections[e1_next][0] else: e1_current = e1_next e1_next = e1_connections[e1_next][1] elif (e1_angle > e2_angle) is True: support_line = Line(e2_next, e2_current) e2_segment = Segment(e2_current, e2_next) min_dist_current = e2_segment.distance(e1_current) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e2_connections[e2_next][0] != e2_current: e2_current = e2_next e2_next = e2_connections[e2_next][0] else: e2_current = e2_next e2_next = e2_connections[e2_next][1] else: support_line = Line(e1_current, e1_next) e1_segment = Segment(e1_current, e1_next) e2_segment = Segment(e2_current, e2_next) min1 = e1_segment.distance(e2_next) min2 = e2_segment.distance(e1_next) min_dist_current = min(min1, min2) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e1_connections[e1_next][0] != e1_current: e1_current = e1_next e1_next = e1_connections[e1_next][0] else: e1_current = e1_next e1_next = e1_connections[e1_next][1] if e2_connections[e2_next][0] != e2_current: e2_current = e2_next e2_next = e2_connections[e2_next][0] else: e2_current = e2_next e2_next = e2_connections[e2_next][1] if e1_current == e1_ymax and e2_current == e2_ymin: break return min_dist def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the Polygon. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ verts = map(N, self.vertices) coords = ["{},{}".format(p.x, p.y) for p in verts] path = "M {} L {} z".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" />' ).format(2. * scale_factor, path, fill_color) def _hashable_content(self): D = {} def ref_list(point_list): kee = {} for i, p in enumerate(ordered(set(point_list))): kee[p] = i D[i] = p return [kee[p] for p in point_list] S1 = ref_list(self.args) r_nor = rotate_left(S1, least_rotation(S1)) S2 = ref_list(list(reversed(self.args))) r_rev = rotate_left(S2, least_rotation(S2)) if r_nor < r_rev: r = r_nor else: r = r_rev canonical_args = [ D[order] for order in r ] return tuple(canonical_args) def __contains__(self, o): """ Return True if o is contained within the boundary lines of self.altitudes Parameters ========== other : GeometryEntity Returns ======= contained in : bool The points (and sides, if applicable) are contained in self. See Also ======== sympy.geometry.entity.GeometryEntity.encloses Examples ======== >>> from sympy import Line, Segment, Point >>> p = Point(0, 0) >>> q = Point(1, 1) >>> s = Segment(p, q*2) >>> l = Line(p, q) >>> p in q False >>> p in s True >>> q*3 in s False >>> s in l True """ if isinstance(o, Polygon): return self == o elif isinstance(o, Segment): return any(o in s for s in self.sides) elif isinstance(o, Point): if o in self.vertices: return True for side in self.sides: if o in side: return True return False def bisectors(p, prec=None): """Returns angle bisectors of a polygon. If prec is given then approximate the point defining the ray to that precision. The distance between the points defining the bisector ray is 1. Examples ======== >>> from sympy import Polygon, Point >>> p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3)) >>> p.bisectors(2) {Point2D(0, 0): Ray2D(Point2D(0, 0), Point2D(0.71, 0.71)), Point2D(0, 3): Ray2D(Point2D(0, 3), Point2D(0.23, 2.0)), Point2D(1, 1): Ray2D(Point2D(1, 1), Point2D(0.19, 0.42)), Point2D(2, 0): Ray2D(Point2D(2, 0), Point2D(1.1, 0.38))} """ b = {} pts = list(p.args) pts.append(pts[0]) # close it cw = Polygon._isright(*pts[:3]) if cw: pts = list(reversed(pts)) for v, a in p.angles.items(): i = pts.index(v) p1, p2 = Point._normalize_dimension(pts[i], pts[i + 1]) ray = Ray(p1, p2).rotate(a/2, v) dir = ray.direction ray = Ray(ray.p1, ray.p1 + dir/dir.distance((0, 0))) if prec is not None: ray = Ray(ray.p1, ray.p2.n(prec)) b[v] = ray return b class RegularPolygon(Polygon): """ A regular polygon. Such a polygon has all internal angles equal and all sides the same length. Parameters ========== center : Point radius : number or Basic instance The distance from the center to a vertex n : int The number of sides Attributes ========== vertices center radius rotation apothem interior_angle exterior_angle circumcircle incircle angles Raises ====== GeometryError If the `center` is not a Point, or the `radius` is not a number or Basic instance, or the number of sides, `n`, is less than three. Notes ===== A RegularPolygon can be instantiated with Polygon with the kwarg n. Regular polygons are instantiated with a center, radius, number of sides and a rotation angle. Whereas the arguments of a Polygon are vertices, the vertices of the RegularPolygon must be obtained with the vertices method. See Also ======== sympy.geometry.point.Point, Polygon Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r RegularPolygon(Point2D(0, 0), 5, 3, 0) >>> r.vertices[0] Point2D(5, 0) """ __slots__ = ('_n', '_center', '_radius', '_rot') def __new__(self, c, r, n, rot=0, **kwargs): r, n, rot = map(sympify, (r, n, rot)) c = Point(c, dim=2, **kwargs) if not isinstance(r, Expr): raise GeometryError("r must be an Expr object, not %s" % r) if n.is_Number: as_int(n) # let an error raise if necessary if n < 3: raise GeometryError("n must be a >= 3, not %s" % n) obj = GeometryEntity.__new__(self, c, r, n, **kwargs) obj._n = n obj._center = c obj._radius = r obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot return obj def _eval_evalf(self, prec=15, **options): c, r, n, a = self.args dps = prec_to_dps(prec) c, r, a = [i.evalf(n=dps, **options) for i in (c, r, a)] return self.func(c, r, n, a) @property def args(self): """ Returns the center point, the radius, the number of sides, and the orientation angle. Examples ======== >>> from sympy import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r.args (Point2D(0, 0), 5, 3, 0) """ return self._center, self._radius, self._n, self._rot def __str__(self): return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args) def __repr__(self): return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args) @property def area(self): """Returns the area. Examples ======== >>> from sympy.geometry import RegularPolygon >>> square = RegularPolygon((0, 0), 1, 4) >>> square.area 2 >>> _ == square.length**2 True """ c, r, n, rot = self.args return sign(r)*n*self.length**2/(4*tan(pi/n)) @property def length(self): """Returns the length of the sides. The half-length of the side and the apothem form two legs of a right triangle whose hypotenuse is the radius of the regular polygon. Examples ======== >>> from sympy.geometry import RegularPolygon >>> from sympy import sqrt >>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4) >>> s.length sqrt(2) >>> sqrt((_/2)**2 + s.apothem**2) == s.radius True """ return self.radius*2*sin(pi/self._n) @property def center(self): """The center of the RegularPolygon This is also the center of the circumscribing circle. Returns ======= center : Point See Also ======== sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.center Point2D(0, 0) """ return self._center centroid = center @property def circumcenter(self): """ Alias for center. Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.circumcenter Point2D(0, 0) """ return self.center @property def radius(self): """Radius of the RegularPolygon This is also the radius of the circumscribing circle. Returns ======= radius : number or instance of Basic See Also ======== sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.radius r """ return self._radius @property def circumradius(self): """ Alias for radius. Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.circumradius r """ return self.radius @property def rotation(self): """CCW angle by which the RegularPolygon is rotated Returns ======= rotation : number or instance of Basic Examples ======== >>> from sympy import pi >>> from sympy.abc import a >>> from sympy.geometry import RegularPolygon, Point >>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation pi/4 Numerical rotation angles are made canonical: >>> RegularPolygon(Point(0, 0), 3, 4, a).rotation a >>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation 0 """ return self._rot @property def apothem(self): """The inradius of the RegularPolygon. The apothem/inradius is the radius of the inscribed circle. Returns ======= apothem : number or instance of Basic See Also ======== sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.apothem sqrt(2)*r/2 """ return self.radius * cos(S.Pi/self._n) @property def inradius(self): """ Alias for apothem. Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.inradius sqrt(2)*r/2 """ return self.apothem @property def interior_angle(self): """Measure of the interior angles. Returns ======= interior_angle : number See Also ======== sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.interior_angle 3*pi/4 """ return (self._n - 2)*S.Pi/self._n @property def exterior_angle(self): """Measure of the exterior angles. Returns ======= exterior_angle : number See Also ======== sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.exterior_angle pi/4 """ return 2*S.Pi/self._n @property def circumcircle(self): """The circumcircle of the RegularPolygon. Returns ======= circumcircle : Circle See Also ======== circumcenter, sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.circumcircle Circle(Point2D(0, 0), 4) """ return Circle(self.center, self.radius) @property def incircle(self): """The incircle of the RegularPolygon. Returns ======= incircle : Circle See Also ======== inradius, sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 7) >>> rp.incircle Circle(Point2D(0, 0), 4*cos(pi/7)) """ return Circle(self.center, self.apothem) @property def angles(self): """ Returns a dictionary with keys, the vertices of the Polygon, and values, the interior angle at each vertex. Examples ======== >>> from sympy import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r.angles {Point2D(-5/2, -5*sqrt(3)/2): pi/3, Point2D(-5/2, 5*sqrt(3)/2): pi/3, Point2D(5, 0): pi/3} """ ret = {} ang = self.interior_angle for v in self.vertices: ret[v] = ang return ret def encloses_point(self, p): """ Return True if p is enclosed by (is inside of) self. Notes ===== Being on the border of self is considered False. The general Polygon.encloses_point method is called only if a point is not within or beyond the incircle or circumcircle, respectively. Parameters ========== p : Point Returns ======= encloses_point : True, False or None See Also ======== sympy.geometry.ellipse.Ellipse.encloses_point Examples ======== >>> from sympy import RegularPolygon, S, Point, Symbol >>> p = RegularPolygon((0, 0), 3, 4) >>> p.encloses_point(Point(0, 0)) True >>> r, R = p.inradius, p.circumradius >>> p.encloses_point(Point((r + R)/2, 0)) True >>> p.encloses_point(Point(R/2, R/2 + (R - r)/10)) False >>> t = Symbol('t', real=True) >>> p.encloses_point(p.arbitrary_point().subs(t, S.Half)) False >>> p.encloses_point(Point(5, 5)) False """ c = self.center d = Segment(c, p).length if d >= self.radius: return False elif d < self.inradius: return True else: # now enumerate the RegularPolygon like a general polygon. return Polygon.encloses_point(self, p) def spin(self, angle): """Increment *in place* the virtual Polygon's rotation by ccw angle. See also: rotate method which moves the center. >>> from sympy import Polygon, Point, pi >>> r = Polygon(Point(0,0), 1, n=3) >>> r.vertices[0] Point2D(1, 0) >>> r.spin(pi/6) >>> r.vertices[0] Point2D(sqrt(3)/2, 1/2) See Also ======== rotation rotate : Creates a copy of the RegularPolygon rotated about a Point """ self._rot += angle def rotate(self, angle, pt=None): """Override GeometryEntity.rotate to first rotate the RegularPolygon about its center. >>> from sympy import Point, RegularPolygon, pi >>> t = RegularPolygon(Point(1, 0), 1, 3) >>> t.vertices[0] # vertex on x-axis Point2D(2, 0) >>> t.rotate(pi/2).vertices[0] # vertex on y axis now Point2D(0, 2) See Also ======== rotation spin : Rotates a RegularPolygon in place """ r = type(self)(*self.args) # need a copy or else changes are in-place r._rot += angle return GeometryEntity.rotate(r, angle, pt) def scale(self, x=1, y=1, pt=None): """Override GeometryEntity.scale since it is the radius that must be scaled (if x == y) or else a new Polygon must be returned. >>> from sympy import RegularPolygon Symmetric scaling returns a RegularPolygon: >>> RegularPolygon((0, 0), 1, 4).scale(2, 2) RegularPolygon(Point2D(0, 0), 2, 4, 0) Asymmetric scaling returns a kite as a Polygon: >>> RegularPolygon((0, 0), 1, 4).scale(2, 1) Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1)) """ if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) if x != y: return Polygon(*self.vertices).scale(x, y) c, r, n, rot = self.args r *= x return self.func(c, r, n, rot) def reflect(self, line): """Override GeometryEntity.reflect since this is not made of only points. Examples ======== >>> from sympy import RegularPolygon, Line >>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2)) RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3)) """ c, r, n, rot = self.args v = self.vertices[0] d = v - c cc = c.reflect(line) vv = v.reflect(line) dd = vv - cc # calculate rotation about the new center # which will align the vertices l1 = Ray((0, 0), dd) l2 = Ray((0, 0), d) ang = l1.closing_angle(l2) rot += ang # change sign of radius as point traversal is reversed return self.func(cc, -r, n, rot) @property def vertices(self): """The vertices of the RegularPolygon. Returns ======= vertices : list Each vertex is a Point. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.vertices [Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)] """ c = self._center r = abs(self._radius) rot = self._rot v = 2*S.Pi/self._n return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot)) for k in range(self._n)] def __eq__(self, o): if not isinstance(o, Polygon): return False elif not isinstance(o, RegularPolygon): return Polygon.__eq__(o, self) return self.args == o.args def __hash__(self): return super().__hash__() class Triangle(Polygon): """ A polygon with three vertices and three sides. Parameters ========== points : sequence of Points keyword: asa, sas, or sss to specify sides/angles of the triangle Attributes ========== vertices altitudes orthocenter circumcenter circumradius circumcircle inradius incircle exradii medians medial nine_point_circle Raises ====== GeometryError If the number of vertices is not equal to three, or one of the vertices is not a Point, or a valid keyword is not given. See Also ======== sympy.geometry.point.Point, Polygon Examples ======== >>> from sympy.geometry import Triangle, Point >>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3)) Keywords sss, sas, or asa can be used to give the desired side lengths (in order) and interior angles (in degrees) that define the triangle: >>> Triangle(sss=(3, 4, 5)) Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) >>> Triangle(asa=(30, 1, 30)) Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6)) >>> Triangle(sas=(1, 45, 2)) Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2)) """ def __new__(cls, *args, **kwargs): if len(args) != 3: if 'sss' in kwargs: return _sss(*[simplify(a) for a in kwargs['sss']]) if 'asa' in kwargs: return _asa(*[simplify(a) for a in kwargs['asa']]) if 'sas' in kwargs: return _sas(*[simplify(a) for a in kwargs['sas']]) msg = "Triangle instantiates with three points or a valid keyword." raise GeometryError(msg) vertices = [Point(a, dim=2, **kwargs) for a in args] # remove consecutive duplicates nodup = [] for p in vertices: if nodup and p == nodup[-1]: continue nodup.append(p) if len(nodup) > 1 and nodup[-1] == nodup[0]: nodup.pop() # last point was same as first # remove collinear points i = -3 while i < len(nodup) - 3 and len(nodup) > 2: a, b, c = sorted( [nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key) if Point.is_collinear(a, b, c): nodup[i] = a nodup[i + 1] = None nodup.pop(i + 1) i += 1 vertices = list(filter(lambda x: x is not None, nodup)) if len(vertices) == 3: return GeometryEntity.__new__(cls, *vertices, **kwargs) elif len(vertices) == 2: return Segment(*vertices, **kwargs) else: return Point(*vertices, **kwargs) @property def vertices(self): """The triangle's vertices Returns ======= vertices : tuple Each element in the tuple is a Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Triangle, Point >>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t.vertices (Point2D(0, 0), Point2D(4, 0), Point2D(4, 3)) """ return self.args def is_similar(t1, t2): """Is another triangle similar to this one. Two triangles are similar if one can be uniformly scaled to the other. Parameters ========== other: Triangle Returns ======= is_similar : boolean See Also ======== sympy.geometry.entity.GeometryEntity.is_similar Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3)) >>> t1.is_similar(t2) True >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4)) >>> t1.is_similar(t2) False """ if not isinstance(t2, Polygon): return False s1_1, s1_2, s1_3 = [side.length for side in t1.sides] s2 = [side.length for side in t2.sides] def _are_similar(u1, u2, u3, v1, v2, v3): e1 = simplify(u1/v1) e2 = simplify(u2/v2) e3 = simplify(u3/v3) return bool(e1 == e2) and bool(e2 == e3) # There's only 6 permutations, so write them out return _are_similar(s1_1, s1_2, s1_3, *s2) or \ _are_similar(s1_1, s1_3, s1_2, *s2) or \ _are_similar(s1_2, s1_1, s1_3, *s2) or \ _are_similar(s1_2, s1_3, s1_1, *s2) or \ _are_similar(s1_3, s1_1, s1_2, *s2) or \ _are_similar(s1_3, s1_2, s1_1, *s2) def is_equilateral(self): """Are all the sides the same length? Returns ======= is_equilateral : boolean See Also ======== sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon is_isosceles, is_right, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t1.is_equilateral() False >>> from sympy import sqrt >>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))) >>> t2.is_equilateral() True """ return not has_variety(s.length for s in self.sides) def is_isosceles(self): """Are two or more of the sides the same length? Returns ======= is_isosceles : boolean See Also ======== is_equilateral, is_right, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4)) >>> t1.is_isosceles() True """ return has_dups(s.length for s in self.sides) def is_scalene(self): """Are all the sides of the triangle of different lengths? Returns ======= is_scalene : boolean See Also ======== is_equilateral, is_isosceles, is_right Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4)) >>> t1.is_scalene() True """ return not has_dups(s.length for s in self.sides) def is_right(self): """Is the triangle right-angled. Returns ======= is_right : boolean See Also ======== sympy.geometry.line.LinearEntity.is_perpendicular is_equilateral, is_isosceles, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t1.is_right() True """ s = self.sides return Segment.is_perpendicular(s[0], s[1]) or \ Segment.is_perpendicular(s[1], s[2]) or \ Segment.is_perpendicular(s[0], s[2]) @property def altitudes(self): """The altitudes of the triangle. An altitude of a triangle is a segment through a vertex, perpendicular to the opposite side, with length being the height of the vertex measured from the line containing the side. Returns ======= altitudes : dict The dictionary consists of keys which are vertices and values which are Segments. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment.length Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.altitudes[p1] Segment2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ s = self.sides v = self.vertices return {v[0]: s[1].perpendicular_segment(v[0]), v[1]: s[2].perpendicular_segment(v[1]), v[2]: s[0].perpendicular_segment(v[2])} @property def orthocenter(self): """The orthocenter of the triangle. The orthocenter is the intersection of the altitudes of a triangle. It may lie inside, outside or on the triangle. Returns ======= orthocenter : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.orthocenter Point2D(0, 0) """ a = self.altitudes v = self.vertices return Line(a[v[0]]).intersection(Line(a[v[1]]))[0] @property def circumcenter(self): """The circumcenter of the triangle The circumcenter is the center of the circumcircle. Returns ======= circumcenter : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.circumcenter Point2D(1/2, 1/2) """ a, b, c = [x.perpendicular_bisector() for x in self.sides] if not a.intersection(b): print(a,b,a.intersection(b)) return a.intersection(b)[0] @property def circumradius(self): """The radius of the circumcircle of the triangle. Returns ======= circumradius : number of Basic instance See Also ======== sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import Point, Triangle >>> a = Symbol('a') >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a) >>> t = Triangle(p1, p2, p3) >>> t.circumradius sqrt(a**2/4 + 1/4) """ return Point.distance(self.circumcenter, self.vertices[0]) @property def circumcircle(self): """The circle which passes through the three vertices of the triangle. Returns ======= circumcircle : Circle See Also ======== sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.circumcircle Circle(Point2D(1/2, 1/2), sqrt(2)/2) """ return Circle(self.circumcenter, self.circumradius) def bisectors(self): """The angle bisectors of the triangle. An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half. Returns ======= bisectors : dict Each key is a vertex (Point) and each value is the corresponding bisector (Segment). See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy.geometry import Point, Triangle, Segment >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> from sympy import sqrt >>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1)) True """ # use lines containing sides so containment check during # intersection calculation can be avoided, thus reducing # the processing time for calculating the bisectors s = [Line(l) for l in self.sides] v = self.vertices c = self.incenter l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0]) l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0]) l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0]) return {v[0]: l1, v[1]: l2, v[2]: l3} @property def incenter(self): """The center of the incircle. The incircle is the circle which lies inside the triangle and touches all three sides. Returns ======= incenter : Point See Also ======== incircle, sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.incenter Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2) """ s = self.sides l = Matrix([s[i].length for i in [1, 2, 0]]) p = sum(l) v = self.vertices x = simplify(l.dot(Matrix([vi.x for vi in v]))/p) y = simplify(l.dot(Matrix([vi.y for vi in v]))/p) return Point(x, y) @property def inradius(self): """The radius of the incircle. Returns ======= inradius : number of Basic instance See Also ======== incircle, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3) >>> t = Triangle(p1, p2, p3) >>> t.inradius 1 """ return simplify(2 * self.area / self.perimeter) @property def incircle(self): """The incircle of the triangle. The incircle is the circle which lies inside the triangle and touches all three sides. Returns ======= incircle : Circle See Also ======== sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2) >>> t = Triangle(p1, p2, p3) >>> t.incircle Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2)) """ return Circle(self.incenter, self.inradius) @property def exradii(self): """The radius of excircles of a triangle. An excircle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Returns ======= exradii : dict See Also ======== sympy.geometry.polygon.Triangle.inradius Examples ======== The exradius touches the side of the triangle to which it is keyed, e.g. the exradius touching side 2 is: >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2) >>> t = Triangle(p1, p2, p3) >>> t.exradii[t.sides[2]] -2 + sqrt(10) References ========== .. [1] http://mathworld.wolfram.com/Exradius.html .. [2] http://mathworld.wolfram.com/Excircles.html """ side = self.sides a = side[0].length b = side[1].length c = side[2].length s = (a+b+c)/2 area = self.area exradii = {self.sides[0]: simplify(area/(s-a)), self.sides[1]: simplify(area/(s-b)), self.sides[2]: simplify(area/(s-c))} return exradii @property def excenters(self): """Excenters of the triangle. An excenter is the center of a circle that is tangent to a side of the triangle and the extensions of the other two sides. Returns ======= excenters : dict Examples ======== The excenters are keyed to the side of the triangle to which their corresponding excircle is tangent: The center is keyed, e.g. the excenter of a circle touching side 0 is: >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2) >>> t = Triangle(p1, p2, p3) >>> t.excenters[t.sides[0]] Point2D(12*sqrt(10), 2/3 + sqrt(10)/3) See Also ======== sympy.geometry.polygon.Triangle.exradii References ========== .. [1] http://mathworld.wolfram.com/Excircles.html """ s = self.sides v = self.vertices a = s[0].length b = s[1].length c = s[2].length x = [v[0].x, v[1].x, v[2].x] y = [v[0].y, v[1].y, v[2].y] exc_coords = { "x1": simplify(-a*x[0]+b*x[1]+c*x[2]/(-a+b+c)), "x2": simplify(a*x[0]-b*x[1]+c*x[2]/(a-b+c)), "x3": simplify(a*x[0]+b*x[1]-c*x[2]/(a+b-c)), "y1": simplify(-a*y[0]+b*y[1]+c*y[2]/(-a+b+c)), "y2": simplify(a*y[0]-b*y[1]+c*y[2]/(a-b+c)), "y3": simplify(a*y[0]+b*y[1]-c*y[2]/(a+b-c)) } excenters = { s[0]: Point(exc_coords["x1"], exc_coords["y1"]), s[1]: Point(exc_coords["x2"], exc_coords["y2"]), s[2]: Point(exc_coords["x3"], exc_coords["y3"]) } return excenters @property def medians(self): """The medians of the triangle. A median of a triangle is a straight line through a vertex and the midpoint of the opposite side, and divides the triangle into two equal areas. Returns ======= medians : dict Each key is a vertex (Point) and each value is the median (Segment) at that point. See Also ======== sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.medians[p1] Segment2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ s = self.sides v = self.vertices return {v[0]: Segment(v[0], s[1].midpoint), v[1]: Segment(v[1], s[2].midpoint), v[2]: Segment(v[2], s[0].midpoint)} @property def medial(self): """The medial triangle of the triangle. The triangle which is formed from the midpoints of the three sides. Returns ======= medial : Triangle See Also ======== sympy.geometry.line.Segment.midpoint Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.medial Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2)) """ s = self.sides return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint) @property def nine_point_circle(self): """The nine-point circle of the triangle. Nine-point circle is the circumcircle of the medial triangle, which passes through the feet of altitudes and the middle points of segments connecting the vertices and the orthocenter. Returns ======= nine_point_circle : Circle See also ======== sympy.geometry.line.Segment.midpoint sympy.geometry.polygon.Triangle.medial sympy.geometry.polygon.Triangle.orthocenter Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.nine_point_circle Circle(Point2D(1/4, 1/4), sqrt(2)/4) """ return Circle(*self.medial.vertices) @property def eulerline(self): """The Euler line of the triangle. The line which passes through circumcenter, centroid and orthocenter. Returns ======= eulerline : Line (or Point for equilateral triangles in which case all centers coincide) Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.eulerline Line2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ if self.is_equilateral(): return self.orthocenter return Line(self.orthocenter, self.circumcenter) def rad(d): """Return the radian value for the given degrees (pi = 180 degrees).""" return d*pi/180 def deg(r): """Return the degree value for the given radians (pi = 180 degrees).""" return r/pi*180 def _slope(d): rv = tan(rad(d)) return rv def _asa(d1, l, d2): """Return triangle having side with length l on the x-axis.""" xy = Line((0, 0), slope=_slope(d1)).intersection( Line((l, 0), slope=_slope(180 - d2)))[0] return Triangle((0, 0), (l, 0), xy) def _sss(l1, l2, l3): """Return triangle having side of length l1 on the x-axis.""" c1 = Circle((0, 0), l3) c2 = Circle((l1, 0), l2) inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative] if not inter: return None pt = inter[0] return Triangle((0, 0), (l1, 0), pt) def _sas(l1, d, l2): """Return triangle having side with length l2 on the x-axis.""" p1 = Point(0, 0) p2 = Point(l2, 0) p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1) return Triangle(p1, p2, p3)
28.449879
140
0.532303
7942bc3c710ec4fee3cff8f67abd7eb681f9dfbc
11,179
py
Python
acapy_plugin_toolbox/holder.py
swcurran/aries-acapy-plugin-toolbox
f656e4d05dcd18c03085af765e6013b2a8ff2ff2
[ "Apache-2.0" ]
1
2019-11-20T19:10:25.000Z
2019-11-20T19:10:25.000Z
acapy_plugin_toolbox/holder.py
swcurran/aries-acapy-plugin-toolbox
f656e4d05dcd18c03085af765e6013b2a8ff2ff2
[ "Apache-2.0" ]
null
null
null
acapy_plugin_toolbox/holder.py
swcurran/aries-acapy-plugin-toolbox
f656e4d05dcd18c03085af765e6013b2a8ff2ff2
[ "Apache-2.0" ]
2
2020-01-24T19:00:49.000Z
2021-06-06T10:45:14.000Z
"""Define messages for credential holder admin protocols.""" # pylint: disable=invalid-name # pylint: disable=too-few-public-methods from marshmallow import fields from aries_cloudagent.config.injection_context import InjectionContext from aries_cloudagent.core.protocol_registry import ProtocolRegistry from aries_cloudagent.messaging.base_handler import BaseHandler, BaseResponder, RequestContext from aries_cloudagent.protocols.issue_credential.v1_0.routes import ( V10CredentialExchangeListResultSchema, V10CredentialProposalRequestMandSchema ) from aries_cloudagent.protocols.issue_credential.v1_0.models.credential_exchange import ( V10CredentialExchange, V10CredentialExchangeSchema ) from aries_cloudagent.protocols.issue_credential.v1_0.messages.credential_proposal import ( CredentialProposal, ) from aries_cloudagent.protocols.issue_credential.v1_0.manager import CredentialManager from aries_cloudagent.protocols.present_proof.v1_0.routes import ( V10PresentationExchangeListSchema, V10PresentationProposalRequestSchema ) from aries_cloudagent.protocols.present_proof.v1_0.models.presentation_exchange import ( V10PresentationExchange, V10PresentationExchangeSchema ) from aries_cloudagent.protocols.present_proof.v1_0.messages.presentation_proposal import ( PresentationProposal, ) from aries_cloudagent.protocols.present_proof.v1_0.manager import PresentationManager from aries_cloudagent.connections.models.connection_record import ConnectionRecord from aries_cloudagent.storage.error import StorageNotFoundError from aries_cloudagent.protocols.problem_report.message import ProblemReport from .util import generate_model_schema, admin_only PROTOCOL = 'did:sov:BzCbsNYhMrjHiqZDTUASHg;spec/admin-holder/0.1' SEND_CRED_PROPOSAL = '{}/send-credential-proposal'.format(PROTOCOL) CRED_EXCHANGE = '{}/credential-exchange'.format(PROTOCOL) SEND_PRES_PROPOSAL = '{}/send-presentation-proposal'.format(PROTOCOL) PRES_EXCHANGE = '{}/presentation-exchange'.format(PROTOCOL) CREDENTIALS_GET_LIST = '{}/credentials-get-list'.format(PROTOCOL) CREDENTIALS_LIST = '{}/credentials-list'.format(PROTOCOL) PRESENTATIONS_GET_LIST = '{}/presentations-get-list'.format(PROTOCOL) PRESENTATIONS_LIST = '{}/presentations-list'.format(PROTOCOL) MESSAGE_TYPES = { SEND_CRED_PROPOSAL: 'acapy_plugin_toolbox.holder.SendCredProposal', SEND_PRES_PROPOSAL: 'acapy_plugin_toolbox.holder.SendPresProposal', CREDENTIALS_GET_LIST: 'acapy_plugin_toolbox.holder.CredGetList', CREDENTIALS_LIST: 'acapy_plugin_toolbox.holder.CredList', PRESENTATIONS_GET_LIST: 'acapy_plugin_toolbox.holder.PresGetList', PRESENTATIONS_LIST: 'acapy_plugin_toolbox.holder.PresList', } async def setup(context: InjectionContext): """Setup the holder plugin.""" protocol_registry = await context.inject(ProtocolRegistry) protocol_registry.register_message_types( MESSAGE_TYPES ) SendCredProposal, SendCredProposalSchema = generate_model_schema( name='SendCredProposal', handler='acapy_plugin_toolbox.holder.SendCredProposalHandler', msg_type=SEND_CRED_PROPOSAL, schema=V10CredentialProposalRequestMandSchema ) CredExchange, CredExchangeSchema = generate_model_schema( name='CredExchange', handler='acapy_plugin_toolbox.util.PassHandler', msg_type=CRED_EXCHANGE, schema=V10CredentialExchangeSchema ) class SendCredProposalHandler(BaseHandler): """Handler for received send proposal request.""" @admin_only async def handle(self, context: RequestContext, responder: BaseResponder): """Handle received send proposal request.""" connection_id = str(context.message.connection_id) credential_definition_id = context.message.credential_definition_id comment = context.message.comment credential_manager = CredentialManager(context) try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: report = ProblemReport( explain_ltxt='Connection not found.', who_retries='none' ) report.assign_thread_from(context.message) await responder.send_reply(report) return if not connection_record.is_ready: report = ProblemReport( explain_ltxt='Connection invalid.', who_retries='none' ) report.assign_thread_from(context.message) await responder.send_reply(report) return credential_exchange_record = await credential_manager.create_proposal( connection_id, comment=comment, credential_preview=context.message.credential_proposal, credential_definition_id=credential_definition_id ) await responder.send( CredentialProposal( comment=context.message.comment, credential_proposal=context.message.credential_proposal, cred_def_id=context.message.credential_definition_id ), connection_id=connection_id ) cred_exchange = CredExchange(**credential_exchange_record.serialize()) cred_exchange.assign_thread_from(context.message) await responder.send_reply(cred_exchange) SendPresProposal, SendPresProposalSchema = generate_model_schema( name='SendPresProposal', handler='acapy_plugin_toolbox.holder.SendPresProposalHandler', msg_type=SEND_PRES_PROPOSAL, schema=V10PresentationProposalRequestSchema ) PresExchange, PresExchangeSchema = generate_model_schema( name='PresExchange', handler='acapy_plugin_toolbox.util.PassHandler', msg_type=PRES_EXCHANGE, schema=V10PresentationExchangeSchema ) class SendPresProposalHandler(BaseHandler): """Handler for received send presentation proposal request.""" @admin_only async def handle(self, context: RequestContext, responder: BaseResponder): """Handle received send presentation proposal request.""" connection_id = str(context.message.connection_id) try: connection_record = await ConnectionRecord.retrieve_by_id( context, connection_id ) except StorageNotFoundError: report = ProblemReport( explain_ltxt='Connection not found.', who_retries='none' ) report.assign_thread_from(context.message) await responder.send_reply(report) return if not connection_record.is_ready: report = ProblemReport( explain_ltxt='Connection invalid.', who_retries='none' ) report.assign_thread_from(context.message) await responder.send_reply(report) return comment = context.message.comment # Aries#0037 calls it a proposal in the proposal struct but it's of type preview presentation_proposal = PresentationProposal( comment=comment, presentation_proposal=context.message.presentation_proposal ) auto_present = ( context.message.auto_present or context.settings.get("debug.auto_respond_presentation_request") ) presentation_manager = PresentationManager(context) presentation_exchange_record = ( await presentation_manager.create_exchange_for_proposal( connection_id=connection_id, presentation_proposal_message=presentation_proposal, auto_present=auto_present ) ) await responder.send(presentation_proposal, connection_id=connection_id) pres_exchange = PresExchange(**presentation_exchange_record.serialize()) pres_exchange.assign_thread_from(context.message) await responder.send_reply(pres_exchange) CredGetList, CredGetListSchema = generate_model_schema( name='CredGetList', handler='acapy_plugin_toolbox.holder.CredGetListHandler', msg_type=CREDENTIALS_GET_LIST, schema={ 'connection_id': fields.Str(required=False), 'credential_definition_id': fields.Str(required=False), 'schema_id': fields.Str(required=False) } ) CredList, CredListSchema = generate_model_schema( name='CredList', handler='acapy_plugin_toolbox.util.PassHandler', msg_type=CREDENTIALS_LIST, schema=V10CredentialExchangeListResultSchema # schema={ # 'results': fields.List(fields.Dict()) # } ) class CredGetListHandler(BaseHandler): """Handler for received get cred list request.""" @admin_only async def handle(self, context: RequestContext, responder: BaseResponder): """Handle received get cred list request.""" # holder: BaseHolder = await context.inject(BaseHolder) # credentials = await holder.get_credentials(0, 100, {}) # cred_list = CredList(results=credentials) # await responder.send_reply(cred_list) post_filter = dict( filter(lambda item: item[1] is not None, { # 'state': V10CredentialExchange.STATE_CREDENTIAL_RECEIVED, 'role': V10CredentialExchange.ROLE_HOLDER, 'connection_id': context.message.connection_id, 'credential_definition_id': context.message.credential_definition_id, 'schema_id': context.message.schema_id }.items()) ) records = await V10CredentialExchange.query(context, {}, post_filter) cred_list = CredList(results=records) await responder.send_reply(cred_list) PresGetList, PresGetListSchema = generate_model_schema( name='PresGetList', handler='acapy_plugin_toolbox.holder.PresGetListHandler', msg_type=PRESENTATIONS_GET_LIST, schema={ 'connection_id': fields.Str(required=False), 'verified': fields.Str(required=False), } ) PresList, PresListSchema = generate_model_schema( name='PresList', handler='acapy_plugin_toolbox.util.PassHandler', msg_type=PRESENTATIONS_LIST, schema=V10PresentationExchangeListSchema # schema={ # 'results': fields.List(fields.Dict()) # } ) class PresGetListHandler(BaseHandler): """Handler for received get cred list request.""" @admin_only async def handle(self, context: RequestContext, responder: BaseResponder): """Handle received get cred list request.""" post_filter = dict( filter(lambda item: item[1] is not None, { # 'state': V10PresentialExchange.STATE_CREDENTIAL_RECEIVED, 'role': V10PresentationExchange.ROLE_PROVER, 'connection_id': context.message.connection_id, 'verified': context.message.verified, }.items()) ) records = await V10PresentationExchange.query(context, {}, post_filter) cred_list = PresList(results=records) await responder.send_reply(cred_list)
36.413681
94
0.709813
7942bc43e13900b2da80684c2b42799ff8c73d27
594
py
Python
pydocx/openxml/packaging/image_part.py
botzill/pydocx
98c6aa626d875278240eabea8f86a914840499b3
[ "Apache-2.0" ]
127
2015-01-12T22:35:34.000Z
2022-01-20T06:24:18.000Z
pydocx/openxml/packaging/image_part.py
turbo-q/pydocx
98c6aa626d875278240eabea8f86a914840499b3
[ "Apache-2.0" ]
156
2015-01-05T19:55:56.000Z
2020-10-14T07:01:42.000Z
pydocx/openxml/packaging/image_part.py
turbo-q/pydocx
98c6aa626d875278240eabea8f86a914840499b3
[ "Apache-2.0" ]
45
2015-02-22T18:52:08.000Z
2021-06-14T08:05:47.000Z
# coding: utf-8 from __future__ import ( absolute_import, print_function, unicode_literals, ) from pydocx.openxml.packaging.open_xml_part import OpenXmlPart class ImagePart(OpenXmlPart): ''' Represents an image part relationship within a Word document container. See also: http://msdn.microsoft.com/en-us/library/documentformat.openxml.packaging.imagepart%28v=office.14%29.aspx # noqa ''' relationship_type = '/'.join([ 'http://schemas.openxmlformats.org', 'officeDocument', '2006', 'relationships', 'image', ])
23.76
126
0.673401
7942bd530c3701ec0254a4c73b2f9954d22baa8f
460
py
Python
aliyun/api/rest/Ess20140828CreateScalingRuleRequest.py
snowyxx/aliyun-python-demo
ed40887ddff440b85b77f9b2a1fcda11cca55c8b
[ "Apache-2.0" ]
null
null
null
aliyun/api/rest/Ess20140828CreateScalingRuleRequest.py
snowyxx/aliyun-python-demo
ed40887ddff440b85b77f9b2a1fcda11cca55c8b
[ "Apache-2.0" ]
null
null
null
aliyun/api/rest/Ess20140828CreateScalingRuleRequest.py
snowyxx/aliyun-python-demo
ed40887ddff440b85b77f9b2a1fcda11cca55c8b
[ "Apache-2.0" ]
null
null
null
''' Created by auto_sdk on 2014.10.14 ''' from aliyun.api.base import RestApi class Ess20140828CreateScalingRuleRequest(RestApi): def __init__(self,domain='ess.aliyuncs.com',port=80): RestApi.__init__(self,domain, port) self.AdjustmentType = None self.AdjustmentValue = None self.Cooldown = None self.ScalingGroupId = None self.ScalingRuleName = None def getapiname(self): return 'ess.aliyuncs.com.CreateScalingRule.2014-08-28'
28.75
57
0.743478
7942be45180b74cccc6b9cf62d846a30509bc52e
2,057
py
Python
qiime2/metadata/base.py
emollier/qiime2
bc9167d844fb4b42eccba8d30ace1eb10ab093c3
[ "BSD-3-Clause" ]
1
2020-11-23T02:24:42.000Z
2020-11-23T02:24:42.000Z
qiime2/metadata/base.py
emollier/qiime2
bc9167d844fb4b42eccba8d30ace1eb10ab093c3
[ "BSD-3-Clause" ]
1
2020-07-13T19:47:48.000Z
2020-07-13T19:47:48.000Z
qiime2/metadata/base.py
emollier/qiime2
bc9167d844fb4b42eccba8d30ace1eb10ab093c3
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- SUPPORTED_COLUMN_TYPES = {'categorical', 'numeric'} SUPPORTED_ID_HEADERS = { 'case_insensitive': { 'id', 'sampleid', 'sample id', 'sample-id', 'featureid', 'feature id', 'feature-id' }, # For backwards-compatibility with existing formats. 'exact_match': { # QIIME 1 mapping files. "#Sample ID" was never supported, but # we're including it here for symmetry with the other supported # headers that allow a space between words. '#SampleID', '#Sample ID', # biom-format: observation metadata and "classic" (TSV) OTU tables. '#OTUID', '#OTU ID', # Qiita sample/prep information files. 'sample_name' } } FORMATTED_ID_HEADERS = "Case-insensitive: %s\n\nCase-sensitive: %s" % ( ', '.join(repr(e) for e in sorted( SUPPORTED_ID_HEADERS['case_insensitive'])), ', '.join(repr(e) for e in sorted( SUPPORTED_ID_HEADERS['exact_match'])) ) def is_id_header(name): """Determine if a name is a valid ID column header. This function may be used to determine if a value in a metadata file is a valid ID column header, or if a pandas ``Index.name`` matches the ID header requirements. The "ID header" corresponds to the ``Metadata.id_header`` and ``MetadataColumn.id_header`` properties. Parameters ---------- name : string or None Name to check against ID header requirements. Returns ------- bool ``True`` if `name` is a valid ID column header, ``False`` otherwise. """ return name and (name in SUPPORTED_ID_HEADERS['exact_match'] or name.lower() in SUPPORTED_ID_HEADERS['case_insensitive'])
33.721311
79
0.595041
7942c16849a2f33fba611b9b95250460bd1c8784
7,144
py
Python
main2.py
leimao/detr
cd88c4ea01257831ac677b6268e1aef7cd37eca4
[ "Apache-2.0" ]
null
null
null
main2.py
leimao/detr
cd88c4ea01257831ac677b6268e1aef7cd37eca4
[ "Apache-2.0" ]
null
null
null
main2.py
leimao/detr
cd88c4ea01257831ac677b6268e1aef7cd37eca4
[ "Apache-2.0" ]
2
2021-04-28T08:19:32.000Z
2021-06-15T11:26:30.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import datetime import json import random import time from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, DistributedSampler import datasets import util.misc as utils from datasets import build_dataset, get_coco_api_from_dataset from engine import evaluate, train_one_epoch from models import build_model def get_args_parser(): parser = argparse.ArgumentParser('Set transformer detector', add_help=False) parser.add_argument('--lr', default=1e-4, type=float) parser.add_argument('--lr_backbone', default=1e-5, type=float) parser.add_argument('--batch_size', default=2, type=int) parser.add_argument('--weight_decay', default=1e-4, type=float) parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--lr_drop', default=200, type=int) parser.add_argument('--clip_max_norm', default=0.1, type=float, help='gradient clipping max norm') # Model parameters parser.add_argument('--frozen_weights', type=str, default=None, help="Path to the pretrained model. If set, only the mask head will be trained") # * Backbone parser.add_argument('--backbone', default='resnet50', type=str, help="Name of the convolutional backbone to use") parser.add_argument('--dilation', action='store_true', help="If true, we replace stride with dilation in the last convolutional block (DC5)") parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'), help="Type of positional embedding to use on top of the image features") # * Transformer parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer") parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer") parser.add_argument('--dim_feedforward', default=2048, type=int, help="Intermediate size of the feedforward layers in the transformer blocks") parser.add_argument('--hidden_dim', default=256, type=int, help="Size of the embeddings (dimension of the transformer)") parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer") parser.add_argument('--nheads', default=8, type=int, help="Number of attention heads inside the transformer's attentions") parser.add_argument('--num_queries', default=100, type=int, help="Number of query slots") parser.add_argument('--pre_norm', action='store_true') # * Segmentation parser.add_argument('--masks', action='store_true', help="Train segmentation head if the flag is provided") # Loss parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false', help="Disables auxiliary decoding losses (loss at each layer)") # * Matcher parser.add_argument('--set_cost_class', default=1, type=float, help="Class coefficient in the matching cost") parser.add_argument('--set_cost_bbox', default=5, type=float, help="L1 box coefficient in the matching cost") parser.add_argument('--set_cost_giou', default=2, type=float, help="giou box coefficient in the matching cost") # * Loss coefficients parser.add_argument('--mask_loss_coef', default=1, type=float) parser.add_argument('--dice_loss_coef', default=1, type=float) parser.add_argument('--bbox_loss_coef', default=5, type=float) parser.add_argument('--giou_loss_coef', default=2, type=float) parser.add_argument('--eos_coef', default=0.1, type=float, help="Relative classification weight of the no-object class") # dataset parameters parser.add_argument('--dataset_file', default='coco') parser.add_argument('--coco_path', type=str) parser.add_argument('--coco_panoptic_path', type=str) parser.add_argument('--remove_difficult', action='store_true') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=42, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true') parser.add_argument('--num_workers', default=2, type=int) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser def main(args): utils.init_distributed_mode(args) print("git:\n {}\n".format(utils.get_sha())) if args.frozen_weights is not None: assert args.masks, "Frozen training is meant for segmentation only" print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) # dataset_train = build_dataset(image_set='train', args=args) dataset_val = build_dataset(image_set='val', args=args) # if args.distributed: # sampler_train = DistributedSampler(dataset_train) # sampler_val = DistributedSampler(dataset_val, shuffle=False) # else: # sampler_train = torch.utils.data.RandomSampler(dataset_train) # sampler_val = torch.utils.data.SequentialSampler(dataset_val) # batch_sampler_train = torch.utils.data.BatchSampler( # sampler_train, args.batch_size, drop_last=True) sampler_val = torch.utils.data.SequentialSampler(dataset_val) # data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train, # collate_fn=utils.collate_fn, num_workers=args.num_workers) data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=utils.collate_fn_leimao, num_workers=args.num_workers) for inputs, labels in data_loader_val: print("---------------------") print(inputs.shape) print(labels) # for input_m in inputs.tensors: # print(input_m.shape) if __name__ == '__main__': parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
