url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | refine eventually_nhdsSet_iff_exists.mpr
β¨(t0 β© t1) ΓΛ’ ball 0 q, (ot0.inter ot1).prod isOpen_ball, ?_, ?_β© | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
β’ (πΛ’ ({c} ΓΛ’ closedBall 0 p)).EventuallyEq (uncurry ray) (uncurry (r h)) | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
β’ {c} ΓΛ’ closedBall 0 p β (t0 β© t1) ΓΛ’ ball 0 q
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
β’ β x β (t0 β© t1) ΓΛ’ ball 0 q, uncurry ray x = uncurry (r h) x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
β’ (πΛ’ ({c} ΓΛ’ closedBall 0 p)).EventuallyEq (uncurry ray) (uncurry (r h))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | exact prod_mono (singleton_subset_iff.mpr β¨ct0, ct1β©) (Metric.closedBall_subset_ball pq) | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
β’ {c} ΓΛ’ closedBall 0 p β (t0 β© t1) ΓΛ’ ball 0 q | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_1
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
β’ {c} ΓΛ’ closedBall 0 p β (t0 β© t1) ΓΛ’ ball 0 q
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | intro β¨e, xβ© β¨β¨et0, et1β©, xqβ© | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
β’ β x β (t0 β© t1) ΓΛ’ ball 0 q, uncurry ray x = uncurry (r h) x | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : (e, x).1 β t0
et1 : (e, x).1 β t1
xq : (e, x).2 β ball 0 q
β’ uncurry ray (e, x) = uncurry (r h) (e, x) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
β’ β x β (t0 β© t1) ΓΛ’ ball 0 q, uncurry ray x = uncurry (r h) x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | simp only [uncurry] at et0 et1 xq β’ | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : (e, x).1 β t0
et1 : (e, x).1 β t1
xq : (e, x).2 β ball 0 q
β’ uncurry ray (e, x) = uncurry (r h) (e, x) | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : x β ball 0 q
β’ ray e x = r h e x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : (e, x).1 β t0
et1 : (e, x).1 β t1
xq : (e, x).2 β ball 0 q
β’ uncurry ray (e, x) = uncurry (r h) (e, x)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | simp only [mem_ball, Complex.dist_eq, sub_zero] at xq | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : x β ball 0 q
β’ ray e x = r h e x | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
β’ ray e x = r h e x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : x β ball 0 q
β’ ray e x = r h e x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | have hx : 0 β€ abs x β§ abs x < s.p e := β¨Complex.abs.nonneg _, _root_.trans xq (lo _ et1)β© | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
β’ ray e x = r h e x | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ ray e x = r h e x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
β’ ray e x = r h e x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | simp only [β hray, dif_pos hx.2] | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ ray e x = r h e x | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ r β― e x = r h e x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ ray e x = r h e x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | refine ((g hx).unique (gh _ et0) xq.le).self_of_nhdsSet (x := β¨e, xβ©) β¨rfl, ?_β© | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ r β― e x = r h e x | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ (e, x).2 β closedBall 0 (Complex.abs x) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ r β― e x = r h e x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Grow.lean | Super.has_ray | [625, 1] | [654, 45] | simp only [mem_closedBall, Complex.dist_eq, sub_zero, le_refl] | case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ (e, x).2 β closedBall 0 (Complex.abs x) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine_2
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : CompactSpace S
instβΒ³ : T3Space S
instβΒ² : ChartedSpace β S
instβΒΉ : AnalyticManifold I S
f : β β S β S
cβ : β
a z : S
d n : β
pβ : β
sβ : Super f d a
rβ : β β β β S
s : Super f d a
instβ : OnePreimage s
r : {c : β} β {p : β} β 0 β€ p β§ p < s.p c β β β β β S
g : β {c : β} {p : β} (h : 0 β€ p β§ p < s.p c), Grow s c p (s.np c p) (r h)
ray : β β β β S
hray : (fun c x => if h : Complex.abs x < s.p c then r β― c x else a) = ray
c : β
p : β
h : 0 β€ p β§ p < s.p c
q : β
pq : p < q
qs : q < s.p c
q0 : 0 β€ q
ghβ : βαΆ (x : β) in π c, Grow s x q (s.np c p) (r h)