45.794872
115
0.665454
7942c2d04eddd4181c6f1e30a6c9fc174383b843
301
py
Python
preorder_iterative_bst.py
udyaluashok/Python-practice-questions
eed4ad27b663e7d0c0f7ff314ab5c524cecec62e
[ "MIT" ]
null
null
null
preorder_iterative_bst.py
udyaluashok/Python-practice-questions
eed4ad27b663e7d0c0f7ff314ab5c524cecec62e
[ "MIT" ]
null
null
null
preorder_iterative_bst.py
udyaluashok/Python-practice-questions
eed4ad27b663e7d0c0f7ff314ab5c524cecec62e
[ "MIT" ]
1
2020-08-21T04:08:42.000Z
2020-08-21T04:08:42.000Z
def preOrderTraversal(root): stack = [] stack.insert(0, root) while len(stack) > 0: current = stack.pop() print(current.value) right = current.right if right is not None: stack.insert(0, right) left = current.left if left is not None: stack.insert(0, left)
20.066667
28
0.621262
7942c3f73f500869a307c33dee1351f0af1d7ad0
5,176
py
Python
test/ibmq/test_basic_server_paths.py
npoirie1/qiskit-ibmq-provider
ffea455f0c03bf7f074b72a20197aecbc3b5c101
[ "Apache-2.0" ]
1
2021-09-03T12:26:08.000Z
2021-09-03T12:26:08.000Z
test/ibmq/test_basic_server_paths.py
chahatagarwal/qiskit-ibmq-provider
2d32a1ddbd043c22e7693fbcdd8dfb18a3d43139
[ "Apache-2.0" ]
null
null
null
test/ibmq/test_basic_server_paths.py
chahatagarwal/qiskit-ibmq-provider
2d32a1ddbd043c22e7693fbcdd8dfb18a3d43139
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests that hit all the basic server endpoints using both a public and premium provider.""" import time from qiskit.test import slow_test from qiskit.providers.ibmq import least_busy from qiskit.providers.ibmq.exceptions import IBMQBackendJobLimitError from ..decorators import requires_providers from ..ibmqtestcase import IBMQTestCase from ..utils import cancel_job, bell_in_qobj class TestBasicServerPaths(IBMQTestCase): """Test the basic server endpoints using both a public and premium provider.""" @classmethod @requires_providers def setUpClass(cls, providers): # pylint: disable=arguments-differ super().setUpClass() cls.providers = providers # Dict[str, AccountProvider] @slow_test def test_job_submission(self): """Test running a job against a device.""" for desc, provider in self.providers.items(): backend = least_busy(provider.backends( simulator=False, open_pulse=False, filters=lambda b: b.configuration().n_qubits >= 5)) with self.subTest(desc=desc, backend=backend): qobj = bell_in_qobj(backend) job = self._submit_job_with_retry(qobj, backend) # Fetch the results. result = job.result() self.assertTrue(result.success) # Fetch the qobj. qobj_downloaded = job.qobj() self.assertEqual(qobj_downloaded.to_dict(), qobj.to_dict()) def test_job_backend_properties_and_status(self): """Test the backend properties and status of a job.""" for desc, provider in self.providers.items(): backend = provider.backends( simulator=False, operational=True, filters=lambda b: b.configuration().n_qubits >= 5)[0] with self.subTest(desc=desc, backend=backend): qobj = bell_in_qobj(backend) job = self._submit_job_with_retry(qobj, backend) self.assertIsNotNone(job.properties()) self.assertTrue(job.status()) # Cancel job so it doesn't consume more resources. cancel_job(job, verify=True) def test_retrieve_jobs(self): """Test retrieving jobs.""" backend_name = 'ibmq_qasm_simulator' for desc, provider in self.providers.items(): backend = provider.get_backend(backend_name) with self.subTest(desc=desc, backend=backend): qobj = bell_in_qobj(backend) job = self._submit_job_with_retry(qobj, backend) job_id = job.job_id() retrieved_jobs = provider.backends.jobs(backend_name=backend_name) self.assertGreaterEqual(len(retrieved_jobs), 1) retrieved_job_ids = {job.job_id() for job in retrieved_jobs} self.assertIn(job_id, retrieved_job_ids) def test_device_properties_and_defaults(self): """Test the properties and defaults for an open pulse device.""" for desc, provider in self.providers.items(): pulse_backends = provider.backends(open_pulse=True, operational=True) if not pulse_backends: raise self.skipTest('Skipping pulse test since no pulse backend ' 'found for "{}"'.format(desc)) pulse_backend = pulse_backends[0] with self.subTest(desc=desc, backend=pulse_backend): self.assertIsNotNone(pulse_backend.properties()) self.assertIsNotNone(pulse_backend.defaults()) def test_device_status_and_job_limit(self): """Test the status and job limit for a device.""" for desc, provider in self.providers.items(): backend = provider.backends(simulator=False, operational=True)[0] with self.subTest(desc=desc, backend=backend): self.assertTrue(backend.status()) job_limit = backend.job_limit() if desc == 'public_provider': self.assertEqual(job_limit.maximum_jobs, 5) self.assertTrue(job_limit) def _submit_job_with_retry(self, qobj, backend, max_retry=5): """Retry submitting a job if limit is reached.""" limit_error = None for _ in range(max_retry): try: job = backend.run(qobj, validate_qobj=True) return job except IBMQBackendJobLimitError as err: limit_error = err time.sleep(1) self.fail("Unable to submit job after {} retries: {}".format(max_retry, limit_error))
42.42623
93
0.634467
7942c62fb5b4d8d3734ddf8c23a21b0f379d76ec
759
py
Python
nni/tools/trial_tool/url_utils.py
dutxubo/nni
c16f4e1c89b54b8b80661ef0072433d255ad2d24
[ "MIT" ]
9,680
2019-05-07T01:42:30.000Z
2022-03-31T16:48:33.000Z
nni/tools/trial_tool/url_utils.py
dutxubo/nni
c16f4e1c89b54b8b80661ef0072433d255ad2d24
[ "MIT" ]
1,957
2019-05-06T21:44:21.000Z
2022-03-31T09:21:53.000Z
nni/tools/trial_tool/url_utils.py
dutxubo/nni
c16f4e1c89b54b8b80661ef0072433d255ad2d24
[ "MIT" ]
1,571
2019-05-07T06:42:55.000Z
2022-03-31T03:19:24.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from .constants import API_ROOT_URL, BASE_URL, STDOUT_API, NNI_TRIAL_JOB_ID, NNI_EXP_ID, VERSION_API, PARAMETER_META_API def gen_send_stdout_url(ip, port): '''Generate send stdout url''' return '{0}:{1}{2}{3}/{4}/{5}'.format(BASE_URL.format(ip), port, API_ROOT_URL, STDOUT_API, NNI_EXP_ID, NNI_TRIAL_JOB_ID) def gen_send_version_url(ip, port): '''Generate send error url''' return '{0}:{1}{2}{3}/{4}/{5}'.format(BASE_URL.format(ip), port, API_ROOT_URL, VERSION_API, NNI_EXP_ID, NNI_TRIAL_JOB_ID) def gen_parameter_meta_url(ip, port): '''Generate send error url''' return '{0}:{1}{2}{3}'.format(BASE_URL.format(ip), port, API_ROOT_URL, PARAMETER_META_API)
37.95
125
0.722003
7942c677758dda6a5f783b7492a1ff7bf5632cc7
1,425
py
Python
setup.py
Skyge/brownie
01785c803155d340fd0ea1bcfdf1b5e2670470d5
[ "MIT" ]
null
null
null
setup.py
Skyge/brownie
01785c803155d340fd0ea1bcfdf1b5e2670470d5
[ "MIT" ]
156
2020-07-20T21:23:47.000Z
2021-07-27T21:21:46.000Z
setup.py
Skyge/brownie
01785c803155d340fd0ea1bcfdf1b5e2670470d5
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from setuptools import find_packages, setup with open("README.md", "r") as fh: long_description = fh.read() with open("requirements.txt", "r") as f: requirements = list(map(str.strip, f.read().split("\n")))[:-1] setup( name="eth-brownie", packages=find_packages(), version="1.7.3", # don't change this manually, use bumpversion instead license="MIT", description="A Python framework for Ethereum smart contract deployment, testing and interaction.", # noqa: E501 long_description=long_description, long_description_content_type="text/markdown", author="Ben Hauser", author_email="[email protected]", url="https://github.com/iamdefinitelyahuman/brownie", keywords=["brownie"], install_requires=requirements, entry_points={ "console_scripts": ["brownie=brownie._cli.__main__:main"], "pytest11": ["pytest-brownie=brownie.test.plugin"], }, include_package_data=True, python_requires=">=3.6,<4", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Topic :: Software Development :: Build Tools", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], )
34.756098
116
0.650526
7942c79486b930a5715ad5c48a7366edcf919c29
1,562
py
Python
xlsxwriter/test/comparison/test_tutorial01.py
Rippling/XlsxWriter-1
be8d1cb8f8b156cf87bbe5d591f1f5475804be44
[ "BSD-2-Clause" ]
null
null
null
xlsxwriter/test/comparison/test_tutorial01.py
Rippling/XlsxWriter-1
be8d1cb8f8b156cf87bbe5d591f1f5475804be44
[ "BSD-2-Clause" ]
null
null
null
xlsxwriter/test/comparison/test_tutorial01.py
Rippling/XlsxWriter-1
be8d1cb8f8b156cf87bbe5d591f1f5475804be44
[ "BSD-2-Clause" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2021, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('tutorial01.xlsx') self.ignore_files = ['xl/calcChain.xml', '[Content_Types].xml', 'xl/_rels/workbook.xml.rels'] def test_create_file(self): """Example spreadsheet used in the tutorial.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() # Some data we want to write to the worksheet. expenses = ( ['Rent', 1000], ['Gas', 100], ['Food', 300], ['Gym', 50], ) # Start from the first cell. Rows and columns are zero indexed. row = 0 col = 0 # Iterate over the data and write it out row by row. for item, cost in (expenses): worksheet.write(row, col, item) worksheet.write(row, col + 1, cost) row += 1 # Write a total using a formula. worksheet.write(row, 0, 'Total') worksheet.write(row, 1, '=SUM(B1:B4)', None, 1450) workbook.close() self.assertExcelEqual()
26.931034
79
0.544174
7942c8dedb0c58afe333ef52825ad9a807a2eefd
9,094
py
Python
bin/yb-prof.py
skahler-yuga/yugabyte-db
3a69097e0230bc064c260dfddb0f8fddca2c60f1
[ "Apache-2.0", "CC0-1.0" ]
1
2020-06-23T20:28:25.000Z
2020-06-23T20:28:25.000Z
bin/yb-prof.py
skahler-yuga/yugabyte-db
3a69097e0230bc064c260dfddb0f8fddca2c60f1
[ "Apache-2.0", "CC0-1.0" ]
189
2021-02-19T01:23:31.000Z
2021-04-02T01:03:14.000Z
bin/yb-prof.py
skahler-yuga/yugabyte-db
3a69097e0230bc064c260dfddb0f8fddca2c60f1
[ "Apache-2.0", "CC0-1.0" ]
1
2020-12-30T00:43:38.000Z
2020-12-30T00:43:38.000Z
#!/usr/bin/env python3 # # Copyright (c) YugaByte, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations # under the License. # import getopt import os import re import subprocess import sys class YBProf: file_prefix_ = "" total_in_use_count_ = 0 total_in_use_bytes_ = 0 total_alloc_count_ = 0 total_alloc_bytes_ = 0 records_ = [] symbols_ = {} def __init__(self, output_prefix, pprof_url, seconds): self.file_prefix_ = output_prefix self.pprof_url_ = pprof_url self.seconds_ = seconds def parse_header_line(self, line): print('header: %s' % line) m = re.match(r"heap profile: *(\d+): *(\d+) *\[ *(\d+): *(\d+)\]", line) if m: self.total_in_use_count_ = int(m.group(1)) self.total_in_use_bytes_ = int(m.group(2)) self.total_alloc_count_ = int(m.group(3)) self.total_alloc_bytes_ = int(m.group(4)) else: print("Unexpected header format: %s" % line) def parse_stack_line(self, line): # print('body: %s' % line) m = re.match(r" *(\d+): *(\d+) *\[ *(\d+): *(\d+)\] \@ (.*)\n", line) if m: in_use_count = int(m.group(1)) in_use_bytes = int(m.group(2)) alloc_count = int(m.group(3)) alloc_bytes = int(m.group(4)) stack = m.group(5) functions = re.split(" ", stack) # Add to a set of function addresses that we will symbolize later. for f in functions: self.symbols_[f] = "" # Remember this record (the call stack and associated counters). self.records_.append({"in_use_count": in_use_count, "in_use_bytes": in_use_bytes, "alloc_count": alloc_count, "alloc_bytes": alloc_bytes, "stack": functions}) else: print("Unexpected format in line: %s" % line) def invoke_heap_profile_handler(self): heap_profile_url = self.pprof_url_ + "/heap?seconds=" + str(self.seconds_) raw_output_file = self.file_prefix_ + ".raw.txt" print("Invoking heap profile handler: " + heap_profile_url) output_fhd = open(raw_output_file, "w") result = subprocess.call(["curl", heap_profile_url], stdout=output_fhd) print("Raw output: " + raw_output_file) self.parse_heap_file(raw_output_file) def symbolize_all(self): print("Total Symbols " + str(len(self.symbols_)) + " symbols...") # Symbolize the above symbols few at a time. chunk_of_symbols = [] cnt = 0 for key in self.symbols_.keys(): chunk_of_symbols.append(key) cnt = cnt + 1 if (len(chunk_of_symbols) == 25): self.symbolize(chunk_of_symbols) chunk_of_symbols = [] print("Completed symbolizing %d/%d symbols." % (cnt, len(self.symbols_))) if (len(chunk_of_symbols) > 0): self.symbolize(chunk_of_symbols) def symbolize(self, symbols): arg = "+".join(symbols) result = subprocess.check_output( ["curl", "--silent", "-d", arg, self.pprof_url_ + "/symbol"]) lines = result.split("\n") for line in lines: # Use whitespace as the delimiter, and produce no more than two parts # (i.e. max of 1 split). The symbolized function name may itself contain # spaces. A few examples below (the latter two are example with spaces # in the name of the function). # # 0x7fff950fcd23 std::__1::basic_string<>::append() # 0x7fff950f943e operator new() # 0x102296ceb yb::tserver::(anonymous namespace)::SetLastRow() parts = line.split(None, 1) num_parts = len(parts) if num_parts == 0: continue elif num_parts == 2: addr = parts[0] symbol = parts[1] self.symbols_[addr] = symbol else: print("Unexpected output line: " + line) def print_records(self, sort_metric, filename): max_call_stacks = 1000 idx = 0 print("Writing output to " + filename) fhd = open(filename, "w") fhd.write("<html>\n") fhd.write("<title>Top Call Stacks By: " + sort_metric + "</title>\n") fhd.write("<body style=\"font-family: sans-serif\">\n") fhd.write("<b>Top " + str(max_call_stacks) + " Call Stacks By: " + sort_metric + "</b>\n") fhd.write("<p>\n") fhd.write("<table style=\"border-collapse: collapse\" border=1 cellpadding=5>\n") fhd.write("<tr>\n") fhd.write("<th>In Use Cnt</th>\n") fhd.write("<th>In Use Bytes</th>\n") fhd.write("<th>In Use Avg Size</th>\n") fhd.write("<th>Alloc Cnt</th>\n") fhd.write("<th>Alloc Bytes</th>\n") fhd.write("<th>Alloc Avg Size</th>\n") fhd.write("<th>Call Stack</th>\n") fhd.write("</tr>\n") sorted_records = sorted(self.records_, key=lambda k: k[sort_metric], reverse=True) for record in sorted_records: if (idx == max_call_stacks): break idx = idx + 1 functions = [] for addr in record.get("stack"): fname = self.symbols_[addr] # If the symbolization didn't happen for some reason, # print the address itself for the function name. if fname == "": fname = addr functions.append(fname) fhd.write("<tr>\n") in_use_count = record.get("in_use_count") in_use_bytes = record.get("in_use_bytes") in_use_avg = 0 if in_use_count == 0 else in_use_bytes * 1.0 / in_use_count alloc_count = record.get("alloc_count") alloc_bytes = record.get("alloc_bytes") alloc_avg = 0 if alloc_count == 0 else alloc_bytes * 1.0 / alloc_count stack = "\n".join(functions) fhd.write(("<td>%d</td><td>%d</td><td>%.2f</td><td>%d</td>" + "<td>%d</td><td>%.2f</td><td><pre>%s</pre></td>") % (in_use_count, in_use_bytes, in_use_avg, alloc_count, alloc_bytes, alloc_avg, stack)) fhd.write("</tr>\n") fhd.write("</table>") fhd.write("</body>") fhd.write("</html>\n") fhd.close() def parse_heap_file(self, filename): line_num = 0 with open(filename) as f: for line in f: line_num = line_num + 1 if line_num == 1: self.parse_header_line(line) elif line == "\n": continue elif line == "MAPPED_LIBRARIES:\n": print("End of stacks...") break else: self.parse_stack_line(line) self.symbolize_all() self.print_records("in_use_bytes", self.file_prefix_ + ".in_use_bytes.html") self.print_records("alloc_bytes", self.file_prefix_ + ".alloc_bytes.html") def print_usage(): print("Usage:") print('yb-prof.py --profile_url=<url> --output_file_prefix=<file_prefix> ' + '--seconds=<time_in_seconds>') print("**********************") def main(argv): profile_url = '' output_prefix = '' seconds = '20' try: opts, args = getopt.getopt(argv, "h:", ["profile_url=", "output_file_prefix=", "seconds="]) except getopt.GetoptError: print("Incorrect getopt options") print_usage() sys.exit(1) for opt, arg in opts: if opt == '-h': print_usage() sys.exit(1) elif opt in ("--profile_url"): profile_url = arg elif opt in ("--output_file_prefix"): output_file_prefix = arg elif opt in ("--seconds"): seconds = int(arg) else: assert False, "** Unhandled option. **" if ((profile_url == '') or (output_file_prefix == '')): print_usage() sys.exit(1) print("Profile Base URL:" + profile_url) print("Output File Prefix:" + output_file_prefix) heap_prof = YBProf(output_file_prefix, profile_url, seconds) heap_prof.invoke_heap_profile_handler() if __name__ == "__main__": main(sys.argv[1:])
37.423868
99
0.548384
7942c97269e99877322e727866750e500fa15e38
16,936
py
Python
ontospy/core/entities.py
lambdamusic/Ontospy
0b2c06b5aedcc0b755ba17af935558c70a4a03fa
[ "MIT" ]
134
2017-04-09T01:39:07.000Z
2022-03-31T13:40:05.000Z
ontospy/core/entities.py
lambdamusic/Ontospy
0b2c06b5aedcc0b755ba17af935558c70a4a03fa
[ "MIT" ]
76
2017-04-14T09:45:42.000Z
2022-03-11T18:58:59.000Z
ontospy/core/entities.py
lambdamusic/Ontospy
0b2c06b5aedcc0b755ba17af935558c70a4a03fa
[ "MIT" ]
39
2017-06-04T01:51:42.000Z
2022-03-08T14:53:09.000Z
# !/usr/bin/env python # -*- coding: UTF-8 -*- from __future__ import print_function from colorama import Fore, Style import rdflib from itertools import count # http://stackoverflow.com/questions/8628123/counting-instances-of-a-class from . import * from .utils import * class RdfEntity(object): """ Pythonic representation of an RDF resource - normally not instantiated but used for inheritance purposes <triples> : a structure like this: [(rdflib.term.URIRef(u'http://xmlns.com/foaf/0.1/OnlineChatAccount'), rdflib.term.URIRef(u'http://www.w3.org/2000/01/rdf-schema#comment'), rdflib.term.Literal(u'An online chat account.')), (rdflib.term.URIRef(u'http://xmlns.com/foaf/0.1/OnlineChatAccount'), rdflib.term.URIRef(u'http://www.w3.org/2000/01/rdf-schema#subClassOf')] """ _ids = count(0) def __repr__(self): return "<Ontospy: RdfEntity object for uri *%s*>" % (self.uri) def __init__(self, uri, rdftype=None, namespaces=None, ext_model=False, is_Bnode=False, pref_title="qname", pref_lang="en", ): """ Init ontology object. Load the graph in memory, then setup all necessary attributes. 2017-07-23 ext_model: flag to mark entities that are instantiated but are not part of the main model (eg xsd:String range values) is_Bnode: flag to identify Bnodes """ self.id = next(self._ids) self.uri = uri # rdflib.Uriref self.locale = inferURILocalSymbol(self.uri)[0] self.ext_model = ext_model self.is_Bnode = is_Bnode self._pref_title = pref_title self._pref_lang = pref_lang self.slug = None self.rdftype = rdftype self.triples = None self.rdflib_graph = rdflib.Graph() self.namespaces = namespaces self.all_shapes = [] self.qname = self._build_qname() self.rdftype_qname = self._build_qname(rdftype) self._children = [] self._parents = [] # self.siblings = [] def rdf_source(self, format="turtle"): """ xml, n3, turtle, nt, pretty-xml, trix are built in""" if self.triples: if not self.rdflib_graph: self._buildGraph() s = self.rdflib_graph.serialize(format=format) if isinstance(s, bytes): s = s.decode('utf-8') return s else: return None def printSerialize(self, format="turtle"): printInfo("\n" + self.rdf_source(format)) def printTriples(self): """ display triples """ printInfo(Fore.RED + self.uri + Style.RESET_ALL) for x in self.triples: printInfo(Fore.BLACK + "=> " + unicode(x[1])) printInfo(Style.DIM + ".... " + unicode(x[2]) + Fore.RESET) printInfo("") def _build_qname(self, uri=None, namespaces=None): """ extracts a qualified name for a uri """ if not uri: uri = self.uri if not namespaces: namespaces = self.namespaces return uri2niceString(uri, namespaces) def _buildGraph(self): """ transforms the triples list into a proper rdflib graph (which can be used later for querying) """ for n in self.namespaces: self.rdflib_graph.bind(n[0], rdflib.Namespace(n[1])) if self.triples: for terzetto in self.triples: self.rdflib_graph.add(terzetto) # methods added to RdfEntity even though they apply only to some subs def ancestors(self, cl=None, noduplicates=True): """ returns all ancestors in the taxonomy """ if not cl: cl = self if cl.parents(): bag = [] for x in cl.parents(): if x.uri != cl.uri: # avoid circular relationships bag += [x] + self.ancestors(x, noduplicates) else: bag += [x] # finally: if noduplicates: return remove_duplicates(bag) else: return bag else: return [] def descendants(self, cl=None, noduplicates=True): """ returns all descendants in the taxonomy """ if not cl: cl = self if cl.children(): bag = [] for x in cl.children(): if x.uri != cl.uri: # avoid circular relationships bag += [x] + self.descendants(x, noduplicates) else: bag += [x] # finally: if noduplicates: return remove_duplicates(bag) else: return bag else: return [] def parents(self): """wrapper around property""" return self._parents def children(self): """wrapper around property""" return self._children def getValuesForProperty(self, aPropURIRef): """ generic way to extract some prop value eg In [11]: c.getValuesForProperty(rdflib.RDF.type) Out[11]: [rdflib.term.URIRef(u'http://www.w3.org/2002/07/owl#Class'), rdflib.term.URIRef(u'http://www.w3.org/2000/01/rdf-schema#Class')] """ if not type(aPropURIRef) == rdflib.URIRef: aPropURIRef = rdflib.URIRef(aPropURIRef) return list(self.rdflib_graph.objects(None, aPropURIRef)) def bestLabel(self, prefLanguage="", qname_allowed=True, quotes=False): """ facility for extrating the best available label for an entity ..This checks RFDS.label, SKOS.prefLabel and finally the qname local component """ test = self.getValuesForProperty(rdflib.RDFS.label) out = "" if not prefLanguage: prefLanguage = self._pref_lang if test: out = firstStringInList(test, prefLanguage) else: test = self.getValuesForProperty(rdflib.namespace.SKOS.prefLabel) if test: out = firstStringInList(test, prefLanguage) else: if qname_allowed: out = self.locale if quotes and out: return addQuotes(out) else: return out def bestDescription(self, prefLanguage="", quotes=False): """ facility for extracting a human readable description for an entity """ test_preds = [ rdflib.RDFS.comment, rdflib.namespace.DCTERMS.description, rdflib.namespace.DC.description, rdflib.namespace.SKOS.definition ] if not prefLanguage: prefLanguage = self._pref_lang for pred in test_preds: test = self.getValuesForProperty(pred) # printInfo(str(test), "red") if test: if quotes: return addQuotes(joinStringsInList(test, prefLanguage)) else: return joinStringsInList(test, prefLanguage) return "" @property def title(self): """Entity title - used for display purposes only. Can be set by user once ontospy is created. Values allowed: 'qname' or 'label' Defaults to 'qname'. """ if self._pref_title == "qname": out = self.qname elif self._pref_title == "label": out = self.bestLabel() else: return self.qname return out class Ontology(RdfEntity): """ Pythonic representation of an OWL ontology """ def __repr__(self): return "<Ontospy: Ontology object for uri *%s*>" % (self.uri) def __init__(self, uri, rdftype=None, namespaces=None, pref_prefix="", ext_model=False, pref_title="qname", pref_lang="en", ): """ Init ontology object. Load the graph in memory, then setup all necessary attributes. """ super().__init__(uri, rdftype, namespaces, ext_model, pref_title=pref_title, pref_lang=pref_lang) # self.uri = uri # rdflib.Uriref self.prefix = pref_prefix self.slug = "ontology-" + slugify(self.qname) self.all_classes = [] self.all_properties = [] self.all_skos_concepts = [] def annotations(self, qname=True): """ wrapper that returns all triples for an onto. By default resources URIs are transformed into qnames """ if qname: return sorted([(uri2niceString(x, self.namespaces) ), (uri2niceString(y, self.namespaces)), z] for x, y, z in self.triples) else: return sorted(self.triples) def describe(self): """ shotcut to pull out useful info for interactive use """ # self.printGenericTree() # self.printTriples() printInfo(self.uri, "green") self.stats() def stats(self): """ shotcut to pull out useful info for interactive use """ printInfo("Classes.....: %d" % len(self.all_classes)) printInfo("Properties..: %d" % len(self.all_properties)) class OntoClass(RdfEntity): """ Python representation of a generic class within an ontology. Includes methods for representing and querying RDFS/OWL classes domain_of_inferred: a list of dict [{<Class *http://xmlns.com/foaf/0.1/Person*>: [<Property *http://xmlns.com/foaf/0.1/currentProject*>,<Property *http://xmlns.com/foaf/0.1/familyName*>, etc....]}, {<Class *http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing*>: [<Property *http://xmlns.com/foaf/0.1/based_near*>, etc...]}, ] """ def __init__(self, uri, rdftype=None, namespaces=None, ext_model=False, pref_title="qname", pref_lang="en"): """ ... """ super().__init__(uri, rdftype, namespaces, ext_model, pref_title=pref_title, pref_lang=pref_lang) self.slug = "class-" + slugify(self.qname) self.domain_of = [] self.range_of = [] self.domain_of_inferred = [] self.range_of_inferred = [] self.ontology = None self._instances = False # calc on demand at runtime self.sparqlHelper = None # the original graph the class derives from self.shapedProperties = [ ] #properties of this class that belong to a shape def __repr__(self): return "<Class *%s*>" % (self.uri) @property def instances(self): # = all instances if self._instances == False: # calculate and set self._instances = [] if self.sparqlHelper: qres = self.sparqlHelper.getClassInstances(self.uri) for uri in [x[0] for x in qres]: instance = RdfEntity(uri, self.uri, self.namespaces) instance.triples = self.sparqlHelper.entityTriples( instance.uri) instance._buildGraph() # force construction of mini graph self._instances += [instance] return self._instances else: # it's been calc already, hence return return self._instances def count(self): return len(self.instances) def printStats(self): """ shortcut to pull out useful info for interactive use """ printInfo("----------------") printInfo("Parents......: %d" % len(self.parents())) printInfo("Children.....: %d" % len(self.children())) printInfo("Ancestors....: %d" % len(self.ancestors())) printInfo("Descendants..: %d" % len(self.descendants())) printInfo("Domain of....: %d" % len(self.domain_of)) printInfo("Range of.....: %d" % len(self.range_of)) printInfo("Instances....: %d" % self.count()) printInfo("----------------") def printGenericTree(self): printGenericTree(self) def describe(self): """ shotcut to pull out useful info for interactive use """ # self.printTriples() printInfo(self.uri, "green") self.printStats() # self.printGenericTree() class OntoProperty(RdfEntity): """ Python representation of a generic RDF/OWL property. rdftype is one of: rdflib.term.URIRef(u'http://www.w3.org/2002/07/owl#ObjectProperty') rdflib.term.URIRef(u'http://www.w3.org/2002/07/owl#DatatypeProperty') rdflib.term.URIRef(u'http://www.w3.org/2002/07/owl#AnnotationProperty') rdflib.term.URIRef(u'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property') """ def __init__(self, uri, rdftype=None, namespaces=None, ext_model=False, pref_title="qname", pref_lang="en"): """ ... """ super().__init__(uri, rdftype, namespaces, ext_model, pref_title=pref_title, pref_lang=pref_lang) self.slug = "prop-" + slugify(self.qname) self.rdftype = inferMainPropertyType(rdftype) self.domains = [] self.ranges = [] self.ontology = None def __repr__(self): return "<Property *%s*>" % (self.uri) def printGenericTree(self): printGenericTree(self) def printStats(self): """ shotcut to pull out useful info for interactive use """ printInfo("----------------") printInfo("Parents......: %d" % len(self.parents())) printInfo("Children.....: %d" % len(self.children())) printInfo("Ancestors....: %d" % len(self.ancestors())) printInfo("Descendants..: %d" % len(self.descendants())) printInfo("Has Domain...: %d" % len(self.domains)) printInfo("Has Range....: %d" % len(self.ranges)) printInfo("----------------") def describe(self): """ shotcut to pull out useful info for interactive use """ # self.printTriples() printInfo(self.uri, "green") self.printStats() # self.printGenericTree() class OntoSKOSConcept(RdfEntity): """ Python representation of a generic SKOS concept within an ontology. @todo: complete methods.. """ def __init__(self, uri, rdftype=None, namespaces=None, ext_model=False, pref_title="qname", pref_lang="en"): """ ... """ super().__init__(uri, rdftype, namespaces, ext_model, pref_title=pref_title, pref_lang=pref_lang) self.slug = "concept-" + slugify(self.qname) self.instance_of = [] self.ontology = None self.sparqlHelper = None # the original graph the class derives from def __repr__(self): return "<SKOS Concept *%s*>" % (self.uri) def printStats(self): """ shotcut to pull out useful info for interactive use """ printInfo("----------------") printInfo("Parents......: %d" % len(self.parents())) printInfo("Children.....: %d" % len(self.children())) printInfo("Ancestors....: %d" % len(self.ancestors())) printInfo("Descendants..: %d" % len(self.descendants())) printInfo("----------------") def printGenericTree(self): printGenericTree(self) def describe(self): """ shotcut to pull out useful info for interactive use """ # self.printTriples() printInfo(self.uri, "green") self.printStats() self.printGenericTree() class OntoShape(RdfEntity): """ Python representation of a SHACL shape. """ def __init__(self, uri, rdftype=None, namespaces=None, ext_model=False, pref_title="qname", pref_lang="en"): """ ... """ super().__init__(uri, rdftype, namespaces, ext_model, pref_title=pref_title, pref_lang=pref_lang) self.slug = "shape-" + slugify(self.qname) self.ontology = None self.targetClasses = [] self.sparqlHelper = None # the original graph the class derives from def __repr__(self): return "<SHACL shape *%s*>" % (self.uri) def printStats(self): """ shotcut to pull out useful info for interactive use """ printInfo("----------------") printInfo("Parents......: %d" % len(self.parents())) printInfo("Children.....: %d" % len(self.children())) printInfo("Ancestors....: %d" % len(self.ancestors())) printInfo("Descendants..: %d" % len(self.descendants())) printInfo("----------------") def describe(self): """ shotcut to pull out useful info for interactive use """ # self.printTriples() self.printStats()
33.404339
117
0.564478
7942caf3031338dcf1da4a72b4cce99e8dafa940
5,443
py
Python
alipay/aop/api/domain/RoyaltyDetailInfos.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/RoyaltyDetailInfos.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/RoyaltyDetailInfos.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * class RoyaltyDetailInfos(object): def __init__(self): self._amount = None self._amount_percentage = None self._batch_no = None self._desc = None self._out_relation_id = None self._serial_no = None self._trans_in = None self._trans_in_type = None self._trans_out = None self._trans_out_type = None @property def amount(self): return self._amount @amount.setter def amount(self, value): self._amount = value @property def amount_percentage(self): return self._amount_percentage @amount_percentage.setter def amount_percentage(self, value): self._amount_percentage = value @property def batch_no(self): return self._batch_no @batch_no.setter def batch_no(self, value): self._batch_no = value @property def desc(self): return self._desc @desc.setter def desc(self, value): self._desc = value @property def out_relation_id(self): return self._out_relation_id @out_relation_id.setter def out_relation_id(self, value): self._out_relation_id = value @property def serial_no(self): return self._serial_no @serial_no.setter def serial_no(self, value): self._serial_no = value @property def trans_in(self): return self._trans_in @trans_in.setter def trans_in(self, value): self._trans_in = value @property def trans_in_type(self): return self._trans_in_type @trans_in_type.setter def trans_in_type(self, value): self._trans_in_type = value @property def trans_out(self): return self._trans_out @trans_out.setter def trans_out(self, value): self._trans_out = value @property def trans_out_type(self): return self._trans_out_type @trans_out_type.setter def trans_out_type(self, value): self._trans_out_type = value def to_alipay_dict(self): params = dict() if self.amount: if hasattr(self.amount, 'to_alipay_dict'): params['amount'] = self.amount.to_alipay_dict() else: params['amount'] = self.amount if self.amount_percentage: if hasattr(self.amount_percentage, 'to_alipay_dict'): params['amount_percentage'] = self.amount_percentage.to_alipay_dict() else: params['amount_percentage'] = self.amount_percentage if self.batch_no: if hasattr(self.batch_no, 'to_alipay_dict'): params['batch_no'] = self.batch_no.to_alipay_dict() else: params['batch_no'] = self.batch_no if self.desc: if hasattr(self.desc, 'to_alipay_dict'): params['desc'] = self.desc.to_alipay_dict() else: params['desc'] = self.desc if self.out_relation_id: if hasattr(self.out_relation_id, 'to_alipay_dict'): params['out_relation_id'] = self.out_relation_id.to_alipay_dict() else: params['out_relation_id'] = self.out_relation_id if self.serial_no: if hasattr(self.serial_no, 'to_alipay_dict'): params['serial_no'] = self.serial_no.to_alipay_dict() else: params['serial_no'] = self.serial_no if self.trans_in: if hasattr(self.trans_in, 'to_alipay_dict'): params['trans_in'] = self.trans_in.to_alipay_dict() else: params['trans_in'] = self.trans_in if self.trans_in_type: if hasattr(self.trans_in_type, 'to_alipay_dict'): params['trans_in_type'] = self.trans_in_type.to_alipay_dict() else: params['trans_in_type'] = self.trans_in_type if self.trans_out: if hasattr(self.trans_out, 'to_alipay_dict'): params['trans_out'] = self.trans_out.to_alipay_dict() else: params['trans_out'] = self.trans_out if self.trans_out_type: if hasattr(self.trans_out_type, 'to_alipay_dict'): params['trans_out_type'] = self.trans_out_type.to_alipay_dict() else: params['trans_out_type'] = self.trans_out_type return params @staticmethod def from_alipay_dict(d): if not d: return None o = RoyaltyDetailInfos() if 'amount' in d: o.amount = d['amount'] if 'amount_percentage' in d: o.amount_percentage = d['amount_percentage'] if 'batch_no' in d: o.batch_no = d['batch_no'] if 'desc' in d: o.desc = d['desc'] if 'out_relation_id' in d: o.out_relation_id = d['out_relation_id'] if 'serial_no' in d: o.serial_no = d['serial_no'] if 'trans_in' in d: o.trans_in = d['trans_in'] if 'trans_in_type' in d: o.trans_in_type = d['trans_in_type'] if 'trans_out' in d: o.trans_out = d['trans_out'] if 'trans_out_type' in d: o.trans_out_type = d['trans_out_type'] return o
30.926136
85
0.589197
7942cc0241fe32295029812ef9568b7c57e7bb80
2,838
py
Python
hasher-matcher-actioner/scripts/submitter.py
ekmixon/ThreatExchange
947737affbdfabc67bb12021366683895c817de8
[ "BSD-3-Clause" ]
null
null
null
hasher-matcher-actioner/scripts/submitter.py
ekmixon/ThreatExchange
947737affbdfabc67bb12021366683895c817de8
[ "BSD-3-Clause" ]
null
null
null
hasher-matcher-actioner/scripts/submitter.py
ekmixon/ThreatExchange
947737affbdfabc67bb12021366683895c817de8
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import time import threading import uuid import datetime import typing as t from hma_client_lib import DeployedInstanceClient class Submitter(threading.Thread): def __init__( self, client: DeployedInstanceClient, batch_size: int, seconds_between_batches: int, filepaths: t.List[str] = [], **kwargs, ): super(Submitter, self).__init__(**kwargs) self.daemon = True self._stop_signal = threading.Event() self._lock = threading.Lock() self.client = client self.batch_size = batch_size self.seconds_between_batches = seconds_between_batches self.filepaths = filepaths self.total_submitted = 0 def stop(self): self._stop_signal.set() def stopped(self): return self._stop_signal.is_set() def run(self): while not self.stopped() and self._lock.acquire(): if self.stopped(): self._lock.release() return try: batch_prefix = f"soak-test-{str(uuid.uuid4())}" for i in range(self.batch_size): content_id = f"{batch_prefix}{i}-time-{datetime.datetime.now().isoformat()}-time-" if self.filepaths: self.client.submit_test_content( content_id, filepath=self.filepaths[i % len(self.filepaths)] ) else: self.client.submit_test_content(content_id) self.total_submitted += 1 finally: self._lock.release() time.sleep(self.seconds_between_batches) def get_total_submit_count(self) -> int: with self._lock: return self.total_submitted def get_current_values(self) -> t.Tuple[int, int, int]: with self._lock: return (self.batch_size, self.seconds_between_batches, self.total_submitted) def set_batch_size(self, batch_size: int): with self._lock: self.batch_size = batch_size def set_seconds_between_batches(self, seconds_between_batches: int): with self._lock: self.seconds_between_batches = seconds_between_batches if __name__ == "__main__": API_URL = "" TOKEN = "" api_url = os.environ.get( "HMA_API_URL", API_URL, ) token = os.environ.get( "HMA_TOKEN", TOKEN, ) client = DeployedInstanceClient(api_url, token) submitter = Submitter(client, batch_size=5, seconds_between_batches=5) submitter.start() cmd = "" while cmd != "q": cmd = input("Enter 'q' to shutdown: ") submitter.stop()
28.959184
102
0.593728
7942cc4b50013f1c47123d5ebadedf0900d8aabc
1,915
py
Python
data/train/python/7942cc4b50013f1c47123d5ebadedf0900d8aabcControllerManager.py
harshp8l/deep-learning-lang-detection
2a54293181c1c2b1a2b840ddee4d4d80177efb33
[ "MIT" ]
84
2017-10-25T15:49:21.000Z
2021-11-28T21:25:54.000Z
data/train/python/7942cc4b50013f1c47123d5ebadedf0900d8aabcControllerManager.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
5
2018-03-29T11:50:46.000Z
2021-04-26T13:33:18.000Z
data/train/python/7942cc4b50013f1c47123d5ebadedf0900d8aabcControllerManager.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
24
2017-11-22T08:31:00.000Z
2022-03-27T01:22:31.000Z
import os import sys import ControllerBase import Settings gControllerMan = False def GetControllerManager(): global gControllerMan if gControllerMan == False: gControllerMan = ControllerManager() return gControllerMan class ControllerManager: modules = {} controllers = {} def __init__(self): self.ImportAvailableController() def ImportAvailableController(self): controllersPath = Settings.Settings["PATH"] + "/Controllers" sys.path.append(controllersPath) for controllerName in os.listdir(controllersPath): if controllerName[0] != '.' and controllerName.endswith(".py"): controllerName = controllerName[:controllerName.find(".")] self.modules[controllerName] = __import__(controllerName) print "Loaded controller: " + controllerName print "" def StartConfiguredControllers(self): configPath = Settings.Settings["PATH"] + "/Config" sys.path.append(configPath) for configFile in os.listdir(configPath): if configFile[0] != '.' and configFile.endswith(".controller"): name = configFile[:configFile.find(".")] settingsFile = open(configPath + "/" + configFile, 'r') lines = settingsFile.readlines() settingsFile.close() settings = {} for line in lines: line = line.strip("\n").strip(" ") if len(line) > 0: if line[0] != '#': settingName = line[:line.find("=")] settingValue = line[line.find("=")+1:] settings[settingName] = settingValue if not settings.has_key("CONTROLLER"): print configFile + " has no CONTROLLER defined, skipping" elif not self.modules.has_key(settings["CONTROLLER"]): print settings["CONTROLLER"] + " is not a recognized controller name, skipping" else: self.controllers[name] = self.modules[settings["CONTROLLER"]].Controller(settings) print "Started controller: " + settings["CONTROLLER"] + " with Config/" + configFile print ""
28.58209
89
0.692428
7942cc86a5514339b4f0a555add7b02d3648f827
4,856
py
Python
Bot/src/tools/emoji.py
AryamanSrii/Mecha-Karen
4a5c7318f8c458495eee72a13be5db8a0113ed28
[ "Apache-2.0" ]
181
2021-05-26T17:37:40.000Z
2022-02-26T08:36:07.000Z
Bot/src/tools/emoji.py
AryamanSrii/Mecha-Karen
4a5c7318f8c458495eee72a13be5db8a0113ed28
[ "Apache-2.0" ]
24
2021-05-14T19:47:34.000Z
2021-09-06T17:16:17.000Z
Bot/src/tools/emoji.py
AryamanSrii/Mecha-Karen
4a5c7318f8c458495eee72a13be5db8a0113ed28
[ "Apache-2.0" ]
16
2021-07-02T09:40:56.000Z
2022-01-21T10:07:08.000Z
# !/usr/bin/python """ Copyright ©️: 2020 Seniatical / _-*™#7519 License: Apache 2.0 A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code. FULL LICENSE CAN BE FOUND AT: https://www.apache.org/licenses/LICENSE-2.0.html Any violation to the license, will result in moderate action You are legally required to mention (original author, license, source and any changes made) """ import discord from discord.ext import commands import aiohttp from io import BytesIO import datetime class Emoji(commands.Cog): def __init__(self, bot): self.bot = bot self.session = aiohttp.ClientSession() @commands.command() @commands.cooldown(1, 10, commands.BucketType.user) async def enlarge(self, ctx, emoji: str): try: _id = emoji.split(':')[-1][:-1] except IndexError: return await ctx.send('Invalid emoji provided') endpoint = 'https://cdn.discordapp.com/emojis/' try: endpoint += '{}.{}?v=1'.format(_id, 'png' if emoji[1].lower() != 'a' else 'gif') except IndexError: return await ctx.send('Invalid emoji provided') try: embed = discord.Embed(title=emoji.split(':')[-2], url=endpoint, colour=discord.Colour.green()) except IndexError: return await ctx.send('Invalid emoji provided') embed.set_image(url=endpoint) await ctx.send(embed=embed) @commands.command() @commands.cooldown(1, 10, commands.BucketType.user) @commands.bot_has_guild_permissions(manage_emojis=True) @commands.has_guild_permissions(manage_emojis=True) async def steal(self, ctx, emoji: str = None, *, name: str = None): message = ctx.message if len(ctx.guild.emojis) == ctx.guild.emoji_limit: return await ctx.send(embed=discord.Embed(description='<a:nope:787764352387776523> You have reached the maximum allowance for emojis!', colour=discord.Colour.red())) if not message.attachments and not emoji: return await ctx.send(embed=discord.Embed(description='<a:nope:787764352387776523> Need to give an emoji to add', colour=discord.Colour.red())) if message.attachments: if not emoji: return await ctx.send(embed=discord.Embed(description='<a:nope:787764352387776523> Need to give a name for your emoji', colour=discord.Colour.red())) url = message.attachments[0].url try: data = await (await self.session.get(url)).read() except Exception: return await ctx.send(embed=discord.Embed(description='<a:nope:787764352387776523> Invalid attachment provided', colour=discord.Colour.red())) try: cxn = await ctx.guild.create_custom_emoji(name=emoji[:32], image=data, reason=f'{ctx.author} has used the steal command') except Exception: return await ctx.send(embed=discord.Embed(description='<a:nope:787764352387776523> Image was too large. Maximum filesize for emojis is 256.0 kb!', colour=discord.Colour.red())) else: try: _id = int(emoji.split(':')[-1][:-1]) endpoint = 'https://cdn.discordapp.com/emojis/' endpoint += '{}.{}?v=1'.format(_id, 'png' if emoji[1].lower() != 'a' else 'gif') name = name or emoji.split(':')[-2] data = await (await self.session.get(endpoint)).read() except ValueError: try: data = await (await self.session.get(emoji)).read() except Exception: return await ctx.send(embed=discord.Embed(description='<a:nope:787764352387776523> Invalid Image URL provided', colour=discord.Colour.red())) if not name: return await ctx.send(embed=discord.Embed(description='<a:nope:787764352387776523> Need to provide a name for your emoji', colour=discord.Colour.red())) try: cxn = await ctx.guild.create_custom_emoji(name=name[:32].replace(' ', '_'), image=data, reason=f'{ctx.author} has used the steal command') except Exception: return await ctx.send(embed=discord.Embed(description='<a:nope:787764352387776523> Image was too large. Maximum filesize for emojis is 256.0 kb!', colour=discord.Colour.red())) await ctx.send(embed=discord.Embed(description=f'{cxn} | New [emoji]({cxn.url}) created using the name `:{cxn.name}:`', colour=discord.Colour.green())) def setup(bot): bot.add_cog(Emoji(bot))
50.061856
192
0.636944
7942cce3e667098fe17f991ebe432a46ace2c61e