t0 : Set β
gh : β x β t0, Grow s x q (s.np c p) (r h)
ot0 : IsOpen t0
ct0 : c β t0
t1 : Set β
lo : β x β t1, q < s.p x
ot1 : IsOpen t1
ct1 : c β t1
e x : β
et0 : e β t0
et1 : e β t1
xq : Complex.abs x < q
hx : 0 β€ Complex.abs x β§ Complex.abs x < s.p e
β’ (e, x).2 β closedBall 0 (Complex.abs x)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | realCircleMap_eq_circleMap | [35, 1] | [39, 66] | simp only [realCircleMap, circleMap, Complex.equivRealProd_apply, Complex.add_re, Complex.mul_re,
Complex.ofReal_re, Complex.exp_ofReal_mul_I_re, Complex.ofReal_im, Complex.exp_ofReal_mul_I_im,
zero_mul, sub_zero, Complex.add_im, Complex.mul_im, add_zero] | c : β
x : β Γ β
β’ realCircleMap c x = Complex.equivRealProd (circleMap c x.1 x.2) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
x : β Γ β
β’ realCircleMap c x = Complex.equivRealProd (circleMap c x.1 x.2)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | realCircleMap.fderiv | [50, 1] | [54, 73] | simp_rw [realCircleMap] | c : β
x : β Γ β
β’ HasFDerivAt (fun x => realCircleMap c x) (rcmDeriv x) x | c : β
x : β Γ β
β’ HasFDerivAt (fun x => (c.re + x.1 * x.2.cos, c.im + x.1 * x.2.sin)) (rcmDeriv x) x | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
x : β Γ β
β’ HasFDerivAt (fun x => realCircleMap c x) (rcmDeriv x) x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | realCircleMap.fderiv | [50, 1] | [54, 73] | apply_rules [hasFDerivAt_const, hasFDerivAt_fst, hasFDerivAt_snd, HasFDerivAt.cos,
HasFDerivAt.sin, HasFDerivAt.add, HasFDerivAt.mul, HasFDerivAt.prod] | c : β
x : β Γ β
β’ HasFDerivAt (fun x => (c.re + x.1 * x.2.cos, c.im + x.1 * x.2.sin)) (rcmDeriv x) x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
x : β Γ β
β’ HasFDerivAt (fun x => (c.re + x.1 * x.2.cos, c.im + x.1 * x.2.sin)) (rcmDeriv x) x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcm00 | [59, 1] | [60, 53] | simp [rcmMatrix, rcmDeriv, toMatrix_apply, d1, d2] | x : β Γ β
β’ rcmMatrix x 0 0 = x.2.cos | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ rcmMatrix x 0 0 = x.2.cos
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcm01 | [61, 1] | [62, 53] | simp [rcmMatrix, rcmDeriv, toMatrix_apply, d1, d2] | x : β Γ β
β’ rcmMatrix x 0 1 = -x.1 * x.2.sin | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ rcmMatrix x 0 1 = -x.1 * x.2.sin
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcm10 | [63, 1] | [64, 53] | simp [rcmMatrix, rcmDeriv, toMatrix_apply, d1, d2] | x : β Γ β
β’ rcmMatrix x 1 0 = x.2.sin | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ rcmMatrix x 1 0 = x.2.sin
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcm11 | [65, 1] | [66, 53] | simp [rcmMatrix, rcmDeriv, toMatrix_apply, d1, d2] | x : β Γ β
β’ rcmMatrix x 1 1 = x.1 * x.2.cos | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ rcmMatrix x 1 1 = x.1 * x.2.cos
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcmDeriv.det | [68, 1] | [74, 62] | rw [ContinuousLinearMap.det, β LinearMap.det_toMatrix (Basis.finTwoProd β), βrcmMatrix] | x : β Γ β
β’ (rcmDeriv x).det = x.1 | x : β Γ β
β’ (rcmMatrix x).det = x.1 | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ (rcmDeriv x).det = x.1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcmDeriv.det | [68, 1] | [74, 62] | rw [Matrix.det_fin_two, rcm00, rcm01, rcm10, rcm11] | x : β Γ β
β’ (rcmMatrix x).det = x.1 | x : β Γ β
β’ x.2.cos * (x.1 * x.2.cos) - -x.1 * x.2.sin * x.2.sin = x.1 | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ (rcmMatrix x).det = x.1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcmDeriv.det | [68, 1] | [74, 62] | ring_nf | x : β Γ β
β’ x.2.cos * (x.1 * x.2.cos) - -x.1 * x.2.sin * x.2.sin = x.1 | x : β Γ β
β’ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1 | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ x.2.cos * (x.1 * x.2.cos) - -x.1 * x.2.sin * x.2.sin = x.1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcmDeriv.det | [68, 1] | [74, 62] | calc cos x.2 ^ 2 * x.1 + x.1 * sin x.2 ^ 2
_ = x.1 * (cos x.2 ^ 2 + sin x.2 ^ 2) := by ring
_ = x.1 := by simp only [Real.cos_sq_add_sin_sq, mul_one] | x : β Γ β
β’ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcmDeriv.det | [68, 1] | [74, 62] | ring | x : β Γ β
β’ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1 * (x.2.cos ^ 2 + x.2.sin ^ 2) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ x.2.cos ^ 2 * x.1 + x.1 * x.2.sin ^ 2 = x.1 * (x.2.cos ^ 2 + x.2.sin ^ 2)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | rcmDeriv.det | [68, 1] | [74, 62] | simp only [Real.cos_sq_add_sin_sq, mul_one] | x : β Γ β
β’ x.1 * (x.2.cos ^ 2 + x.2.sin ^ 2) = x.1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
x : β Γ β
β’ x.1 * (x.2.cos ^ 2 + x.2.sin ^ 2) = x.1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | constructor | S : Type
instβ : RCLike S
c : S
r : β
β’ sphere c r = β
β r < 0 | case mp
S : Type
instβ : RCLike S
c : S
r : β
β’ sphere c r = β
β r < 0
case mpr
S : Type
instβ : RCLike S
c : S
r : β
β’ r < 0 β sphere c r = β
| Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
instβ : RCLike S
c : S
r : β
β’ sphere c r = β
β r < 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | intro rp | case mp
S : Type
instβ : RCLike S
c : S
r : β
β’ sphere c r = β
β r < 0 | case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : sphere c r = β
β’ r < 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
S : Type
instβ : RCLike S
c : S
r : β
β’ sphere c r = β
β r < 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | contrapose rp | case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : sphere c r = β
β’ r < 0 | case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : Β¬r < 0
β’ Β¬sphere c r = β
| Please generate a tactic in lean4 to solve the state.
STATE:
case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : sphere c r = β
β’ r < 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | simp at rp | case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : Β¬r < 0
β’ Β¬sphere c r = β
| case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : 0 β€ r
β’ Β¬sphere c r = β
| Please generate a tactic in lean4 to solve the state.
STATE:
case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : Β¬r < 0
β’ Β¬sphere c r = β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | refine Nonempty.ne_empty β¨c + r, ?_β© | case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : 0 β€ r
β’ Β¬sphere c r = β
| case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : 0 β€ r
β’ c + βr β sphere c r | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : 0 β€ r
β’ Β¬sphere c r = β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | simpa only [mem_sphere_iff_norm, add_sub_cancel_left, RCLike.norm_ofReal, abs_eq_self] | case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : 0 β€ r
β’ c + βr β sphere c r | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case mp
S : Type
instβ : RCLike S
c : S
r : β
rp : 0 β€ r
β’ c + βr β sphere c r
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | intro n | case mpr
S : Type
instβ : RCLike S
c : S
r : β
β’ r < 0 β sphere c r = β
| case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : r < 0
β’ sphere c r = β
| Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
S : Type
instβ : RCLike S
c : S
r : β
β’ r < 0 β sphere c r = β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | contrapose n | case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : r < 0
β’ sphere c r = β
| case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : Β¬sphere c r = β
β’ Β¬r < 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : r < 0
β’ sphere c r = β
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | rw [β not_nonempty_iff_eq_empty] at n | case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : Β¬sphere c r = β
β’ Β¬r < 0 | case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : ¬¬(sphere c r).Nonempty
β’ Β¬r < 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : Β¬sphere c r = β
β’ Β¬r < 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Metric.sphere_eq_empty | [80, 1] | [87, 69] | simpa only [not_lt, NormedSpace.sphere_nonempty, not_le] using n | case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : ¬¬(sphere c r).Nonempty
β’ Β¬r < 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case mpr
S : Type
instβ : RCLike S
c : S
r : β
n : ¬¬(sphere c r).Nonempty
β’ Β¬r < 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | by_cases rp : r < 0 | c z : β
r : β
zs : z β sphere c r
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | case pos
c z : β
r : β
zs : z β sphere c r
rp : r < 0
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t
case neg
c z : β
r : β
zs : z β sphere c r
rp : Β¬r < 0
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | Please generate a tactic in lean4 to solve the state.