18,326
py
Python
research/vrgripper/vrgripper_env_models.py
IronOnet/tensor2robot
351cecbf76b71d09b56a766b981e1a15f85d9528
[ "Apache-2.0" ]
2
2021-10-31T01:06:00.000Z
2021-11-08T09:43:25.000Z
research/vrgripper/vrgripper_env_models.py
IronOnet/tensor2robot
351cecbf76b71d09b56a766b981e1a15f85d9528
[ "Apache-2.0" ]
null
null
null
research/vrgripper/vrgripper_env_models.py
IronOnet/tensor2robot
351cecbf76b71d09b56a766b981e1a15f85d9528
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2019 The Tensor2Robot Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """T2RModels for VRGripper env tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gin import numpy as np from tensor2robot.google import distortion from tensor2robot.layers import mdn from tensor2robot.layers import vision_layers from tensor2robot.meta_learning import meta_tfdata from tensor2robot.models import abstract_model from tensor2robot.models import regression_model from tensor2robot.preprocessors import abstract_preprocessor from tensor2robot.utils import tensorspec_utils import tensorflow.compat.v1 as tf # tf import tensorflow_probability as tfp from typing import Callable, Dict, List, Optional, Text, Tuple from tensorflow.contrib import layers as contrib_layers TensorSpec = tensorspec_utils.ExtendedTensorSpec TRAIN = tf.estimator.ModeKeys.TRAIN PREDICT = tf.estimator.ModeKeys.PREDICT FLOAT_DTYPES = [tf.bfloat16, tf.float32, tf.float64] @gin.configurable class DefaultVRGripperPreprocessor(abstract_preprocessor.AbstractPreprocessor): """The default VRGripperEnv preprocessor.""" def __init__(self, src_img_res = (220, 300), crop_size = (200, 280), mixup_alpha = 0.0, **kwargs): """Construct the preprocessor. Args: src_img_res: The true height and width of the image data. If the model expects images of a different size, we automatically resize the images. crop_size: Before resizing the image, take a crop of the image to this height and width. Is a no-op if equal to src_img_res. Crop is done randomly at train time, and is take from the center otherwise. mixup_alpha: If > 0., turns on Mixup data augmentation for features and labels. **kwargs: Keyword args passed to parent class. """ super(DefaultVRGripperPreprocessor, self).__init__(**kwargs) self._src_img_res = src_img_res self._crop_size = crop_size self._mixup_alpha = mixup_alpha def get_in_feature_specification(self, mode ): """See base class.""" feature_spec = tensorspec_utils.copy_tensorspec( self._model_feature_specification_fn(mode)) # Don't want to parse the original_image, since we don't want to parse it # and we are adding this feature in preprocess_fn to satisfy the model's # inputs. if mode != PREDICT and 'original_image' in feature_spec: del feature_spec['original_image'] if 'image' in feature_spec: true_img_shape = feature_spec.image.shape.as_list() # Overwrite the H, W dimensions. true_img_shape[-3:-1] = self._src_img_res feature_spec.image = TensorSpec.from_spec( feature_spec.image, shape=true_img_shape, dtype=tf.uint8) return tensorspec_utils.flatten_spec_structure(feature_spec) def get_in_label_specification(self, mode ): """See base class.""" return tensorspec_utils.flatten_spec_structure( self._model_label_specification_fn(mode)) def get_out_feature_specification(self, mode ): """See base class.""" return tensorspec_utils.flatten_spec_structure( self._model_feature_specification_fn(mode)) def get_out_label_specification(self, mode ): """See base class.""" return tensorspec_utils.flatten_spec_structure( self._model_label_specification_fn(mode)) def _preprocess_fn( self, features, labels, mode ): """Resize images and convert them from uint8 -> float32.""" if 'image' in features: ndim = len(features.image.shape) is_sequence = (ndim > 4) input_size = self._src_img_res target_size = self._crop_size features.original_image = features.image features.image = distortion.preprocess_image(features.image, mode, is_sequence, input_size, target_size) features.image = tf.image.convert_image_dtype(features.image, tf.float32) out_feature_spec = self.get_out_feature_specification(mode) if out_feature_spec.image.shape != features.image.shape: features.image = meta_tfdata.multi_batch_apply( tf.image.resize_images, 2, features.image, out_feature_spec.image.shape.as_list()[-3:-1]) if self._mixup_alpha > 0. and labels and mode == TRAIN: lmbda = tfp.distributions.Beta( self._mixup_alpha, self._mixup_alpha).sample() for key, x in features.items(): if x.dtype in FLOAT_DTYPES: features[key] = lmbda * x + (1-lmbda)*tf.reverse(x, axis=[0]) if labels is not None: for key, x in labels.items(): if x.dtype in FLOAT_DTYPES: labels[key] = lmbda * x + (1 - lmbda) * tf.reverse(x, axis=[0]) return features, labels @gin.configurable class VRGripperRegressionModel(regression_model.RegressionModel): """Continuous regression output model for VRGripper Env.""" def __init__(self, use_gripper_input = True, normalize_outputs = False, output_mean = None, output_stddev = None, outer_loss_multiplier = 1., num_mixture_components = 1, output_mixture_sample = False, condition_mixture_stddev = False, episode_length = 40, **kwargs): """Initialize the VRGripperRegressionModel. Args: use_gripper_input: If True, concatenate gripper pose with input to the fully connected layers when predicting actions. normalize_outputs: If True, scale actions by `output_stddev` and translate by `output_mean`. output_mean: The empirical mean of demonstration actions. output_stddev: The empirical standard deviation of demonstration actions. outer_loss_multiplier: A scaling factor for the outer loss. num_mixture_components: The number of gaussian mixture components. Use 1 for standard mean squared error regression. output_mixture_sample: If True (and num_mixture_components > 1), output actions by sampling from a gaussian mixture. Otherwise, we use the mean of the most likely component. condition_mixture_stddev: If True, the mixture standard deviations will be output from a neural net and thus conditioned on image/state. Otherwise, they will simply be learned variables (unconditioned on image/state). episode_length: The fixed length of an episode in the data. **kwargs: Passed to parent. Raises: ValueError: If `output_mean` or `output_stddev` have incorrect length. """ super(VRGripperRegressionModel, self).__init__(**kwargs) self._use_gripper_input = use_gripper_input self._normalize_outputs = normalize_outputs self._output_mean = None self._output_stddev = None self._outer_loss_multiplier = outer_loss_multiplier self._num_mixture_components = num_mixture_components self._output_mixture_sample = output_mixture_sample self._condition_mixture_stddev = condition_mixture_stddev self._episode_length = episode_length if output_mean and output_stddev: if not len(output_mean) == len(output_stddev) == self.action_size: raise ValueError( 'Output mean and stddev have lengths {:d} and {:d}.'.format( len(output_mean), len(output_stddev))) self._output_mean = np.array([output_mean]) self._output_stddev = np.array([output_stddev]) @property def default_preprocessor_cls(self): return DefaultVRGripperPreprocessor def get_feature_specification(self, mode): del mode image_spec = TensorSpec( shape=(100, 100, 3), dtype=tf.float32, name='image0', data_format='jpeg') gripper_pose_spec = TensorSpec( shape=(14,), dtype=tf.float32, name='world_pose_gripper') tspec = tensorspec_utils.TensorSpecStruct( image=image_spec, gripper_pose=gripper_pose_spec) return tensorspec_utils.copy_tensorspec( tspec, batch_size=self._episode_length) def get_label_specification(self, mode): del mode action_spec = TensorSpec( shape=(self._action_size,), dtype=tf.float32, name='action_world') tspec = tensorspec_utils.TensorSpecStruct(action=action_spec) return tensorspec_utils.copy_tensorspec( tspec, batch_size=self._episode_length) @property def action_size(self): return self._action_size def _single_batch_a_func(self, features, scope, mode, context_fn=None, reuse=tf.AUTO_REUSE): """A state -> action regression function that expects a single batch dim.""" gripper_pose = features.gripper_pose if self._use_gripper_input else None with tf.variable_scope(scope, reuse=reuse, use_resource=True): with tf.variable_scope('state_features', reuse=reuse, use_resource=True): feature_points, end_points = vision_layers.BuildImagesToFeaturesModel( features.image, is_training=(mode == TRAIN), normalizer_fn=contrib_layers.layer_norm) if context_fn: feature_points = context_fn(feature_points) fc_input = tf.concat([feature_points, gripper_pose], -1) outputs = {} if self._num_mixture_components > 1: dist_params = mdn.predict_mdn_params( fc_input, self._num_mixture_components, self._action_size, condition_sigmas=self._condition_mixture_stddev) gm = mdn.get_mixture_distribution( dist_params, self._num_mixture_components, self._action_size, self._output_mean if self._normalize_outputs else None) if self._output_mixture_sample: # Output a mixture sample as action. action = gm.sample() else: action = mdn.gaussian_mixture_approximate_mode(gm) outputs['dist_params'] = dist_params else: action, _ = vision_layers.BuildImageFeaturesToPoseModel( fc_input, num_outputs=self._action_size) action = self._output_mean + self._output_stddev * action outputs.update({ 'inference_output': action, 'image': features.image, 'feature_points': feature_points, 'softmax': end_points['softmax'] }) return outputs def a_func(self, features, scope, mode, context_fn=None, reuse=tf.AUTO_REUSE, config=None, params=None): """A (state) regression function. This function can return a stochastic or a deterministic tensor. Args: features: This is the first item returned from the input_fn and parsed by tensorspec_utils.validate_and_pack. A spec_structure which fulfills the requirements of the self.get_feature_spefication. scope: String specifying variable scope. mode: (ModeKeys) Specifies if this is training, evaluation or prediction. context_fn: Optional python function that takes in features and returns new features of same shape. For merging information like in RL^2. reuse: Whether or not to reuse variables under variable scope 'scope'. config: Optional configuration object. Will receive what is passed to Estimator in config parameter, or the default config. Allows updating things in your model_fn based on configuration such as num_ps_replicas, or model_dir. params: An optional dict of hyper parameters that will be passed into input_fn and model_fn. Keys are names of parameters, values are basic python types. There are reserved keys for TPUEstimator, including 'batch_size'. Returns: outputs: A {key: Tensor} mapping. The key 'action' is required. """ del config, params return meta_tfdata.multi_batch_apply(self._single_batch_a_func, 2, features, scope, mode, context_fn, reuse) def loss_fn(self, labels, inference_outputs, mode, params=None): """This implements outer loss and configurable inner losses.""" if params and params.get('is_outer_loss', False): pass if self._num_mixture_components > 1: gm = mdn.get_mixture_distribution( inference_outputs['dist_params'], self._num_mixture_components, self._action_size, self._output_mean if self._normalize_outputs else None) return -tf.reduce_mean(gm.log_prob(labels.action)) else: return self._outer_loss_multiplier * tf.losses.mean_squared_error( labels=labels.action, predictions=inference_outputs['inference_output']) @gin.configurable class VRGripperDomainAdaptiveModel(VRGripperRegressionModel): """Base model which uses a learned loss to do domain adaptive imitation. The model conditions on video only (no actions or gripper pose). """ def __init__(self, predict_con_gripper_pose = False, learned_loss_conv1d_layers = (10, 10, 6), **kwargs): """Initialize the model. Args: predict_con_gripper_pose: If True, predict the condition gripper pose input from the image features. Otherwise, set to zeros. learned_loss_conv1d_layers: A tuple describing the conv1d layers of the learned loss. If None, the learned loss won't use conv1d layers. **kwargs: Passed to parent. """ super(VRGripperDomainAdaptiveModel, self).__init__(**kwargs) self._predict_con_gripper_pose = predict_con_gripper_pose self._learned_loss_conv1d_layers = learned_loss_conv1d_layers def _predict_gripper_pose(self, feature_points): """Predict the condition gripper pose from feature points.""" out = feature_points out = tf.layers.dense(out, 40, activation=tf.nn.relu, use_bias=False) out = contrib_layers.layer_norm(out) out = tf.layers.dense(out, 14, activation=None) return out def single_batch_a_func( self, features, scope, mode, context_fn, reuse, config, params): """Single step action predictor when there is a single batch dim.""" del config with tf.variable_scope(scope, reuse=reuse, use_resource=True): with tf.variable_scope('state_features', reuse=reuse, use_resource=True): feature_points, end_points = vision_layers.BuildImagesToFeaturesModel( features.image, is_training=(mode == TRAIN), normalizer_fn=contrib_layers.layer_norm) if context_fn: feature_points = context_fn(feature_points) if params and params.get('is_inner_loop', False): if self._predict_con_gripper_pose: gripper_pose = self._predict_gripper_pose(feature_points) else: gripper_pose = tf.zeros_like(features.gripper_pose) else: gripper_pose = features.gripper_pose action, _ = vision_layers.BuildImageFeaturesToPoseModel( feature_points, aux_input=gripper_pose, num_outputs=self._action_size) action = self._output_mean + self._output_stddev * action return { 'inference_output': action, 'image': features.image, 'feature_points': feature_points, 'softmax': end_points['softmax'], } def a_func(self, features, scope, mode, context_fn = None, reuse=tf.AUTO_REUSE, config = None, params = None ): """Single step action predictor. See parent class.""" return meta_tfdata.multi_batch_apply(self.single_batch_a_func, 2, features, scope, mode, context_fn, reuse, config, params) def model_train_fn(self, features, labels, inference_outputs, mode, config = None, params = None ): """Output learned loss if inner loop, or behavior clone if outer loop.""" if params and params.get('is_outer_loss', False): # Outer loss case: use standard RegressionModel loss. return self.loss_fn(labels, inference_outputs, mode, params) # Inner loss case: compute learned loss function. with tf.variable_scope( 'learned_loss', reuse=tf.AUTO_REUSE, use_resource=True): predicted_action, _ = meta_tfdata.multi_batch_apply( vision_layers.BuildImageFeaturesToPoseModel, 2, inference_outputs['feature_points'], num_outputs=self._action_size) if self._learned_loss_conv1d_layers is None: return tf.losses.mean_squared_error(predicted_action, inference_outputs['action']) ll_input = tf.concat([ predicted_action, inference_outputs['feature_points'], inference_outputs['inference_output'] ], -1) net = ll_input for num_filters in self._learned_loss_conv1d_layers[:-1]: net = tf.layers.conv1d( net, num_filters, 10, activation=tf.nn.relu, use_bias=False) net = contrib_layers.layer_norm(net) net = tf.layers.conv1d(net, self._learned_loss_conv1d_layers[-1], 1) # 1x1 convolution. return tf.reduce_mean(tf.reduce_sum(tf.square(net), axis=(1, 2)))
40.815145
80
0.669213
7942cd64f350b473262cdcaf73d3170ccc72bcf4
147
py
Python
vote/apps.py
jjmutumi/djangotutorial
e0855f229cecea9413c3306e71782d6885eb02f7
[ "MIT" ]
null
null
null
vote/apps.py
jjmutumi/djangotutorial
e0855f229cecea9413c3306e71782d6885eb02f7
[ "MIT" ]
null
null
null
vote/apps.py
jjmutumi/djangotutorial
e0855f229cecea9413c3306e71782d6885eb02f7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class VoteConfig(AppConfig): name = 'vote'
18.375
39
0.727891
7942ce81f4808492e8b56a0975055d4b55dbe328
4,995
py
Python
bokeh/sphinxext/bokeh_gallery.py
RiccardoGiro/bokeh
7e1bfeea4f3d7a6296aabfeec96e79e1f5a28467
[ "BSD-3-Clause" ]
1
2020-07-02T06:06:18.000Z
2020-07-02T06:06:18.000Z
bokeh/sphinxext/bokeh_gallery.py
Deng-Fankang/bokeh
894731860c53b7c9ddd0057dee85cf064278dc0e
[ "BSD-3-Clause" ]
12
2020-08-26T20:19:29.000Z
2020-08-26T20:19:52.000Z
bokeh/sphinxext/bokeh_gallery.py
Deng-Fankang/bokeh
894731860c53b7c9ddd0057dee85cf064278dc0e
[ "BSD-3-Clause" ]
1
2020-03-06T07:38:50.000Z
2020-03-06T07:38:50.000Z
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2020, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- """ Generate a gallery of Bokeh plots from a configuration file. """ #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import json import os from os.path import abspath, dirname, exists, getmtime, isdir, isfile, join # External imports from sphinx.errors import SphinxError from sphinx.util import ensuredir, status_iterator # Bokeh imports from .bokeh_directive import BokehDirective from .templates import GALLERY_DETAIL, GALLERY_PAGE #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'BokehGalleryDirective', 'setup', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- class BokehGalleryDirective(BokehDirective): has_content = False required_arguments = 1 def run(self): env = self.state.document.settings.env docdir = dirname(env.doc2path(env.docname)) gallery_file = join(docdir, self.arguments[0]) gallery_dir = join(dirname(dirname(gallery_file)), "gallery") if not exists(gallery_dir) and isdir(gallery_dir): raise SphinxError("gallery dir %r missing for gallery file %r" % (gallery_dir, gallery_file)) spec = json.load(open(gallery_file)) names = [detail['name']for detail in spec['details']] rst_text = GALLERY_PAGE.render(names=names) return self._parse(rst_text, "<bokeh-gallery>") def config_inited_handler(app, config): gallery_dir = join(app.srcdir, config.bokeh_gallery_dir) gallery_file = gallery_dir + ".json" if not exists(gallery_file) and isfile(gallery_file): raise SphinxError("could not find gallery file %r for configured gallery dir %r" % (gallery_file, gallery_dir)) gallery_file_mtime = getmtime(gallery_file) ensuredir(gallery_dir) # we will remove each file we process from this set and see if anything is # left at the end (and remove it in that case) extras = set(os.listdir(gallery_dir)) # app.env.note_dependency(specpath) spec = json.load(open(gallery_file)) details = spec['details'] names = set(x['name'] for x in details) if len(names) < len(details): raise SphinxError("gallery file %r has duplicate names" % gallery_file) details_iter = status_iterator(details, 'creating gallery file entries... ', 'brown', len(details), app.verbosity, stringify_func=lambda x: x['name'] + ".rst") for detail in details_iter: detail_file_name = detail['name'] + ".rst" detail_file_path = join(gallery_dir, detail_file_name) if detail_file_path in extras: extras.remove(detail_file_path) # if the gallery detail file is newer than the gallery file, assume it is up to date if exists(detail_file_path) and getmtime(detail_file_path) > gallery_file_mtime: continue with open(detail_file_path, "w") as f: source_path = abspath(join(app.srcdir, "..", "..", detail['path'])) f.write(GALLERY_DETAIL.render(filename=detail['name']+'.py', source_path=source_path)) for extra_file in extras: os.remove(join(gallery_dir, extra_file)) def setup(app): ''' Required Sphinx extension setup function. ''' app.add_config_value('bokeh_gallery_dir', join("docs", "gallery"), 'html') app.connect('config-inited', config_inited_handler) app.add_directive('bokeh-gallery', BokehGalleryDirective) #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
37
119
0.498098
7942cf7ea891b9d7257503dbc179c71352c4f93a
11,193
py
Python
nssrc/com/citrix/netscaler/nitro/resource/config/wi/wisite_translationinternalip_binding.py
mahabs/nitro
be74e1e177f5c205c16126bc9b023f2348788409
[ "Apache-2.0" ]
null
null
null
nssrc/com/citrix/netscaler/nitro/resource/config/wi/wisite_translationinternalip_binding.py
mahabs/nitro
be74e1e177f5c205c16126bc9b023f2348788409
[ "Apache-2.0" ]
null
null
null
nssrc/com/citrix/netscaler/nitro/resource/config/wi/wisite_translationinternalip_binding.py
mahabs/nitro
be74e1e177f5c205c16126bc9b023f2348788409
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class wisite_translationinternalip_binding(base_resource) : """ Binding class showing the translationinternalip that can be bound to wisite. """ def __init__(self) : self._translationinternalip = "" self._accesstype = "" self._translationinternalport = 0 self._translationexternalip = "" self._translationexternalport = 0 self._sitepath = "" self.___count = 0 @property def sitepath(self) : """Path to the Web Interface site.<br/>Minimum length = 1<br/>Maximum length = 250. """ try : return self._sitepath except Exception as e: raise e @sitepath.setter def sitepath(self, sitepath) : """Path to the Web Interface site.<br/>Minimum length = 1<br/>Maximum length = 250 """ try : self._sitepath = sitepath except Exception as e: raise e @property def accesstype(self) : """Type of access to the XenApp or XenDesktop server. Available settings function as follows: * User Device - Clients can use the translated address of the mapping entry to connect to the XenApp or XenDesktop server. * Gateway - Access Gateway can use the translated address of the mapping entry to connect to the XenApp or XenDesktop server. * User Device and Gateway - Both clients and Access Gateway can use the translated address of the mapping entry to connect to the XenApp or XenDesktop server.<br/>Default value: UserDevice<br/>Possible values = UserDevice, Gateway, UserDeviceAndGateway. """ try : return self._accesstype except Exception as e: raise e @accesstype.setter def accesstype(self, accesstype) : """Type of access to the XenApp or XenDesktop server. Available settings function as follows: * User Device - Clients can use the translated address of the mapping entry to connect to the XenApp or XenDesktop server. * Gateway - Access Gateway can use the translated address of the mapping entry to connect to the XenApp or XenDesktop server. * User Device and Gateway - Both clients and Access Gateway can use the translated address of the mapping entry to connect to the XenApp or XenDesktop server.<br/>Default value: UserDevice<br/>Possible values = UserDevice, Gateway, UserDeviceAndGateway """ try : self._accesstype = accesstype except Exception as e: raise e @property def translationexternalport(self) : """External port number associated with the server's port number.<br/>Range 1 - 65535. """ try : return self._translationexternalport except Exception as e: raise e @translationexternalport.setter def translationexternalport(self, translationexternalport) : """External port number associated with the server's port number.<br/>Range 1 - 65535 """ try : self._translationexternalport = translationexternalport except Exception as e: raise e @property def translationinternalip(self) : """IP address of the server for which you want to associate an external IP address. (Clients access the server through the associated external address and port.).<br/>Default value: 0. """ try : return self._translationinternalip except Exception as e: raise e @translationinternalip.setter def translationinternalip(self, translationinternalip) : """IP address of the server for which you want to associate an external IP address. (Clients access the server through the associated external address and port.).<br/>Default value: 0 """ try : self._translationinternalip = translationinternalip except Exception as e: raise e @property def translationexternalip(self) : """External IP address associated with server's IP address. """ try : return self._translationexternalip except Exception as e: raise e @translationexternalip.setter def translationexternalip(self, translationexternalip) : """External IP address associated with server's IP address. """ try : self._translationexternalip = translationexternalip except Exception as e: raise e @property def translationinternalport(self) : """Port number of the server for which you want to associate an external port. (Clients access the server through the associated external address and port.).<br/>Range 1 - 65535. """ try : return self._translationinternalport except Exception as e: raise e @translationinternalport.setter def translationinternalport(self, translationinternalport) : """Port number of the server for which you want to associate an external port. (Clients access the server through the associated external address and port.).<br/>Range 1 - 65535 """ try : self._translationinternalport = translationinternalport except Exception as e: raise e def _get_nitro_response(self, service, response) : """ converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(wisite_translationinternalip_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.wisite_translationinternalip_binding except Exception as e : raise e def _get_object_name(self) : """ Returns the value of object identifier argument """ try : if (self.sitepath) : return str(self.sitepath) return None except Exception as e : raise e @classmethod def add(cls, client, resource) : try : if resource and type(resource) is not list : updateresource = wisite_translationinternalip_binding() updateresource.sitepath = resource.sitepath updateresource.translationinternalip = resource.translationinternalip updateresource.translationexternalip = resource.translationexternalip updateresource.accesstype = resource.accesstype return updateresource.update_resource(client) else : if resource and len(resource) > 0 : updateresources = [wisite_translationinternalip_binding() for _ in range(len(resource))] for i in range(len(resource)) : updateresources[i].sitepath = resource[i].sitepath updateresources[i].translationinternalip = resource[i].translationinternalip updateresources[i].translationexternalip = resource[i].translationexternalip updateresources[i].accesstype = resource[i].accesstype return cls.update_bulk_request(client, updateresources) except Exception as e : raise e @classmethod def delete(cls, client, resource) : try : if resource and type(resource) is not list : deleteresource = wisite_translationinternalip_binding() deleteresource.sitepath = resource.sitepath deleteresource.translationinternalip = resource.translationinternalip deleteresource.translationexternalip = resource.translationexternalip return deleteresource.delete_resource(client) else : if resource and len(resource) > 0 : deleteresources = [wisite_translationinternalip_binding() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].sitepath = resource[i].sitepath deleteresources[i].translationinternalip = resource[i].translationinternalip deleteresources[i].translationexternalip = resource[i].translationexternalip return cls.delete_bulk_request(client, deleteresources) except Exception as e : raise e @classmethod def get(cls, service, sitepath) : """ Use this API to fetch wisite_translationinternalip_binding resources. """ try : obj = wisite_translationinternalip_binding() obj.sitepath = sitepath response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, sitepath, filter_) : """ Use this API to fetch filtered set of wisite_translationinternalip_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = wisite_translationinternalip_binding() obj.sitepath = sitepath option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, sitepath) : """ Use this API to count wisite_translationinternalip_binding resources configued on NetScaler. """ try : obj = wisite_translationinternalip_binding() obj.sitepath = sitepath option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, sitepath, filter_) : """ Use this API to count the filtered set of wisite_translationinternalip_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = wisite_translationinternalip_binding() obj.sitepath = sitepath option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class Accessmethod: Direct = "Direct" Alternate = "Alternate" Translated = "Translated" GatewayDirect = "GatewayDirect" GatewayAlternate = "GatewayAlternate" GatewayTranslated = "GatewayTranslated" class Accesstype: UserDevice = "UserDevice" Gateway = "Gateway" UserDeviceAndGateway = "UserDeviceAndGateway" class Transport: HTTP = "HTTP" HTTPS = "HTTPS" SSLRELAY = "SSLRELAY" class Loadbalance: ON = "ON" OFF = "OFF" class Recoveryfarm: ON = "ON" OFF = "OFF" class wisite_translationinternalip_binding_response(base_response) : def __init__(self, length=1) : self.wisite_translationinternalip_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.wisite_translationinternalip_binding = [wisite_translationinternalip_binding() for _ in range(length)]
35.087774
255
0.748146
7942cfe9f8c43f8bdb0e8d12d458ed41450fb5e7
5,877
py
Python
voila/exporter.py
zappyzac/voila
68e5e660226312638b13db90e249eec967cb72d2
[ "BSD-3-Clause" ]
null
null
null
voila/exporter.py
zappyzac/voila
68e5e660226312638b13db90e249eec967cb72d2
[ "BSD-3-Clause" ]
null
null
null
voila/exporter.py
zappyzac/voila
68e5e660226312638b13db90e249eec967cb72d2
[ "BSD-3-Clause" ]
null
null
null
############################################################################# # Copyright (c) 2018, Voila Contributors # # Copyright (c) 2018, QuantStack # # # # Distributed under the terms of the BSD 3-Clause License. # # # # The full license is in the file LICENSE, distributed with this software. # ############################################################################# import mimetypes import traitlets from traitlets.config import Config from jinja2 import contextfilter import jinja2 from nbconvert.filters.markdown_mistune import IPythonRenderer, MarkdownWithMath from nbconvert.exporters.html import HTMLExporter from nbconvert.exporters.templateexporter import TemplateExporter from nbconvert.filters.highlight import Highlight2HTML class VoilaMarkdownRenderer(IPythonRenderer): """Custom markdown renderer that inlines images""" def image(self, src, title, text): contents_manager = self.options['contents_manager'] if contents_manager.file_exists(src): content = contents_manager.get(src, format='base64') data = content['content'].replace('\n', '') # remove the newline mime_type, encoding = mimetypes.guess_type(src) src = 'data:{mime_type};base64,{data}'.format(mime_type=mime_type, data=data) return super(VoilaMarkdownRenderer, self).image(src, title, text) class VoilaExporter(HTMLExporter): """Custom HTMLExporter that inlines the images using VoilaMarkdownRenderer""" base_url = traitlets.Unicode(help="Base url for resources").tag(config=True) markdown_renderer_class = traitlets.Type('mistune.Renderer').tag(config=True) # The voila exporter overrides the markdown renderer from the HTMLExporter # to inline images. @contextfilter def markdown2html(self, context, source): cell = context['cell'] attachments = cell.get('attachments', {}) cls = self.markdown_renderer_class renderer = cls(escape=False, attachments=attachments, contents_manager=self.contents_manager, anchor_link_text=self.anchor_link_text) return MarkdownWithMath(renderer=renderer).render(source) # The voila exporter disables the CSSHTMLHeaderPreprocessor from the HTMLExporter. @property def default_config(self): c = Config({ 'CSSHTMLHeaderPreprocessor': { 'enabled': False }, 'VoilaExporter': { 'markdown_renderer_class': 'voila.exporter.VoilaMarkdownRenderer' } }) c.merge(super(VoilaExporter, self).default_config) return c # Instead, we use the VoilaCSSPreprocessor. @traitlets.default('preprocessors') def _default_preprocessors(self): return ['voila.csspreprocessor.VoilaCSSPreprocessor'] # Overriding the default template file. @traitlets.default('template_file') def default_template_file(self): return 'index.html.j2' async def generate_from_notebook_node(self, nb, resources=None, extra_context={}, **kw): # this replaces from_notebook_node, but calls template.generate instead of template.render langinfo = nb.metadata.get('language_info', {}) lexer = langinfo.get('pygments_lexer', langinfo.get('name', None)) highlight_code = self.filters.get('highlight_code', Highlight2HTML(pygments_lexer=lexer, parent=self)) self.register_filter('highlight_code', highlight_code) # NOTE: we don't call HTML or TemplateExporter' from_notebook_node nb_copy, resources = super(TemplateExporter, self).from_notebook_node(nb, resources, **kw) resources.setdefault('raw_mimetypes', self.raw_mimetypes) resources['global_content_filter'] = { 'include_code': not self.exclude_code_cell, 'include_markdown': not self.exclude_markdown, 'include_raw': not self.exclude_raw, 'include_unknown': not self.exclude_unknown, 'include_input': not self.exclude_input, 'include_output': not self.exclude_output, 'include_input_prompt': not self.exclude_input_prompt, 'include_output_prompt': not self.exclude_output_prompt, 'no_prompt': self.exclude_input_prompt and self.exclude_output_prompt, } async for output in self.template.generate_async(nb=nb_copy, resources=resources, **extra_context): yield (output, resources) @property def environment(self): # enable Jinja async template execution self.enable_async = True env = super(type(self), self).environment if 'jinja2.ext.do' not in env.extensions: env.add_extension('jinja2.ext.do') return env def get_template_paths(self): return self.template_path def _init_resources(self, resources): def include_css(name): code = """<link rel="stylesheet" type="text/css" href="%svoila/%s">""" % (self.base_url, name) return jinja2.Markup(code) def include_js(name): code = """<script src="%svoila/%s"></script>""" % (self.base_url, name) return jinja2.Markup(code) def include_url(name): url = "%svoila/%s" % (self.base_url, name) return jinja2.Markup(url) resources = super(VoilaExporter, self)._init_resources(resources) resources['include_css'] = include_css resources['include_js'] = include_js resources['include_url'] = include_url return resources
42.89781
110
0.627021
7942d0d94f80cc55e261ea1d6244feb44cf7437e
10,763
py
Python
analemmatic.py
cmcqueen/sundials
0b7fbf7bcdef4687c1805436bdac006d777b23f2
[ "MIT" ]
null
null
null
analemmatic.py
cmcqueen/sundials
0b7fbf7bcdef4687c1805436bdac006d777b23f2
[ "MIT" ]
null
null
null
analemmatic.py
cmcqueen/sundials
0b7fbf7bcdef4687c1805436bdac006d777b23f2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Calculation and generation of analemmatic sundial. References: Plus Magazine http://pass.maths.org.uk/issue11/features/sundials/index.html Wikipedia http://en.wikipedia.org/wiki/Analemmatic_sundial Calculations have been done according to the Plus Magazine reference. Dependencies: - Python 2.x - NumPy - matplotlib """ import datetime import logging from collections import namedtuple import sys import matplotlib #matplotlib.use('pdf') #matplotlib.use('svg') from matplotlib import pyplot as plt from matplotlib import lines from matplotlib import text import matplotlib.patches import numpy as np import sun_declination logging.basicConfig(stream=sys.stdout, level=logging.INFO) # Named tuple to hold geographic location Location = namedtuple('Location', 'latitude, longitude, timezone, location') if True: LOCATION = Location(-37.81, 144.96, 10, 'Melbourne, Victoria, Australia') HOUR_LINE_MIN = 5 HOUR_LINE_MAX = 20 EXTENT_MAJOR = 1.2 EXTENT_MINOR = 0.75 elif True: LOCATION = Location(35.10, 138.86, 9, 'Numazu, Japan') HOUR_LINE_MIN = 4 HOUR_LINE_MAX = 19 EXTENT_MAJOR = 1.2 EXTENT_MINOR = 0.75 else: LOCATION = Location(51.3809, -2.3603, 0, 'Bath, England') HOUR_LINE_MIN = 3 HOUR_LINE_MAX = 21 EXTENT_MAJOR = 1.2 EXTENT_MINOR = 1.1 NUMERAL_OFFSET = 1.1 DATE_SCALE_X_EXTENT = 0.15 DATE_SCALE_TICK_X = 0.1 DATE_SCALE_TEXT_X = 0.025 def equatorial_hour_angle(hour, location): """Midnight is angle 0. 6 am is angle pi/2. midday is angle pi. etc.""" equatorial_angle = (hour - location.timezone) * 2 * np.pi / 24 + (np.deg2rad(location.longitude)) logging.getLogger("hour.angle.equ").debug("For hour %d, equatorial angle %g" % (hour, np.rad2deg(equatorial_angle))) return equatorial_angle def rotated_equatorial_hour_angle(hour, location): """Angles rotated so midday is up on mathematical angle range. Midday is pi/2. 6 am is pi. 6 pm is 0. etc.""" equatorial_angle = equatorial_hour_angle(hour, location) equatorial_angle_from_solar_noon = equatorial_angle - np.pi # Angle currently is angle referenced from solar noon, positive (pm) towards the east. # Change to mathematical angle, anticlockwise from 0 in the east. return np.pi / 2 - equatorial_angle_from_solar_noon def analemmatic_horiz_hour_angle(hour, location): equatorial_angle = equatorial_hour_angle(hour, location) equatorial_angle_from_solar_noon = equatorial_angle - np.pi logging.getLogger("hour.angle.equ.noon").debug("For hour %d, equatorial angle from solar noon %g" % (hour, equatorial_angle_from_solar_noon * 180 / np.pi)) # negative (am) is towards the west; positive (pm) towards the east a_x = np.cos(equatorial_angle_from_solar_noon) a_y = np.sin(equatorial_angle_from_solar_noon) horiz_angle_from_solar_noon = np.arctan2(a_y, a_x * np.sin(np.deg2rad(location.latitude))) logging.getLogger("hour.angle.horiz.noon").debug("For hour %d, horiz angle from solar noon %g" % (hour, np.rad2deg(horiz_angle_from_solar_noon))) # Angle currently is angle referenced from solar noon, positive (pm) towards the east. # Change to mathematical angle, anticlockwise from 0 in the east. return np.pi / 2 - horiz_angle_from_solar_noon def analemmatic_horiz_hour_position(hour, location): rotated_equatorial_angle = rotated_equatorial_hour_angle(hour, location) a_x = np.cos(rotated_equatorial_angle) a_y = np.sin(rotated_equatorial_angle) a_y *= np.sin(np.deg2rad(location.latitude)) logging.getLogger("hour.pos").debug("For hour %d, x-y position (%g, %g)" % (hour, a_x, a_y)) return (a_x, a_y) def main(): fig = plt.figure(num=LOCATION.location) # ax1 = fig.add_subplot(111, aspect='equal') ax1 = fig.add_axes([0,0,1.0,1.0], aspect='equal') # Calculate ellipse parameters ellipse_major_axis = 1.0 ellipse_minor_axis = ellipse_major_axis * np.sin(np.deg2rad(LOCATION.latitude)) ellipse_foci_offset = np.sqrt(ellipse_major_axis**2 - ellipse_minor_axis**2) ellipse_logger = logging.getLogger("ellipse") ellipse_logger.info("Ellipse semimajor axis length %g" % ellipse_major_axis) ellipse_logger.info("Ellipse semiminor axis length %g" % ellipse_minor_axis) ellipse_logger.info("Ellipse foci x offset %g" % ellipse_foci_offset) # Draw an ellipse arc ellipse_pos_min = analemmatic_horiz_hour_position(HOUR_LINE_MIN, LOCATION) ellipse_angle_min = np.arctan2(ellipse_pos_min[1], ellipse_pos_min[0]) ellipse_pos_max = analemmatic_horiz_hour_position(HOUR_LINE_MAX, LOCATION) ellipse_angle_max = np.arctan2(ellipse_pos_max[1], ellipse_pos_max[0]) ellipse_rotation = 0 if LOCATION.latitude < 0: # For southern hemisphere, rotate the whole thing around by 180 # degrees, so "up" is consistently from the sundial viewer's # perspective with the sun behind their shoulder. ellipse_rotation = 180 ellipse = matplotlib.patches.Arc(xy=(0,0), # centre of ellipse width=2 * ellipse_major_axis, height=2 * ellipse_minor_axis, angle=ellipse_rotation, theta1=np.rad2deg(ellipse_angle_max), theta2=np.rad2deg(ellipse_angle_min), ) ax1.add_patch(ellipse) analemmatic_positions_x = [] analemmatic_positions_y = [] for hour in range(HOUR_LINE_MIN, HOUR_LINE_MAX + 1): analemmatic_angle = analemmatic_horiz_hour_angle(hour, LOCATION) (analemmatic_position_x, analemmatic_position_y) = analemmatic_horiz_hour_position(hour, LOCATION) if LOCATION.latitude < 0: # For southern hemisphere, rotate the whole thing around by 180 # degrees, so "up" is consistently from the sundial viewer's # perspective with the sun behind their shoulder. analemmatic_angle += np.deg2rad(180) (analemmatic_position_x, analemmatic_position_y) = (-analemmatic_position_x, -analemmatic_position_y) logging.getLogger("hour.angle.horiz").info("For hour %d, horiz angle %g" % (hour, np.rad2deg(analemmatic_angle))) logging.getLogger("hour.pos").info("For hour %d, x-y position (%g, %g)" % (hour, analemmatic_position_x, analemmatic_position_y)) line = lines.Line2D([0, np.cos(analemmatic_angle)], [0, np.sin(analemmatic_angle)]) # ax1.add_line(line) # ax1.plot(analemmatic_position_x, analemmatic_position_y, '.') analemmatic_positions_x.append(analemmatic_position_x) analemmatic_positions_y.append(analemmatic_position_y) hour_text = "%d" % ((hour - 1) % 12 + 1) # ax1.add_artist(text.Text(np.cos(analemmatic_angle) * NUMERAL_OFFSET, np.sin(analemmatic_angle) * NUMERAL_OFFSET, hour_text, ha='center', va='center')) ax1.add_artist(text.Text(analemmatic_position_x * NUMERAL_OFFSET, analemmatic_position_y * NUMERAL_OFFSET, hour_text, ha='center', va='center')) ax1.plot(analemmatic_positions_x, analemmatic_positions_y, '.') # Draw date scale datescale_logger = logging.getLogger("datescale") # Max and min lines dates_y = [] for sun_angle in [-sun_declination.SUN_OBLIQUITY, sun_declination.SUN_OBLIQUITY]: date_y = np.tan(sun_angle) * np.cos(np.deg2rad(LOCATION.latitude)) dates_y.append(date_y) line = lines.Line2D([-DATE_SCALE_X_EXTENT, DATE_SCALE_X_EXTENT], [date_y, date_y]) ax1.add_line(line) # Draw vertical line of date scale line = lines.Line2D([0,0], dates_y) ax1.add_line(line) datescale_logger.info("Date scale max and min y positions at %g and %g" % tuple(dates_y)) # Draw month ticks and month labels on date scale DATE_SOLSTICE = datetime.date(2008, 12, 21) month_starts_y = [] month_start_slopes = [] for month_number in range(1, 12 + 1): month_start = datetime.date(2009, month_number, 1) day_number = matplotlib.dates.date2num(month_start) - matplotlib.dates.date2num(DATE_SOLSTICE) sun_angle = sun_declination.sun_declination(day_number) sun_angle2 = sun_declination.sun_declination(day_number + 0.001) month_start_slope = 1 if sun_angle2 >= sun_angle else -1 month_start_slopes.append(month_start_slope) if LOCATION.latitude < 0: sun_angle = -sun_angle sun_angle2 = -sun_angle2 # month_start_slope = 1 if sun_angle2 >= sun_angle else -1 # month_start_slopes.append(month_start_slope) month_start_y = np.tan(sun_angle) * np.cos(np.deg2rad(LOCATION.latitude)) month_starts_y.append(month_start_y) month_name = month_start.strftime("%b") datescale_logger.info("For beginning of %s, y position %g" % (month_name, month_start_y)) month_starts_y.append(month_starts_y[0]) month_start_slopes.append(month_start_slopes[0]) for month_number in range(1, 12 + 1): month_start_y = month_starts_y[month_number - 1] month_end_y = month_starts_y[month_number] month_start_slope = month_start_slopes[month_number - 1] month_end_slope = month_start_slopes[month_number] # Add tick mark for month start line = lines.Line2D([0, month_start_slope * DATE_SCALE_TICK_X], [month_start_y, month_start_y]) ax1.add_line(line) # Add text for month name, in the middle of the month if month_start_slope == month_end_slope: text_y = (month_start_y + month_end_y) / 2 month_name = datetime.date(2009,month_number,1).strftime("%b") ha = 'left' if month_start_slope >= 0 else 'right' ax1.add_artist(text.Text(DATE_SCALE_TEXT_X * month_start_slope, text_y, month_name, ha=ha, va='center')) # Draw a compass arrow if LOCATION.latitude >= 0: # Up for northern hemisphere ax1.add_artist(text.Text(0.5, 0.15, "N", ha='center', va='center')) arrow = matplotlib.patches.Arrow(0.5, -0.15, 0, 0.25, width=0.08, edgecolor='none') ax1.add_patch(arrow) else: # Down for the southern hemisphere ax1.add_artist(text.Text(0.5, -0.15, "N", ha='center', va='center')) arrow = matplotlib.patches.Arrow(0.5, 0.15, 0, -0.25, width=0.08, edgecolor='none') ax1.add_patch(arrow) # plt.axis('tight') plt.axis('off') plt.xlim(-EXTENT_MAJOR, EXTENT_MAJOR) plt.ylim(-EXTENT_MINOR, EXTENT_MINOR) # plt.savefig('analemmatic.pdf') # plt.savefig('analemmatic.svg') # plt.savefig('analemmatic.png') plt.show() if __name__ == '__main__': main()
43.574899
159
0.692929
7942d189b0df95d6e61d99380d8fa33cd19549ea
469
py
Python
src/fchecker/exceptions/exceptions.py
IncognitoCoding/fchecker
bbc70685174c70b6c396e1c93864028bffd3e22e
[ "MIT" ]
null
null
null
src/fchecker/exceptions/exceptions.py
IncognitoCoding/fchecker
bbc70685174c70b6c396e1c93864028bffd3e22e
[ "MIT" ]
null
null
null
src/fchecker/exceptions/exceptions.py
IncognitoCoding/fchecker
bbc70685174c70b6c396e1c93864028bffd3e22e
[ "MIT" ]
null
null
null
__author__ = "IncognitoCoding" __copyright__ = "Copyright 2022, exceptions" __credits__ = ["IncognitoCoding"] __license__ = "MIT" __version__ = "0.0.1" __maintainer__ = "IncognitoCoding" __status__ = "Beta" class InputFailure(Exception): """Exception raised for an input exception message.""" __module__ = "builtins" pass class InvalidKeyError(Exception): """Exception raised for an invalid dictionary key.""" __module__ = "builtins" pass
21.318182
58
0.720682
7942d1c2e6e54680695703f8d16232ea4c5d00f0
8,123
py
Python
socksOhttp/socksohttp/AES/blockfeeder.py
skelsec/socksohttp
c1713bfcd44f29790325dbb0578590bceb93499f
[ "MIT" ]
37
2018-10-12T22:44:50.000Z
2021-09-13T09:51:55.000Z
socksOhttp/socksohttp/AES/blockfeeder.py
skelsec/socksohttp
c1713bfcd44f29790325dbb0578590bceb93499f
[ "MIT" ]
1
2021-05-11T09:05:34.000Z
2021-05-11T09:05:34.000Z
socksOhttp/socksohttp/AES/blockfeeder.py
skelsec/socksohttp
c1713bfcd44f29790325dbb0578590bceb93499f
[ "MIT" ]
4
2018-10-13T15:07:20.000Z
2020-05-15T02:04:04.000Z