STATE:
c z : β
r : β
zs : z β sphere c r
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | simp only [not_lt] at rp | case neg
c z : β
r : β
zs : z β sphere c r
rp : Β¬r < 0
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | case neg
c z : β
r : β
zs : z β sphere c r
rp : 0 β€ r
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
c z : β
r : β
zs : z β sphere c r
rp : Β¬r < 0
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | rw [βabs_of_nonneg rp, β range_circleMap, mem_range] at zs | case neg
c z : β
r : β
zs : z β sphere c r
rp : 0 β€ r
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | case neg
c z : β
r : β
zs : β y, circleMap c r y = z
rp : 0 β€ r
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
c z : β
r : β
zs : z β sphere c r
rp : 0 β€ r
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | rcases zs with β¨t, htβ© | case neg
c z : β
r : β
zs : β y, circleMap c r y = z
rp : 0 β€ r
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
c z : β
r : β
zs : β y, circleMap c r y = z
rp : 0 β€ r
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | generalize ha : 2 * Ο = a | case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
β’ β t β Ioc 0 a, z = circleMap c r t | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | have ap : a > 0 := by rw [βha]; bound | case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
β’ β t β Ioc 0 a, z = circleMap c r t | case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
β’ β t β Ioc 0 a, z = circleMap c r t | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
β’ β t β Ioc 0 a, z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | generalize hs : t + a - a * βt / aβ = s | case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
β’ β t β Ioc 0 a, z = circleMap c r t | case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ β t β Ioc 0 a, z = circleMap c r t | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
β’ β t β Ioc 0 a, z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | use s | case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ β t β Ioc 0 a, z = circleMap c r t | case h
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ s β Ioc 0 a β§ z = circleMap c r s | Please generate a tactic in lean4 to solve the state.
STATE:
case neg.intro
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ β t β Ioc 0 a, z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | constructor | case h
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ s β Ioc 0 a β§ z = circleMap c r s | case h.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ s β Ioc 0 a
case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ z = circleMap c r s | Please generate a tactic in lean4 to solve the state.
STATE:
case h
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ s β Ioc 0 a β§ z = circleMap c r s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | simp only [Metric.sphere_eq_empty.mpr rp, mem_empty_iff_false] at zs | case pos
c z : β
r : β
zs : z β sphere c r
rp : r < 0
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
c z : β
r : β
zs : z β sphere c r
rp : r < 0
β’ β t β Ioc 0 (2 * Ο), z = circleMap c r t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | rw [βha] | c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
β’ a > 0 | c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
β’ 2 * Ο > 0 | Please generate a tactic in lean4 to solve the state.
STATE:
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
β’ a > 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | bound | c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
β’ 2 * Ο > 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
β’ 2 * Ο > 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | simp only [mem_Ioc, sub_pos, tsub_le_iff_right, β hs] | case h.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ s β Ioc 0 a | case h.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * ββt / aβ < t + a β§ t + a β€ a + a * ββt / aβ | Please generate a tactic in lean4 to solve the state.
STATE:
case h.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ s β Ioc 0 a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | constructor | case h.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * ββt / aβ < t + a β§ t + a β€ a + a * ββt / aβ | case h.left.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * ββt / aβ < t + a
case h.left.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ t + a β€ a + a * ββt / aβ | Please generate a tactic in lean4 to solve the state.
STATE:
case h.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * ββt / aβ < t + a β§ t + a β€ a + a * ββt / aβ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | calc a * βt / aβ
_ < a * (t / a + 1) := by bound
_ = a / a * t + a := by ring
_ = t + a := by field_simp [ap.ne'] | case h.left.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * ββt / aβ < t + a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.left.left
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * ββt / aβ < t + a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | bound | c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * ββt / aβ < a * (t / a + 1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * ββt / aβ < a * (t / a + 1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | ring | c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * (t / a + 1) = a / a * t + a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a * (t / a + 1) = a / a * t + a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | field_simp [ap.ne'] | c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a / a * t + a = t + a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a / a * t + a = t + a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | calc a + a * βt / aβ
_ β₯ a + a * (t / a) := by bound
_ = a / a * t + a := by ring
_ = t + a := by field_simp [ap.ne'] | case h.left.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ t + a β€ a + a * ββt / aβ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.left.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ t + a β€ a + a * ββt / aβ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | bound | c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a + a * ββt / aβ β₯ a + a * (t / a) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a + a * ββt / aβ β₯ a + a * (t / a)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | ring | c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a + a * (t / a) = a / a * t + a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ a + a * (t / a) = a / a * t + a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | simp only [βht, circleMap, Complex.ofReal_sub, Complex.ofReal_add, Complex.ofReal_mul,
Complex.ofReal_intCast, add_right_inj, mul_eq_mul_left_iff, Complex.ofReal_eq_zero, β hs] | case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ z = circleMap c r s | case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = ((βt + βa - βa * ββt / aβ) * I).exp β¨ r = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ z = circleMap c r s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | rw [mul_sub_right_distrib, right_distrib, Complex.exp_sub, Complex.exp_add] | case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = ((βt + βa - βa * ββt / aβ) * I).exp β¨ r = 0 | case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = (βt * I).exp * (βa * I).exp / (βa * ββt / aβ * I).exp β¨ r = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = ((βt + βa - βa * ββt / aβ) * I).exp β¨ r = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | rw [mul_comm _ (β_β:β), mul_assoc, Complex.exp_int_mul, β ha] | case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = (βt * I).exp * (βa * I).exp / (βa * ββt / aβ * I).exp β¨ r = 0 | case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = (βt * I).exp * (β(2 * Ο) * I).exp / (β(2 * Ο) * I).exp ^ βt / (2 * Ο)β β¨ r = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = (βt * I).exp * (βa * I).exp / (βa * ββt / aβ * I).exp β¨ r = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | circleMap_Ioc | [90, 1] | [116, 34] | simp only [Complex.ofReal_mul, Complex.ofReal_ofNat, Complex.exp_two_pi_mul_I, mul_one,
one_zpow, div_one, true_or] | case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = (βt * I).exp * (β(2 * Ο) * I).exp / (β(2 * Ο) * I).exp ^ βt / (2 * Ο)β β¨ r = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.right
c z : β
r : β
rp : 0 β€ r
t : β
ht : circleMap c r t = z
a : β
ha : 2 * Ο = a
ap : a > 0
s : β
hs : t + a - a * ββt / aβ = s
β’ (βt * I).exp = (βt * I).exp * (β(2 * Ο) * I).exp / (β(2 * Ο) * I).exp ^ βt / (2 * Ο)β β¨ r = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square.rp | [124, 1] | [127, 26] | simp only [square, gt_iff_lt, not_lt, ge_iff_le, zero_lt_two, mul_pos_iff_of_pos_left,
mem_prod, mem_Ioc, and_imp] | r0 r1 : β
x : β Γ β
r0p : 0 β€ r0
β’ x β square r0 r1 β 0 < x.1 | r0 r1 : β
x : β Γ β
r0p : 0 β€ r0
β’ r0 < x.1 β x.1 β€ r1 β 0 < x.2 β x.2 β€ 2 * Ο β 0 < x.1 | Please generate a tactic in lean4 to solve the state.
STATE:
r0 r1 : β
x : β Γ β
r0p : 0 β€ r0
β’ x β square r0 r1 β 0 < x.1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square.rp | [124, 1] | [127, 26] | intro h _ _ _ | r0 r1 : β
x : β Γ β
r0p : 0 β€ r0
β’ r0 < x.1 β x.1 β€ r1 β 0 < x.2 β x.2 β€ 2 * Ο β 0 < x.1 | r0 r1 : β
x : β Γ β
r0p : 0 β€ r0
h : r0 < x.1
aβΒ² : x.1 β€ r1
aβΒΉ : 0 < x.2
aβ : x.2 β€ 2 * Ο
β’ 0 < x.1 | Please generate a tactic in lean4 to solve the state.
STATE:
r0 r1 : β
x : β Γ β
r0p : 0 β€ r0
β’ r0 < x.1 β x.1 β€ r1 β 0 < x.2 β x.2 β€ 2 * Ο β 0 < x.1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square.rp | [124, 1] | [127, 26] | linarith | r0 r1 : β
x : β Γ β
r0p : 0 β€ r0
h : r0 < x.1
aβΒ² : x.1 β€ r1
aβΒΉ : 0 < x.2
aβ : x.2 β€ 2 * Ο
β’ 0 < x.1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
r0 r1 : β
x : β Γ β
r0p : 0 β€ r0
h : r0 < x.1
aβΒ² : x.1 β€ r1
aβΒΉ : 0 < x.2
aβ : x.2 β€ 2 * Ο
β’ 0 < x.1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Measurable.square | [129, 1] | [130, 54] | apply_rules [MeasurableSet.prod, measurableSet_Ioc] | r0 r1 : β
β’ MeasurableSet (_root_.square r0 r1) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
r0 r1 : β
β’ MeasurableSet (_root_.square r0 r1)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | rw [β MeasurableEquiv.image_eq_preimage] | c : β
r0 r1 : β
r0p : 0 β€ r0
β’ βComplex.measurableEquivRealProd.symm β»ΒΉ' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | c : β
r0 r1 : β
r0p : 0 β€ r0
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
β’ βComplex.measurableEquivRealProd.symm β»ΒΉ' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | have e : realCircleMap c =