# The MIT License (MIT) # # Copyright (c) 2014 Richard Moore # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from .AES import AESBlockModeOfOperation, AESSegmentModeOfOperation, AESStreamModeOfOperation from .util import append_PKCS7_padding, strip_PKCS7_padding, to_bufferable # First we inject three functions to each of the modes of operations # # _can_consume(size) # - Given a size, determine how many bytes could be consumed in # a single call to either the decrypt or encrypt method # # _final_encrypt(data, padding = PADDING_DEFAULT) # - call and return encrypt on this (last) chunk of data, # padding as necessary; this will always be at least 16 # bytes unless the total incoming input was less than 16 # bytes # # _final_decrypt(data, padding = PADDING_DEFAULT) # - same as _final_encrypt except for decrypt, for # stripping off padding # PADDING_NONE = 'none' PADDING_DEFAULT = 'default' # @TODO: Ciphertext stealing and explicit PKCS#7 # PADDING_CIPHERTEXT_STEALING # PADDING_PKCS7 # ECB and CBC are block-only ciphers def _block_can_consume(self, size): if size >= 16: return 16 return 0 # After padding, we may have more than one block def _block_final_encrypt(self, data, padding = PADDING_DEFAULT): if padding == PADDING_DEFAULT: data = append_PKCS7_padding(data) elif padding == PADDING_NONE: if len(data) != 16: raise Exception('invalid data length for final block') else: raise Exception('invalid padding option') if len(data) == 32: return self.encrypt(data[:16]) + self.encrypt(data[16:]) return self.encrypt(data) def _block_final_decrypt(self, data, padding = PADDING_DEFAULT): if padding == PADDING_DEFAULT: return strip_PKCS7_padding(self.decrypt(data)) if padding == PADDING_NONE: if len(data) != 16: raise Exception('invalid data length for final block') return self.decrypt(data) raise Exception('invalid padding option') AESBlockModeOfOperation._can_consume = _block_can_consume AESBlockModeOfOperation._final_encrypt = _block_final_encrypt AESBlockModeOfOperation._final_decrypt = _block_final_decrypt # CFB is a segment cipher def _segment_can_consume(self, size): return self.segment_bytes * int(size // self.segment_bytes) # CFB can handle a non-segment-sized block at the end using the remaining cipherblock def _segment_final_encrypt(self, data, padding = PADDING_DEFAULT): if padding != PADDING_DEFAULT: raise Exception('invalid padding option') faux_padding = (chr(0) * (self.segment_bytes - (len(data) % self.segment_bytes))) padded = data + to_bufferable(faux_padding) return self.encrypt(padded)[:len(data)] # CFB can handle a non-segment-sized block at the end using the remaining cipherblock def _segment_final_decrypt(self, data, padding = PADDING_DEFAULT): if padding != PADDING_DEFAULT: raise Exception('invalid padding option') faux_padding = (chr(0) * (self.segment_bytes - (len(data) % self.segment_bytes))) padded = data + to_bufferable(faux_padding) return self.decrypt(padded)[:len(data)] AESSegmentModeOfOperation._can_consume = _segment_can_consume AESSegmentModeOfOperation._final_encrypt = _segment_final_encrypt AESSegmentModeOfOperation._final_decrypt = _segment_final_decrypt # OFB and CTR are stream ciphers def _stream_can_consume(self, size): return size def _stream_final_encrypt(self, data, padding = PADDING_DEFAULT): if padding not in [PADDING_NONE, PADDING_DEFAULT]: raise Exception('invalid padding option') return self.encrypt(data) def _stream_final_decrypt(self, data, padding = PADDING_DEFAULT): if padding not in [PADDING_NONE, PADDING_DEFAULT]: raise Exception('invalid padding option') return self.decrypt(data) AESStreamModeOfOperation._can_consume = _stream_can_consume AESStreamModeOfOperation._final_encrypt = _stream_final_encrypt AESStreamModeOfOperation._final_decrypt = _stream_final_decrypt class BlockFeeder(object): '''The super-class for objects to handle chunking a stream of bytes into the appropriate block size for the underlying mode of operation and applying (or stripping) padding, as necessary.''' def __init__(self, mode, feed, final, padding = PADDING_DEFAULT): self._mode = mode self._feed = feed self._final = final self._buffer = to_bufferable("") self._padding = padding def feed(self, data = None): '''Provide bytes to encrypt (or decrypt), returning any bytes possible from this or any previous calls to feed. Call with None or an empty string to flush the mode of operation and return any final bytes; no further calls to feed may be made.''' if self._buffer is None: raise ValueError('already finished feeder') # Finalize; process the spare bytes we were keeping if data is None: result = self._final(self._buffer, self._padding) self._buffer = None return result self._buffer += to_bufferable(data) # We keep 16 bytes around so we can determine padding result = to_bufferable('') while len(self._buffer) > 16: can_consume = self._mode._can_consume(len(self._buffer) - 16) if can_consume == 0: break result += self._feed(self._buffer[:can_consume]) self._buffer = self._buffer[can_consume:] return result class Encrypter(BlockFeeder): 'Accepts bytes of plaintext and returns encrypted ciphertext.' def __init__(self, mode, padding = PADDING_DEFAULT): BlockFeeder.__init__(self, mode, mode.encrypt, mode._final_encrypt, padding) class Decrypter(BlockFeeder): 'Accepts bytes of ciphertext and returns decrypted plaintext.' def __init__(self, mode, padding = PADDING_DEFAULT): BlockFeeder.__init__(self, mode, mode.decrypt, mode._final_decrypt, padding) # 8kb blocks BLOCK_SIZE = (1 << 13) def _feed_stream(feeder, in_stream, out_stream, block_size = BLOCK_SIZE): 'Uses feeder to read and convert from in_stream and write to out_stream.' while True: chunk = in_stream.read(block_size) if not chunk: break converted = feeder.feed(chunk) out_stream.write(converted) converted = feeder.feed() out_stream.write(converted) def encrypt_stream(mode, in_stream, out_stream, block_size = BLOCK_SIZE, padding = PADDING_DEFAULT): 'Encrypts a stream of bytes from in_stream to out_stream using mode.' encrypter = Encrypter(mode, padding = padding) _feed_stream(encrypter, in_stream, out_stream, block_size) def decrypt_stream(mode, in_stream, out_stream, block_size = BLOCK_SIZE, padding = PADDING_DEFAULT): 'Decrypts a stream of bytes from in_stream to out_stream using mode.' decrypter = Decrypter(mode, padding = padding) _feed_stream(decrypter, in_stream, out_stream, block_size)
35.627193
100
0.721408
7942d2074f849d13d13c7e74e732fe4c23283c96
1,192
py
Python
intro_exercise.py
ebayandelger/MSDS600
7bec34531f3fc661a0bfdfe42a974fcfd8f1f2c4
[ "MIT" ]
null
null
null
intro_exercise.py
ebayandelger/MSDS600
7bec34531f3fc661a0bfdfe42a974fcfd8f1f2c4
[ "MIT" ]
null
null
null
intro_exercise.py
ebayandelger/MSDS600
7bec34531f3fc661a0bfdfe42a974fcfd8f1f2c4
[ "MIT" ]
null
null
null
# Lines starting with # are comments and are not run by Python. """ Multi-line comments are possible with triple quotes like this. """ # pandas is a common library for working with data in Python, we usually import it like so: import pandas as pd import matplotlib.pyplot as plt # This data comes from the UCI ML repository: # https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset # It is the daily number of users from a bike share program df = pd.read_csv('day.csv') # shows a preview of the data df.head() # shows some basic stats of the data df.describe() # Use the examples in the jupyter notebook to help you here. # calculate the mean and standard deviation of the hourly data counts (the 'cnt' column) # mean hourly = df["cnt"] print("Mean Deviation:", hourly.mean()) #___ # standard deviation print("Standard Deviation:", hourly.std()) #___ # plot the counts ('cnt' column) plt.plot(hourly) # create a plot of list generated plt.xlabel("Hourly Count Length") # label x axis plt.ylabel("Hourly Count Values") # label y axis plt.title('Hourly Data Counts Plot') # title the plot plt.show() # show the plot #___
28.380952
91
0.700503
7942d2aa9655b4d764ff6b740324b2088c8e4f9b
11,045
py
Python
tests/unit_tests/test_tethys_apps/test_models/test_TethysApp.py
quyendong/tethys
99bcb524d5b2021b88d5fa15b7ed6b8acb460997
[ "BSD-2-Clause" ]
1
2020-10-08T20:38:33.000Z
2020-10-08T20:38:33.000Z
tests/unit_tests/test_tethys_apps/test_models/test_TethysApp.py
quyendong/tethys
99bcb524d5b2021b88d5fa15b7ed6b8acb460997
[ "BSD-2-Clause" ]
1
2018-04-14T19:40:54.000Z
2018-04-14T19:40:54.000Z
tests/unit_tests/test_tethys_apps/test_models/test_TethysApp.py
quyendong/tethys
99bcb524d5b2021b88d5fa15b7ed6b8acb460997
[ "BSD-2-Clause" ]
1
2021-09-07T14:47:11.000Z
2021-09-07T14:47:11.000Z
""" ******************************************************************************** * Name: test_TethysApp * Author: nswain * Created On: August 15, 2018 * Copyright: (c) Aquaveo 2018 ******************************************************************************** """ from tethys_sdk.testing import TethysTestCase from tethys_apps.models import TethysApp, TethysAppSetting from tethys_services.models import PersistentStoreService, SpatialDatasetService, DatasetService, WebProcessingService class TethysAppTests(TethysTestCase): def set_up(self): self.test_app = TethysApp.objects.get(package='test_app') self.wps = WebProcessingService( name='test_wps', endpoint='http://localhost/wps/WebProcessingService', username='foo', password='password' ) self.wps.save() self.sds = SpatialDatasetService( name='test_sds', endpoint='http://localhost/geoserver/rest/', username='foo', password='password' ) self.sds.save() self.ds = DatasetService( name='test_ds', endpoint='http://localhost/api/3/action/', apikey='foo', ) self.ds.save() self.ps = PersistentStoreService( name='test_ps', host='localhost', port='5432', username='foo', password='password' ) self.ps.save() def tear_down(self): self.wps.delete() self.ps.delete() self.ds.delete() self.sds.delete() def test_str(self): ret = str(self.test_app) self.assertEqual('Test App', ret) def test_add_settings(self): new_setting = TethysAppSetting( name='new_setting', required=False ) self.test_app.add_settings([new_setting]) app = TethysApp.objects.get(package='test_app') settings = app.settings_set.filter(name='new_setting') self.assertEqual(1, len(settings)) def test_add_settings_add_same_setting_twice(self): new_setting = TethysAppSetting( name='new_setting', required=False ) new_setting_same_name = TethysAppSetting( name='new_setting', required=False ) self.test_app.add_settings([new_setting, new_setting_same_name]) app = TethysApp.objects.get(package='test_app') settings = app.settings_set.filter(name='new_setting') self.assertEqual(1, len(settings)) def test_settings_prop(self): ret = self.test_app.settings self.assertEqual(12, len(ret)) for r in ret: self.assertIsInstance(r, TethysAppSetting) def test_custom_settings_prop(self): custom_setting = self.test_app.settings_set.select_subclasses().get(name='default_name') custom_setting.value = 'foo' custom_setting.save() ret = self.test_app.custom_settings for r in ret: self.assertIsInstance(r, TethysAppSetting) if r.name == 'default_name': self.assertEqual('foo', r.value) def test_dataset_service_settings_prop(self): ds_setting = self.test_app.settings_set.select_subclasses().get(name='primary_ckan') ds_setting.dataset_service = self.ds ds_setting.save() ret = self.test_app.dataset_service_settings for r in ret: self.assertIsInstance(r, TethysAppSetting) if r.name == 'primary_ckan': self.assertEqual('test_ds', r.dataset_service.name) self.assertEqual('foo', r.dataset_service.apikey) self.assertEqual('http://localhost/api/3/action/', r.dataset_service.endpoint) def test_spatial_dataset_service_settings_prop(self): sds_setting = self.test_app.settings_set.select_subclasses().get(name='primary_geoserver') sds_setting.spatial_dataset_service = self.sds sds_setting.save() ret = self.test_app.spatial_dataset_service_settings for r in ret: self.assertIsInstance(r, TethysAppSetting) if r.name == 'primary_geoserver': self.assertEqual('test_sds', r.spatial_dataset_service.name) self.assertEqual('http://localhost/geoserver/rest/', r.spatial_dataset_service.endpoint) self.assertEqual('foo', r.spatial_dataset_service.username) self.assertEqual('password', r.spatial_dataset_service.password) def test_wps_services_settings_prop(self): wps_setting = self.test_app.settings_set.select_subclasses().get(name='primary_52n') wps_setting.web_processing_service = self.wps wps_setting.save() ret = self.test_app.wps_services_settings for r in ret: self.assertIsInstance(r, TethysAppSetting) if r.name == 'primary_52n': self.assertEqual('test_wps', r.web_processing_service.name) self.assertEqual('http://localhost/wps/WebProcessingService', r.web_processing_service.endpoint) self.assertEqual('foo', r.web_processing_service.username) self.assertEqual('password', r.web_processing_service.password) def test_persistent_store_connection_settings_prop(self): ps_setting = self.test_app.settings_set.select_subclasses().get(name='primary') ps_setting.persistent_store_service = self.ps ps_setting.save() ret = self.test_app.persistent_store_connection_settings for r in ret: self.assertIsInstance(r, TethysAppSetting) if r.name == 'primary': self.assertEqual('test_ps', r.persistent_store_service.name) self.assertEqual('localhost', r.persistent_store_service.host) self.assertEqual(5432, r.persistent_store_service.port) self.assertEqual('foo', r.persistent_store_service.username) self.assertEqual('password', r.persistent_store_service.password) def test_persistent_store_database_settings_prop(self): ps_setting = self.test_app.settings_set.select_subclasses().get(name='spatial_db') ps_setting.persistent_store_service = self.ps ps_setting.save() ret = self.test_app.persistent_store_database_settings for r in ret: self.assertIsInstance(r, TethysAppSetting) if r.name == 'spatial_db': self.assertEqual('test_ps', r.persistent_store_service.name) self.assertEqual('localhost', r.persistent_store_service.host) self.assertEqual(5432, r.persistent_store_service.port) self.assertEqual('foo', r.persistent_store_service.username) self.assertEqual('password', r.persistent_store_service.password) def test_configured_prop_required_and_set(self): # See: test_app.app for expected settings configuration # Set required settings custom_setting = self.test_app.settings_set.select_subclasses().get(name='default_name') custom_setting.value = 'foo' custom_setting.save() ds_setting = self.test_app.settings_set.select_subclasses().get(name='primary_ckan') ds_setting.dataset_service = self.ds ds_setting.save() sds_setting = self.test_app.settings_set.select_subclasses().get(name='primary_geoserver') sds_setting.spatial_dataset_service = self.sds sds_setting.save() wps_setting = self.test_app.settings_set.select_subclasses().get(name='primary_52n') wps_setting.web_processing_service = self.wps wps_setting.save() ps_setting = self.test_app.settings_set.select_subclasses().get(name='primary') ps_setting.persistent_store_service = self.ps ps_setting.save() ps_db_setting = self.test_app.settings_set.select_subclasses().get(name='spatial_db') ps_db_setting.persistent_store_service = self.ps ps_db_setting.save() ret = self.test_app.configured self.assertTrue(ret) def test_configured_prop_required_no_value(self): # See: test_app.app for expected settings configuration # Set required settings custom_setting = self.test_app.settings_set.select_subclasses().get(name='default_name') custom_setting.value = '' # <-- NOT SET / NO VALUE custom_setting.save() ds_setting = self.test_app.settings_set.select_subclasses().get(name='primary_ckan') ds_setting.dataset_service = self.ds ds_setting.save() sds_setting = self.test_app.settings_set.select_subclasses().get(name='primary_geoserver') sds_setting.spatial_dataset_service = self.sds sds_setting.save() wps_setting = self.test_app.settings_set.select_subclasses().get(name='primary_52n') wps_setting.web_processing_service = self.wps wps_setting.save() ps_setting = self.test_app.settings_set.select_subclasses().get(name='primary') ps_setting.persistent_store_service = self.ps ps_setting.save() psd_setting = self.test_app.settings_set.select_subclasses().get(name='spatial_db') psd_setting.persistent_store_service = self.ps psd_setting.save() ret = self.test_app.configured self.assertFalse(ret) def test_configured_prop_not_assigned_exception(self): # See: test_app.app for expected settings configuration custom_setting = self.test_app.settings_set.select_subclasses().get(name='default_name') custom_setting.value = '' custom_setting.save() ds_setting = self.test_app.settings_set.select_subclasses().get(name='primary_ckan') ds_setting.dataset_service = None ds_setting.save() sds_setting = self.test_app.settings_set.select_subclasses().get(name='primary_geoserver') sds_setting.spatial_dataset_service = None sds_setting.save() wps_setting = self.test_app.settings_set.select_subclasses().get(name='primary_52n') wps_setting.web_processing_service = None wps_setting.save() ps_setting = self.test_app.settings_set.select_subclasses().get(name='primary') ps_setting.persistent_store_service = None ps_setting.save() psd_setting = self.test_app.settings_set.select_subclasses().get(name='spatial_db') psd_setting.persistent_store_service = None psd_setting.save() ret = self.test_app.configured self.assertFalse(ret) class TethysAppNoSettingsTests(TethysTestCase): def set_up(self): self.test_app = TethysApp.objects.get(package='test_app') # See: test_app.app for expected settings configuration for setting in self.test_app.settings_set.all(): setting.delete() def test_configured_prop_no_settings(self): ret = self.test_app.configured self.assertTrue(ret)
38.350694
118
0.657764
7942d32c11f6010092a0886fb170579f7116a515
34,081
py
Python
zipline/test_algorithms.py
mmilutinovic1313/zipline-with-algorithms
fb005461670e60e1182a7bd746abf98b54929f69
[ "Apache-2.0" ]
1
2015-07-22T06:12:56.000Z
2015-07-22T06:12:56.000Z
zipline/test_algorithms.py
mmilutinovic1313/zipline-with-algorithms
fb005461670e60e1182a7bd746abf98b54929f69
[ "Apache-2.0" ]
null
null
null
zipline/test_algorithms.py
mmilutinovic1313/zipline-with-algorithms
fb005461670e60e1182a7bd746abf98b54929f69
[ "Apache-2.0" ]
null
null
null
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Algorithm Protocol =================== For a class to be passed as a trading algorithm to the :py:class:`zipline.lines.SimulatedTrading` zipline it must follow an implementation protocol. Examples of this algorithm protocol are provided below. The algorithm must expose methods: - initialize: method that takes no args, no returns. Simply called to enable the algorithm to set any internal state needed. - get_sid_filter: method that takes no args, and returns a list of valid sids. List must have a length between 1 and 10. If None is returned the filter will block all events. - handle_data: method that accepts a :py:class:`zipline.protocol.BarData` of the current state of the simulation universe. An example data object: .. This outputs the table as an HTML table but for some reason there is no bounding box. Make the previous paraagraph ending colon a double-colon to turn this back into blockquoted table in ASCII art. +-----------------+--------------+----------------+-------------------+ | | sid(133) | sid(134) | sid(135) | +=================+==============+================+===================+ | price | $10.10 | $22.50 | $13.37 | +-----------------+--------------+----------------+-------------------+ | volume | 10,000 | 5,000 | 50,000 | +-----------------+--------------+----------------+-------------------+ | mvg_avg_30 | $9.97 | $22.61 | $13.37 | +-----------------+--------------+----------------+-------------------+ | dt | 6/30/2012 | 6/30/2011 | 6/29/2012 | +-----------------+--------------+----------------+-------------------+ - set_order: method that accepts a callable. Will be set as the value of the order method of trading_client. An algorithm can then place orders with a valid sid and a number of shares:: self.order(sid(133), share_count) - set_performance: property which can be set equal to the cumulative_trading_performance property of the trading_client. An algorithm can then check position information with the Portfolio object:: self.Portfolio[sid(133)]['cost_basis'] - set_transact_setter: method that accepts a callable. Will be set as the value of the set_transact_setter method of the trading_client. This allows an algorithm to change the slippage model used to predict transactions based on orders and trade events. """ from copy import deepcopy import numpy as np from nose.tools import assert_raises from six.moves import range from six import itervalues from zipline.algorithm import TradingAlgorithm from zipline.api import ( FixedSlippage, order, set_slippage, record, sid, ) from zipline.errors import UnsupportedOrderParameters from zipline.assets import Future, Equity from zipline.finance.execution import ( LimitOrder, MarketOrder, StopLimitOrder, StopOrder, ) from zipline.finance.controls import AssetDateBounds from zipline.transforms import BatchTransform, batch_transform class TestAlgorithm(TradingAlgorithm): """ This algorithm will send a specified number of orders, to allow unit tests to verify the orders sent/received, transactions created, and positions at the close of a simulation. """ def initialize(self, sid, amount, order_count, sid_filter=None, slippage=None, commission=None): self.count = order_count self.asset = self.sid(sid) self.amount = amount self.incr = 0 if sid_filter: self.sid_filter = sid_filter else: self.sid_filter = [self.asset.sid] if slippage is not None: self.set_slippage(slippage) if commission is not None: self.set_commission(commission) def handle_data(self, data): # place an order for amount shares of sid if self.incr < self.count: self.order(self.asset, self.amount) self.incr += 1 class HeavyBuyAlgorithm(TradingAlgorithm): """ This algorithm will send a specified number of orders, to allow unit tests to verify the orders sent/received, transactions created, and positions at the close of a simulation. """ def initialize(self, sid, amount): self.asset = self.sid(sid) self.amount = amount self.incr = 0 def handle_data(self, data): # place an order for 100 shares of sid self.order(self.asset, self.amount) self.incr += 1 class NoopAlgorithm(TradingAlgorithm): """ Dolce fa niente. """ def get_sid_filter(self): return [] def initialize(self): pass def set_transact_setter(self, txn_sim_callable): pass def handle_data(self, data): pass class ExceptionAlgorithm(TradingAlgorithm): """ Throw an exception from the method name specified in the constructor. """ def initialize(self, throw_from, sid): self.throw_from = throw_from self.asset = self.sid(sid) if self.throw_from == "initialize": raise Exception("Algo exception in initialize") else: pass def set_portfolio(self, portfolio): if self.throw_from == "set_portfolio": raise Exception("Algo exception in set_portfolio") else: pass def handle_data(self, data): if self.throw_from == "handle_data": raise Exception("Algo exception in handle_data") else: pass def get_sid_filter(self): if self.throw_from == "get_sid_filter": raise Exception("Algo exception in get_sid_filter") else: return [self.asset] def set_transact_setter(self, txn_sim_callable): pass class DivByZeroAlgorithm(TradingAlgorithm): def initialize(self, sid): self.asset = self.sid(sid) self.incr = 0 def handle_data(self, data): self.incr += 1 if self.incr > 4: 5 / 0 pass class TooMuchProcessingAlgorithm(TradingAlgorithm): def initialize(self, sid): self.asset = self.sid(sid) def handle_data(self, data): # Unless we're running on some sort of # supercomputer this will hit timeout. for i in range(1000000000): self.foo = i class TimeoutAlgorithm(TradingAlgorithm): def initialize(self, sid): self.asset = self.sid(sid) self.incr = 0 def handle_data(self, data): if self.incr > 4: import time time.sleep(100) pass class RecordAlgorithm(TradingAlgorithm): def initialize(self): self.incr = 0 def handle_data(self, data): self.incr += 1 self.record(incr=self.incr) name = 'name' self.record(name, self.incr) record(name, self.incr, 'name2', 2, name3=self.incr) class TestOrderAlgorithm(TradingAlgorithm): def initialize(self): self.incr = 0 def handle_data(self, data): if self.incr == 0: assert 0 not in self.portfolio.positions else: assert self.portfolio.positions[0]['amount'] == \ self.incr, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.incr += 1 self.order(self.sid(0), 1) class TestOrderInstantAlgorithm(TradingAlgorithm): def initialize(self): self.incr = 0 self.last_price = None def handle_data(self, data): if self.incr == 0: assert 0 not in self.portfolio.positions else: assert self.portfolio.positions[0]['amount'] == \ self.incr, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ self.last_price, "Orders was not filled at last price." self.incr += 2 self.order_value(self.sid(0), data[0].price * 2.) self.last_price = data[0].price class TestOrderStyleForwardingAlgorithm(TradingAlgorithm): """ Test Algorithm for verifying that ExecutionStyles are properly forwarded by order API helper methods. Pass the name of the method to be tested as a string parameter to this algorithm's constructor. """ def __init__(self, *args, **kwargs): self.method_name = kwargs.pop('method_name') super(TestOrderStyleForwardingAlgorithm, self)\ .__init__(*args, **kwargs) def initialize(self): self.incr = 0 self.last_price = None def handle_data(self, data): if self.incr == 0: assert len(self.portfolio.positions.keys()) == 0 method_to_check = getattr(self, self.method_name) method_to_check(self.sid(0), data[0].price, style=StopLimitOrder(10, 10)) assert len(self.blotter.open_orders[0]) == 1 result = self.blotter.open_orders[0][0] assert result.limit == 10 assert result.stop == 10 self.incr += 1 class TestOrderValueAlgorithm(TradingAlgorithm): def initialize(self): self.incr = 0 self.sale_price = None def handle_data(self, data): if self.incr == 0: assert 0 not in self.portfolio.positions else: assert self.portfolio.positions[0]['amount'] == \ self.incr, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.incr += 2 multiplier = 2. if isinstance(self.sid(0), Future): multiplier *= self.sid(0).contract_multiplier self.order_value(self.sid(0), data[0].price * multiplier) class TestTargetAlgorithm(TradingAlgorithm): def initialize(self): self.target_shares = 0 self.sale_price = None def handle_data(self, data): if self.target_shares == 0: assert 0 not in self.portfolio.positions else: assert self.portfolio.positions[0]['amount'] == \ self.target_shares, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.target_shares = np.random.randint(1, 30) self.order_target(self.sid(0), self.target_shares) class TestOrderPercentAlgorithm(TradingAlgorithm): def initialize(self): self.target_shares = 0 self.sale_price = None def handle_data(self, data): if self.target_shares == 0: assert 0 not in self.portfolio.positions self.order(self.sid(0), 10) self.target_shares = 10 return else: assert self.portfolio.positions[0]['amount'] == \ self.target_shares, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.order_percent(self.sid(0), .001) if isinstance(self.sid(0), Equity): self.target_shares += np.floor( (.001 * self.portfolio.portfolio_value) / data[0].price ) if isinstance(self.sid(0), Future): self.target_shares += np.floor( (.001 * self.portfolio.portfolio_value) / (data[0].price * self.sid(0).contract_multiplier) ) class TestTargetPercentAlgorithm(TradingAlgorithm): def initialize(self): self.target_shares = 0 self.sale_price = None def handle_data(self, data): if self.target_shares == 0: assert 0 not in self.portfolio.positions self.target_shares = 1 else: assert np.round(self.portfolio.portfolio_value * 0.002) == \ self.portfolio.positions[0]['amount'] * self.sale_price, \ "Orders not filled correctly." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.sale_price = data[0].price self.order_target_percent(self.sid(0), .002) class TestTargetValueAlgorithm(TradingAlgorithm): def initialize(self): self.target_shares = 0 self.sale_price = None def handle_data(self, data): if self.target_shares == 0: assert 0 not in self.portfolio.positions self.order(self.sid(0), 10) self.target_shares = 10 return else: print(self.portfolio) assert self.portfolio.positions[0]['amount'] == \ self.target_shares, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.order_target_value(self.sid(0), 20) self.target_shares = np.round(20 / data[0].price) if isinstance(self.sid(0), Equity): self.target_shares = np.round(20 / data[0].price) if isinstance(self.sid(0), Future): self.target_shares = np.round( 20 / (data[0].price * self.sid(0).contract_multiplier)) ############################ # AccountControl Test Algos# ############################ class SetMaxLeverageAlgorithm(TradingAlgorithm): def initialize(self, max_leverage=None): self.set_max_leverage(max_leverage=max_leverage) ############################ # TradingControl Test Algos# ############################ class SetMaxPositionSizeAlgorithm(TradingAlgorithm): def initialize(self, sid=None, max_shares=None, max_notional=None): self.order_count = 0 self.set_max_position_size(sid=sid, max_shares=max_shares, max_notional=max_notional) class SetMaxOrderSizeAlgorithm(TradingAlgorithm): def initialize(self, sid=None, max_shares=None, max_notional=None): self.order_count = 0 self.set_max_order_size(sid=sid, max_shares=max_shares, max_notional=max_notional) class SetDoNotOrderListAlgorithm(TradingAlgorithm): def initialize(self, sid=None, restricted_list=None): self.order_count = 0 self.set_do_not_order_list(restricted_list) class SetMaxOrderCountAlgorithm(TradingAlgorithm): def initialize(self, count): self.order_count = 0 self.set_max_order_count(count) class SetLongOnlyAlgorithm(TradingAlgorithm): def initialize(self): self.order_count = 0 self.set_long_only() class SetAssetDateBoundsAlgorithm(TradingAlgorithm): """ Algorithm that tries to order 1 share of sid 0 on every bar and has an AssetDateBounds() trading control in place. """ def initialize(self): self.register_trading_control(AssetDateBounds()) def handle_data(algo, data): algo.order(algo.sid(0), 1) class TestRegisterTransformAlgorithm(TradingAlgorithm): def initialize(self, *args, **kwargs): self.set_slippage(FixedSlippage()) def handle_data(self, data): pass class AmbitiousStopLimitAlgorithm(TradingAlgorithm): """ Algorithm that tries to buy with extremely low stops/limits and tries to sell with extremely high versions of same. Should not end up with any positions for reasonable data. """ def initialize(self, *args, **kwargs): self.asset = self.sid(kwargs.pop('sid')) def handle_data(self, data): ######## # Buys # ######## # Buy with low limit, shouldn't trigger. self.order(self.asset, 100, limit_price=1) # But with high stop, shouldn't trigger self.order(self.asset, 100, stop_price=10000000) # Buy with high limit (should trigger) but also high stop (should # prevent trigger). self.order(self.asset, 100, limit_price=10000000, stop_price=10000000) # Buy with low stop (should trigger), but also low limit (should # prevent trigger). self.order(self.asset, 100, limit_price=1, stop_price=1) ######### # Sells # ######### # Sell with high limit, shouldn't trigger. self.order(self.asset, -100, limit_price=1000000) # Sell with low stop, shouldn't trigger. self.order(self.asset, -100, stop_price=1) # Sell with low limit (should trigger), but also high stop (should # prevent trigger). self.order(self.asset, -100, limit_price=1000000, stop_price=1000000) # Sell with low limit (should trigger), but also low stop (should # prevent trigger). self.order(self.asset, -100, limit_price=1, stop_price=1) ################### # Rounding Checks # ################### self.order(self.asset, 100, limit_price=.00000001) self.order(self.asset, -100, stop_price=.00000001) ########################################## # Algorithm using simple batch transforms class ReturnPriceBatchTransform(BatchTransform): def get_value(self, data): assert data.shape[1] == self.window_length, \ "data shape={0} does not equal window_length={1} for data={2}".\ format(data.shape[1], self.window_length, data) return data.price @batch_transform def return_price_batch_decorator(data): return data.price @batch_transform def return_args_batch_decorator(data, *args, **kwargs): return args, kwargs @batch_transform def return_data(data, *args, **kwargs): return data @batch_transform def uses_ufunc(data, *args, **kwargs): # ufuncs like np.log should not crash return np.log(data) @batch_transform def price_multiple(data, multiplier, extra_arg=1): return data.price * multiplier * extra_arg class BatchTransformAlgorithm(TradingAlgorithm): def initialize(self, *args, **kwargs): self.refresh_period = kwargs.pop('refresh_period', 1) self.window_length = kwargs.pop('window_length', 3) self.args = args self.kwargs = kwargs self.history_return_price_class = [] self.history_return_price_decorator = [] self.history_return_args = [] self.history_return_arbitrary_fields = [] self.history_return_nan = [] self.history_return_sid_filter = [] self.history_return_field_filter = [] self.history_return_field_no_filter = [] self.history_return_ticks = [] self.history_return_not_full = [] self.return_price_class = ReturnPriceBatchTransform( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.return_price_decorator = return_price_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.return_args_batch = return_args_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.return_arbitrary_fields = return_data( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.return_nan = return_price_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=True ) self.return_sid_filter = return_price_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=True, sids=[0] ) self.return_field_filter = return_data( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=True, fields=['price'] ) self.return_field_no_filter = return_data( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=True ) self.return_not_full = return_data( refresh_period=1, window_length=self.window_length, compute_only_full=False ) self.uses_ufunc = uses_ufunc( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.price_multiple = price_multiple( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.iter = 0 self.set_slippage(FixedSlippage()) def handle_data(self, data): self.history_return_price_class.append( self.return_price_class.handle_data(data)) self.history_return_price_decorator.append( self.return_price_decorator.handle_data(data)) self.history_return_args.append( self.return_args_batch.handle_data( data, *self.args, **self.kwargs)) self.history_return_not_full.append( self.return_not_full.handle_data(data)) self.uses_ufunc.handle_data(data) # check that calling transforms with the same arguments # is idempotent self.price_multiple.handle_data(data, 1, extra_arg=1) if self.price_multiple.full: pre = self.price_multiple.rolling_panel.get_current().shape[0] result1 = self.price_multiple.handle_data(data, 1, extra_arg=1) post = self.price_multiple.rolling_panel.get_current().shape[0] assert pre == post, "batch transform is appending redundant events" result2 = self.price_multiple.handle_data(data, 1, extra_arg=1) assert result1 is result2, "batch transform is not idempotent" # check that calling transform with the same data, but # different supplemental arguments results in new # results. result3 = self.price_multiple.handle_data(data, 2, extra_arg=1) assert result1 is not result3, \ "batch transform is not updating for new args" result4 = self.price_multiple.handle_data(data, 1, extra_arg=2) assert result1 is not result4,\ "batch transform is not updating for new kwargs" new_data = deepcopy(data) for sidint in new_data: new_data[sidint]['arbitrary'] = 123 self.history_return_arbitrary_fields.append( self.return_arbitrary_fields.handle_data(new_data)) # nan every second event price if self.iter % 2 == 0: self.history_return_nan.append( self.return_nan.handle_data(data)) else: nan_data = deepcopy(data) nan_data.price = np.nan self.history_return_nan.append( self.return_nan.handle_data(nan_data)) self.iter += 1 # Add a new sid to check that it does not get included extra_sid_data = deepcopy(data) extra_sid_data[1] = extra_sid_data[0] self.history_return_sid_filter.append( self.return_sid_filter.handle_data(extra_sid_data) ) # Add a field to check that it does not get included extra_field_data = deepcopy(data) extra_field_data[0]['ignore'] = extra_sid_data[0]['price'] self.history_return_field_filter.append( self.return_field_filter.handle_data(extra_field_data) ) self.history_return_field_no_filter.append( self.return_field_no_filter.handle_data(extra_field_data) ) class BatchTransformAlgorithmMinute(TradingAlgorithm): def initialize(self, *args, **kwargs): self.refresh_period = kwargs.pop('refresh_period', 1) self.window_length = kwargs.pop('window_length', 3) self.args = args self.kwargs = kwargs self.history = [] self.batch_transform = return_price_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False, bars='minute' ) def handle_data(self, data): self.history.append(self.batch_transform.handle_data(data)) class SetPortfolioAlgorithm(TradingAlgorithm): """ An algorithm that tries to set the portfolio directly. The portfolio should be treated as a read-only object within the algorithm. """ def initialize(self, *args, **kwargs): pass def handle_data(self, data): self.portfolio = 3 class TALIBAlgorithm(TradingAlgorithm): """ An algorithm that applies a TA-Lib transform. The transform object can be passed at initialization with the 'talib' keyword argument. The results are stored in the talib_results array. """ def initialize(self, *args, **kwargs): if 'talib' not in kwargs: raise KeyError('No TA-LIB transform specified ' '(use keyword \'talib\').') elif not isinstance(kwargs['talib'], (list, tuple)): self.talib_transforms = (kwargs['talib'],) else: self.talib_transforms = kwargs['talib'] self.talib_results = dict((t, []) for t in self.talib_transforms) def handle_data(self, data): for t in self.talib_transforms: result = t.handle_data(data) if result is None: if len(t.talib_fn.output_names) == 1: result = np.nan else: result = (np.nan,) * len(t.talib_fn.output_names) self.talib_results[t].append(result) class EmptyPositionsAlgorithm(TradingAlgorithm): """ An algorithm that ensures that 'phantom' positions do not appear portfolio.positions in the case that a position has been entered and fully exited. """ def initialize(self, *args, **kwargs): self.ordered = False self.exited = False def handle_data(self, data): if not self.ordered: for s in data: self.order(self.sid(s), 100) self.ordered = True if not self.exited: amounts = [pos.amount for pos in itervalues(self.portfolio.positions)] if ( all([(amount == 100) for amount in amounts]) and (len(amounts) == len(data.keys())) ): for stock in self.portfolio.positions: self.order(self.sid(stock), -100) self.exited = True # Should be 0 when all positions are exited. self.record(num_positions=len(self.portfolio.positions)) class InvalidOrderAlgorithm(TradingAlgorithm): """ An algorithm that tries to make various invalid order calls, verifying that appropriate exceptions are raised. """ def initialize(self, *args, **kwargs): self.asset = self.sid(kwargs.pop('sids')[0]) def handle_data(self, data): from zipline.api import ( order_percent, order_target, order_target_percent, order_target_value, order_value, ) for style in [MarketOrder(), LimitOrder(10), StopOrder(10), StopLimitOrder(10, 10)]: with assert_raises(UnsupportedOrderParameters): order(self.asset, 10, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order(self.asset, 10, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_value(self.asset, 300, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_value(self.asset, 300, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_percent(self.asset, .1, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_percent(self.asset, .1, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target(self.asset, 100, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target(self.asset, 100, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target_value(self.asset, 100, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target_value(self.asset, 100, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target_percent(self.asset, .2, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target_percent(self.asset, .2, stop_price=10, style=style) ############################## # Quantopian style algorithms # Noop algo def initialize_noop(context): pass def handle_data_noop(context, data): pass # API functions def initialize_api(context): context.incr = 0 context.sale_price = None set_slippage(FixedSlippage()) def handle_data_api(context, data): if context.incr == 0: assert 0 not in context.portfolio.positions else: assert context.portfolio.positions[0]['amount'] == \ context.incr, "Orders not filled immediately." assert context.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." context.incr += 1 order(sid(0), 1) record(incr=context.incr) ########################### # AlgoScripts as strings noop_algo = """ # Noop algo def initialize(context): pass def handle_data(context, data): pass """ api_algo = """ from zipline.api import (order, set_slippage, FixedSlippage, record, sid) def initialize(context): context.incr = 0 context.sale_price = None set_slippage(FixedSlippage()) def handle_data(context, data): if context.incr == 0: assert 0 not in context.portfolio.positions else: assert context.portfolio.positions[0]['amount'] == \ context.incr, "Orders not filled immediately." assert context.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." context.incr += 1 order(sid(0), 1) record(incr=context.incr) """ api_get_environment_algo = """ from zipline.api import get_environment, order, symbol def initialize(context): context.environment = get_environment() handle_data = lambda context, data: order(symbol(0), 1) """ api_symbol_algo = """ from zipline.api import (order, symbol) def initialize(context): pass def handle_data(context, data): order(symbol(0), 1) """ call_order_in_init = """ from zipline.api import (order) def initialize(context): order(0, 10) pass def handle_data(context, data): pass """ access_portfolio_in_init = """ def initialize(context): var = context.portfolio.cash pass def handle_data(context, data): pass """ access_account_in_init = """ def initialize(context): var = context.account.settled_cash pass def handle_data(context, data): pass """ call_all_order_methods = """ from zipline.api import (order, order_value, order_percent, order_target, order_target_value, order_target_percent, sid) def initialize(context): pass def handle_data(context, data): order(sid(0), 10) order_value(sid(0), 300) order_percent(sid(0), .1) order_target(sid(0), 100) order_target_value(sid(0), 100) order_target_percent(sid(0), .2) """ record_variables = """ from zipline.api import record def initialize(context): context.stocks = [0, 1] context.incr = 0 def handle_data(context, data): context.incr += 1 record(incr=context.incr) """ record_float_magic = """ from zipline.api import record def initialize(context): context.stocks = [0, 1] context.incr = 0 def handle_data(context, data): context.incr += 1 record(data=float('%s')) """
31.181153
79
0.607347
7942d36247cc0ab01377b2798b873a841c07bfc7
3,234
py
Python
mpf/devices/new_device_template.py
xsdk/mpf
f99fdfb9cbe7f13d42a914e6ace13e05214c8739
[ "MIT" ]
null
null
null
mpf/devices/new_device_template.py
xsdk/mpf
f99fdfb9cbe7f13d42a914e6ace13e05214c8739
[ "MIT" ]
null
null
null
mpf/devices/new_device_template.py
xsdk/mpf
f99fdfb9cbe7f13d42a914e6ace13e05214c8739
[ "MIT" ]
null
null
null
""" Template file for a new device driver.""" # Documentation and more info at http://missionpinball.com/framework # Search this file for 'YourNewDevice' and replace with your device name import logging from mpf.system.devices import Device class YourNewDevice(Device): config_section = 'YourNewDevices' collection = 'yournewdevices' """ The two class attributes above control how devices based on this class are configured and how they're presented to the MPF. `config_section` is the name of the section in the machine configuration files that contains settings for this type of device. The game programmer would then create subsections for each device of this type, with individual settings under each one. For example, in the machine configuration files: YourNewDevices: device1: setting1: foo setting2: bar tags: tag2, tag3 label: A plain english description of this device device2: setting1: foo setting2: bar tags: tag1, tag2 label: A plain english description of this device `collection` is the DeviceCollection instance that will be created to hold all the devices of this new type. For example, if collection is 'yournewdevice', a collection will be created which is accessible via self.machine.yournewdevices. """ @classmethod def device_class_init(cls, machine): """This @classmethod is optional, but is called automatically before individual devices based on this device class are created. You can use it for any system-wide settings, configurations, or objects that you might need for these types of devices outside of the individual devices themselves. For example, led.py uses this to make sure the global fade_ms default fade time is a float. The EM score reels devices use this to set up the score controller that has to exist to manage them. You can safely delete this method if your device doesn't need it. (Most don't need it.) """ pass def __init__(self, machine, name, config, collection=None): self.log = logging.getLogger('YourNewDevice.' + name) super(YourNewDevice, self).__init__(machine, name, config, collection) # Since this new device class is a subclass of Device and you're calling # super(), several attributes are available to you, including: # self.machine - a reference to the main machine controller object # self.name - a string of the name of this device ('device1', 'device2', etc.) # self.tags - any tags that were specified in the machine config files # self.label - a plain english description from the machine config files # Next, set config defaults # Typically you'd want to configure the default settings so your device # works even if the game programmer doesn't specify all the options for this # device in their machine configuration files. # For example: # if 'foo' not in self.config: # self.config['foo'] = 'bar' # Finally, add the event handlers, methods, and attributes you need for your # new device.