fun x : β Γ β β¦ Complex.measurableEquivRealProd (circleMap c x.1 x.2) := by
funext
simp only [realCircleMap_eq_circleMap, Complex.measurableEquivRealProd,
Complex.equivRealProd_apply, Homeomorph.toMeasurableEquiv_coe,
ContinuousLinearEquiv.coe_toHomeomorph, Complex.equivRealProdCLM_apply] | c : β
r0 r1 : β
r0p : 0 β€ r0
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | have im := image_comp Complex.measurableEquivRealProd (fun x : β Γ β β¦ circleMap c x.1 x.2)
(square r0 r1) | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
im :
(βComplex.measurableEquivRealProd β fun x => circleMap c x.1 x.2) '' square r0 r1 =
βComplex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1)
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simp only [Function.comp] at im | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
im :
(βComplex.measurableEquivRealProd β fun x => circleMap c x.1 x.2) '' square r0 r1 =
βComplex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1)
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
im :
(fun a => Complex.measurableEquivRealProd (circleMap c a.1 a.2)) '' square r0 r1 =
βComplex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1)
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
im :
(βComplex.measurableEquivRealProd β fun x => circleMap c x.1 x.2) '' square r0 r1 =
βComplex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1)
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simp only [e, im, i] | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
im :
(fun a => Complex.measurableEquivRealProd (circleMap c a.1 a.2)) '' square r0 r1 =
βComplex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1)
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
i : (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
im :
(fun a => Complex.measurableEquivRealProd (circleMap c a.1 a.2)) '' square r0 r1 =
βComplex.measurableEquivRealProd '' ((fun x => circleMap c x.1 x.2) '' square r0 r1)
β’ βComplex.measurableEquivRealProd '' annulus_oc c r0 r1 = realCircleMap c '' square r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | funext | c : β
r0 r1 : β
r0p : 0 β€ r0
β’ realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2) | case h
c : β
r0 r1 : β
r0p : 0 β€ r0
xβ : β Γ β
β’ realCircleMap c xβ = Complex.measurableEquivRealProd (circleMap c xβ.1 xβ.2) | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
β’ realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simp only [realCircleMap_eq_circleMap, Complex.measurableEquivRealProd,
Complex.equivRealProd_apply, Homeomorph.toMeasurableEquiv_coe,
ContinuousLinearEquiv.coe_toHomeomorph, Complex.equivRealProdCLM_apply] | case h
c : β
r0 r1 : β
r0p : 0 β€ r0
xβ : β Γ β
β’ realCircleMap c xβ = Complex.measurableEquivRealProd (circleMap c xβ.1 xβ.2) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
c : β
r0 r1 : β
r0p : 0 β€ r0
xβ : β Γ β
β’ realCircleMap c xβ = Complex.measurableEquivRealProd (circleMap c xβ.1 xβ.2)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | ext z | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
β’ (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1 | case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ z β (fun x => circleMap c x.1 x.2) '' square r0 r1 β z β annulus_oc c r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
β’ (fun x => circleMap c x.1 x.2) '' square r0 r1 = annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | rw [mem_image] | case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ z β (fun x => circleMap c x.1 x.2) '' square r0 r1 β z β annulus_oc c r0 r1 | case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ (β x β square r0 r1, circleMap c x.1 x.2 = z) β z β annulus_oc c r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ z β (fun x => circleMap c x.1 x.2) '' square r0 r1 β z β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | constructor | case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ (β x β square r0 r1, circleMap c x.1 x.2 = z) β z β annulus_oc c r0 r1 | case h.mp
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ (β x β square r0 r1, circleMap c x.1 x.2 = z) β z β annulus_oc c r0 r1
case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ z β annulus_oc c r0 r1 β β x β square r0 r1, circleMap c x.1 x.2 = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ (β x β square r0 r1, circleMap c x.1 x.2 = z) β z β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | intro gp | case h.mp
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ (β x β square r0 r1, circleMap c x.1 x.2 = z) β z β annulus_oc c r0 r1 | case h.mp
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
gp : β x β square r0 r1, circleMap c x.1 x.2 = z
β’ z β annulus_oc c r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ (β x β square r0 r1, circleMap c x.1 x.2 = z) β z β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | rcases gp with β¨β¨s, tβ©, ss, tzβ© | case h.mp
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
gp : β x β square r0 r1, circleMap c x.1 x.2 = z
β’ z β annulus_oc c r0 r1 | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
ss : (s, t) β square r0 r1
tz : circleMap c (s, t).1 (s, t).2 = z
β’ z β annulus_oc c r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
gp : β x β square r0 r1, circleMap c x.1 x.2 = z