39.439024
82
0.694187
7942d378242cb6e3c6f0e8917fcaa171e5de402f
656
py
Python
Course3/Lab4/validations.py
DeniSaputra-art/it-cert-automation-practice
4bdfdcd8aedc85735b71bfa980e525a92690e950
[ "Apache-2.0" ]
null
null
null
Course3/Lab4/validations.py
DeniSaputra-art/it-cert-automation-practice
4bdfdcd8aedc85735b71bfa980e525a92690e950
[ "Apache-2.0" ]
null
null
null
Course3/Lab4/validations.py
DeniSaputra-art/it-cert-automation-practice
4bdfdcd8aedc85735b71bfa980e525a92690e950
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import re def validate_user(username, minlen): """Checks if the received username matches the required conditions.""" if type(username) != str: raise TypeError("username must be a string") if minlen < 1: raise ValueError("minlen must be at least 1") # Usernames can't be shorter than minlen if len(username) > minlen: return False # Usernames can only use letters, numbers, dots and underscores if not re.match('^[a-z0-9._]*$', username): return False # Usernames can't begin with a number if username[0].isnumeric(): return False return True
26.24
74
0.646341
7942d424f593883c757a32fe159a7e374b440403
25,068
py
Python
backend/controller/dir.py
artontech/ArtonFileManager
b099c5294ab731b0a0f1eb7dbe35397df4515863
[ "Apache-2.0" ]
1
2020-11-17T12:45:47.000Z
2020-11-17T12:45:47.000Z
backend/controller/dir.py
artontech/ArtonFileManager
b099c5294ab731b0a0f1eb7dbe35397df4515863
[ "Apache-2.0" ]
null
null
null
backend/controller/dir.py
artontech/ArtonFileManager
b099c5294ab731b0a0f1eb7dbe35397df4515863
[ "Apache-2.0" ]
null
null
null
''' dir ''' import json import logging import os import shutil import tornado.gen from tornado.concurrent import run_on_executor from backend.controller.default import (DefaultHandler, DefaultWSHandler) from backend.model.attribute import Attribute from backend.model.dir import Dir from backend.model.file import File from backend.service import workspace from backend.util import (image, io, string) class DirWebSocket(DefaultWSHandler): name = "dir" def open(self): logging.info("[ws] Dir WebSocket opened") def on_message(self, msg): msg_json = json.loads(msg, strict=False) msg_type = msg_json.get("type", None) if msg_type == "init": wid = msg_json.get("wid", None) logging.info("[ws] dir init: wid=%s", wid) if wid is None: self.write_json(msg_type="init", err="no_wid") return self.space = workspace.get_by_id(wid) if self.space is None or not self.space.enabled: self.write_json(msg_type="init", err="no_workspace") return self.space.add_ws(self) self.write_json(msg_type="init", status="success", data=self.space.serializable()) def on_close(self): logging.info("[ws] close") if hasattr(self, "space") and self.space is not None: self.space.del_ws(self) class Import(DefaultHandler): ''' import dir ''' def data_received(self, chunk): pass def get(self): ''' get ''' self.post() @tornado.gen.coroutine def post(self): ''' post ''' wid = self.get_arg("wid") path = self.get_arg("path") base_id = int(self.get_arg("current")) delete = self.get_arg("delete") encrypt = self.get_arg("encrypt") yield self.import_dir(wid, path, base_id, delete, encrypt) @run_on_executor def import_dir(self, wid, path, base_id, delete, encrypt): # trim input if not isinstance(encrypt, str) or encrypt.strip() == "": encrypt = None # get workspace first space = workspace.get_by_id(wid) if space is None or not space.enabled: self.write_json(err="no_workspace") return # dup image backup dir bak_path = os.path.join(space.data_path, "bak") os.makedirs(bak_path, exist_ok=True) # prepare miss id miss_attribute_id = space.driver.get_miss_ids("attribute") miss_dir_id = space.driver.get_miss_ids("dir") miss_file_id = space.driver.get_miss_ids("file") # get directory structure, write to database table `dir` & `file` dir_id_map = {} id_dir_map = {} dir_len = 0 for current, _, files in os.walk(path): if current not in dir_id_map: dir_name = os.path.basename(current) parent = os.path.dirname(current) parent_id = dir_id_map.get(parent, {}).get("id", base_id) # check exist dir_list = space.driver.get_dirs( parent=parent_id, delete=0, name=dir_name) if len(dir_list) > 0: current_id = dir_list[0].id dir_ok = True logging.info("existing dir %s:%s", current_id, current) else: # add dir to table `dir` dir_model = Dir() # if has miss id, use it if len(miss_dir_id) > 0: dir_model.id = miss_dir_id[0] dir_model.parent = parent_id dir_model.name = dir_name current_id, dir_ok = space.driver.add_dir(dir_model) logging.info("add dir %s:%s", current_id, current) # remove id if dir_ok and current_id in miss_dir_id: miss_dir_id.remove(current_id) dir_id_map[current] = {"id": current_id, "parent": parent_id} id_dir_map[current_id] = current # add files to table `file` file_ok = True if len(files) > 0: # gen exist file dict file_model = File() file_model.none() file_model.dir = current_id file_model.delete = 0 file_list, _ = space.driver.get_files(file_model) exist_files = {} for obj in file_list: f = obj.name + obj.ext exist_files[f] = True # add files for f in files: if not exist_files.get(f, False): sp = os.path.splitext(f) ext = sp[1].lower() if sp[1] is not None else "" file = File() # if has missing id, use it if len(miss_file_id) > 0: file.id = miss_file_id[0] file.dir = current_id file.name = sp[0] file.ext = ext file_id, file_ok = space.driver.add_file(file) if not file_ok: break if file_id in miss_file_id: miss_file_id.remove(file_id) if dir_ok and file_ok: space.driver.commit() else: space.driver.rollback() space.send_ws(name="dir", msg_type="import", err="db", data={ "type": "msg", "msg": "structure_fail" }) self.write_json(err="structure_fail") return dir_len += 1 if dir_len % 100 == 0: space.send_ws(name="dir", msg_type="import", status="run", data={ "type": "dir", "now": dir_len }) space.send_ws(name="dir", msg_type="import", status="run", data={ "type": "msg", "msg": "structure_done" }) # get file list (not processed) file_model = File() file_model.none() file_model.delete = 0 file_list, _ = space.driver.get_files(file_model, attr_null=True) file_list_len = len(file_list) step = int(file_list_len / 100) + 1 for i in range(file_list_len): file_id = file_list[i].id dir_id = file_list[i].dir file_ext = file_list[i].ext file_name = file_list[i].name file_path = os.path.join(id_dir_map.get( dir_id, None), string.join(file_name, file_ext)) logging.info("Now: %d, %s", file_id, file_path) # open file & find dup CRC & SHA with open(file_path, "rb") as f: file_data = f.read() file_size = io.get_file_size(file_path) file_crc32 = io.get_crc_32(file_data) file_sha256 = io.get_sha_256(file_data) # if attr exist hash_file_name = io.format_file_name( file_size, file_crc32, file_sha256, None) move_file_ok = True attr_list = space.driver.get_attrs( size=file_size, crc32=file_crc32, sha256=file_sha256) attr = None if len(attr_list) > 0: attr = attr_list[0] logging.warning("[import] duplicate file %s with %s(%s)", file_path, attr.file, attr.id) space.send_ws(name="dir", msg_type="import", status="run", data={ "type": "warn", "msg": "dup_file", "file": file_path, "files": [attr.file, file_id] }) attr_ok = True else: # add attr attr = Attribute() # if has miss id, use it if len(miss_attribute_id) > 0: attr.id = miss_attribute_id[0] attr.file = file_id attr.type = 0 attr.size = file_size attr.crc32 = file_crc32 attr.sha256 = file_sha256 attr.ext = file_ext attr.encrypt = encrypt attr.key = io.random_key(32) # load image info if io.is_cv_support(attr.ext): try: img = image.parse_image(file_data) attr.height = img.shape[0] attr.width = img.shape[1] except Exception as e: logging.error( "[import] unable to load image %s. %s", file_path, e) space.send_ws(name="dir", msg_type="import", status="run", data={ "type": "warn", "msg": "load_img_fail", "file": file_path}) try: attr.ahash = image.a_hash(img) attr.dhash = image.d_hash(img) attr.phash = image.p_hash(img) except Exception as e: logging.error( "[import] unable to calc image hash %s. %s", file_path, e) space.send_ws(name="dir", msg_type="import", status="run", data={ "type": "warn", "msg": "calc_hash_fail", "file": file_path}) # move file new_file_path = os.path.abspath( os.path.join(space.data_path, hash_file_name)) if os.path.exists(new_file_path): bak_file_path = os.path.join( bak_path, os.path.basename(new_file_path)) logging.warning( "[import] dst path exist: %s, copy to: %s", new_file_path, bak_file_path) shutil.copy(new_file_path, bak_file_path) try: if attr.encrypt is not None: io.encrypt_data_to( file_data, attr.key, new_file_path) if delete: os.remove(file_path) else: if delete: os.rename(file_path, new_file_path) else: shutil.copy(file_path, new_file_path) except IOError as e: move_file_ok = False logging.error("[import] unable to copy file. %s", e) space.send_ws(name="dir", msg_type="import", data={ "type": "msg", "msg": "io_error", "file": file_path, "error": e.strerror}) # add `attribute` attr.id, attr_ok = space.driver.add_attribute(attr) # remove id if attr_ok and attr.id in miss_attribute_id: miss_attribute_id.remove(attr.id) # update attribute id and hash file name to `file` file = File() file.none() file.id = file_id file.attribute = attr.id update_ok = space.driver.update_file(file) if attr_ok and update_ok and move_file_ok: space.driver.commit() else: space.driver.rollback() space.send_ws(name="dir", msg_type="import", data={ "type": "msg", "msg": "attr_fail"}) self.write_json(err="attr_fail") return if i % step == 0: space.send_ws(name="dir", msg_type="import", status="run", data={ "type": "files_progress", "total": file_list_len, "now": i}) space.send_ws(name="dir", msg_type="import", status="success", data={ "type": "msg", "msg": "import_done" }) self.write_json(status="success", data=file_list_len) class Export(DefaultHandler): ''' export dir ''' def data_received(self, chunk): pass def get(self): ''' get ''' self.post() def post(self): ''' post ''' wid = self.get_arg("wid") current = self.get_arg("current") name = self.get_arg("name") path = os.path.abspath(self.get_arg("path")) # get workspace first space = workspace.get_by_id(wid) if space is None or not space.enabled: self.write_json(err="no_workspace") return # process id_dir_map = { current: os.path.join(path, name) } dir_stack = [current] while len(dir_stack) > 0: dir_id = dir_stack.pop() dir_path = id_dir_map.get(dir_id, None) if dir_path is None: logging.warning("[export] dir_path is none %s", dir_id) continue os.makedirs(dir_path, exist_ok=True) # fetch from db result_list, _ = space.driver.get_dirs_files(current=dir_id) for obj in result_list: if obj.type == "dir": if id_dir_map.get(obj.id, None) is not None: continue id_dir_map[obj.id] = os.path.join(dir_path, obj.name) dir_stack.append(obj.id) elif obj.type == "file": # export file_path = os.path.join(dir_path, obj.name + obj.ext) if os.path.exists(file_path): continue # get attr attr_list = space.driver.get_attrs(item_id=obj.attribute) if len(attr_list) <= 0: self.write_json(err="no_attr") return attr = attr_list[0] hash_file_name = io.format_file_name( attr.size, attr.crc32, attr.sha256, None) # path hash_file_path = os.path.join( space.data_path, hash_file_name) if not os.path.exists(hash_file_path): self.write_json(err="no_data", data={ "file": hash_file_path}) return # decrypt if attr.encrypt is not None and attr.key is not None: io.decrypt_file_to(hash_file_path, attr.key, file_path) else: shutil.copy(hash_file_path, file_path) self.write_json(status="success", data=current) class List(DefaultHandler): ''' list dir ''' def data_received(self, chunk): pass def get(self): ''' get ''' self.post() def post(self): ''' post ''' wid = self.get_arg("wid") current = int(self.get_arg("current")) show_thumb = string.str2bool(self.get_arg("thumb")) get_dir = string.str2bool(self.get_arg("dir")) get_file = string.str2bool(self.get_arg("file")) page_no = self.get_arg("page_no", default=None) page_size = self.get_arg("page_size", default=None) # get workspace first space = workspace.get_by_id(wid) if space is None or not space.enabled: self.write_json(err="no_workspace") return # fetch from db result_list = [] total = None if get_dir and get_file: result_list, total = space.driver.get_dirs_files( current, page_no, page_size) elif get_dir: dir_list = space.driver.get_dirs(parent=current, delete=0) result_list.extend(dir_list) elif get_file: file_model = File() file_model.none() file_model.dir = current file_model.delete = 0 file_list, _ = space.driver.get_files(file_model) result_list.extend(file_list) # process for obj in result_list: if obj.type == "dir": obj.icon = self.static_url("folder.png", include_version=False) # get attribute tag obj.tags = space.driver.union_attribute_tags( target=obj.id, type_id=2) elif obj.type == "file": obj.icon = self.static_url(io.get_icon_name( obj.ext) + ".png", include_version=False) if show_thumb and io.is_web_img(obj.ext): obj.thumb = "/media/link?wid=%s&attribute=%s&filename=thumb" % ( wid, obj.attribute) # get attr attr_list = space.driver.get_attrs(item_id=obj.attribute) if len(attr_list) <= 0: self.write_json(err="no_attr") return obj.attr = attr_list[0] # get attribute tag by attribute id obj.tags = space.driver.union_attribute_tags( target=obj.attribute, type_id=1) self.write_json(status="success", data={ "list": result_list, "total": total}) class Detail(DefaultHandler): ''' file or dir detail ''' def data_received(self, chunk): pass def get(self): ''' get ''' self.post() def post(self): ''' post ''' wid = self.get_arg("wid") target = int(self.get_arg("target")) target_type = self.get_arg("type") # get workspace first space = workspace.get_by_id(wid) if space is None or not space.enabled: self.write_json(err="no_workspace") return if target_type == "file": # get attr attr_list = space.driver.get_attrs(item_id=target) if len(attr_list) <= 0: self.write_json(err="no_attr") return attr = attr_list[0] self.write_json(status="success", data=attr) return elif target_type == "dir": result = {} size = 0 file_count = 0 # get dirs dir_list = [target] space.driver.enum_dirs(dir_list, target) # enum files file_model = File() for dir_id in dir_list: file_model.none() file_model.dir = dir_id file_model.delete = 0 file_list, _ = space.driver.get_files(file_model) if len(file_list) <= 0: continue file_count += len(file_list) for obj in file_list: # get attr attr_list = space.driver.get_attrs(item_id=obj.attribute) if len(attr_list) <= 0: self.write_json(err="no_attr") return attr = attr_list[0] size += attr.size result["dir_count"] = len(dir_list) - 1 result["file_count"] = file_count result["size"] = size self.write_json(status="success", data=result) return self.write_json(err="unknown_type") class Create(DefaultHandler): ''' create dir ''' def data_received(self, chunk): pass def get(self): ''' get ''' self.post() def post(self): ''' post ''' wid = self.get_arg("wid") current = self.get_arg("current") dir_name = self.get_arg("name") # get workspace first space = workspace.get_by_id(wid) if space is None or not space.enabled: self.write_json(err="no_workspace") return # check exist dir_list = space.driver.get_dirs( parent=current, delete=0, name=dir_name) if len(dir_list) > 0: current_id = dir_list[0].id logging.info("existing dir %s:%s", current_id, current) self.write_json(err="dir_exist") return else: # add dir to table `dir` dir_model = Dir() dir_model.parent = current dir_model.name = dir_name current_id, dir_ok = space.driver.add_dir(dir_model) logging.info("add dir %s:%s", current_id, current) # commit to db if dir_ok: space.driver.commit() else: space.driver.rollback() self.write_json(err="db") return self.write_json(status="success", data=current_id) class MoveTo(DefaultHandler): ''' move to dir ''' def data_received(self, chunk): pass def get(self): ''' get ''' self.post() def post(self): ''' post ''' wid = self.get_arg("wid") target_type = self.get_arg("type") id_from = self.get_arg("from") id_to = self.get_arg("to") # get workspace first space = workspace.get_by_id(wid) if space is None or not space.enabled: self.write_json(err="no_workspace") return update_ok = False if target_type == "file": # update dir id of file file = File() file.none() file.id = id_from file.dir = id_to update_ok = space.driver.update_file(file) elif target_type == "dir": # update parent of dir dir_model = Dir() dir_model.none() dir_model.id = id_from dir_model.parent = id_to update_ok = space.driver.update_dir(dir_model) else: self.write_json(err="unknown_type") return # commit to db if update_ok: space.driver.commit() else: space.driver.rollback() self.write_json(err="db") return self.write_json(status="success", data=id_to) class Update(DefaultHandler): ''' update ''' def data_received(self, chunk): pass def get(self): ''' get ''' self.post() def post(self): ''' post ''' wid = self.get_arg("wid") types = str(self.get_arg("type")).split(',') targets = [int(s) for s in str(self.get_arg("target")).split(',')] name = self.get_arg("name", default=None) ext = self.get_arg("ext", default=None) delete = self.get_arg("delete", default=None) # check param total = len(types) if total != len(targets): self.write_json(err="param") return # get workspace first space = workspace.get_by_id(wid) if space is None or not space.enabled: self.write_json(err="no_workspace") return update_ok = False for i in range(total): target_type = types[i] target = targets[i] if target_type == "file": # update dir id of file file = File() file.none() file.id = target file.name = name file.ext = ext file.delete = delete update_ok = space.driver.update_file(file) elif target_type == "dir": # update parent of dir dir_model = Dir() dir_model.none() dir_model.id = target dir_model.name = name dir_model.delete = delete update_ok = space.driver.update_dir(dir_model) else: self.write_json(err="unknown_type") return if not update_ok: break # commit to db if update_ok: space.driver.commit() else: space.driver.rollback() self.write_json(err="db") return self.write_json(status="success", data=len(targets))
36.17316
104
0.482129
7942d48fd50dc39669e67fba02a3d5f22e5abe49
1,710
py
Python
tests/test_server_functionality.py
liannnix/ansible-samba
e1a5d1347c5336daa92dfb1b543f2a64e0e7252f
[ "MIT" ]
null
null
null
tests/test_server_functionality.py
liannnix/ansible-samba
e1a5d1347c5336daa92dfb1b543f2a64e0e7252f
[ "MIT" ]
12
2018-06-15T10:47:50.000Z
2020-03-03T12:45:16.000Z
tests/test_server_functionality.py
liannnix/ansible-samba
e1a5d1347c5336daa92dfb1b543f2a64e0e7252f
[ "MIT" ]
9
2018-05-31T08:10:11.000Z
2021-10-01T11:20:11.000Z
# coding=utf-8 """Domain controllers feature tests.""" from pytest_bdd import ( given, scenario, then, when, ) from conftest import assert_cmd import pytest @scenario('features/server_functionality.feature', 'Each domain controller can see each other') def test_each_domain_controller_can_see_each_other(ssh_dcs, dcs): """Each domain controller can see each other.""" pass @given('From any domain controller') def from_any_domain_controller(): """From any domain controller.""" @when('I ping other controllers') def i_ping_other_controllers(ssh_dcs, dcs): """I ping other controllers.""" ssh_dcs.exec_command('ping -c1 -w1 {}'.format(dcs)) @then('They reply to ping request') def they_reply_to_ping_request(ssh_dcs): """They reply to ping request.""" assert ssh_dcs.res['rc'] == 0, "[{}]: {} failed.".format(ssh_dcs.host, ssh_dcs.res['cmd']) @scenario('features/server_functionality.feature', 'Users list') def test_users_list(ssh_dcs): """Users list.""" pass @when('I try to get users list') def i_try_to_get_users_list(ssh_dcs): """I try to get users list.""" # expect = lambda res: res['rc'] == 0 and len(res['stdout']) > 0 and 'Administrator' in res['stdout'] # assert_cmd(expect, ssh_dcs.exec_command('samba-tool user list')) ssh_dcs.exec_command('sudo samba-tool user list') @then('It returns non empty list that contains Administrator user') def it_returns_non_empty_list_that_contains_administrator_user(ssh_dcs): """It returns non empty list that contains Administrator user.""" res = ssh_dcs.res assert res['rc'] == 0 assert len(res['stdout']) > 0 assert 'Administrator' in res['stdout'].split('\n')
30
104
0.704678
7942d5227845433639071f76f7e3440907f51ee2
384
py
Python
dataset/main.py
Datalab-AUTH/MSc---Lampridis---MANIFEST
9c13018313f2681dd27ef56ac0eb8470319a1749
[ "Apache-2.0" ]
3
2021-03-28T20:13:11.000Z
2021-08-23T05:52:27.000Z
dataset/main.py
Datalab-AUTH/MSc---Lampridis---MANIFEST
9c13018313f2681dd27ef56ac0eb8470319a1749
[ "Apache-2.0" ]
null
null
null
dataset/main.py
Datalab-AUTH/MSc---Lampridis---MANIFEST
9c13018313f2681dd27ef56ac0eb8470319a1749
[ "Apache-2.0" ]
null
null
null
import create_dataset def main(): data_separated = create_dataset.get_separated_dataset() data_combined = create_dataset.get_combined_dataset() print(data_separated) print(data_combined) data_separated.to_csv('data_csv/data_separated.csv', index=False) data_combined.to_csv('data_csv/data_combined.csv', index=False) if __name__ == "__main__": main()
24
69
0.755208
7942d558e88fc199a45bf86984a08b4e8641bb48
8,761
py
Python
oneflow/python/test/ops/test_nn_conv2d_padding_dynamic.py
wanghongsheng01/framework_enflame
debf613e05e3f5ea8084c3e79b60d0dd9e349526
[ "Apache-2.0" ]
1
2021-04-14T03:19:35.000Z
2021-04-14T03:19:35.000Z
oneflow/python/test/ops/test_nn_conv2d_padding_dynamic.py
wanghongsheng01/framework_enflame
debf613e05e3f5ea8084c3e79b60d0dd9e349526
[ "Apache-2.0" ]
1
2021-06-16T08:37:50.000Z
2021-06-16T08:37:50.000Z
oneflow/python/test/ops/test_nn_conv2d_padding_dynamic.py
wanghongsheng01/framework_enflame
debf613e05e3f5ea8084c3e79b60d0dd9e349526
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import os from collections import OrderedDict import numpy as np import oneflow as flow import tensorflow as tf from test_util import GenArgList import oneflow.typing as oft gpus = tf.config.experimental.list_physical_devices("GPU") for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) global_storage = {} def global_storage_setter(name): global global_storage def _set(x): global_storage[name] = x return _set def compare_with_tensorflow( device_type, x_shape, filters, kernel_size, groups, of_padding="SAME", tf_padding="SAME", stride=1, data_format="NCHW", ): assert device_type in ["gpu", "cpu"] flow.clear_default_session() func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) func_config.default_logical_view(flow.scope.mirrored_view()) if data_format == "NCHW": xy_data_transpose = (0, 2, 3, 1) weight_data_transpose = (2, 3, 1, 0) else: xy_data_transpose = (0, 1, 2, 3) weight_data_transpose = (1, 2, 3, 0) @flow.global_function(type="train", function_config=func_config) def DynamicConvJob(x: oft.ListNumpy.Placeholder((10, 3, 100, 100))): with flow.scope.placement(device_type, "0:0"): x_var = flow.get_variable( name="v1", shape=(1,), dtype=flow.float, initializer=flow.zeros_initializer(), ) x_var = flow.cast_to_current_logical_view(x_var) x += x_var if data_format == "NCHW": weight_shape = (filters, x_shape[1] // groups, kernel_size, kernel_size) else: weight_shape = (filters, kernel_size, kernel_size, x_shape[3] // groups) weight = flow.get_variable( "conv-weight", shape=weight_shape, dtype=flow.float, initializer=flow.random_uniform_initializer(minval=0, maxval=100), ) weight = flow.cast_to_current_logical_view(weight) loss = flow.nn.conv2d( x, weight, strides=[stride, stride], padding=of_padding, data_format=data_format, dilations=[1, 1], groups=groups, ) flow.optimizer.SGD( flow.optimizer.PiecewiseConstantScheduler([], [1e-4]), momentum=0 ).minimize(loss) flow.watch(x, global_storage_setter("x")) flow.watch_diff(x, global_storage_setter("x_diff")) flow.watch(weight, global_storage_setter("weight")) flow.watch_diff(weight, global_storage_setter("weight_diff")) flow.watch(loss, global_storage_setter("loss")) flow.watch_diff(loss, global_storage_setter("loss_diff")) return loss # OneFlow data = [np.random.rand(*x_shape).astype(np.float32)] of_out = DynamicConvJob(data).get().numpy_list()[0] # TensorFlow with tf.GradientTape(persistent=True) as tape: x = tf.Variable(data[0].transpose(xy_data_transpose)) assert groups > 0 assert x_shape[1] % groups == 0 assert filters % groups == 0 weight = tf.Variable( global_storage["weight"].numpy().transpose(weight_data_transpose) ) tf_out = tf.nn.conv2d( x, weight, strides=[1, stride, stride, 1], padding=tf_padding, data_format="NHWC", ) idx = np.where(np.abs(of_out.transpose(xy_data_transpose) - tf_out.numpy()) > 5e-4) assert np.allclose( of_out.transpose(xy_data_transpose), tf_out.numpy(), rtol=1e-3, atol=1e-3, ) loss_diff = global_storage["loss_diff"].numpy_list()[0].transpose(xy_data_transpose) tf_x_diff = tape.gradient(tf_out, x, loss_diff) tf_weight_diff = tape.gradient(tf_out, weight, loss_diff) rtol = 1e-4 atol = 1e-4 if device_type == "cpu": rtol *= 100 atol *= 100 assert np.allclose( global_storage["x_diff"].numpy_list()[0].transpose(xy_data_transpose), tf_x_diff.numpy(), rtol=rtol, atol=atol, ), ( global_storage["x_diff"].numpy_list()[0].transpose(xy_data_transpose) - tf_x_diff.numpy() ) assert np.allclose( global_storage["weight_diff"].numpy().transpose(weight_data_transpose), tf_weight_diff.numpy(), rtol=5e-3, atol=5e-3, ) @flow.unittest.skip_unless_1n1d() @unittest.skip("skip_for_ci") class TestNnConv2dPaddingDynamic(flow.unittest.TestCase): def test_padding_valid(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu"] arg_dict["x_shape"] = [(10, 3, 10, 10), (10, 3, 11, 11)] arg_dict["filters"] = [64] arg_dict["kernel_size"] = [3, 2] arg_dict["groups"] = [1] arg_dict["of_padding"] = ["VALID"] arg_dict["tf_padding"] = ["VALID"] arg_dict["stride"] = [1, 2] arg_dict["data_format"] = ["NCHW"] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_padding_same(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu"] arg_dict["x_shape"] = [(10, 3, 10, 10), (10, 3, 11, 11)] arg_dict["filters"] = [64] arg_dict["kernel_size"] = [3, 2] arg_dict["groups"] = [1] arg_dict["of_padding"] = ["SAME_UPPER"] arg_dict["tf_padding"] = ["SAME"] arg_dict["stride"] = [1, 2] arg_dict["data_format"] = ["NCHW"] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_pad_list1(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu"] arg_dict["x_shape"] = [(10, 3, 10, 10), (10, 3, 11, 11)] arg_dict["filters"] = [64] arg_dict["kernel_size"] = [3, 2] arg_dict["groups"] = [1] arg_dict["of_padding"] = [[[0, 0], [0, 0], [0, 1], [1, 0]]] arg_dict["tf_padding"] = [[[0, 0], [0, 1], [1, 0], [0, 0]]] arg_dict["stride"] = [1, 2] arg_dict["data_format"] = ["NCHW"] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_pad_list2(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu"] arg_dict["x_shape"] = [(10, 3, 10, 10), (10, 3, 11, 11)] arg_dict["filters"] = [64] arg_dict["kernel_size"] = [3, 2] arg_dict["groups"] = [1] arg_dict["of_padding"] = [[[0, 0], [0, 0], [1, 1], [1, 1]]] arg_dict["tf_padding"] = [[[0, 0], [1, 1], [1, 1], [0, 0]]] arg_dict["stride"] = [1, 2] arg_dict["data_format"] = ["NCHW"] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_pad_list3(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu"] arg_dict["x_shape"] = [(10, 3, 10, 10), (10, 3, 11, 11)] arg_dict["filters"] = [64] arg_dict["kernel_size"] = [3, 2] arg_dict["groups"] = [1] arg_dict["of_padding"] = [[[0, 0], [0, 0], [1, 0], [1, 0]]] arg_dict["tf_padding"] = [[[0, 0], [1, 0], [1, 0], [0, 0]]] arg_dict["stride"] = [1, 2] arg_dict["data_format"] = ["NCHW"] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) def test_pad_list4(test_case): arg_dict = OrderedDict() arg_dict["device_type"] = ["gpu"] arg_dict["x_shape"] = [(10, 3, 10, 10), (10, 3, 11, 11)] arg_dict["filters"] = [64] arg_dict["kernel_size"] = [3, 2] arg_dict["groups"] = [1] arg_dict["of_padding"] = [[[0, 0], [0, 0], [10, 2], [10, 2]]] arg_dict["tf_padding"] = [[[0, 0], [10, 2], [10, 2], [0, 0]]] arg_dict["stride"] = [1, 2] arg_dict["data_format"] = ["NCHW"] for arg in GenArgList(arg_dict): compare_with_tensorflow(*arg) if __name__ == "__main__": unittest.main()
34.904382
88
0.583267
7942d697df2653883968f241b4d85459c86b7a48
3,792
py
Python
WatchDogs_Visualisation/oldApps/pie-chart/venv/dash-test-3.py
tnreddy09/WatchDogs_StockMarketAnalysis
0c72430da633785fcb14e40d8b007c86081d515d
[ "Apache-2.0" ]
4
2020-02-05T11:26:47.000Z
2021-05-26T07:48:46.000Z
WatchDogs_Visualisation/oldApps/pie-chart/venv/dash-test-3.py
prashanth-thipparthi/WatchDogs_StockMarketAnalysis
0c72430da633785fcb14e40d8b007c86081d515d
[ "Apache-2.0" ]
null
null
null
WatchDogs_Visualisation/oldApps/pie-chart/venv/dash-test-3.py
prashanth-thipparthi/WatchDogs_StockMarketAnalysis
0c72430da633785fcb14e40d8b007c86081d515d
[ "Apache-2.0" ]
null
null
null
import dash import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Output, Event, Input import plotly import plotly.graph_objs as go from WatchDogs_MongoWrapper import MongoWrapper app = dash.Dash(__name__) app.layout = html.Div([ html.Div(children=[ html.Div( dcc.Dropdown( id='my_dropdown', placeholder='Select a stock', options=[ {'label': 'Microsoft', 'value': 'Microsoft'}, {'label': 'Facebook', 'value': 'Facebook'}, {'label': 'Visa', 'value': 'Visa'}, {'label': 'Nvidia', 'value': 'Nvidia'}, {'label': 'Google', 'value': 'Google'}, {'label': 'Nike', 'value': 'Nike'}, {'label': 'Alibaba', 'value': 'Alibaba'}, {'label': 'Netflix', 'value': 'Netflix'}, {'label': 'PayPal', 'value': 'PayPal'}, {'label': 'Ebay', 'value': 'Ebay'}, {'label': 'Tesla', 'value': 'Tesla'}, {'label': 'Twitter', 'value': 'Twitter'}, {'label': 'Disney', 'value': 'Disney'}, {'label': 'Pepsi', 'value': 'Pepsi'}, {'label': 'Lyft', 'value': 'Lyft'}, {'label': 'Chevron', 'value': 'Chevron'}, {'label': 'Cisco', 'value': 'Cisco'}, {'label': 'Intel', 'value': 'Intel'}, {'label': 'Verizon', 'value': 'Verizon'}, {'label': 'AT&T', 'value': 'AT&T'}, {'label': 'Nokia', 'value': 'Nokia'}, {'label': 'Comcast', 'value': 'Comcast'}, {'label': 'Kroger', 'value': 'Kroger'}, {'label': 'Boeing', 'value': 'Boeing'}, {'label': 'Starbucks', 'value': 'Starbucks'}, {'label': 'Walmart', 'value': 'Walmart'}, {'label': 'Adobe', 'value': 'Adobe'}, {'label': 'Dell', 'value': 'Dell'}, {'label': 'Ford', 'value': 'Ford'}, {'label': 'Samsung', 'value': 'Samsung'}, ] ) ) ]), html.Div(id='live-update-graph'), dcc.Interval( id='interval-update', interval=2000 ) ]) @app.callback(Output('live-update-graph', 'children'), [Input('my_dropdown', 'value')], events=[Event('interval-update', 'interval')]) def update_graph_live(value): mongo = MongoWrapper() neg_sentiment, neutral_sentiment, pos_sentiment = mongo.get_polarity_tweets_of_stock(value) negs = neg_sentiment.count() poss = pos_sentiment.count() neuu = neutral_sentiment.count() tots = negs+poss+neuu posPercentage = (poss/(tots))*100 neuPercentage = (neuu/(tots))*100 negPercentage = (negs/(tots))*100 bigGraph = dcc.Graph( # animate=True, figure={ 'data': [{ 'type': 'pie', 'labels': ['Positive', 'Neutral' ,'Negative'], 'values': [posPercentage, neuPercentage, negPercentage], 'marker': {'colors': ['#32C85A', '#4C93B1', '#FA4632'], # 'values': [posPercentage, negPercentage], # 'marker': {'colors': ['#32C85A', '#FA4632'], }, }], 'layout':{ 'title':"Twitter Sentiment for {}\n".format(value) } } ) afterText = html.Div(children='Total Tweets pulled for searchword: {}.\n'.format(tots)) return (bigGraph, afterText) if __name__ == '__main__': app.run_server(debug=True)
36.461538
95
0.466772
7942d6d122427027400b58e02483e0f1f027043e
16,524
py
Python
sdk/python/pulumi_azure_nextgen/insights/v20180416/outputs.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/insights/v20180416/outputs.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/insights/v20180416/outputs.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'AlertingActionResponse', 'AzNsActionGroupResponse', 'CriteriaResponse', 'DimensionResponse', 'LogMetricTriggerResponse', 'LogToMetricActionResponse', 'ScheduleResponse', 'SourceResponse', 'TriggerConditionResponse', ] @pulumi.output_type class AlertingActionResponse(dict): """ Specify action need to be taken when rule type is Alert """ def __init__(__self__, *, odata_type: str, severity: str, trigger: 'outputs.TriggerConditionResponse', azns_action: Optional['outputs.AzNsActionGroupResponse'] = None, throttling_in_min: Optional[int] = None): """ Specify action need to be taken when rule type is Alert :param str odata_type: Specifies the action. Supported values - AlertingAction, LogToMetricAction :param str severity: Severity of the alert :param 'TriggerConditionResponseArgs' trigger: The trigger condition that results in the alert rule being. :param 'AzNsActionGroupResponseArgs' azns_action: Azure action group reference. :param int throttling_in_min: time (in minutes) for which Alerts should be throttled or suppressed. """ pulumi.set(__self__, "odata_type", 'Microsoft.WindowsAzure.Management.Monitoring.Alerts.Models.Microsoft.AppInsights.Nexus.DataContracts.Resources.ScheduledQueryRules.AlertingAction') pulumi.set(__self__, "severity", severity) pulumi.set(__self__, "trigger", trigger) if azns_action is not None: pulumi.set(__self__, "azns_action", azns_action) if throttling_in_min is not None: pulumi.set(__self__, "throttling_in_min", throttling_in_min) @property @pulumi.getter(name="odataType") def odata_type(self) -> str: """ Specifies the action. Supported values - AlertingAction, LogToMetricAction """ return pulumi.get(self, "odata_type") @property @pulumi.getter def severity(self) -> str: """ Severity of the alert """ return pulumi.get(self, "severity") @property @pulumi.getter def trigger(self) -> 'outputs.TriggerConditionResponse': """ The trigger condition that results in the alert rule being. """ return pulumi.get(self, "trigger") @property @pulumi.getter(name="aznsAction") def azns_action(self) -> Optional['outputs.AzNsActionGroupResponse']: """ Azure action group reference. """ return pulumi.get(self, "azns_action") @property @pulumi.getter(name="throttlingInMin") def throttling_in_min(self) -> Optional[int]: """ time (in minutes) for which Alerts should be throttled or suppressed. """ return pulumi.get(self, "throttling_in_min") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class AzNsActionGroupResponse(dict): """ Azure action group """ def __init__(__self__, *, action_group: Optional[Sequence[str]] = None, custom_webhook_payload: Optional[str] = None, email_subject: Optional[str] = None): """ Azure action group :param Sequence[str] action_group: Azure Action Group reference. :param str custom_webhook_payload: Custom payload to be sent for all webhook URI in Azure action group :param str email_subject: Custom subject override for all email ids in Azure action group """ if action_group is not None: pulumi.set(__self__, "action_group", action_group) if custom_webhook_payload is not None: pulumi.set(__self__, "custom_webhook_payload", custom_webhook_payload) if email_subject is not None: pulumi.set(__self__, "email_subject", email_subject) @property @pulumi.getter(name="actionGroup") def action_group(self) -> Optional[Sequence[str]]: """ Azure Action Group reference. """ return pulumi.get(self, "action_group") @property @pulumi.getter(name="customWebhookPayload") def custom_webhook_payload(self) -> Optional[str]: """ Custom payload to be sent for all webhook URI in Azure action group """ return pulumi.get(self, "custom_webhook_payload") @property @pulumi.getter(name="emailSubject") def email_subject(self) -> Optional[str]: """ Custom subject override for all email ids in Azure action group """ return pulumi.get(self, "email_subject") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class CriteriaResponse(dict): """ Specifies the criteria for converting log to metric. """ def __init__(__self__, *, metric_name: str, dimensions: Optional[Sequence['outputs.DimensionResponse']] = None): """ Specifies the criteria for converting log to metric. :param str metric_name: Name of the metric :param Sequence['DimensionResponseArgs'] dimensions: List of Dimensions for creating metric """ pulumi.set(__self__, "metric_name", metric_name) if dimensions is not None: pulumi.set(__self__, "dimensions", dimensions) @property @pulumi.getter(name="metricName") def metric_name(self) -> str: """ Name of the metric """ return pulumi.get(self, "metric_name") @property @pulumi.getter def dimensions(self) -> Optional[Sequence['outputs.DimensionResponse']]: """ List of Dimensions for creating metric """ return pulumi.get(self, "dimensions") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class DimensionResponse(dict): """ Specifies the criteria for converting log to metric. """ def __init__(__self__, *, name: str, operator: str, values: Sequence[str]): """ Specifies the criteria for converting log to metric. :param str name: Name of the dimension :param str operator: Operator for dimension values :param Sequence[str] values: List of dimension values """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "operator", operator) pulumi.set(__self__, "values", values) @property @pulumi.getter def name(self) -> str: """ Name of the dimension """ return pulumi.get(self, "name") @property @pulumi.getter def operator(self) -> str: """ Operator for dimension values """ return pulumi.get(self, "operator") @property @pulumi.getter def values(self) -> Sequence[str]: """ List of dimension values """ return pulumi.get(self, "values") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class LogMetricTriggerResponse(dict): """ A log metrics trigger descriptor. """ def __init__(__self__, *, metric_column: Optional[str] = None, metric_trigger_type: Optional[str] = None, threshold: Optional[float] = None, threshold_operator: Optional[str] = None): """ A log metrics trigger descriptor. :param str metric_column: Evaluation of metric on a particular column :param str metric_trigger_type: Metric Trigger Type - 'Consecutive' or 'Total' :param float threshold: The threshold of the metric trigger. :param str threshold_operator: Evaluation operation for Metric -'GreaterThan' or 'LessThan' or 'Equal'. """ if metric_column is not None: pulumi.set(__self__, "metric_column", metric_column) if metric_trigger_type is not None: pulumi.set(__self__, "metric_trigger_type", metric_trigger_type) if threshold is not None: pulumi.set(__self__, "threshold", threshold) if threshold_operator is not None: pulumi.set(__self__, "threshold_operator", threshold_operator) @property @pulumi.getter(name="metricColumn") def metric_column(self) -> Optional[str]: """ Evaluation of metric on a particular column """ return pulumi.get(self, "metric_column") @property @pulumi.getter(name="metricTriggerType") def metric_trigger_type(self) -> Optional[str]: """ Metric Trigger Type - 'Consecutive' or 'Total' """ return pulumi.get(self, "metric_trigger_type") @property @pulumi.getter def threshold(self) -> Optional[float]: """ The threshold of the metric trigger. """ return pulumi.get(self, "threshold") @property @pulumi.getter(name="thresholdOperator") def threshold_operator(self) -> Optional[str]: """ Evaluation operation for Metric -'GreaterThan' or 'LessThan' or 'Equal'. """ return pulumi.get(self, "threshold_operator") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class LogToMetricActionResponse(dict): """ Specify action need to be taken when rule type is converting log to metric """ def __init__(__self__, *, criteria: Sequence['outputs.CriteriaResponse'], odata_type: str): """ Specify action need to be taken when rule type is converting log to metric :param Sequence['CriteriaResponseArgs'] criteria: Criteria of Metric :param str odata_type: Specifies the action. Supported values - AlertingAction, LogToMetricAction """ pulumi.set(__self__, "criteria", criteria) pulumi.set(__self__, "odata_type", 'Microsoft.WindowsAzure.Management.Monitoring.Alerts.Models.Microsoft.AppInsights.Nexus.DataContracts.Resources.ScheduledQueryRules.LogToMetricAction') @property @pulumi.getter def criteria(self) -> Sequence['outputs.CriteriaResponse']: """ Criteria of Metric """ return pulumi.get(self, "criteria") @property @pulumi.getter(name="odataType") def odata_type(self) -> str: """ Specifies the action. Supported values - AlertingAction, LogToMetricAction """ return pulumi.get(self, "odata_type") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ScheduleResponse(dict): """ Defines how often to run the search and the time interval. """ def __init__(__self__, *, frequency_in_minutes: int, time_window_in_minutes: int): """ Defines how often to run the search and the time interval. :param int frequency_in_minutes: frequency (in minutes) at which rule condition should be evaluated. :param int time_window_in_minutes: Time window for which data needs to be fetched for query (should be greater than or equal to frequencyInMinutes). """ pulumi.set(__self__, "frequency_in_minutes", frequency_in_minutes) pulumi.set(__self__, "time_window_in_minutes", time_window_in_minutes) @property @pulumi.getter(name="frequencyInMinutes") def frequency_in_minutes(self) -> int: """ frequency (in minutes) at which rule condition should be evaluated. """ return pulumi.get(self, "frequency_in_minutes") @property @pulumi.getter(name="timeWindowInMinutes") def time_window_in_minutes(self) -> int: """ Time window for which data needs to be fetched for query (should be greater than or equal to frequencyInMinutes). """ return pulumi.get(self, "time_window_in_minutes") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SourceResponse(dict): """ Specifies the log search query. """ def __init__(__self__, *, data_source_id: str, authorized_resources: Optional[Sequence[str]] = None, query: Optional[str] = None, query_type: Optional[str] = None): """ Specifies the log search query. :param str data_source_id: The resource uri over which log search query is to be run. :param Sequence[str] authorized_resources: List of Resource referred into query :param str query: Log search query. Required for action type - AlertingAction :param str query_type: Set value to 'ResultCount' . """ pulumi.set(__self__, "data_source_id", data_source_id) if authorized_resources is not None: pulumi.set(__self__, "authorized_resources", authorized_resources) if query is not None: pulumi.set(__self__, "query", query) if query_type is not None: pulumi.set(__self__, "query_type", query_type) @property @pulumi.getter(name="dataSourceId") def data_source_id(self) -> str: """ The resource uri over which log search query is to be run. """ return pulumi.get(self, "data_source_id") @property @pulumi.getter(name="authorizedResources") def authorized_resources(self) -> Optional[Sequence[str]]: """ List of Resource referred into query """ return pulumi.get(self, "authorized_resources") @property @pulumi.getter def query(self) -> Optional[str]: """ Log search query. Required for action type - AlertingAction """ return pulumi.get(self, "query") @property @pulumi.getter(name="queryType") def query_type(self) -> Optional[str]: """ Set value to 'ResultCount' . """ return pulumi.get(self, "query_type") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class TriggerConditionResponse(dict): """ The condition that results in the Log Search rule. """ def __init__(__self__, *, threshold: float, threshold_operator: str, metric_trigger: Optional['outputs.LogMetricTriggerResponse'] = None): """ The condition that results in the Log Search rule. :param float threshold: Result or count threshold based on which rule should be triggered. :param str threshold_operator: Evaluation operation for rule - 'GreaterThan' or 'LessThan. :param 'LogMetricTriggerResponseArgs' metric_trigger: Trigger condition for metric query rule """ pulumi.set(__self__, "threshold", threshold) pulumi.set(__self__, "threshold_operator", threshold_operator) if metric_trigger is not None: pulumi.set(__self__, "metric_trigger", metric_trigger) @property @pulumi.getter def threshold(self) -> float: """ Result or count threshold based on which rule should be triggered. """ return pulumi.get(self, "threshold") @property @pulumi.getter(name="thresholdOperator") def threshold_operator(self) -> str: """ Evaluation operation for rule - 'GreaterThan' or 'LessThan. """ return pulumi.get(self, "threshold_operator") @property @pulumi.getter(name="metricTrigger") def metric_trigger(self) -> Optional['outputs.LogMetricTriggerResponse']: """ Trigger condition for metric query rule """ return pulumi.get(self, "metric_trigger") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop
35.008475
194
0.643912
7942d715dc06e7e47e52d8966b8c73f0a458082f
2,372
py
Python
src/chatbot/aiml/Utils.py
johnmelodyme/chatbot
0abe20bdc291eec7dbf1df95c208f995a5b17106
[ "MIT" ]
1
2018-12-13T07:50:26.000Z
2018-12-13T07:50:26.000Z
src/chatbot/aiml/Utils.py
c4pt000/Sophia-bot
91c85d2bb58cf0cea54dacb3958ce2b966a40616
[ "MIT" ]
null
null
null
src/chatbot/aiml/Utils.py
c4pt000/Sophia-bot
91c85d2bb58cf0cea54dacb3958ce2b966a40616
[ "MIT" ]
null
null
null
""" Copyright 2003-2010 Cort Stratton. All rights reserved. Copyright 2015, 2016 Hanson Robotics Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ """This file contains assorted general utility functions used by other modules in the PyAIML package. """ def sentences(s): """Split the string s into a list of sentences.""" try: s + "" except: raise TypeError, "s must be a string" pos = 0 sentenceList = [] l = len(s) while pos < l: try: p = s.index('.', pos) except: p = l + 1 try: q = s.index('?', pos) except: q = l + 1 try: e = s.index('!', pos) except: e = l + 1 end = min(p, q, e) sentenceList.append(s[pos:end].strip()) pos = end + 1 # If no sentences were found, return a one-item list containing # the entire input string. if len(sentenceList) == 0: sentenceList.append(s) return sentenceList # Self test if __name__ == "__main__": # sentences sents = sentences( "First. Second, still? Third and Final! Well, not really") assert(len(sents) == 4)
34.376812
71
0.676644
7942d7dc5c754c363d2c6d88ad5a20066777a93a
3,154
py
Python
examples/data/ogbl_collab.py
amznero/graph-learn
edb359edc0ce2bfdd5651cff62c592ded40a0849
[ "Apache-2.0" ]
null
null
null
examples/data/ogbl_collab.py
amznero/graph-learn
edb359edc0ce2bfdd5651cff62c592ded40a0849
[ "Apache-2.0" ]
null
null
null
examples/data/ogbl_collab.py
amznero/graph-learn
edb359edc0ce2bfdd5651cff62c592ded40a0849
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """ogbl_collab dataset. """ import numpy as np from ogb.linkproppred import LinkPropPredDataset # load data dataset = LinkPropPredDataset(name='ogbl-collab') split_edge = dataset.get_edge_split() train_edge, valid_edge, test_edge = split_edge['train'], split_edge['valid'], split_edge['test'] # train_edge['edge'], (1179052, 2) # train_edge['weight'], (1179052,) # train_edge['year'], (1179052,) # valid_edge, 60084 # test_edge, 46329 graph = dataset[0] num_nodes = graph['num_nodes'] # 235868 node_feat = graph['node_feat'] # shape(235868, 128) # dump to disk root = 'ogbl_collab/' train_table = root + 'ogbl_collab_train_edge' val_table = root + 'ogbl_collab_val_edge' test_table = root + 'ogbl_collab_test_edge' node_table = root + 'ogbl_collab_node' val_neg_table = root + 'ogbl_collab_val_edge_neg' test_neg_table = root + 'ogbl_collab_test_edge_neg' with open(train_table, 'w') as f: f.write('src_id:int64' + '\t' + 'dst_id:int64' + '\t' + 'weight:double\n') for i in range(len(train_edge['edge'])): f.write(str(train_edge['edge'][i, 0]) + '\t' + str(train_edge['edge'][i, 1]) + '\t' + str(train_edge['weight'][i]) + '\n') with open(val_table, 'w') as f: f.write('src_id:int64' + '\t' + 'dst_id:int64' + '\t' + 'weight:double\n') for i in range(len(valid_edge['edge'])): f.write(str(valid_edge['edge'][i, 0]) + '\t' + str(valid_edge['edge'][i, 1]) + '\t' + str(valid_edge['weight'][i]) + '\n') with open(test_table, 'w') as f: f.write('src_id:int64' + '\t' + 'dst_id:int64' + '\t' + 'weight:double\n') for i in range(len(test_edge['edge'])): f.write(str(test_edge['edge'][i, 0]) + '\t' + str(test_edge['edge'][i, 1]) + '\t' + str(test_edge['weight'][i]) + '\n') with open(node_table, 'w') as f: f.write('id:int64' + '\t' + 'feature:string\n') for i in range(num_nodes): f.write(str(i) + '\t' + str(':'.join(map(str, node_feat[i]))) + '\n') with open(val_neg_table, 'w') as f: f.write('src_id:int64' + '\t' + 'dst_id:int64' + '\t' + 'weight:double\n') for i in range(len(valid_edge['edge_neg'])): f.write(str(valid_edge['edge_neg'][i, 0]) + '\t' + str(valid_edge['edge_neg'][i, 1]) + '\t' + '1.0\n') with open(test_neg_table, 'w') as f: f.write('src_id:int64' + '\t' + 'dst_id:int64' + '\t' + 'weight:double\n') for i in range(len(test_edge['edge_neg'])): f.write(str(test_edge['edge_neg'][i, 0]) + '\t' + str(test_edge['edge_neg'][i, 1]) + '\t' + '1.0\n')
40.961039
96
0.63792
7942d81e67b9c30c4896188d9a96ec3281eb2b22
2,987
py
Python
tests/core/test_core_run.py
askanna-io/askanna-python
b6a1dec3b9911888f3d769cef46ce8c2d5cb0dfe
[ "Apache-2.0" ]
1
2021-02-22T15:53:47.000Z
2021-02-22T15:53:47.000Z
tests/core/test_core_run.py
askanna-io/askanna-python
b6a1dec3b9911888f3d769cef46ce8c2d5cb0dfe
[ "Apache-2.0" ]
null
null
null
tests/core/test_core_run.py
askanna-io/askanna-python
b6a1dec3b9911888f3d769cef46ce8c2d5cb0dfe
[ "Apache-2.0" ]
null
null
null
import unittest import responses from askanna.core import client from askanna.core.run import RunGateway a_sample_run_response = { "message_type": "status", "status": "queued", "uuid": "8b73cb55-1ea3-49e1-a294-590a16b60f3f", "short_uuid": "4F8q-nTCK-M2nA-aXUg", "name": "Run with name", "created": "2021-04-22T10:31:29.249069Z", "updated": "2021-04-22T10:31:29.249091Z", "finished": None, "job": { "relation": "jobdef", "name": "test-payload", "uuid": "85632085-5a62-4cf3-9142-34237f5f32d1", "short_uuid": "43hH-OthG-zG6G-9OVK", }, "project": { "relation": "project", "name": "AskAnna Sandbox", "uuid": "f1e2144a-87f9-4936-8562-4304c51332ea", "short_uuid": "7MQT-6309-9g3t-R5QR", }, "workspace": { "relation": "workspace", "name": "AskAnna", "uuid": "695fcc8b-ba8c-4575-a1e0-f0fcfc70a349", "short_uuid": "3Cpy-QMzd-MVko-1rDQ", }, "environment": { "name": "", "description": None, "label": None, "image": { "name": "python", "tag": "3.8-slim", "digest": "sha256:9b0d7419e2811710aacee87c40a2c94693e2b6810c3e7e466b8c7fc5bde4cd66", }, "timezone": "UTC", }, "next_url": "https://beta-api.askanna.eu/v1/status/4F8q-nTCK-M2nA-aXUg/", } class SDKRunTest(unittest.TestCase): def setUp(self): self.base_url = client.config.remote self.responses = responses.RequestsMock() self.responses.start() self.responses.add( responses.POST, url=self.base_url + "run/abcd-abcd-abcd-abcd/", json=a_sample_run_response, ) self.responses.add( responses.POST, url=self.base_url + "run/abcd-abcd-abcd-abcd/?name=new+name", json=a_sample_run_response, ) self.responses.add( responses.POST, url=self.base_url + "run/abcd-abcd-abcd-abcd/?description=new+description", json=a_sample_run_response, ) self.responses.add( responses.POST, url=self.base_url + "run/abcd-abcd-abcd-abcd/?name=new+name&description=new+description", json=a_sample_run_response, ) def tearDown(self): self.responses.stop self.responses.reset def test_run_with_name(self): rgw = RunGateway() rgw.start("abcd-abcd-abcd-abcd", name="new name") def test_run_with_description(self): rgw = RunGateway() rgw.start("abcd-abcd-abcd-abcd", description="new description") def test_run_with_name_and_description(self): rgw = RunGateway() rgw.start( "abcd-abcd-abcd-abcd", name="new name", description="new description", ) def test_run_default(self): rgw = RunGateway() rgw.start("abcd-abcd-abcd-abcd")
29
96
0.577837
7942daeb499906d60245b81d805be6cea334d742
250
py
Python
sdf4sim/__init__.py
sglumac/sdf4sim
3e8fc3ca577c6badd7f729bd52378b4210d7fba1
[ "MIT" ]
1
2020-04-29T10:34:54.000Z
2020-04-29T10:34:54.000Z
sdf4sim/__init__.py
sglumac/sdf4sim
3e8fc3ca577c6badd7f729bd52378b4210d7fba1
[ "MIT" ]
1
2021-11-15T17:49:09.000Z
2021-11-15T17:49:09.000Z
sdf4sim/__init__.py
sglumac/sdf4sim
3e8fc3ca577c6badd7f729bd52378b4210d7fba1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Top-level package for sdf4sim.""" __author__ = """Slaven Glumac""" __email__ = '[email protected]' __version__ = '0.6.0' from . import sdf, cs, example, autoconfig __all__ = ['sdf', 'cs', 'example', 'autoconfig']
20.833333
48
0.644
7942dba361e69c113041e6f460f4b838fd197e2a
3,440
py
Python
homeassistant/components/guardian/binary_sensor.py
ccatterina/core
36789cfc310f270bf343676eb94d123e5d0dfa83
[ "Apache-2.0" ]
6
2016-11-25T06:36:27.000Z
2021-11-16T11:20:23.000Z
homeassistant/components/guardian/binary_sensor.py
ccatterina/core
36789cfc310f270bf343676eb94d123e5d0dfa83
[ "Apache-2.0" ]
45
2020-10-15T06:47:06.000Z
2022-03-31T06:26:16.000Z
homeassistant/components/guardian/binary_sensor.py
ccatterina/core
36789cfc310f270bf343676eb94d123e5d0dfa83
[ "Apache-2.0" ]
2
2020-11-17T09:19:47.000Z
2020-12-16T03:56:09.000Z
"""Binary sensors for the Elexa Guardian integration.""" from typing import Callable, Dict from aioguardian import Client from homeassistant.components.binary_sensor import ( DEVICE_CLASS_CONNECTIVITY, DEVICE_CLASS_MOISTURE, BinarySensorEntity, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from . import GuardianEntity from .const import ( API_SYSTEM_ONBOARD_SENSOR_STATUS, API_WIFI_STATUS, DATA_CLIENT, DATA_COORDINATOR, DOMAIN, ) ATTR_CONNECTED_CLIENTS = "connected_clients" SENSOR_KIND_AP_INFO = "ap_enabled" SENSOR_KIND_LEAK_DETECTED = "leak_detected" SENSORS = [ (SENSOR_KIND_AP_INFO, "Onboard AP Enabled", DEVICE_CLASS_CONNECTIVITY), (SENSOR_KIND_LEAK_DETECTED, "Leak Detected", DEVICE_CLASS_MOISTURE), ] async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: Callable ) -> None: """Set up Guardian switches based on a config entry.""" async_add_entities( [ GuardianBinarySensor( entry, hass.data[DOMAIN][DATA_CLIENT][entry.entry_id], hass.data[DOMAIN][DATA_COORDINATOR][entry.entry_id], kind, name, device_class, ) for kind, name, device_class in SENSORS ], True, ) class GuardianBinarySensor(GuardianEntity, BinarySensorEntity): """Define a generic Guardian sensor.""" def __init__( self, entry: ConfigEntry, client: Client, coordinators: Dict[str, DataUpdateCoordinator], kind: str, name: str, device_class: str, ) -> None: """Initialize.""" super().__init__(entry, client, coordinators, kind, name, device_class, None) self._is_on = True @property def available(self) -> bool: """Return whether the entity is available.""" if self._kind == SENSOR_KIND_AP_INFO: return self._coordinators[API_WIFI_STATUS].last_update_success if self._kind == SENSOR_KIND_LEAK_DETECTED: return self._coordinators[ API_SYSTEM_ONBOARD_SENSOR_STATUS ].last_update_success return False @property def is_on(self) -> bool: """Return True if the binary sensor is on.""" return self._is_on async def _async_internal_added_to_hass(self) -> None: if self._kind == SENSOR_KIND_AP_INFO: self.async_add_coordinator_update_listener(API_WIFI_STATUS) elif self._kind == SENSOR_KIND_LEAK_DETECTED: self.async_add_coordinator_update_listener(API_SYSTEM_ONBOARD_SENSOR_STATUS) @callback def _async_update_from_latest_data(self) -> None: """Update the entity.""" if self._kind == SENSOR_KIND_AP_INFO: self._is_on = self._coordinators[API_WIFI_STATUS].data["station_connected"] self._attrs.update( { ATTR_CONNECTED_CLIENTS: self._coordinators[API_WIFI_STATUS].data[ "ap_clients" ] } ) elif self._kind == SENSOR_KIND_LEAK_DETECTED: self._is_on = self._coordinators[API_SYSTEM_ONBOARD_SENSOR_STATUS].data[ "wet" ]
31.559633
88
0.652035
7942dc57faa0c4594e7b6b3df0e8ce3dfef73ec4
934
py
Python
setup.py
RRisto/simple_classifiy
81fcc5c6bdac39cda207526a6117bac2767d1255
[ "MIT" ]
1
2019-10-10T15:57:12.000Z
2019-10-10T15:57:12.000Z
setup.py
RRisto/simple_classifiy
81fcc5c6bdac39cda207526a6117bac2767d1255
[ "MIT" ]
3
2018-09-04T10:12:13.000Z
2018-09-07T06:38:09.000Z
setup.py
RRisto/simple_classifiy
81fcc5c6bdac39cda207526a6117bac2767d1255
[ "MIT" ]
null
null
null
from setuptools import setup def readme(): with open('readme.md') as f: return f.read() setup(name='TextClass', version='0.2', description='Classes and methods for cleaning, cleaning and classifyng texts', long_description=readme(), classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python :: 3.5', 'Topic :: Text Processing :: General', ], keywords='nlp classification', url='https://github.com/RRisto/simple_classifiy', author='Risto Hinno', author_email='[email protected]', license='MIT', packages=['TextClass'], install_requires=['nltk','sklearn','imblearn','gensim','matplotlib','pyldavis','pandas','pytest','openpyxl', 'mock', 'fasttext==0.8.3'], test_suite='pytest-runner', tests_require=['pytest'], include_package_data=True, zip_safe=False)
34.592593
114
0.61349
7942dccd68bb1bc52dca7d1c09de6aa0a77709ca
137,053
py
Python
sdk/hdinsight/azure-mgmt-hdinsight/azure/mgmt/hdinsight/models/_models_py3.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/hdinsight/azure-mgmt-hdinsight/azure/mgmt/hdinsight/models/_models_py3.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/hdinsight/azure-mgmt-hdinsight/azure/mgmt/hdinsight/models/_models_py3.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import Any, Dict, List, Optional, Union from azure.core.exceptions import HttpResponseError import msrest.serialization from ._hd_insight_management_client_enums import * class AaddsResourceDetails(msrest.serialization.Model): """The Azure active directory domain service resource details. :param domain_name: The Azure active directory domain service name. :type domain_name: str :param initial_sync_complete: This indicates whether initial sync complete or not. :type initial_sync_complete: bool :param ldaps_enabled: This indicates whether enable ldaps or not. :type ldaps_enabled: bool :param ldaps_public_certificate_in_base64: The base 64 format string of public ldap certificate. :type ldaps_public_certificate_in_base64: str :param resource_id: The resource id of azure active directory domain service. :type resource_id: str :param subnet_id: The subnet resource id. :type subnet_id: str :param tenant_id: The tenant id of azure active directory domain service . :type tenant_id: str """ _attribute_map = { 'domain_name': {'key': 'domainName', 'type': 'str'}, 'initial_sync_complete': {'key': 'initialSyncComplete', 'type': 'bool'}, 'ldaps_enabled': {'key': 'ldapsEnabled', 'type': 'bool'}, 'ldaps_public_certificate_in_base64': {'key': 'ldapsPublicCertificateInBase64', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'subnet_id': {'key': 'subnetId', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, } def __init__( self, *, domain_name: Optional[str] = None, initial_sync_complete: Optional[bool] = None, ldaps_enabled: Optional[bool] = None, ldaps_public_certificate_in_base64: Optional[str] = None, resource_id: Optional[str] = None, subnet_id: Optional[str] = None, tenant_id: Optional[str] = None, **kwargs ): super(AaddsResourceDetails, self).__init__(**kwargs) self.domain_name = domain_name self.initial_sync_complete = initial_sync_complete self.ldaps_enabled = ldaps_enabled self.ldaps_public_certificate_in_base64 = ldaps_public_certificate_in_base64 self.resource_id = resource_id self.subnet_id = subnet_id self.tenant_id = tenant_id class Resource(msrest.serialization.Model): """The core properties of ARM resources. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None class ProxyResource(Resource): """The resource model definition for a ARM proxy resource. It will have everything other than required location and tags. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(ProxyResource, self).__init__(**kwargs) class Application(ProxyResource): """The HDInsight cluster application. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :param etag: The ETag for the application. :type etag: str :param tags: A set of tags. The tags for the application. :type tags: dict[str, str] :param properties: The properties of the application. :type properties: ~azure.mgmt.hdinsight.models.ApplicationProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'properties': {'key': 'properties', 'type': 'ApplicationProperties'}, } def __init__( self, *, etag: Optional[str] = None, tags: Optional[Dict[str, str]] = None, properties: Optional["ApplicationProperties"] = None, **kwargs ): super(Application, self).__init__(**kwargs) self.etag = etag self.tags = tags self.properties = properties class ApplicationGetEndpoint(msrest.serialization.Model): """Gets the application SSH endpoint. :param location: The location of the endpoint. :type location: str :param destination_port: The destination port to connect to. :type destination_port: int :param public_port: The public port to connect to. :type public_port: int :param private_ip_address: The private ip address of the endpoint. :type private_ip_address: str """ _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'destination_port': {'key': 'destinationPort', 'type': 'int'}, 'public_port': {'key': 'publicPort', 'type': 'int'}, 'private_ip_address': {'key': 'privateIPAddress', 'type': 'str'}, } def __init__( self, *, location: Optional[str] = None, destination_port: Optional[int] = None, public_port: Optional[int] = None, private_ip_address: Optional[str] = None, **kwargs ): super(ApplicationGetEndpoint, self).__init__(**kwargs) self.location = location self.destination_port = destination_port self.public_port = public_port self.private_ip_address = private_ip_address class ApplicationGetHttpsEndpoint(msrest.serialization.Model): """Gets the application HTTP endpoints. Variables are only populated by the server, and will be ignored when sending a request. :param access_modes: The list of access modes for the application. :type access_modes: list[str] :ivar location: The location of the endpoint. :vartype location: str :param destination_port: The destination port to connect to. :type destination_port: int :ivar public_port: The public port to connect to. :vartype public_port: int :param private_ip_address: The private ip address of the endpoint. :type private_ip_address: str :param sub_domain_suffix: The subdomain suffix of the application. :type sub_domain_suffix: str :param disable_gateway_auth: The value indicates whether to disable GatewayAuth. :type disable_gateway_auth: bool """ _validation = { 'location': {'readonly': True}, 'public_port': {'readonly': True}, } _attribute_map = { 'access_modes': {'key': 'accessModes', 'type': '[str]'}, 'location': {'key': 'location', 'type': 'str'}, 'destination_port': {'key': 'destinationPort', 'type': 'int'}, 'public_port': {'key': 'publicPort', 'type': 'int'}, 'private_ip_address': {'key': 'privateIPAddress', 'type': 'str'}, 'sub_domain_suffix': {'key': 'subDomainSuffix', 'type': 'str'}, 'disable_gateway_auth': {'key': 'disableGatewayAuth', 'type': 'bool'}, } def __init__( self, *, access_modes: Optional[List[str]] = None, destination_port: Optional[int] = None, private_ip_address: Optional[str] = None, sub_domain_suffix: Optional[str] = None, disable_gateway_auth: Optional[bool] = None, **kwargs ): super(ApplicationGetHttpsEndpoint, self).__init__(**kwargs) self.access_modes = access_modes self.location = None self.destination_port = destination_port self.public_port = None self.private_ip_address = private_ip_address self.sub_domain_suffix = sub_domain_suffix self.disable_gateway_auth = disable_gateway_auth class ApplicationListResult(msrest.serialization.Model): """Result of the request to list cluster Applications. It contains a list of operations and a URL link to get the next set of results. Variables are only populated by the server, and will be ignored when sending a request. :param value: The list of HDInsight applications installed on HDInsight cluster. :type value: list[~azure.mgmt.hdinsight.models.Application] :ivar next_link: The URL to get the next set of operation list results if there are any. :vartype next_link: str """ _validation = { 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[Application]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["Application"]] = None, **kwargs ): super(ApplicationListResult, self).__init__(**kwargs) self.value = value self.next_link = None class ApplicationProperties(msrest.serialization.Model): """The HDInsight cluster application GET response. Variables are only populated by the server, and will be ignored when sending a request. :param compute_profile: The list of roles in the cluster. :type compute_profile: ~azure.mgmt.hdinsight.models.ComputeProfile :param install_script_actions: The list of install script actions. :type install_script_actions: list[~azure.mgmt.hdinsight.models.RuntimeScriptAction] :param uninstall_script_actions: The list of uninstall script actions. :type uninstall_script_actions: list[~azure.mgmt.hdinsight.models.RuntimeScriptAction] :param https_endpoints: The list of application HTTPS endpoints. :type https_endpoints: list[~azure.mgmt.hdinsight.models.ApplicationGetHttpsEndpoint] :param ssh_endpoints: The list of application SSH endpoints. :type ssh_endpoints: list[~azure.mgmt.hdinsight.models.ApplicationGetEndpoint] :ivar provisioning_state: The provisioning state of the application. :vartype provisioning_state: str :param application_type: The application type. :type application_type: str :ivar application_state: The application state. :vartype application_state: str :param errors: The list of errors. :type errors: list[~azure.mgmt.hdinsight.models.Errors] :ivar created_date: The application create date time. :vartype created_date: str :ivar marketplace_identifier: The marketplace identifier. :vartype marketplace_identifier: str """ _validation = { 'provisioning_state': {'readonly': True}, 'application_state': {'readonly': True}, 'created_date': {'readonly': True}, 'marketplace_identifier': {'readonly': True}, } _attribute_map = { 'compute_profile': {'key': 'computeProfile', 'type': 'ComputeProfile'}, 'install_script_actions': {'key': 'installScriptActions', 'type': '[RuntimeScriptAction]'}, 'uninstall_script_actions': {'key': 'uninstallScriptActions', 'type': '[RuntimeScriptAction]'}, 'https_endpoints': {'key': 'httpsEndpoints', 'type': '[ApplicationGetHttpsEndpoint]'}, 'ssh_endpoints': {'key': 'sshEndpoints', 'type': '[ApplicationGetEndpoint]'}, 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'application_type': {'key': 'applicationType', 'type': 'str'}, 'application_state': {'key': 'applicationState', 'type': 'str'}, 'errors': {'key': 'errors', 'type': '[Errors]'}, 'created_date': {'key': 'createdDate', 'type': 'str'}, 'marketplace_identifier': {'key': 'marketplaceIdentifier', 'type': 'str'}, } def __init__( self, *, compute_profile: Optional["ComputeProfile"] = None, install_script_actions: Optional[List["RuntimeScriptAction"]] = None, uninstall_script_actions: Optional[List["RuntimeScriptAction"]] = None, https_endpoints: Optional[List["ApplicationGetHttpsEndpoint"]] = None, ssh_endpoints: Optional[List["ApplicationGetEndpoint"]] = None, application_type: Optional[str] = None, errors: Optional[List["Errors"]] = None, **kwargs ): super(ApplicationProperties, self).__init__(**kwargs) self.compute_profile = compute_profile self.install_script_actions = install_script_actions self.uninstall_script_actions = uninstall_script_actions self.https_endpoints = https_endpoints self.ssh_endpoints = ssh_endpoints self.provisioning_state = None self.application_type = application_type self.application_state = None self.errors = errors self.created_date = None self.marketplace_identifier = None class AsyncOperationResult(msrest.serialization.Model): """The azure async operation response. :param status: The async operation state. Possible values include: "InProgress", "Succeeded", "Failed". :type status: str or ~azure.mgmt.hdinsight.models.AsyncOperationState :param error: The operation error information. :type error: ~azure.mgmt.hdinsight.models.Errors """ _attribute_map = { 'status': {'key': 'status', 'type': 'str'}, 'error': {'key': 'error', 'type': 'Errors'}, } def __init__( self, *, status: Optional[Union[str, "AsyncOperationState"]] = None, error: Optional["Errors"] = None, **kwargs ): super(AsyncOperationResult, self).__init__(**kwargs) self.status = status self.error = error class Autoscale(msrest.serialization.Model): """The autoscale request parameters. :param capacity: Parameters for load-based autoscale. :type capacity: ~azure.mgmt.hdinsight.models.AutoscaleCapacity :param recurrence: Parameters for schedule-based autoscale. :type recurrence: ~azure.mgmt.hdinsight.models.AutoscaleRecurrence """ _attribute_map = { 'capacity': {'key': 'capacity', 'type': 'AutoscaleCapacity'}, 'recurrence': {'key': 'recurrence', 'type': 'AutoscaleRecurrence'}, } def __init__( self, *, capacity: Optional["AutoscaleCapacity"] = None, recurrence: Optional["AutoscaleRecurrence"] = None, **kwargs ): super(Autoscale, self).__init__(**kwargs) self.capacity = capacity self.recurrence = recurrence class AutoscaleCapacity(msrest.serialization.Model): """The load-based autoscale request parameters. :param min_instance_count: The minimum instance count of the cluster. :type min_instance_count: int :param max_instance_count: The maximum instance count of the cluster. :type max_instance_count: int """ _attribute_map = { 'min_instance_count': {'key': 'minInstanceCount', 'type': 'int'}, 'max_instance_count': {'key': 'maxInstanceCount', 'type': 'int'}, } def __init__( self, *, min_instance_count: Optional[int] = None, max_instance_count: Optional[int] = None, **kwargs ): super(AutoscaleCapacity, self).__init__(**kwargs) self.min_instance_count = min_instance_count self.max_instance_count = max_instance_count class AutoscaleConfigurationUpdateParameter(msrest.serialization.Model): """The autoscale configuration update parameter. :param autoscale: The autoscale configuration. :type autoscale: ~azure.mgmt.hdinsight.models.Autoscale """ _attribute_map = { 'autoscale': {'key': 'autoscale', 'type': 'Autoscale'}, } def __init__( self, *, autoscale: Optional["Autoscale"] = None, **kwargs ): super(AutoscaleConfigurationUpdateParameter, self).__init__(**kwargs) self.autoscale = autoscale class AutoscaleRecurrence(msrest.serialization.Model): """Schedule-based autoscale request parameters. :param time_zone: The time zone for the autoscale schedule times. :type time_zone: str :param schedule: Array of schedule-based autoscale rules. :type schedule: list[~azure.mgmt.hdinsight.models.AutoscaleSchedule] """ _attribute_map = { 'time_zone': {'key': 'timeZone', 'type': 'str'}, 'schedule': {'key': 'schedule', 'type': '[AutoscaleSchedule]'}, } def __init__( self, *, time_zone: Optional[str] = None, schedule: Optional[List["AutoscaleSchedule"]] = None, **kwargs ): super(AutoscaleRecurrence, self).__init__(**kwargs) self.time_zone = time_zone self.schedule = schedule class AutoscaleSchedule(msrest.serialization.Model): """Parameters for a schedule-based autoscale rule, consisting of an array of days + a time and capacity. :param days: Days of the week for a schedule-based autoscale rule. :type days: list[str or ~azure.mgmt.hdinsight.models.DaysOfWeek] :param time_and_capacity: Time and capacity for a schedule-based autoscale rule. :type time_and_capacity: ~azure.mgmt.hdinsight.models.AutoscaleTimeAndCapacity """ _attribute_map = { 'days': {'key': 'days', 'type': '[str]'}, 'time_and_capacity': {'key': 'timeAndCapacity', 'type': 'AutoscaleTimeAndCapacity'}, } def __init__( self, *, days: Optional[List[Union[str, "DaysOfWeek"]]] = None, time_and_capacity: Optional["AutoscaleTimeAndCapacity"] = None, **kwargs ): super(AutoscaleSchedule, self).__init__(**kwargs) self.days = days self.time_and_capacity = time_and_capacity class AutoscaleTimeAndCapacity(msrest.serialization.Model): """Time and capacity request parameters. :param time: 24-hour time in the form xx:xx. :type time: str :param min_instance_count: The minimum instance count of the cluster. :type min_instance_count: int :param max_instance_count: The maximum instance count of the cluster. :type max_instance_count: int """ _attribute_map = { 'time': {'key': 'time', 'type': 'str'}, 'min_instance_count': {'key': 'minInstanceCount', 'type': 'int'}, 'max_instance_count': {'key': 'maxInstanceCount', 'type': 'int'}, } def __init__( self, *, time: Optional[str] = None, min_instance_count: Optional[int] = None, max_instance_count: Optional[int] = None, **kwargs ): super(AutoscaleTimeAndCapacity, self).__init__(**kwargs) self.time = time self.min_instance_count = min_instance_count self.max_instance_count = max_instance_count class AzureMonitorRequest(msrest.serialization.Model): """The azure monitor parameters. :param workspace_id: The Log Analytics workspace ID. :type workspace_id: str :param primary_key: The Log Analytics workspace key. :type primary_key: str :param selected_configurations: The selected configurations. :type selected_configurations: ~azure.mgmt.hdinsight.models.AzureMonitorSelectedConfigurations """ _attribute_map = { 'workspace_id': {'key': 'workspaceId', 'type': 'str'}, 'primary_key': {'key': 'primaryKey', 'type': 'str'}, 'selected_configurations': {'key': 'selectedConfigurations', 'type': 'AzureMonitorSelectedConfigurations'}, } def __init__( self, *, workspace_id: Optional[str] = None, primary_key: Optional[str] = None, selected_configurations: Optional["AzureMonitorSelectedConfigurations"] = None, **kwargs ): super(AzureMonitorRequest, self).__init__(**kwargs) self.workspace_id = workspace_id self.primary_key = primary_key self.selected_configurations = selected_configurations class AzureMonitorResponse(msrest.serialization.Model): """The azure monitor status response. :param cluster_monitoring_enabled: The status of the monitor on the HDInsight cluster. :type cluster_monitoring_enabled: bool :param workspace_id: The workspace ID of the monitor on the HDInsight cluster. :type workspace_id: str :param selected_configurations: The selected configurations. :type selected_configurations: ~azure.mgmt.hdinsight.models.AzureMonitorSelectedConfigurations """ _attribute_map = { 'cluster_monitoring_enabled': {'key': 'clusterMonitoringEnabled', 'type': 'bool'}, 'workspace_id': {'key': 'workspaceId', 'type': 'str'}, 'selected_configurations': {'key': 'selectedConfigurations', 'type': 'AzureMonitorSelectedConfigurations'}, } def __init__( self, *, cluster_monitoring_enabled: Optional[bool] = None, workspace_id: Optional[str] = None, selected_configurations: Optional["AzureMonitorSelectedConfigurations"] = None, **kwargs ): super(AzureMonitorResponse, self).__init__(**kwargs) self.cluster_monitoring_enabled = cluster_monitoring_enabled self.workspace_id = workspace_id self.selected_configurations = selected_configurations class AzureMonitorSelectedConfigurations(msrest.serialization.Model): """The selected configurations for azure monitor. :param configuration_version: The configuration version. :type configuration_version: str :param global_configurations: The global configurations of selected configurations. :type global_configurations: dict[str, str] :param table_list: The table list. :type table_list: list[~azure.mgmt.hdinsight.models.AzureMonitorTableConfiguration] """ _attribute_map = { 'configuration_version': {'key': 'configurationVersion', 'type': 'str'}, 'global_configurations': {'key': 'globalConfigurations', 'type': '{str}'}, 'table_list': {'key': 'tableList', 'type': '[AzureMonitorTableConfiguration]'}, } def __init__( self, *, configuration_version: Optional[str] = None, global_configurations: Optional[Dict[str, str]] = None, table_list: Optional[List["AzureMonitorTableConfiguration"]] = None, **kwargs ): super(AzureMonitorSelectedConfigurations, self).__init__(**kwargs) self.configuration_version = configuration_version self.global_configurations = global_configurations self.table_list = table_list class AzureMonitorTableConfiguration(msrest.serialization.Model): """The table configuration for the Log Analytics integration. :param name: The name. :type name: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, **kwargs ): super(AzureMonitorTableConfiguration, self).__init__(**kwargs) self.name = name class BillingMeters(msrest.serialization.Model): """The billing meters. :param meter_parameter: The virtual machine sizes. :type meter_parameter: str :param meter: The HDInsight meter guid. :type meter: str :param unit: The unit of meter, VMHours or CoreHours. :type unit: str """ _attribute_map = { 'meter_parameter': {'key': 'meterParameter', 'type': 'str'}, 'meter': {'key': 'meter', 'type': 'str'}, 'unit': {'key': 'unit', 'type': 'str'}, } def __init__( self, *, meter_parameter: Optional[str] = None, meter: Optional[str] = None, unit: Optional[str] = None, **kwargs ): super(BillingMeters, self).__init__(**kwargs) self.meter_parameter = meter_parameter self.meter = meter self.unit = unit class BillingResources(msrest.serialization.Model): """The billing resources. :param region: The region or location. :type region: str :param billing_meters: The billing meter information. :type billing_meters: list[~azure.mgmt.hdinsight.models.BillingMeters] :param disk_billing_meters: The managed disk billing information. :type disk_billing_meters: list[~azure.mgmt.hdinsight.models.DiskBillingMeters] """ _attribute_map = { 'region': {'key': 'region', 'type': 'str'}, 'billing_meters': {'key': 'billingMeters', 'type': '[BillingMeters]'}, 'disk_billing_meters': {'key': 'diskBillingMeters', 'type': '[DiskBillingMeters]'}, } def __init__( self, *, region: Optional[str] = None, billing_meters: Optional[List["BillingMeters"]] = None, disk_billing_meters: Optional[List["DiskBillingMeters"]] = None, **kwargs ): super(BillingResources, self).__init__(**kwargs) self.region = region self.billing_meters = billing_meters self.disk_billing_meters = disk_billing_meters class BillingResponseListResult(msrest.serialization.Model): """The response for the operation to get regional billingSpecs for a subscription. Variables are only populated by the server, and will be ignored when sending a request. :param vm_sizes: The virtual machine sizes to include or exclude. :type vm_sizes: list[str] :param vm_sizes_with_encryption_at_host: The vm sizes which enable encryption at host. :type vm_sizes_with_encryption_at_host: list[str] :param vm_size_filters: The virtual machine filtering mode. Effectively this can enabling or disabling the virtual machine sizes in a particular set. :type vm_size_filters: list[~azure.mgmt.hdinsight.models.VmSizeCompatibilityFilterV2] :ivar vm_size_properties: The vm size properties. :vartype vm_size_properties: list[~azure.mgmt.hdinsight.models.VmSizeProperty] :param billing_resources: The billing and managed disk billing resources for a region. :type billing_resources: list[~azure.mgmt.hdinsight.models.BillingResources] """ _validation = { 'vm_size_properties': {'readonly': True}, } _attribute_map = { 'vm_sizes': {'key': 'vmSizes', 'type': '[str]'}, 'vm_sizes_with_encryption_at_host': {'key': 'vmSizesWithEncryptionAtHost', 'type': '[str]'}, 'vm_size_filters': {'key': 'vmSizeFilters', 'type': '[VmSizeCompatibilityFilterV2]'}, 'vm_size_properties': {'key': 'vmSizeProperties', 'type': '[VmSizeProperty]'}, 'billing_resources': {'key': 'billingResources', 'type': '[BillingResources]'}, } def __init__( self, *, vm_sizes: Optional[List[str]] = None, vm_sizes_with_encryption_at_host: Optional[List[str]] = None, vm_size_filters: Optional[List["VmSizeCompatibilityFilterV2"]] = None, billing_resources: Optional[List["BillingResources"]] = None, **kwargs ): super(BillingResponseListResult, self).__init__(**kwargs) self.vm_sizes = vm_sizes self.vm_sizes_with_encryption_at_host = vm_sizes_with_encryption_at_host self.vm_size_filters = vm_size_filters self.vm_size_properties = None self.billing_resources = billing_resources class CapabilitiesResult(msrest.serialization.Model): """The Get Capabilities operation response. Variables are only populated by the server, and will be ignored when sending a request. :param versions: The version capability. :type versions: dict[str, ~azure.mgmt.hdinsight.models.VersionsCapability] :param regions: The virtual machine size compatibility features. :type regions: dict[str, ~azure.mgmt.hdinsight.models.RegionsCapability] :param vmsizes: The virtual machine sizes. :type vmsizes: dict[str, ~azure.mgmt.hdinsight.models.VmSizesCapability] :param vmsize_filters: The virtual machine size compatibility filters. :type vmsize_filters: list[~azure.mgmt.hdinsight.models.VmSizeCompatibilityFilter] :param features: The capability features. :type features: list[str] :ivar quota: The quota capability. :vartype quota: ~azure.mgmt.hdinsight.models.QuotaCapability """ _validation = { 'quota': {'readonly': True}, } _attribute_map = { 'versions': {'key': 'versions', 'type': '{VersionsCapability}'}, 'regions': {'key': 'regions', 'type': '{RegionsCapability}'}, 'vmsizes': {'key': 'vmsizes', 'type': '{VmSizesCapability}'}, 'vmsize_filters': {'key': 'vmsize_filters', 'type': '[VmSizeCompatibilityFilter]'}, 'features': {'key': 'features', 'type': '[str]'}, 'quota': {'key': 'quota', 'type': 'QuotaCapability'}, } def __init__( self, *, versions: Optional[Dict[str, "VersionsCapability"]] = None, regions: Optional[Dict[str, "RegionsCapability"]] = None, vmsizes: Optional[Dict[str, "VmSizesCapability"]] = None, vmsize_filters: Optional[List["VmSizeCompatibilityFilter"]] = None, features: Optional[List[str]] = None, **kwargs ): super(CapabilitiesResult, self).__init__(**kwargs) self.versions = versions self.regions = regions self.vmsizes = vmsizes self.vmsize_filters = vmsize_filters self.features = features self.quota = None class ClientGroupInfo(msrest.serialization.Model): """The information of AAD security group. :param group_name: The AAD security group name. :type group_name: str :param group_id: The AAD security group id. :type group_id: str """ _attribute_map = { 'group_name': {'key': 'groupName', 'type': 'str'}, 'group_id': {'key': 'groupId', 'type': 'str'}, } def __init__( self, *, group_name: Optional[str] = None, group_id: Optional[str] = None, **kwargs ): super(ClientGroupInfo, self).__init__(**kwargs) self.group_name = group_name self.group_id = group_id class TrackedResource(Resource): """The resource model definition for a ARM tracked top level resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :param location: The Azure Region where the resource lives. :type location: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, **kwargs ): super(TrackedResource, self).__init__(**kwargs) self.location = location self.tags = tags class Cluster(TrackedResource): """The HDInsight cluster. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :param location: The Azure Region where the resource lives. :type location: str :param tags: A set of tags. Resource tags. :type tags: dict[str, str] :param etag: The ETag for the resource. :type etag: str :param properties: The properties of the cluster. :type properties: ~azure.mgmt.hdinsight.models.ClusterGetProperties :param identity: The identity of the cluster, if configured. :type identity: ~azure.mgmt.hdinsight.models.ClusterIdentity """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'etag': {'key': 'etag', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'ClusterGetProperties'}, 'identity': {'key': 'identity', 'type': 'ClusterIdentity'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, etag: Optional[str] = None, properties: Optional["ClusterGetProperties"] = None, identity: Optional["ClusterIdentity"] = None, **kwargs ): super(Cluster, self).__init__(location=location, tags=tags, **kwargs) self.etag = etag self.properties = properties self.identity = identity class ClusterConfigurations(msrest.serialization.Model): """The configuration object for the specified cluster. :param configurations: The configuration object for the specified configuration for the specified cluster. :type configurations: dict[str, dict[str, str]] """ _attribute_map = { 'configurations': {'key': 'configurations', 'type': '{{str}}'}, } def __init__( self, *, configurations: Optional[Dict[str, Dict[str, str]]] = None, **kwargs ): super(ClusterConfigurations, self).__init__(**kwargs) self.configurations = configurations class ClusterCreateParametersExtended(msrest.serialization.Model): """The CreateCluster request parameters. :param location: The location of the cluster. :type location: str :param tags: A set of tags. The resource tags. :type tags: dict[str, str] :param properties: The cluster create parameters. :type properties: ~azure.mgmt.hdinsight.models.ClusterCreateProperties :param identity: The identity of the cluster, if configured. :type identity: ~azure.mgmt.hdinsight.models.ClusterIdentity """ _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'properties': {'key': 'properties', 'type': 'ClusterCreateProperties'}, 'identity': {'key': 'identity', 'type': 'ClusterIdentity'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, properties: Optional["ClusterCreateProperties"] = None, identity: Optional["ClusterIdentity"] = None, **kwargs ): super(ClusterCreateParametersExtended, self).