β’ z β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simp only at tz | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
ss : (s, t) β square r0 r1
tz : circleMap c (s, t).1 (s, t).2 = z
β’ z β annulus_oc c r0 r1 | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
ss : (s, t) β square r0 r1
tz : circleMap c s t = z
β’ z β annulus_oc c r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
ss : (s, t) β square r0 r1
tz : circleMap c (s, t).1 (s, t).2 = z
β’ z β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simp only [square, prod_mk_mem_set_prod_eq, mem_Ioc] at ss | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
ss : (s, t) β square r0 r1
tz : circleMap c s t = z
β’ z β annulus_oc c r0 r1 | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
β’ z β annulus_oc c r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
ss : (s, t) β square r0 r1
tz : circleMap c s t = z
β’ z β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | rw [β tz] | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
β’ z β annulus_oc c r0 r1 | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
β’ circleMap c s t β annulus_oc c r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
β’ z β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | have s0 : 0 < s := by linarith | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
β’ circleMap c s t β annulus_oc c r0 r1 | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
s0 : 0 < s
β’ circleMap c s t β annulus_oc c r0 r1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
β’ circleMap c s t β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simp only [circleMap, add_comm c, annulus_oc, mem_diff, Metric.mem_closedBall,
dist_add_self_left, norm_mul, Complex.norm_eq_abs, Complex.abs_ofReal,
Complex.abs_exp_ofReal_mul_I, mul_one, not_le, abs_of_pos s0, ss.1, true_and] | case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
s0 : 0 < s
β’ circleMap c s t β annulus_oc c r0 r1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp.intro.mk.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
s0 : 0 < s
β’ circleMap c s t β annulus_oc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | linarith | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
β’ 0 < s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
s t : β
tz : circleMap c s t = z
ss : (r0 < s β§ s β€ r1) β§ 0 < t β§ t β€ 2 * Ο
β’ 0 < s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | intro zr | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ z β annulus_oc c r0 r1 β β x β square r0 r1, circleMap c x.1 x.2 = z | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : z β annulus_oc c r0 r1
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
β’ z β annulus_oc c r0 r1 β β x β square r0 r1, circleMap c x.1 x.2 = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simp only [mem_diff, Metric.mem_closedBall, mem_singleton_iff, annulus_oc,
not_le] at zr | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : z β annulus_oc c r0 r1
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist z c β€ r1 β§ r0 < dist z c
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : z β annulus_oc c r0 r1
β’ β x β square r0 r1, circleMap c x.1 x.2 = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | rw [dist_comm] at zr | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist z c β€ r1 β§ r0 < dist z c
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist z c β€ r1 β§ r0 < dist z c
β’ β x β square r0 r1, circleMap c x.1 x.2 = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | have zz : z β sphere c (dist c z) := by
simp only [Complex.dist_eq, mem_sphere_iff_norm, Complex.norm_eq_abs, Complex.abs.map_sub] | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
β’ β x β square r0 r1, circleMap c x.1 x.2 = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | rcases circleMap_Ioc zz with β¨t, ts, tzβ© | case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | case h.mpr.intro.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
t : β
ts : t β Ioc 0 (2 * Ο)
tz : z = circleMap c (dist c z) t
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
β’ β x β square r0 r1, circleMap c x.1 x.2 = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | use (dist c z, t) | case h.mpr.intro.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
t : β
ts : t β Ioc 0 (2 * Ο)
tz : z = circleMap c (dist c z) t
β’ β x β square r0 r1, circleMap c x.1 x.2 = z | case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
t : β
ts : t β Ioc 0 (2 * Ο)
tz : z = circleMap c (dist c z) t
β’ (dist c z, t) β square r0 r1 β§ circleMap c (dist c z, t).1 (dist c z, t).2 = z | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr.intro.intro
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
t : β
ts : t β Ioc 0 (2 * Ο)
tz : z = circleMap c (dist c z) t
β’ β x β square r0 r1, circleMap c x.1 x.2 = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simpa only [square, gt_iff_lt, not_lt, ge_iff_le, zero_lt_two, mul_pos_iff_of_pos_left,
mem_prod, mem_Ioc, dist_pos, ne_eq, not_false_eq_true, zr, and_self, true_and,
tz.symm, and_true] using ts | case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
t : β
ts : t β Ioc 0 (2 * Ο)
tz : z = circleMap c (dist c z) t
β’ (dist c z, t) β square r0 r1 β§ circleMap c (dist c z, t).1 (dist c z, t).2 = z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