__init__(**kwargs) self.location = location self.tags = tags self.properties = properties self.identity = identity class ClusterCreateProperties(msrest.serialization.Model): """The cluster create parameters. :param cluster_version: The version of the cluster. :type cluster_version: str :param os_type: The type of operating system. Possible values include: "Windows", "Linux". :type os_type: str or ~azure.mgmt.hdinsight.models.OSType :param tier: The cluster tier. Possible values include: "Standard", "Premium". :type tier: str or ~azure.mgmt.hdinsight.models.Tier :param cluster_definition: The cluster definition. :type cluster_definition: ~azure.mgmt.hdinsight.models.ClusterDefinition :param kafka_rest_properties: The cluster kafka rest proxy configuration. :type kafka_rest_properties: ~azure.mgmt.hdinsight.models.KafkaRestProperties :param security_profile: The security profile. :type security_profile: ~azure.mgmt.hdinsight.models.SecurityProfile :param compute_profile: The compute profile. :type compute_profile: ~azure.mgmt.hdinsight.models.ComputeProfile :param storage_profile: The storage profile. :type storage_profile: ~azure.mgmt.hdinsight.models.StorageProfile :param disk_encryption_properties: The disk encryption properties. :type disk_encryption_properties: ~azure.mgmt.hdinsight.models.DiskEncryptionProperties :param encryption_in_transit_properties: The encryption-in-transit properties. :type encryption_in_transit_properties: ~azure.mgmt.hdinsight.models.EncryptionInTransitProperties :param min_supported_tls_version: The minimal supported tls version. :type min_supported_tls_version: str :param network_properties: The network properties. :type network_properties: ~azure.mgmt.hdinsight.models.NetworkProperties :param compute_isolation_properties: The compute isolation properties. :type compute_isolation_properties: ~azure.mgmt.hdinsight.models.ComputeIsolationProperties """ _attribute_map = { 'cluster_version': {'key': 'clusterVersion', 'type': 'str'}, 'os_type': {'key': 'osType', 'type': 'str'}, 'tier': {'key': 'tier', 'type': 'str'}, 'cluster_definition': {'key': 'clusterDefinition', 'type': 'ClusterDefinition'}, 'kafka_rest_properties': {'key': 'kafkaRestProperties', 'type': 'KafkaRestProperties'}, 'security_profile': {'key': 'securityProfile', 'type': 'SecurityProfile'}, 'compute_profile': {'key': 'computeProfile', 'type': 'ComputeProfile'}, 'storage_profile': {'key': 'storageProfile', 'type': 'StorageProfile'}, 'disk_encryption_properties': {'key': 'diskEncryptionProperties', 'type': 'DiskEncryptionProperties'}, 'encryption_in_transit_properties': {'key': 'encryptionInTransitProperties', 'type': 'EncryptionInTransitProperties'}, 'min_supported_tls_version': {'key': 'minSupportedTlsVersion', 'type': 'str'}, 'network_properties': {'key': 'networkProperties', 'type': 'NetworkProperties'}, 'compute_isolation_properties': {'key': 'computeIsolationProperties', 'type': 'ComputeIsolationProperties'}, } def __init__( self, *, cluster_version: Optional[str] = None, os_type: Optional[Union[str, "OSType"]] = None, tier: Optional[Union[str, "Tier"]] = None, cluster_definition: Optional["ClusterDefinition"] = None, kafka_rest_properties: Optional["KafkaRestProperties"] = None, security_profile: Optional["SecurityProfile"] = None, compute_profile: Optional["ComputeProfile"] = None, storage_profile: Optional["StorageProfile"] = None, disk_encryption_properties: Optional["DiskEncryptionProperties"] = None, encryption_in_transit_properties: Optional["EncryptionInTransitProperties"] = None, min_supported_tls_version: Optional[str] = None, network_properties: Optional["NetworkProperties"] = None, compute_isolation_properties: Optional["ComputeIsolationProperties"] = None, **kwargs ): super(ClusterCreateProperties, self).__init__(**kwargs) self.cluster_version = cluster_version self.os_type = os_type self.tier = tier self.cluster_definition = cluster_definition self.kafka_rest_properties = kafka_rest_properties self.security_profile = security_profile self.compute_profile = compute_profile self.storage_profile = storage_profile self.disk_encryption_properties = disk_encryption_properties self.encryption_in_transit_properties = encryption_in_transit_properties self.min_supported_tls_version = min_supported_tls_version self.network_properties = network_properties self.compute_isolation_properties = compute_isolation_properties class ClusterCreateRequestValidationParameters(ClusterCreateParametersExtended): """The cluster create request specification. :param location: The location of the cluster. :type location: str :param tags: A set of tags. The resource tags. :type tags: dict[str, str] :param properties: The cluster create parameters. :type properties: ~azure.mgmt.hdinsight.models.ClusterCreateProperties :param identity: The identity of the cluster, if configured. :type identity: ~azure.mgmt.hdinsight.models.ClusterIdentity :param name: The cluster name. :type name: str :param type: The resource type. :type type: str :param tenant_id: The tenant id. :type tenant_id: str :param fetch_aadds_resource: This indicates whether fetch Aadds resource or not. :type fetch_aadds_resource: bool """ _attribute_map = { 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'properties': {'key': 'properties', 'type': 'ClusterCreateProperties'}, 'identity': {'key': 'identity', 'type': 'ClusterIdentity'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, 'fetch_aadds_resource': {'key': 'fetchAaddsResource', 'type': 'bool'}, } def __init__( self, *, location: Optional[str] = None, tags: Optional[Dict[str, str]] = None, properties: Optional["ClusterCreateProperties"] = None, identity: Optional["ClusterIdentity"] = None, name: Optional[str] = None, type: Optional[str] = None, tenant_id: Optional[str] = None, fetch_aadds_resource: Optional[bool] = None, **kwargs ): super(ClusterCreateRequestValidationParameters, self).__init__(location=location, tags=tags, properties=properties, identity=identity, **kwargs) self.name = name self.type = type self.tenant_id = tenant_id self.fetch_aadds_resource = fetch_aadds_resource class ClusterCreateValidationResult(msrest.serialization.Model): """The response of cluster create request validation. :param validation_errors: The validation errors. :type validation_errors: list[~azure.mgmt.hdinsight.models.ValidationErrorInfo] :param validation_warnings: The validation warnings. :type validation_warnings: list[~azure.mgmt.hdinsight.models.ValidationErrorInfo] :param estimated_creation_duration: The estimated creation duration. :type estimated_creation_duration: ~datetime.timedelta :param aadds_resources_details: The Azure active directory domain service resource details. :type aadds_resources_details: list[~azure.mgmt.hdinsight.models.AaddsResourceDetails] """ _attribute_map = { 'validation_errors': {'key': 'validationErrors', 'type': '[ValidationErrorInfo]'}, 'validation_warnings': {'key': 'validationWarnings', 'type': '[ValidationErrorInfo]'}, 'estimated_creation_duration': {'key': 'estimatedCreationDuration', 'type': 'duration'}, 'aadds_resources_details': {'key': 'aaddsResourcesDetails', 'type': '[AaddsResourceDetails]'}, } def __init__( self, *, validation_errors: Optional[List["ValidationErrorInfo"]] = None, validation_warnings: Optional[List["ValidationErrorInfo"]] = None, estimated_creation_duration: Optional[datetime.timedelta] = None, aadds_resources_details: Optional[List["AaddsResourceDetails"]] = None, **kwargs ): super(ClusterCreateValidationResult, self).__init__(**kwargs) self.validation_errors = validation_errors self.validation_warnings = validation_warnings self.estimated_creation_duration = estimated_creation_duration self.aadds_resources_details = aadds_resources_details class ClusterDefinition(msrest.serialization.Model): """The cluster definition. :param blueprint: The link to the blueprint. :type blueprint: str :param kind: The type of cluster. :type kind: str :param component_version: The versions of different services in the cluster. :type component_version: dict[str, str] :param configurations: The cluster configurations. :type configurations: any """ _attribute_map = { 'blueprint': {'key': 'blueprint', 'type': 'str'}, 'kind': {'key': 'kind', 'type': 'str'}, 'component_version': {'key': 'componentVersion', 'type': '{str}'}, 'configurations': {'key': 'configurations', 'type': 'object'}, } def __init__( self, *, blueprint: Optional[str] = None, kind: Optional[str] = None, component_version: Optional[Dict[str, str]] = None, configurations: Optional[Any] = None, **kwargs ): super(ClusterDefinition, self).__init__(**kwargs) self.blueprint = blueprint self.kind = kind self.component_version = component_version self.configurations = configurations class ClusterDiskEncryptionParameters(msrest.serialization.Model): """The Disk Encryption Cluster request parameters. :param vault_uri: Base key vault URI where the customers key is located eg. https://myvault.vault.azure.net. :type vault_uri: str :param key_name: Key name that is used for enabling disk encryption. :type key_name: str :param key_version: Specific key version that is used for enabling disk encryption. :type key_version: str """ _attribute_map = { 'vault_uri': {'key': 'vaultUri', 'type': 'str'}, 'key_name': {'key': 'keyName', 'type': 'str'}, 'key_version': {'key': 'keyVersion', 'type': 'str'}, } def __init__( self, *, vault_uri: Optional[str] = None, key_name: Optional[str] = None, key_version: Optional[str] = None, **kwargs ): super(ClusterDiskEncryptionParameters, self).__init__(**kwargs) self.vault_uri = vault_uri self.key_name = key_name self.key_version = key_version class ClusterGetProperties(msrest.serialization.Model): """The properties of cluster. All required parameters must be populated in order to send to Azure. :param cluster_version: The version of the cluster. :type cluster_version: str :param cluster_hdp_version: The hdp version of the cluster. :type cluster_hdp_version: str :param os_type: The type of operating system. Possible values include: "Windows", "Linux". :type os_type: str or ~azure.mgmt.hdinsight.models.OSType :param tier: The cluster tier. Possible values include: "Standard", "Premium". :type tier: str or ~azure.mgmt.hdinsight.models.Tier :param cluster_id: The cluster id. :type cluster_id: str :param cluster_definition: Required. The cluster definition. :type cluster_definition: ~azure.mgmt.hdinsight.models.ClusterDefinition :param kafka_rest_properties: The cluster kafka rest proxy configuration. :type kafka_rest_properties: ~azure.mgmt.hdinsight.models.KafkaRestProperties :param security_profile: The security profile. :type security_profile: ~azure.mgmt.hdinsight.models.SecurityProfile :param compute_profile: The compute profile. :type compute_profile: ~azure.mgmt.hdinsight.models.ComputeProfile :param provisioning_state: The provisioning state, which only appears in the response. Possible values include: "InProgress", "Failed", "Succeeded", "Canceled", "Deleting". :type provisioning_state: str or ~azure.mgmt.hdinsight.models.HDInsightClusterProvisioningState :param created_date: The date on which the cluster was created. :type created_date: str :param cluster_state: The state of the cluster. :type cluster_state: str :param quota_info: The quota information. :type quota_info: ~azure.mgmt.hdinsight.models.QuotaInfo :param errors: The list of errors. :type errors: list[~azure.mgmt.hdinsight.models.Errors] :param connectivity_endpoints: The list of connectivity endpoints. :type connectivity_endpoints: list[~azure.mgmt.hdinsight.models.ConnectivityEndpoint] :param disk_encryption_properties: The disk encryption properties. :type disk_encryption_properties: ~azure.mgmt.hdinsight.models.DiskEncryptionProperties :param encryption_in_transit_properties: The encryption-in-transit properties. :type encryption_in_transit_properties: ~azure.mgmt.hdinsight.models.EncryptionInTransitProperties :param storage_profile: The storage profile. :type storage_profile: ~azure.mgmt.hdinsight.models.StorageProfile :param min_supported_tls_version: The minimal supported tls version. :type min_supported_tls_version: str :param excluded_services_config: The excluded services config. :type excluded_services_config: ~azure.mgmt.hdinsight.models.ExcludedServicesConfig :param network_properties: The network properties. :type network_properties: ~azure.mgmt.hdinsight.models.NetworkProperties :param compute_isolation_properties: The compute isolation properties. :type compute_isolation_properties: ~azure.mgmt.hdinsight.models.ComputeIsolationProperties """ _validation = { 'cluster_definition': {'required': True}, } _attribute_map = { 'cluster_version': {'key': 'clusterVersion', 'type': 'str'}, 'cluster_hdp_version': {'key': 'clusterHdpVersion', 'type': 'str'}, 'os_type': {'key': 'osType', 'type': 'str'}, 'tier': {'key': 'tier', 'type': 'str'}, 'cluster_id': {'key': 'clusterId', 'type': 'str'}, 'cluster_definition': {'key': 'clusterDefinition', 'type': 'ClusterDefinition'}, 'kafka_rest_properties': {'key': 'kafkaRestProperties', 'type': 'KafkaRestProperties'}, 'security_profile': {'key': 'securityProfile', 'type': 'SecurityProfile'}, 'compute_profile': {'key': 'computeProfile', 'type': 'ComputeProfile'}, 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'created_date': {'key': 'createdDate', 'type': 'str'}, 'cluster_state': {'key': 'clusterState', 'type': 'str'}, 'quota_info': {'key': 'quotaInfo', 'type': 'QuotaInfo'}, 'errors': {'key': 'errors', 'type': '[Errors]'}, 'connectivity_endpoints': {'key': 'connectivityEndpoints', 'type': '[ConnectivityEndpoint]'}, 'disk_encryption_properties': {'key': 'diskEncryptionProperties', 'type': 'DiskEncryptionProperties'}, 'encryption_in_transit_properties': {'key': 'encryptionInTransitProperties', 'type': 'EncryptionInTransitProperties'}, 'storage_profile': {'key': 'storageProfile', 'type': 'StorageProfile'}, 'min_supported_tls_version': {'key': 'minSupportedTlsVersion', 'type': 'str'}, 'excluded_services_config': {'key': 'excludedServicesConfig', 'type': 'ExcludedServicesConfig'}, 'network_properties': {'key': 'networkProperties', 'type': 'NetworkProperties'}, 'compute_isolation_properties': {'key': 'computeIsolationProperties', 'type': 'ComputeIsolationProperties'}, } def __init__( self, *, cluster_definition: "ClusterDefinition", cluster_version: Optional[str] = None, cluster_hdp_version: Optional[str] = None, os_type: Optional[Union[str, "OSType"]] = None, tier: Optional[Union[str, "Tier"]] = None, cluster_id: Optional[str] = None, kafka_rest_properties: Optional["KafkaRestProperties"] = None, security_profile: Optional["SecurityProfile"] = None, compute_profile: Optional["ComputeProfile"] = None, provisioning_state: Optional[Union[str, "HDInsightClusterProvisioningState"]] = None, created_date: Optional[str] = None, cluster_state: Optional[str] = None, quota_info: Optional["QuotaInfo"] = None, errors: Optional[List["Errors"]] = None, connectivity_endpoints: Optional[List["ConnectivityEndpoint"]] = None, disk_encryption_properties: Optional["DiskEncryptionProperties"] = None, encryption_in_transit_properties: Optional["EncryptionInTransitProperties"] = None, storage_profile: Optional["StorageProfile"] = None, min_supported_tls_version: Optional[str] = None, excluded_services_config: Optional["ExcludedServicesConfig"] = None, network_properties: Optional["NetworkProperties"] = None, compute_isolation_properties: Optional["ComputeIsolationProperties"] = None, **kwargs ): super(ClusterGetProperties, self).__init__(**kwargs) self.cluster_version = cluster_version self.cluster_hdp_version = cluster_hdp_version self.os_type = os_type self.tier = tier self.cluster_id = cluster_id self.cluster_definition = cluster_definition self.kafka_rest_properties = kafka_rest_properties self.security_profile = security_profile self.compute_profile = compute_profile self.provisioning_state = provisioning_state self.created_date = created_date self.cluster_state = cluster_state self.quota_info = quota_info self.errors = errors self.connectivity_endpoints = connectivity_endpoints self.disk_encryption_properties = disk_encryption_properties self.encryption_in_transit_properties = encryption_in_transit_properties self.storage_profile = storage_profile self.min_supported_tls_version = min_supported_tls_version self.excluded_services_config = excluded_services_config self.network_properties = network_properties self.compute_isolation_properties = compute_isolation_properties class ClusterIdentity(msrest.serialization.Model): """Identity for the cluster. Variables are only populated by the server, and will be ignored when sending a request. :ivar principal_id: The principal id of cluster identity. This property will only be provided for a system assigned identity. :vartype principal_id: str :ivar tenant_id: The tenant id associated with the cluster. This property will only be provided for a system assigned identity. :vartype tenant_id: str :param type: The type of identity used for the cluster. The type 'SystemAssigned, UserAssigned' includes both an implicitly created identity and a set of user assigned identities. Possible values include: "SystemAssigned", "UserAssigned", "SystemAssigned, UserAssigned", "None". :type type: str or ~azure.mgmt.hdinsight.models.ResourceIdentityType :param user_assigned_identities: The list of user identities associated with the cluster. The user identity dictionary key references will be ARM resource ids in the form: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}'. :type user_assigned_identities: dict[str, ~azure.mgmt.hdinsight.models.ComponentsC51Ht8SchemasClusteridentityPropertiesUserassignedidentitiesAdditionalproperties] """ _validation = { 'principal_id': {'readonly': True}, 'tenant_id': {'readonly': True}, } _attribute_map = { 'principal_id': {'key': 'principalId', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'user_assigned_identities': {'key': 'userAssignedIdentities', 'type': '{ComponentsC51Ht8SchemasClusteridentityPropertiesUserassignedidentitiesAdditionalproperties}'}, } def __init__( self, *, type: Optional[Union[str, "ResourceIdentityType"]] = None, user_assigned_identities: Optional[Dict[str, "ComponentsC51Ht8SchemasClusteridentityPropertiesUserassignedidentitiesAdditionalproperties"]] = None, **kwargs ): super(ClusterIdentity, self).__init__(**kwargs) self.principal_id = None self.tenant_id = None self.type = type self.user_assigned_identities = user_assigned_identities class ClusterListPersistedScriptActionsResult(msrest.serialization.Model): """The ListPersistedScriptActions operation response. Variables are only populated by the server, and will be ignored when sending a request. :param value: The list of Persisted Script Actions. :type value: list[~azure.mgmt.hdinsight.models.RuntimeScriptAction] :ivar next_link: The link (url) to the next page of results. :vartype next_link: str """ _validation = { 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[RuntimeScriptAction]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["RuntimeScriptAction"]] = None, **kwargs ): super(ClusterListPersistedScriptActionsResult, self).__init__(**kwargs) self.value = value self.next_link = None class ClusterListResult(msrest.serialization.Model): """The List Cluster operation response. Variables are only populated by the server, and will be ignored when sending a request. :param value: The list of Clusters. :type value: list[~azure.mgmt.hdinsight.models.Cluster] :ivar next_link: The link (url) to the next page of results. :vartype next_link: str """ _validation = { 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[Cluster]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["Cluster"]] = None, **kwargs ): super(ClusterListResult, self).__init__(**kwargs) self.value = value self.next_link = None class ClusterListRuntimeScriptActionDetailResult(msrest.serialization.Model): """The list runtime script action detail response. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: :vartype value: list[~azure.mgmt.hdinsight.models.RuntimeScriptActionDetail] :ivar next_link: The link (url) to the next page of results. :vartype next_link: str """ _validation = { 'value': {'readonly': True}, 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[RuntimeScriptActionDetail]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(ClusterListRuntimeScriptActionDetailResult, self).__init__(**kwargs) self.value = None self.next_link = None class ClusterListRuntimeScriptActionDetailResultAutoGenerated(msrest.serialization.Model): """The list runtime script action detail response. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: The list of persisted script action details for the cluster. :vartype value: list[~azure.mgmt.hdinsight.models.RuntimeScriptActionDetail] :ivar next_link: The link (url) to the next page of results. :vartype next_link: str """ _validation = { 'value': {'readonly': True}, 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[RuntimeScriptActionDetail]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(ClusterListRuntimeScriptActionDetailResultAutoGenerated, self).__init__(**kwargs) self.value = None self.next_link = None class ClusterMonitoringRequest(msrest.serialization.Model): """The cluster monitor parameters. :param workspace_id: The cluster monitor workspace ID. :type workspace_id: str :param primary_key: The cluster monitor workspace key. :type primary_key: str """ _attribute_map = { 'workspace_id': {'key': 'workspaceId', 'type': 'str'}, 'primary_key': {'key': 'primaryKey', 'type': 'str'}, } def __init__( self, *, workspace_id: Optional[str] = None, primary_key: Optional[str] = None, **kwargs ): super(ClusterMonitoringRequest, self).__init__(**kwargs) self.workspace_id = workspace_id self.primary_key = primary_key class ClusterMonitoringResponse(msrest.serialization.Model): """The cluster monitoring status response. :param cluster_monitoring_enabled: The status of the monitor on the HDInsight cluster. :type cluster_monitoring_enabled: bool :param workspace_id: The workspace ID of the monitor on the HDInsight cluster. :type workspace_id: str """ _attribute_map = { 'cluster_monitoring_enabled': {'key': 'clusterMonitoringEnabled', 'type': 'bool'}, 'workspace_id': {'key': 'workspaceId', 'type': 'str'}, } def __init__( self, *, cluster_monitoring_enabled: Optional[bool] = None, workspace_id: Optional[str] = None, **kwargs ): super(ClusterMonitoringResponse, self).__init__(**kwargs) self.cluster_monitoring_enabled = cluster_monitoring_enabled self.workspace_id = workspace_id class ClusterPatchParameters(msrest.serialization.Model): """The PatchCluster request parameters. :param tags: A set of tags. The resource tags. :type tags: dict[str, str] """ _attribute_map = { 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__( self, *, tags: Optional[Dict[str, str]] = None, **kwargs ): super(ClusterPatchParameters, self).__init__(**kwargs) self.tags = tags class ClusterResizeParameters(msrest.serialization.Model): """The Resize Cluster request parameters. :param target_instance_count: The target instance count for the operation. :type target_instance_count: int """ _attribute_map = { 'target_instance_count': {'key': 'targetInstanceCount', 'type': 'int'}, } def __init__( self, *, target_instance_count: Optional[int] = None, **kwargs ): super(ClusterResizeParameters, self).__init__(**kwargs) self.target_instance_count = target_instance_count class ComponentsC51Ht8SchemasClusteridentityPropertiesUserassignedidentitiesAdditionalproperties(msrest.serialization.Model): """ComponentsC51Ht8SchemasClusteridentityPropertiesUserassignedidentitiesAdditionalproperties. Variables are only populated by the server, and will be ignored when sending a request. :ivar principal_id: The principal id of user assigned identity. :vartype principal_id: str :ivar client_id: The client id of user assigned identity. :vartype client_id: str :param tenant_id: The tenant id of user assigned identity. :type tenant_id: str """ _validation = { 'principal_id': {'readonly': True}, 'client_id': {'readonly': True}, } _attribute_map = { 'principal_id': {'key': 'principalId', 'type': 'str'}, 'client_id': {'key': 'clientId', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, } def __init__( self, *, tenant_id: Optional[str] = None, **kwargs ): super(ComponentsC51Ht8SchemasClusteridentityPropertiesUserassignedidentitiesAdditionalproperties, self).__init__(**kwargs) self.principal_id = None self.client_id = None self.tenant_id = tenant_id class ComputeIsolationProperties(msrest.serialization.Model): """The compute isolation properties. :param enable_compute_isolation: The flag indicates whether enable compute isolation or not. :type enable_compute_isolation: bool :param host_sku: The host sku. :type host_sku: str """ _attribute_map = { 'enable_compute_isolation': {'key': 'enableComputeIsolation', 'type': 'bool'}, 'host_sku': {'key': 'hostSku', 'type': 'str'}, } def __init__( self, *, enable_compute_isolation: Optional[bool] = False, host_sku: Optional[str] = None, **kwargs ): super(ComputeIsolationProperties, self).__init__(**kwargs) self.enable_compute_isolation = enable_compute_isolation self.host_sku = host_sku class ComputeProfile(msrest.serialization.Model): """Describes the compute profile. :param roles: The list of roles in the cluster. :type roles: list[~azure.mgmt.hdinsight.models.Role] """ _attribute_map = { 'roles': {'key': 'roles', 'type': '[Role]'}, } def __init__( self, *, roles: Optional[List["Role"]] = None, **kwargs ): super(ComputeProfile, self).__init__(**kwargs) self.roles = roles class ConnectivityEndpoint(msrest.serialization.Model): """The connectivity properties. :param name: The name of the endpoint. :type name: str :param protocol: The protocol of the endpoint. :type protocol: str :param location: The location of the endpoint. :type location: str :param port: The port to connect to. :type port: int :param private_ip_address: The private ip address of the endpoint. :type private_ip_address: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'protocol': {'key': 'protocol', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'port': {'key': 'port', 'type': 'int'}, 'private_ip_address': {'key': 'privateIPAddress', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, protocol: Optional[str] = None, location: Optional[str] = None, port: Optional[int] = None, private_ip_address: Optional[str] = None, **kwargs ): super(ConnectivityEndpoint, self).__init__(**kwargs) self.name = name self.protocol = protocol self.location = location self.port = port self.private_ip_address = private_ip_address class DataDisksGroups(msrest.serialization.Model): """The data disks groups for the role. Variables are only populated by the server, and will be ignored when sending a request. :param disks_per_node: The number of disks per node. :type disks_per_node: int :ivar storage_account_type: ReadOnly. The storage account type. Do not set this value. :vartype storage_account_type: str :ivar disk_size_gb: ReadOnly. The DiskSize in GB. Do not set this value. :vartype disk_size_gb: int """ _validation = { 'storage_account_type': {'readonly': True}, 'disk_size_gb': {'readonly': True}, } _attribute_map = { 'disks_per_node': {'key': 'disksPerNode', 'type': 'int'}, 'storage_account_type': {'key': 'storageAccountType', 'type': 'str'}, 'disk_size_gb': {'key': 'diskSizeGB', 'type': 'int'}, } def __init__( self, *, disks_per_node: Optional[int] = None, **kwargs ): super(DataDisksGroups, self).__init__(**kwargs) self.disks_per_node = disks_per_node self.storage_account_type = None self.disk_size_gb = None class Dimension(msrest.serialization.Model): """The definition of Dimension. :param name: The name of the dimension. :type name: str :param display_name: The display name of the dimension. :type display_name: str :param internal_name: The display name of the dimension. :type internal_name: str :param to_be_exported_for_shoebox: The flag indicates whether the metric will be exported for shoebox or not. :type to_be_exported_for_shoebox: bool """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'internal_name': {'key': 'internalName', 'type': 'str'}, 'to_be_exported_for_shoebox': {'key': 'toBeExportedForShoebox', 'type': 'bool'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, internal_name: Optional[str] = None, to_be_exported_for_shoebox: Optional[bool] = None, **kwargs ): super(Dimension, self).__init__(**kwargs) self.name = name self.display_name = display_name self.internal_name = internal_name self.to_be_exported_for_shoebox = to_be_exported_for_shoebox class DiskBillingMeters(msrest.serialization.Model): """The disk billing meters. :param disk_rp_meter: The managed disk meter guid. :type disk_rp_meter: str :param sku: The managed disk billing sku, P30 or S30. :type sku: str :param tier: The managed disk billing tier, Standard or Premium. Possible values include: "Standard", "Premium". :type tier: str or ~azure.mgmt.hdinsight.models.Tier """ _attribute_map = { 'disk_rp_meter': {'key': 'diskRpMeter', 'type': 'str'}, 'sku': {'key': 'sku', 'type': 'str'}, 'tier': {'key': 'tier', 'type': 'str'}, } def __init__( self, *, disk_rp_meter: Optional[str] = None, sku: Optional[str] = None, tier: Optional[Union[str, "Tier"]] = None, **kwargs ): super(DiskBillingMeters, self).__init__(**kwargs) self.disk_rp_meter = disk_rp_meter self.sku = sku self.tier = tier class DiskEncryptionProperties(msrest.serialization.Model): """The disk encryption properties. :param vault_uri: Base key vault URI where the customers key is located eg. https://myvault.vault.azure.net. :type vault_uri: str :param key_name: Key name that is used for enabling disk encryption. :type key_name: str :param key_version: Specific key version that is used for enabling disk encryption. :type key_version: str :param encryption_algorithm: Algorithm identifier for encryption, default RSA-OAEP. Possible values include: "RSA-OAEP", "RSA-OAEP-256", "RSA1_5". :type encryption_algorithm: str or ~azure.mgmt.hdinsight.models.JsonWebKeyEncryptionAlgorithm :param msi_resource_id: Resource ID of Managed Identity that is used to access the key vault. :type msi_resource_id: str :param encryption_at_host: Indicates whether or not resource disk encryption is enabled. :type encryption_at_host: bool """ _attribute_map = { 'vault_uri': {'key': 'vaultUri', 'type': 'str'}, 'key_name': {'key': 'keyName', 'type': 'str'}, 'key_version': {'key': 'keyVersion', 'type': 'str'}, 'encryption_algorithm': {'key': 'encryptionAlgorithm', 'type': 'str'}, 'msi_resource_id': {'key': 'msiResourceId', 'type': 'str'}, 'encryption_at_host': {'key': 'encryptionAtHost', 'type': 'bool'}, } def __init__( self, *, vault_uri: Optional[str] = None, key_name: Optional[str] = None, key_version: Optional[str] = None, encryption_algorithm: Optional[Union[str, "JsonWebKeyEncryptionAlgorithm"]] = None, msi_resource_id: Optional[str] = None, encryption_at_host: Optional[bool] = False, **kwargs ): super(DiskEncryptionProperties, self).__init__(**kwargs) self.vault_uri = vault_uri self.key_name = key_name self.key_version = key_version self.encryption_algorithm = encryption_algorithm self.msi_resource_id = msi_resource_id self.encryption_at_host = encryption_at_host class EncryptionInTransitProperties(msrest.serialization.Model): """The encryption-in-transit properties. :param is_encryption_in_transit_enabled: Indicates whether or not inter cluster node communication is encrypted in transit. :type is_encryption_in_transit_enabled: bool """ _attribute_map = { 'is_encryption_in_transit_enabled': {'key': 'isEncryptionInTransitEnabled', 'type': 'bool'}, } def __init__( self, *, is_encryption_in_transit_enabled: Optional[bool] = False, **kwargs ): super(EncryptionInTransitProperties, self).__init__(**kwargs) self.is_encryption_in_transit_enabled = is_encryption_in_transit_enabled class ErrorResponse(msrest.serialization.Model): """Describes the format of Error response. :param code: Error code. :type code: str :param message: Error message indicating why the operation failed. :type message: str """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, code: Optional[str] = None, message: Optional[str] = None, **kwargs ): super(ErrorResponse, self).__init__(**kwargs) self.code = code self.message = message class Errors(msrest.serialization.Model): """The error message associated with the cluster creation. :param code: The error code. :type code: str :param message: The error message. :type message: str """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, code: Optional[str] = None, message: Optional[str] = None, **kwargs ): super(Errors, self).__init__(**kwargs) self.code = code self.message = message class ExcludedServicesConfig(msrest.serialization.Model): """The configuration that services will be excluded when creating cluster. :param excluded_services_config_id: The config id of excluded services. :type excluded_services_config_id: str :param excluded_services_list: The list of excluded services. :type excluded_services_list: str """ _attribute_map = { 'excluded_services_config_id': {'key': 'excludedServicesConfigId', 'type': 'str'}, 'excluded_services_list': {'key': 'excludedServicesList', 'type': 'str'}, } def __init__( self, *, excluded_services_config_id: Optional[str] = None, excluded_services_list: Optional[str] = None, **kwargs ): super(ExcludedServicesConfig, self).__init__(**kwargs) self.excluded_services_config_id = excluded_services_config_id self.excluded_services_list = excluded_services_list class ExecuteScriptActionParameters(msrest.serialization.Model): """The parameters for the script actions to execute on a running cluster. All required parameters must be populated in order to send to Azure. :param script_actions: The list of run time script actions. :type script_actions: list[~azure.mgmt.hdinsight.models.RuntimeScriptAction] :param persist_on_success: Required. Gets or sets if the scripts needs to be persisted. :type persist_on_success: bool """ _validation = { 'persist_on_success': {'required': True}, } _attribute_map = { 'script_actions': {'key': 'scriptActions', 'type': '[RuntimeScriptAction]'}, 'persist_on_success': {'key': 'persistOnSuccess', 'type': 'bool'}, } def __init__( self, *, persist_on_success: bool, script_actions: Optional[List["RuntimeScriptAction"]] = None, **kwargs ): super(ExecuteScriptActionParameters, self).__init__(**kwargs) self.script_actions = script_actions self.persist_on_success = persist_on_success class Extension(msrest.serialization.Model): """Cluster monitoring extensions. :param workspace_id: The workspace ID for the cluster monitoring extension. :type workspace_id: str :param primary_key: The certificate for the cluster monitoring extensions. :type primary_key: str """ _attribute_map = { 'workspace_id': {'key': 'workspaceId', 'type': 'str'}, 'primary_key': {'key': 'primaryKey', 'type': 'str'}, } def __init__( self, *, workspace_id: Optional[str] = None, primary_key: Optional[str] = None, **kwargs ): super(Extension, self).__init__(**kwargs) self.workspace_id = workspace_id self.primary_key = primary_key class GatewaySettings(msrest.serialization.Model): """Gateway settings. Variables are only populated by the server, and will be ignored when sending a request. :ivar is_credential_enabled: Indicates whether or not the gateway settings based authorization is enabled. :vartype is_credential_enabled: str :ivar user_name: The gateway settings user name. :vartype user_name: str :ivar password: The gateway settings user password. :vartype password: str """ _validation = { 'is_credential_enabled': {'readonly': True}, 'user_name': {'readonly': True}, 'password': {'readonly': True}, } _attribute_map = { 'is_credential_enabled': {'key': 'restAuthCredential\\.isEnabled', 'type': 'str'}, 'user_name': {'key': 'restAuthCredential\\.username', 'type': 'str'}, 'password': {'key': 'restAuthCredential\\.password', 'type': 'str'}, } def __init__( self, **kwargs ): super(GatewaySettings, self).__init__(**kwargs) self.is_credential_enabled = None self.user_name = None self.password = None class HardwareProfile(msrest.serialization.Model): """The hardware profile. :param vm_size: The size of the VM. :type vm_size: str """ _attribute_map = { 'vm_size': {'key': 'vmSize', 'type': 'str'}, } def __init__( self, *, vm_size: Optional[str] = None, **kwargs ): super(HardwareProfile, self).__init__(**kwargs) self.vm_size = vm_size class HostInfo(msrest.serialization.Model): """The cluster host information. :param name: The host name. :type name: str :param fqdn: The Fully Qualified Domain Name of host. :type fqdn: str :param effective_disk_encryption_key_url: The effective disk encryption key URL used by the host. :type effective_disk_encryption_key_url: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'fqdn': {'key': 'fqdn', 'type': 'str'}, 'effective_disk_encryption_key_url': {'key': 'effectiveDiskEncryptionKeyUrl', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, fqdn: Optional[str] = None, effective_disk_encryption_key_url: Optional[str] = None, **kwargs ): super(HostInfo, self).__init__(**kwargs) self.name = name self.fqdn = fqdn self.effective_disk_encryption_key_url = effective_disk_encryption_key_url class KafkaRestProperties(msrest.serialization.Model): """The kafka rest proxy configuration which contains AAD security group information. :param client_group_info: The information of AAD security group. :type client_group_info: ~azure.mgmt.hdinsight.models.ClientGroupInfo :param configuration_override: The configurations that need to be overriden. :type configuration_override: dict[str, str] """ _attribute_map = { 'client_group_info': {'key': 'clientGroupInfo', 'type': 'ClientGroupInfo'}, 'configuration_override': {'key': 'configurationOverride', 'type': '{str}'}, } def __init__( self, *, client_group_info: Optional["ClientGroupInfo"] = None, configuration_override: Optional[Dict[str, str]] = None, **kwargs ): super(KafkaRestProperties, self).__init__(**kwargs) self.client_group_info = client_group_info self.configuration_override = configuration_override class LinuxOperatingSystemProfile(msrest.serialization.Model): """The ssh username, password, and ssh public key. :param username: The username. :type username: str :param password: The password. :type password: str :param ssh_profile: The SSH profile. :type ssh_profile: ~azure.mgmt.hdinsight.models.SshProfile """ _attribute_map = { 'username': {'key': 'username', 'type': 'str'}, 'password': {'key': 'password', 'type': 'str'}, 'ssh_profile': {'key': 'sshProfile', 'type': 'SshProfile'}, } def __init__( self, *, username: Optional[str] = None, password: Optional[str] = None, ssh_profile: Optional["SshProfile"] = None, **kwargs ): super(LinuxOperatingSystemProfile, self).__init__(**kwargs) self.username = username self.password = password self.ssh_profile = ssh_profile class LocalizedName(msrest.serialization.Model): """The details about the localizable name of a type of usage. :param value: The name of the used resource. :type value: str :param localized_value: The localized name of the used resource. :type localized_value: str """ _attribute_map = { 'value': {'key': 'value', 'type': 'str'}, 'localized_value': {'key': 'localizedValue', 'type': 'str'}, } def __init__( self, *, value: Optional[str] = None, localized_value: Optional[str] = None, **kwargs ): super(LocalizedName, self).__init__(**kwargs) self.value = value self.localized_value = localized_value class MetricSpecifications(msrest.serialization.Model): """The details of metric specifications. :param name: The name of the metric specification. :type name: str :param display_name: The display name of the metric specification. :type display_name: str :param display_description: The display description of the metric specification. :type display_description: str :param unit: The unit of the metric specification. :type unit: str :param aggregation_type: The aggregation type of the metric specification. :type aggregation_type: str :param supported_aggregation_types: The supported aggregation types of the metric specification. :type supported_aggregation_types: list[str] :param supported_time_grain_types: The supported time grain types of the metric specification. :type supported_time_grain_types: list[str] :param enable_regional_mdm_account: The flag indicates whether enable regional mdm account or not. :type enable_regional_mdm_account: bool :param source_mdm_account: The source mdm account. :type source_mdm_account: str :param source_mdm_namespace: The source mdm namespace. :type source_mdm_namespace: str :param metric_filter_pattern: The metric filter pattern. :type metric_filter_pattern: str :param fill_gap_with_zero: The flag indicates whether filling gap with zero. :type fill_gap_with_zero: bool :param category: The category of the metric. :type category: str :param resource_id_dimension_name_override: The override name of resource id dimension name. :type resource_id_dimension_name_override: str :param is_internal: The flag indicates whether the metric is internal or not. :type is_internal: bool :param delegate_metric_name_override: The override name of delegate metric. :type delegate_metric_name_override: str :param dimensions: The dimensions of the metric specification. :type dimensions: list[~azure.mgmt.hdinsight.models.Dimension] """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'display_description': {'key': 'displayDescription', 'type': 'str'}, 'unit': {'key': 'unit', 'type': 'str'}, 'aggregation_type': {'key': 'aggregationType', 'type': 'str'}, 'supported_aggregation_types': {'key': 'supportedAggregationTypes', 'type': '[str]'}, 'supported_time_grain_types': {'key': 'supportedTimeGrainTypes', 'type': '[str]'}, 'enable_regional_mdm_account': {'key': 'enableRegionalMdmAccount', 'type': 'bool'}, 'source_mdm_account': {'key': 'sourceMdmAccount', 'type': 'str'}, 'source_mdm_namespace': {'key': 'sourceMdmNamespace', 'type': 'str'}, 'metric_filter_pattern': {'key': 'metricFilterPattern', 'type': 'str'}, 'fill_gap_with_zero': {'key': 'fillGapWithZero', 'type': 'bool'}, 'category': {'key': 'category', 'type': 'str'}, 'resource_id_dimension_name_override': {'key': 'resourceIdDimensionNameOverride', 'type': 'str'}, 'is_internal': {'key': 'isInternal', 'type': 'bool'}, 'delegate_metric_name_override': {'key': 'delegateMetricNameOverride', 'type': 'str'}, 'dimensions': {'key': 'dimensions', 'type': '[Dimension]'}, } def __init__( self, *, name: Optional[str] = None, display_name: Optional[str] = None, display_description: Optional[str] = None, unit: Optional[str] = None, aggregation_type: Optional[str] = None, supported_aggregation_types: Optional[List[str]] = None, supported_time_grain_types: Optional[List[str]] = None, enable_regional_mdm_account: Optional[bool] = None, source_mdm_account: Optional[str] = None, source_mdm_namespace: Optional[str] = None, metric_filter_pattern: Optional[str] = None, fill_gap_with_zero: Optional[bool] = None, category: Optional[str] = None, resource_id_dimension_name_override: Optional[str] = None, is_internal: Optional[bool] = None, delegate_metric_name_override: Optional[str] = None, dimensions: Optional[List["Dimension"]] = None, **kwargs ): super(MetricSpecifications, self).