zz : z β sphere c (dist c z)
t : β
ts : t β Ioc 0 (2 * Ο)
tz : z = circleMap c (dist c z) t
β’ (dist c z, t) β square r0 r1 β§ circleMap c (dist c z, t).1 (dist c z, t).2 = z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | square_eq | [139, 1] | [175, 23] | simp only [Complex.dist_eq, mem_sphere_iff_norm, Complex.norm_eq_abs, Complex.abs.map_sub] | c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
β’ z β sphere c (dist c z) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
c : β
r0 r1 : β
r0p : 0 β€ r0
e : realCircleMap c = fun x => Complex.measurableEquivRealProd (circleMap c x.1 x.2)
z : β
zr : dist c z β€ r1 β§ r0 < dist c z
β’ z β sphere c (dist c z)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | exp_of_im | [178, 1] | [179, 71] | simp [Complex.ext_iff, Complex.cos_ofReal_re, Complex.sin_ofReal_re] | t : β
β’ (βt * I).exp = βt.cos + βt.sin * I | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
β’ (βt * I).exp = βt.cos + βt.sin * I
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Complex.cos_eq_cos | [181, 1] | [181, 78] | simp | t : β
β’ (βt).cos = βt.cos | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
β’ (βt).cos = βt.cos
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | Complex.sin_eq_sin | [183, 1] | [183, 78] | simp | t : β
β’ (βt).sin = βt.sin | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
β’ (βt).sin = βt.sin
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | generalize hn : βt / (2 * Ο) - 1 / 2β = n | t : β
β’ β n, (βt * I).exp.arg = t - 2 * Ο * βn | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ β n, (βt * I).exp.arg = t - 2 * Ο * βn | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
β’ β n, (βt * I).exp.arg = t - 2 * Ο * βn
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | exists n | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ β n, (βt * I).exp.arg = t - 2 * Ο * βn | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ (βt * I).exp.arg = t - 2 * Ο * βn | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ β n, (βt * I).exp.arg = t - 2 * Ο * βn
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | have en : exp (2 * Ο * n * I) = 1 := by
rw [mul_comm _ (n:β), mul_assoc, Complex.exp_int_mul]
simp only [Complex.exp_two_pi_mul_I, one_zpow] | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ (βt * I).exp.arg = t - 2 * Ο * βn | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
β’ (βt * I).exp.arg = t - 2 * Ο * βn | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ (βt * I).exp.arg = t - 2 * Ο * βn
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | have e : exp (t * I) = exp (β(t - 2 * Ο * n) * I) := by
simp [mul_sub_right_distrib, Complex.exp_sub, en] | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
β’ (βt * I).exp.arg = t - 2 * Ο * βn | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
β’ (βt * I).exp.arg = t - 2 * Ο * βn | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
β’ (βt * I).exp.arg = t - 2 * Ο * βn
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | rw [e, exp_of_im, β Complex.cos_eq_cos, β Complex.sin_eq_sin, Complex.arg_cos_add_sin_mul_I ts] | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
ts : t - 2 * Ο * βn β Ioc (-Ο) Ο
β’ (βt * I).exp.arg = t - 2 * Ο * βn | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
ts : t - 2 * Ο * βn β Ioc (-Ο) Ο
β’ (βt * I).exp.arg = t - 2 * Ο * βn
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | rw [mul_comm _ (n:β), mul_assoc, Complex.exp_int_mul] | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ (2 * βΟ * βn * I).exp = 1 | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ (2 * βΟ * I).exp ^ n = 1 | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ (2 * βΟ * βn * I).exp = 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | simp only [Complex.exp_two_pi_mul_I, one_zpow] | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ (2 * βΟ * I).exp ^ n = 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
β’ (2 * βΟ * I).exp ^ n = 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | simp [mul_sub_right_distrib, Complex.exp_sub, en] | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
β’ (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
β’ (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | simp only [mem_Ioc, neg_lt_sub_iff_lt_add, tsub_le_iff_right] | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
β’ t - 2 * Ο * βn β Ioc (-Ο) Ο | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
β’ 2 * Ο * βn < Ο + t β§ t β€ Ο + 2 * Ο * βn | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
β’ t - 2 * Ο * βn β Ioc (-Ο) Ο
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Hartogs/FubiniBall.lean | arg_exp_of_im | [186, 1] | [206, 98] | constructor | t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
β’ 2 * Ο * βn < Ο + t β§ t β€ Ο + 2 * Ο * βn | case left
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
β’ 2 * Ο * βn < Ο + t
case right
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
β’ t β€ Ο + 2 * Ο * βn | Please generate a tactic in lean4 to solve the state.
STATE:
t : β
n : β€
hn : βt / (2 * Ο) - 1 / 2β = n
en : (2 * βΟ * βn * I).exp = 1
e : (βt * I).exp = (β(t - 2 * Ο * βn) * I).exp
β’ 2 * Ο * βn < Ο + t β§ t β€ Ο + 2 * Ο * βn
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.