__init__(**kwargs) self.name = name self.display_name = display_name self.display_description = display_description self.unit = unit self.aggregation_type = aggregation_type self.supported_aggregation_types = supported_aggregation_types self.supported_time_grain_types = supported_time_grain_types self.enable_regional_mdm_account = enable_regional_mdm_account self.source_mdm_account = source_mdm_account self.source_mdm_namespace = source_mdm_namespace self.metric_filter_pattern = metric_filter_pattern self.fill_gap_with_zero = fill_gap_with_zero self.category = category self.resource_id_dimension_name_override = resource_id_dimension_name_override self.is_internal = is_internal self.delegate_metric_name_override = delegate_metric_name_override self.dimensions = dimensions class NameAvailabilityCheckRequestParameters(msrest.serialization.Model): """The request spec of checking name availability. :param name: The resource name. :type name: str :param type: The resource type. :type type: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, type: Optional[str] = None, **kwargs ): super(NameAvailabilityCheckRequestParameters, self).__init__(**kwargs) self.name = name self.type = type class NameAvailabilityCheckResult(msrest.serialization.Model): """The response spec of checking name availability. Variables are only populated by the server, and will be ignored when sending a request. :param name_available: This indicates whether the name is available. :type name_available: bool :ivar reason: The reason of the result. :vartype reason: str :ivar message: The related message. :vartype message: str """ _validation = { 'reason': {'readonly': True}, 'message': {'readonly': True}, } _attribute_map = { 'name_available': {'key': 'nameAvailable', 'type': 'bool'}, 'reason': {'key': 'reason', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, *, name_available: Optional[bool] = None, **kwargs ): super(NameAvailabilityCheckResult, self).__init__(**kwargs) self.name_available = name_available self.reason = None self.message = None class NetworkProperties(msrest.serialization.Model): """The network properties. :param resource_provider_connection: The direction for the resource provider connection. Possible values include: "Inbound", "Outbound". :type resource_provider_connection: str or ~azure.mgmt.hdinsight.models.ResourceProviderConnection :param private_link: Indicates whether or not private link is enabled. Possible values include: "Disabled", "Enabled". :type private_link: str or ~azure.mgmt.hdinsight.models.PrivateLink """ _attribute_map = { 'resource_provider_connection': {'key': 'resourceProviderConnection', 'type': 'str'}, 'private_link': {'key': 'privateLink', 'type': 'str'}, } def __init__( self, *, resource_provider_connection: Optional[Union[str, "ResourceProviderConnection"]] = None, private_link: Optional[Union[str, "PrivateLink"]] = None, **kwargs ): super(NetworkProperties, self).__init__(**kwargs) self.resource_provider_connection = resource_provider_connection self.private_link = private_link class Operation(msrest.serialization.Model): """The HDInsight REST API operation. :param name: The operation name: {provider}/{resource}/{operation}. :type name: str :param display: The object that represents the operation. :type display: ~azure.mgmt.hdinsight.models.OperationDisplay :param properties: The operation properties. :type properties: ~azure.mgmt.hdinsight.models.OperationProperties """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display': {'key': 'display', 'type': 'OperationDisplay'}, 'properties': {'key': 'properties', 'type': 'OperationProperties'}, } def __init__( self, *, name: Optional[str] = None, display: Optional["OperationDisplay"] = None, properties: Optional["OperationProperties"] = None, **kwargs ): super(Operation, self).__init__(**kwargs) self.name = name self.display = display self.properties = properties class OperationDisplay(msrest.serialization.Model): """The object that represents the operation. :param provider: The service provider: Microsoft.HDInsight. :type provider: str :param resource: The resource on which the operation is performed: Cluster, Applications, etc. :type resource: str :param operation: The operation type: read, write, delete, etc. :type operation: str :param description: Localized friendly description for the operation. :type description: str """ _attribute_map = { 'provider': {'key': 'provider', 'type': 'str'}, 'resource': {'key': 'resource', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__( self, *, provider: Optional[str] = None, resource: Optional[str] = None, operation: Optional[str] = None, description: Optional[str] = None, **kwargs ): super(OperationDisplay, self).__init__(**kwargs) self.provider = provider self.resource = resource self.operation = operation self.description = description class OperationListResult(msrest.serialization.Model): """Result of the request to list HDInsight operations. It contains a list of operations and a URL link to get the next set of results. :param value: The list of HDInsight operations supported by the HDInsight resource provider. :type value: list[~azure.mgmt.hdinsight.models.Operation] :param next_link: The URL to get the next set of operation list results if there are any. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[Operation]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["Operation"]] = None, next_link: Optional[str] = None, **kwargs ): super(OperationListResult, self).__init__(**kwargs) self.value = value self.next_link = next_link class OperationProperties(msrest.serialization.Model): """The details of operation. :param service_specification: The specification of the service. :type service_specification: ~azure.mgmt.hdinsight.models.ServiceSpecification """ _attribute_map = { 'service_specification': {'key': 'serviceSpecification', 'type': 'ServiceSpecification'}, } def __init__( self, *, service_specification: Optional["ServiceSpecification"] = None, **kwargs ): super(OperationProperties, self).__init__(**kwargs) self.service_specification = service_specification class OsProfile(msrest.serialization.Model): """The Linux operation systems profile. :param linux_operating_system_profile: The Linux OS profile. :type linux_operating_system_profile: ~azure.mgmt.hdinsight.models.LinuxOperatingSystemProfile """ _attribute_map = { 'linux_operating_system_profile': {'key': 'linuxOperatingSystemProfile', 'type': 'LinuxOperatingSystemProfile'}, } def __init__( self, *, linux_operating_system_profile: Optional["LinuxOperatingSystemProfile"] = None, **kwargs ): super(OsProfile, self).__init__(**kwargs) self.linux_operating_system_profile = linux_operating_system_profile class QuotaCapability(msrest.serialization.Model): """The regional quota capability. :param cores_used: The number of cores used in the subscription. :type cores_used: long :param max_cores_allowed: The number of cores that the subscription allowed. :type max_cores_allowed: long :param regional_quotas: The list of region quota capabilities. :type regional_quotas: list[~azure.mgmt.hdinsight.models.RegionalQuotaCapability] """ _attribute_map = { 'cores_used': {'key': 'cores_used', 'type': 'long'}, 'max_cores_allowed': {'key': 'max_cores_allowed', 'type': 'long'}, 'regional_quotas': {'key': 'regionalQuotas', 'type': '[RegionalQuotaCapability]'}, } def __init__( self, *, cores_used: Optional[int] = None, max_cores_allowed: Optional[int] = None, regional_quotas: Optional[List["RegionalQuotaCapability"]] = None, **kwargs ): super(QuotaCapability, self).__init__(**kwargs) self.cores_used = cores_used self.max_cores_allowed = max_cores_allowed self.regional_quotas = regional_quotas class QuotaInfo(msrest.serialization.Model): """The quota properties for the cluster. :param cores_used: The cores used by the cluster. :type cores_used: int """ _attribute_map = { 'cores_used': {'key': 'coresUsed', 'type': 'int'}, } def __init__( self, *, cores_used: Optional[int] = None, **kwargs ): super(QuotaInfo, self).__init__(**kwargs) self.cores_used = cores_used class RegionalQuotaCapability(msrest.serialization.Model): """The regional quota capacity. :param region_name: The region name. :type region_name: str :param cores_used: The number of cores used in the region. :type cores_used: long :param cores_available: The number of cores available in the region. :type cores_available: long """ _attribute_map = { 'region_name': {'key': 'region_name', 'type': 'str'}, 'cores_used': {'key': 'cores_used', 'type': 'long'}, 'cores_available': {'key': 'cores_available', 'type': 'long'}, } def __init__( self, *, region_name: Optional[str] = None, cores_used: Optional[int] = None, cores_available: Optional[int] = None, **kwargs ): super(RegionalQuotaCapability, self).__init__(**kwargs) self.region_name = region_name self.cores_used = cores_used self.cores_available = cores_available class RegionsCapability(msrest.serialization.Model): """The regions capability. :param available: The list of region capabilities. :type available: list[str] """ _attribute_map = { 'available': {'key': 'available', 'type': '[str]'}, } def __init__( self, *, available: Optional[List[str]] = None, **kwargs ): super(RegionsCapability, self).__init__(**kwargs) self.available = available class Role(msrest.serialization.Model): """Describes a role on the cluster. :param name: The name of the role. :type name: str :param min_instance_count: The minimum instance count of the cluster. :type min_instance_count: int :param target_instance_count: The instance count of the cluster. :type target_instance_count: int :param vm_group_name: The name of the virtual machine group. :type vm_group_name: str :param autoscale_configuration: The autoscale configurations. :type autoscale_configuration: ~azure.mgmt.hdinsight.models.Autoscale :param hardware_profile: The hardware profile. :type hardware_profile: ~azure.mgmt.hdinsight.models.HardwareProfile :param os_profile: The operating system profile. :type os_profile: ~azure.mgmt.hdinsight.models.OsProfile :param virtual_network_profile: The virtual network profile. :type virtual_network_profile: ~azure.mgmt.hdinsight.models.VirtualNetworkProfile :param data_disks_groups: The data disks groups for the role. :type data_disks_groups: list[~azure.mgmt.hdinsight.models.DataDisksGroups] :param script_actions: The list of script actions on the role. :type script_actions: list[~azure.mgmt.hdinsight.models.ScriptAction] :param encrypt_data_disks: Indicates whether encrypt the data disks. :type encrypt_data_disks: bool """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'min_instance_count': {'key': 'minInstanceCount', 'type': 'int'}, 'target_instance_count': {'key': 'targetInstanceCount', 'type': 'int'}, 'vm_group_name': {'key': 'VMGroupName', 'type': 'str'}, 'autoscale_configuration': {'key': 'autoscale', 'type': 'Autoscale'}, 'hardware_profile': {'key': 'hardwareProfile', 'type': 'HardwareProfile'}, 'os_profile': {'key': 'osProfile', 'type': 'OsProfile'}, 'virtual_network_profile': {'key': 'virtualNetworkProfile', 'type': 'VirtualNetworkProfile'}, 'data_disks_groups': {'key': 'dataDisksGroups', 'type': '[DataDisksGroups]'}, 'script_actions': {'key': 'scriptActions', 'type': '[ScriptAction]'}, 'encrypt_data_disks': {'key': 'encryptDataDisks', 'type': 'bool'}, } def __init__( self, *, name: Optional[str] = None, min_instance_count: Optional[int] = None, target_instance_count: Optional[int] = None, vm_group_name: Optional[str] = None, autoscale_configuration: Optional["Autoscale"] = None, hardware_profile: Optional["HardwareProfile"] = None, os_profile: Optional["OsProfile"] = None, virtual_network_profile: Optional["VirtualNetworkProfile"] = None, data_disks_groups: Optional[List["DataDisksGroups"]] = None, script_actions: Optional[List["ScriptAction"]] = None, encrypt_data_disks: Optional[bool] = False, **kwargs ): super(Role, self).__init__(**kwargs) self.name = name self.min_instance_count = min_instance_count self.target_instance_count = target_instance_count self.vm_group_name = vm_group_name self.autoscale_configuration = autoscale_configuration self.hardware_profile = hardware_profile self.os_profile = os_profile self.virtual_network_profile = virtual_network_profile self.data_disks_groups = data_disks_groups self.script_actions = script_actions self.encrypt_data_disks = encrypt_data_disks class RuntimeScriptAction(msrest.serialization.Model): """Describes a script action on a running cluster. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the script action. :type name: str :param uri: Required. The URI to the script. :type uri: str :param parameters: The parameters for the script. :type parameters: str :param roles: Required. The list of roles where script will be executed. :type roles: list[str] :ivar application_name: The application name of the script action, if any. :vartype application_name: str """ _validation = { 'name': {'required': True}, 'uri': {'required': True}, 'roles': {'required': True}, 'application_name': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'uri': {'key': 'uri', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': 'str'}, 'roles': {'key': 'roles', 'type': '[str]'}, 'application_name': {'key': 'applicationName', 'type': 'str'}, } def __init__( self, *, name: str, uri: str, roles: List[str], parameters: Optional[str] = None, **kwargs ): super(RuntimeScriptAction, self).__init__(**kwargs) self.name = name self.uri = uri self.parameters = parameters self.roles = roles self.application_name = None class RuntimeScriptActionDetail(RuntimeScriptAction): """The execution details of a script action. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the script action. :type name: str :param uri: Required. The URI to the script. :type uri: str :param parameters: The parameters for the script. :type parameters: str :param roles: Required. The list of roles where script will be executed. :type roles: list[str] :ivar application_name: The application name of the script action, if any. :vartype application_name: str :ivar script_execution_id: The execution id of the script action. :vartype script_execution_id: long :ivar start_time: The start time of script action execution. :vartype start_time: str :ivar end_time: The end time of script action execution. :vartype end_time: str :ivar status: The current execution status of the script action. :vartype status: str :ivar operation: The reason why the script action was executed. :vartype operation: str :ivar execution_summary: The summary of script action execution result. :vartype execution_summary: list[~azure.mgmt.hdinsight.models.ScriptActionExecutionSummary] :ivar debug_information: The script action execution debug information. :vartype debug_information: str """ _validation = { 'name': {'required': True}, 'uri': {'required': True}, 'roles': {'required': True}, 'application_name': {'readonly': True}, 'script_execution_id': {'readonly': True}, 'start_time': {'readonly': True}, 'end_time': {'readonly': True}, 'status': {'readonly': True}, 'operation': {'readonly': True}, 'execution_summary': {'readonly': True}, 'debug_information': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'uri': {'key': 'uri', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': 'str'}, 'roles': {'key': 'roles', 'type': '[str]'}, 'application_name': {'key': 'applicationName', 'type': 'str'}, 'script_execution_id': {'key': 'scriptExecutionId', 'type': 'long'}, 'start_time': {'key': 'startTime', 'type': 'str'}, 'end_time': {'key': 'endTime', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'execution_summary': {'key': 'executionSummary', 'type': '[ScriptActionExecutionSummary]'}, 'debug_information': {'key': 'debugInformation', 'type': 'str'}, } def __init__( self, *, name: str, uri: str, roles: List[str], parameters: Optional[str] = None, **kwargs ): super(RuntimeScriptActionDetail, self).__init__(name=name, uri=uri, parameters=parameters, roles=roles, **kwargs) self.script_execution_id = None self.start_time = None self.end_time = None self.status = None self.operation = None self.execution_summary = None self.debug_information = None class ScriptAction(msrest.serialization.Model): """Describes a script action on role on the cluster. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the script action. :type name: str :param uri: Required. The URI to the script. :type uri: str :param parameters: Required. The parameters for the script provided. :type parameters: str """ _validation = { 'name': {'required': True}, 'uri': {'required': True}, 'parameters': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'uri': {'key': 'uri', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': 'str'}, } def __init__( self, *, name: str, uri: str, parameters: str, **kwargs ): super(ScriptAction, self).__init__(**kwargs) self.name = name self.uri = uri self.parameters = parameters class ScriptActionExecutionHistoryList(msrest.serialization.Model): """The list script execution history response. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: The list of persisted script action details for the cluster. :vartype value: list[~azure.mgmt.hdinsight.models.RuntimeScriptActionDetail] :ivar next_link: The link (url) to the next page of results. :vartype next_link: str """ _validation = { 'value': {'readonly': True}, 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[RuntimeScriptActionDetail]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(ScriptActionExecutionHistoryList, self).__init__(**kwargs) self.value = None self.next_link = None class ScriptActionExecutionSummary(msrest.serialization.Model): """The execution summary of a script action. Variables are only populated by the server, and will be ignored when sending a request. :ivar status: The status of script action execution. :vartype status: str :ivar instance_count: The instance count for a given script action execution status. :vartype instance_count: int """ _validation = { 'status': {'readonly': True}, 'instance_count': {'readonly': True}, } _attribute_map = { 'status': {'key': 'status', 'type': 'str'}, 'instance_count': {'key': 'instanceCount', 'type': 'int'}, } def __init__( self, **kwargs ): super(ScriptActionExecutionSummary, self).__init__(**kwargs) self.status = None self.instance_count = None class ScriptActionPersistedGetResponseSpec(msrest.serialization.Model): """The persisted script action for cluster. :param name: The name of script action. :type name: str :param uri: The URI to the script. :type uri: str :param parameters: The parameters for the script provided. :type parameters: str :param roles: The list of roles where script will be executed. :type roles: list[str] :param application_name: The application name for the script action. :type application_name: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'uri': {'key': 'uri', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': 'str'}, 'roles': {'key': 'roles', 'type': '[str]'}, 'application_name': {'key': 'applicationName', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, uri: Optional[str] = None, parameters: Optional[str] = None, roles: Optional[List[str]] = None, application_name: Optional[str] = None, **kwargs ): super(ScriptActionPersistedGetResponseSpec, self).__init__(**kwargs) self.name = name self.uri = uri self.parameters = parameters self.roles = roles self.application_name = application_name class ScriptActionsList(msrest.serialization.Model): """The persisted script action for the cluster. Variables are only populated by the server, and will be ignored when sending a request. :param value: The list of persisted script action details for the cluster. :type value: list[~azure.mgmt.hdinsight.models.RuntimeScriptActionDetail] :ivar next_link: The link (url) to the next page of results. :vartype next_link: str """ _validation = { 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[RuntimeScriptActionDetail]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, *, value: Optional[List["RuntimeScriptActionDetail"]] = None, **kwargs ): super(ScriptActionsList, self).__init__(**kwargs) self.value = value self.next_link = None class SecurityProfile(msrest.serialization.Model): """The security profile which contains Ssh public key for the HDInsight cluster. Variables are only populated by the server, and will be ignored when sending a request. :ivar directory_type: The directory type. Default value: "ActiveDirectory". :vartype directory_type: str :param domain: The organization's active directory domain. :type domain: str :param organizational_unit_dn: The organizational unit within the Active Directory to place the cluster and service accounts. :type organizational_unit_dn: str :param ldaps_urls: The LDAPS protocol URLs to communicate with the Active Directory. :type ldaps_urls: list[str] :param domain_username: The domain user account that will have admin privileges on the cluster. :type domain_username: str :param domain_user_password: The domain admin password. :type domain_user_password: str :param cluster_users_group_d_ns: Optional. The Distinguished Names for cluster user groups. :type cluster_users_group_d_ns: list[str] :param aadds_resource_id: The resource ID of the user's Azure Active Directory Domain Service. :type aadds_resource_id: str :param msi_resource_id: User assigned identity that has permissions to read and create cluster-related artifacts in the user's AADDS. :type msi_resource_id: str """ _validation = { 'directory_type': {'constant': True}, } _attribute_map = { 'directory_type': {'key': 'directoryType', 'type': 'str'}, 'domain': {'key': 'domain', 'type': 'str'}, 'organizational_unit_dn': {'key': 'organizationalUnitDN', 'type': 'str'}, 'ldaps_urls': {'key': 'ldapsUrls', 'type': '[str]'}, 'domain_username': {'key': 'domainUsername', 'type': 'str'}, 'domain_user_password': {'key': 'domainUserPassword', 'type': 'str'}, 'cluster_users_group_d_ns': {'key': 'clusterUsersGroupDNs', 'type': '[str]'}, 'aadds_resource_id': {'key': 'aaddsResourceId', 'type': 'str'}, 'msi_resource_id': {'key': 'msiResourceId', 'type': 'str'}, } directory_type = "ActiveDirectory" def __init__( self, *, domain: Optional[str] = None, organizational_unit_dn: Optional[str] = None, ldaps_urls: Optional[List[str]] = None, domain_username: Optional[str] = None, domain_user_password: Optional[str] = None, cluster_users_group_d_ns: Optional[List[str]] = None, aadds_resource_id: Optional[str] = None, msi_resource_id: Optional[str] = None, **kwargs ): super(SecurityProfile, self).__init__(**kwargs) self.domain = domain self.organizational_unit_dn = organizational_unit_dn self.ldaps_urls = ldaps_urls self.domain_username = domain_username self.domain_user_password = domain_user_password self.cluster_users_group_d_ns = cluster_users_group_d_ns self.aadds_resource_id = aadds_resource_id self.msi_resource_id = msi_resource_id class ServiceSpecification(msrest.serialization.Model): """The specification of the service. :param metric_specifications: The metric specifications. :type metric_specifications: list[~azure.mgmt.hdinsight.models.MetricSpecifications] """ _attribute_map = { 'metric_specifications': {'key': 'metricSpecifications', 'type': '[MetricSpecifications]'}, } def __init__( self, *, metric_specifications: Optional[List["MetricSpecifications"]] = None, **kwargs ): super(ServiceSpecification, self).__init__(**kwargs) self.metric_specifications = metric_specifications class SshProfile(msrest.serialization.Model): """The list of SSH public keys. :param public_keys: The list of SSH public keys. :type public_keys: list[~azure.mgmt.hdinsight.models.SshPublicKey] """ _attribute_map = { 'public_keys': {'key': 'publicKeys', 'type': '[SshPublicKey]'}, } def __init__( self, *, public_keys: Optional[List["SshPublicKey"]] = None, **kwargs ): super(SshProfile, self).__init__(**kwargs) self.public_keys = public_keys class SshPublicKey(msrest.serialization.Model): """The SSH public key for the cluster nodes. :param certificate_data: The certificate for SSH. :type certificate_data: str """ _attribute_map = { 'certificate_data': {'key': 'certificateData', 'type': 'str'}, } def __init__( self, *, certificate_data: Optional[str] = None, **kwargs ): super(SshPublicKey, self).__init__(**kwargs) self.certificate_data = certificate_data class StorageAccount(msrest.serialization.Model): """The storage Account. :param name: The name of the storage account. :type name: str :param is_default: Whether or not the storage account is the default storage account. :type is_default: bool :param container: The container in the storage account, only to be specified for WASB storage accounts. :type container: str :param file_system: The filesystem, only to be specified for Azure Data Lake Storage Gen 2. :type file_system: str :param key: The storage account access key. :type key: str :param resource_id: The resource ID of storage account, only to be specified for Azure Data Lake Storage Gen 2. :type resource_id: str :param msi_resource_id: The managed identity (MSI) that is allowed to access the storage account, only to be specified for Azure Data Lake Storage Gen 2. :type msi_resource_id: str :param saskey: The shared access signature key. :type saskey: str :param fileshare: The file share name. :type fileshare: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'is_default': {'key': 'isDefault', 'type': 'bool'}, 'container': {'key': 'container', 'type': 'str'}, 'file_system': {'key': 'fileSystem', 'type': 'str'}, 'key': {'key': 'key', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'msi_resource_id': {'key': 'msiResourceId', 'type': 'str'}, 'saskey': {'key': 'saskey', 'type': 'str'}, 'fileshare': {'key': 'fileshare', 'type': 'str'}, } def __init__( self, *, name: Optional[str] = None, is_default: Optional[bool] = None, container: Optional[str] = None, file_system: Optional[str] = None, key: Optional[str] = None, resource_id: Optional[str] = None, msi_resource_id: Optional[str] = None, saskey: Optional[str] = None, fileshare: Optional[str] = None, **kwargs ): super(StorageAccount, self).__init__(**kwargs) self.name = name self.is_default = is_default self.container = container self.file_system = file_system self.key = key self.resource_id = resource_id self.msi_resource_id = msi_resource_id self.saskey = saskey self.fileshare = fileshare class StorageProfile(msrest.serialization.Model): """The storage profile. :param storageaccounts: The list of storage accounts in the cluster. :type storageaccounts: list[~azure.mgmt.hdinsight.models.StorageAccount] """ _attribute_map = { 'storageaccounts': {'key': 'storageaccounts', 'type': '[StorageAccount]'}, } def __init__( self, *, storageaccounts: Optional[List["StorageAccount"]] = None, **kwargs ): super(StorageProfile, self).__init__(**kwargs) self.storageaccounts = storageaccounts class UpdateClusterIdentityCertificateParameters(msrest.serialization.Model): """The update cluster identity certificate request parameters. :param application_id: The application id. :type application_id: str :param certificate: The certificate in base64 encoded format. :type certificate: str :param certificate_password: The password of the certificate. :type certificate_password: str """ _attribute_map = { 'application_id': {'key': 'applicationId', 'type': 'str'}, 'certificate': {'key': 'certificate', 'type': 'str'}, 'certificate_password': {'key': 'certificatePassword', 'type': 'str'}, } def __init__( self, *, application_id: Optional[str] = None, certificate: Optional[str] = None, certificate_password: Optional[str] = None, **kwargs ): super(UpdateClusterIdentityCertificateParameters, self).__init__(**kwargs) self.application_id = application_id self.certificate = certificate self.certificate_password = certificate_password class UpdateGatewaySettingsParameters(msrest.serialization.Model): """The update gateway settings request parameters. :param is_credential_enabled: Indicates whether or not the gateway settings based authorization is enabled. :type is_credential_enabled: bool :param user_name: The gateway settings user name. :type user_name: str :param password: The gateway settings user password. :type password: str """ _attribute_map = { 'is_credential_enabled': {'key': 'restAuthCredential\\.isEnabled', 'type': 'bool'}, 'user_name': {'key': 'restAuthCredential\\.username', 'type': 'str'}, 'password': {'key': 'restAuthCredential\\.password', 'type': 'str'}, } def __init__( self, *, is_credential_enabled: Optional[bool] = True, user_name: Optional[str] = None, password: Optional[str] = None, **kwargs ): super(UpdateGatewaySettingsParameters, self).__init__(**kwargs) self.is_credential_enabled = is_credential_enabled self.user_name = user_name self.password = password class Usage(msrest.serialization.Model): """The details about the usage of a particular limited resource. Variables are only populated by the server, and will be ignored when sending a request. :param unit: The type of measurement for usage. :type unit: str :param current_value: The current usage. :type current_value: long :param limit: The maximum allowed usage. :type limit: long :ivar name: The details about the localizable name of the used resource. :vartype name: ~azure.mgmt.hdinsight.models.LocalizedName """ _validation = { 'name': {'readonly': True}, } _attribute_map = { 'unit': {'key': 'unit', 'type': 'str'}, 'current_value': {'key': 'currentValue', 'type': 'long'}, 'limit': {'key': 'limit', 'type': 'long'}, 'name': {'key': 'name', 'type': 'LocalizedName'}, } def __init__( self, *, unit: Optional[str] = None, current_value: Optional[int] = None, limit: Optional[int] = None, **kwargs ): super(Usage, self).__init__(**kwargs) self.unit = unit self.current_value = current_value self.limit = limit self.name = None class UsagesListResult(msrest.serialization.Model): """The response for the operation to get regional usages for a subscription. :param value: The list of usages. :type value: list[~azure.mgmt.hdinsight.models.Usage] """ _attribute_map = { 'value': {'key': 'value', 'type': '[Usage]'}, } def __init__( self, *, value: Optional[List["Usage"]] = None, **kwargs ): super(UsagesListResult, self).__init__(**kwargs) self.value = value class ValidationErrorInfo(msrest.serialization.Model): """The validation error information. :param code: The error code. :type code: str :param message: The error message. :type message: str :param error_resource: The error resource. :type error_resource: str :param message_arguments: The message arguments. :type message_arguments: list[str] """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'error_resource': {'key': 'errorResource', 'type': 'str'}, 'message_arguments': {'key': 'messageArguments', 'type': '[str]'}, } def __init__( self, *, code: Optional[str] = None, message: Optional[str] = None, error_resource: Optional[str] = None, message_arguments: Optional[List[str]] = None, **kwargs ): super(ValidationErrorInfo, self).__init__(**kwargs) self.code = code self.message = message self.error_resource = error_resource self.message_arguments = message_arguments class VersionsCapability(msrest.serialization.Model): """The version capability. :param available: The list of version capabilities. :type available: list[~azure.mgmt.hdinsight.models.VersionSpec] """ _attribute_map = { 'available': {'key': 'available', 'type': '[VersionSpec]'}, } def __init__( self, *, available: Optional[List["VersionSpec"]] = None, **kwargs ): super(VersionsCapability, self).__init__(**kwargs) self.available = available class VersionSpec(msrest.serialization.Model): """The version properties. :param friendly_name: The friendly name. :type friendly_name: str :param display_name: The display name. :type display_name: str :param is_default: Whether or not the version is the default version. :type is_default: bool :param component_versions: The component version property. :type component_versions: dict[str, str] """ _attribute_map = { 'friendly_name': {'key': 'friendlyName', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'is_default': {'key': 'isDefault', 'type': 'bool'}, 'component_versions': {'key': 'componentVersions', 'type': '{str}'}, } def __init__( self, *, friendly_name: Optional[str] = None, display_name: Optional[str] = None, is_default: Optional[bool] = None, component_versions: Optional[Dict[str, str]] = None, **kwargs ): super(VersionSpec, self).__init__(**kwargs) self.friendly_name = friendly_name self.display_name = display_name self.is_default = is_default self.component_versions = component_versions class VirtualNetworkProfile(msrest.serialization.Model): """The virtual network properties. :param id: The ID of the virtual network. :type id: str :param subnet: The name of the subnet. :type subnet: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'subnet': {'key': 'subnet', 'type': 'str'}, } def __init__( self, *, id: Optional[str] = None, subnet: Optional[str] = None, **kwargs ): super(VirtualNetworkProfile, self).__init__(**kwargs) self.id = id self.subnet = subnet class VmSizeCompatibilityFilter(msrest.serialization.Model): """The virtual machine type compatibility filter. :param filter_mode: The mode for the filter. :type filter_mode: str :param regions: The list of regions. :type regions: list[str] :param cluster_flavors: The list of cluster types available. :type cluster_flavors: list[str] :param node_types: The list of node types. :type node_types: list[str] :param cluster_versions: The list of cluster versions. :type cluster_versions: list[str] :param os_type: The list of OS types. :type os_type: list[str] :param vm_sizes: The list of virtual machine sizes. :type vm_sizes: list[str] :param esp_applied: Whether apply for ESP cluster. 'true' means only for ESP, 'false' means only for non-ESP, null or empty string or others mean for both. :type esp_applied: str :param compute_isolation_supported: Whether support compute isolation. 'true' means only for ComputeIsolationEnabled, 'false' means only for regular cluster. :type compute_isolation_supported: str """ _attribute_map = { 'filter_mode': {'key': 'FilterMode', 'type': 'str'}, 'regions': {'key': 'Regions', 'type': '[str]'}, 'cluster_flavors': {'key': 'ClusterFlavors', 'type': '[str]'}, 'node_types': {'key': 'NodeTypes', 'type': '[str]'}, 'cluster_versions': {'key': 'ClusterVersions', 'type': '[str]'}, 'os_type': {'key': 'OsType', 'type': '[str]'}, 'vm_sizes': {'key': 'VMSizes', 'type': '[str]'}, 'esp_applied': {'key': 'ESPApplied', 'type': 'str'}, 'compute_isolation_supported': {'key': 'ComputeIsolationSupported', 'type': 'str'}, } def __init__( self, *, filter_mode: Optional[str] = None, regions: Optional[List[str]] = None, cluster_flavors: Optional[List[str]] = None, node_types: Optional[List[str]] = None, cluster_versions: Optional[List[str]] = None, os_type: Optional[List[str]] = None, vm_sizes: Optional[List[str]] = None, esp_applied: Optional[str] = None, compute_isolation_supported: Optional[str] = None, **kwargs ): super(VmSizeCompatibilityFilter, self).__init__(**kwargs) self.filter_mode = filter_mode self.regions = regions self.cluster_flavors = cluster_flavors self.node_types = node_types self.cluster_versions = cluster_versions self.os_type = os_type self.vm_sizes = vm_sizes self.esp_applied = esp_applied self.compute_isolation_supported = compute_isolation_supported class VmSizeCompatibilityFilterV2(msrest.serialization.Model): """This class represent a single filter object that defines a multidimensional set. The dimensions of this set are Regions, ClusterFlavors, NodeTypes and ClusterVersions. The constraint should be defined based on the following: FilterMode (Exclude vs Include), VMSizes (the vm sizes in affect of exclusion/inclusion) and the ordering of the Filters. Later filters override previous settings if conflicted. :param filter_mode: The filtering mode. Effectively this can enabling or disabling the VM sizes in a particular set. Possible values include: "Exclude", "Include", "Recommend", "Default". :type filter_mode: str or ~azure.mgmt.hdinsight.models.FilterMode :param regions: The list of regions under the effect of the filter. :type regions: list[str] :param cluster_flavors: The list of cluster flavors under the effect of the filter. :type cluster_flavors: list[str] :param node_types: The list of node types affected by the filter. :type node_types: list[str] :param cluster_versions: The list of cluster versions affected in Major.Minor format. :type cluster_versions: list[str] :param os_type: The OSType affected, Windows or Linux. :type os_type: list[str or ~azure.mgmt.hdinsight.models.OSType] :param vm_sizes: The list of virtual machine sizes to include or exclude. :type vm_sizes: list[str] """ _attribute_map = { 'filter_mode': {'key': 'filterMode', 'type': 'str'}, 'regions': {'key': 'regions', 'type': '[str]'}, 'cluster_flavors': {'key': 'clusterFlavors', 'type': '[str]'}, 'node_types': {'key': 'nodeTypes', 'type': '[str]'}, 'cluster_versions': {'key': 'clusterVersions', 'type': '[str]'}, 'os_type': {'key': 'osType', 'type': '[str]'}, 'vm_sizes': {'key': 'vmSizes', 'type': '[str]'}, } def __init__( self, *, filter_mode: Optional[Union[str, "FilterMode"]] = None, regions: Optional[List[str]] = None, cluster_flavors: Optional[List[str]] = None, node_types: Optional[List[str]] = None, cluster_versions: Optional[List[str]] = None, os_type: Optional[List[Union[str, "OSType"]]] = None, vm_sizes: Optional[List[str]] = None, **kwargs ): super(VmSizeCompatibilityFilterV2, self).__init__(**kwargs) self.filter_mode = filter_mode self.regions = regions self.cluster_flavors = cluster_flavors self.node_types = node_types self.cluster_versions = cluster_versions self.os_type = os_type self.vm_sizes = vm_sizes class VmSizeProperty(msrest.serialization.Model): """The vm size property. :param name: The vm size name. :type name: str :param cores: The number of cores that the vm size has. :type cores: int :param data_disk_storage_tier: The data disk storage tier of the vm size. :type data_disk_storage_tier: str :param label: The label of the vm size. :type label: str :param max_data_disk_count: The max data disk count of the vm size. :type max_data_disk_count: long :param memory_in_mb: The memory whose unit is MB of the vm size. :type memory_in_mb: long :param supported_by_virtual_machines: This indicates this vm size is supported by virtual machines or not. :type supported_by_virtual_machines: bool :param supported_by_web_worker_roles: The indicates this vm size is supported by web worker roles or not. :type supported_by_web_worker_roles: bool :param virtual_machine_resource_disk_size_in_mb: The virtual machine resource disk size whose unit is MB of the vm size. :type virtual_machine_resource_disk_size_in_mb: long :param web_worker_resource_disk_size_in_mb: The web worker resource disk size whose unit is MB of the vm size. :type web_worker_resource_disk_size_in_mb: long """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'cores': {'key': 'cores', 'type': 'int'}, 'data_disk_storage_tier': {'key': 'dataDiskStorageTier', 'type': 'str'}, 'label': {'key': 'label', 'type': 'str'}, 'max_data_disk_count': {'key': 'maxDataDiskCount', 'type': 'long'}, 'memory_in_mb': {'key': 'memoryInMb', 'type': 'long'}, 'supported_by_virtual_machines': {'key': 'supportedByVirtualMachines', 'type': 'bool'}, 'supported_by_web_worker_roles': {'key': 'supportedByWebWorkerRoles', 'type': 'bool'}, 'virtual_machine_resource_disk_size_in_mb': {'key': 'virtualMachineResourceDiskSizeInMb', 'type': 'long'}, 'web_worker_resource_disk_size_in_mb': {'key': 'webWorkerResourceDiskSizeInMb', 'type': 'long'}, } def __init__( self, *, name: Optional[str] = None, cores: Optional[int] = None, data_disk_storage_tier: Optional[str] = None, label: Optional[str] = None, max_data_disk_count: Optional[int] = None, memory_in_mb: Optional[int] = None, supported_by_virtual_machines: Optional[bool] = None, supported_by_web_worker_roles: Optional[bool] = None, virtual_machine_resource_disk_size_in_mb: Optional[int] = None, web_worker_resource_disk_size_in_mb: Optional[int] = None, **kwargs ): super(VmSizeProperty, self).__init__(**kwargs) self.name = name self.cores = cores self.data_disk_storage_tier = data_disk_storage_tier self.label = label self.max_data_disk_count = max_data_disk_count self.memory_in_mb = memory_in_mb self.supported_by_virtual_machines = supported_by_virtual_machines self.supported_by_web_worker_roles = supported_by_web_worker_roles self.virtual_machine_resource_disk_size_in_mb = virtual_machine_resource_disk_size_in_mb self.web_worker_resource_disk_size_in_mb = web_worker_resource_disk_size_in_mb class VmSizesCapability(msrest.serialization.Model): """The virtual machine sizes capability. :param available: The list of virtual machine size capabilities. :type available: list[str] """ _attribute_map = { 'available': {'key': 'available', 'type': '[str]'}, } def __init__( self, *, available: Optional[List[str]] = None, **kwargs ): super(VmSizesCapability, self).__init__(**kwargs) self.available = available
36.654988
409
0.654396