url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_ball
[296, 1]
[305, 8]
rw [←Metric.closedBall_zero, ←annulus_oc]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ ∫ (x : β„‚) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ ∫ (x : β„‚) in annulus_oc c 0 r, f x = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ ∫ (x : β„‚) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_ball
[296, 1]
[305, 8]
apply fubini_annulus
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ ∫ (x : β„‚) in annulus_oc c 0 r, f x = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), f (circleMap c s t)
case fc E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ ContinuousOn (fun z => f z) (annulus_cc c 0 r) case r0p E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ 0 ≀ 0
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ ∫ (x : β„‚) in annulus_oc c 0 r, f x = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_ball
[296, 1]
[305, 8]
simpa only [annulus_cc, Metric.ball_zero, diff_empty]
case fc E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ ContinuousOn (fun z => f z) (annulus_cc c 0 r)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case fc E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ ContinuousOn (fun z => f z) (annulus_cc c 0 r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_ball
[296, 1]
[305, 8]
rfl
case r0p E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ 0 ≀ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case r0p E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β„‚ β†’ E c : β„‚ r : ℝ fc : ContinuousOn f (closedBall c r) ⊒ 0 ≀ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Complex.volume_closedBall'
[308, 1]
[317, 26]
have c : ContinuousOn (fun _ : β„‚ ↦ (1 : ℝ)) (closedBall c r) := continuousOn_const
c : β„‚ r : ℝ rp : r β‰₯ 0 ⊒ (↑volume (closedBall c r)).toReal = Ο€ * r ^ 2
c✝ : β„‚ r : ℝ rp : r β‰₯ 0 c : ContinuousOn (fun x => 1) (closedBall c✝ r) ⊒ (↑volume (closedBall c✝ r)).toReal = Ο€ * r ^ 2
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r β‰₯ 0 ⊒ (↑volume (closedBall c r)).toReal = Ο€ * r ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Complex.volume_closedBall'
[308, 1]
[317, 26]
have f := fubini_ball c
c✝ : β„‚ r : ℝ rp : r β‰₯ 0 c : ContinuousOn (fun x => 1) (closedBall c✝ r) ⊒ (↑volume (closedBall c✝ r)).toReal = Ο€ * r ^ 2
c✝ : β„‚ r : ℝ rp : r β‰₯ 0 c : ContinuousOn (fun x => 1) (closedBall c✝ r) f : ∫ (z : β„‚) in closedBall c✝ r, 1 = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), 1 ⊒ (↑volume (closedBall c✝ r)).toReal = Ο€ * r ^ 2
Please generate a tactic in lean4 to solve the state. STATE: c✝ : β„‚ r : ℝ rp : r β‰₯ 0 c : ContinuousOn (fun x => 1) (closedBall c✝ r) ⊒ (↑volume (closedBall c✝ r)).toReal = Ο€ * r ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Complex.volume_closedBall'
[308, 1]
[317, 26]
clear c
c✝ : β„‚ r : ℝ rp : r β‰₯ 0 c : ContinuousOn (fun x => 1) (closedBall c✝ r) f : ∫ (z : β„‚) in closedBall c✝ r, 1 = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), 1 ⊒ (↑volume (closedBall c✝ r)).toReal = Ο€ * r ^ 2
c : β„‚ r : ℝ rp : r β‰₯ 0 f : ∫ (z : β„‚) in closedBall c r, 1 = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), 1 ⊒ (↑volume (closedBall c r)).toReal = Ο€ * r ^ 2
Please generate a tactic in lean4 to solve the state. STATE: c✝ : β„‚ r : ℝ rp : r β‰₯ 0 c : ContinuousOn (fun x => 1) (closedBall c✝ r) f : ∫ (z : β„‚) in closedBall c✝ r, 1 = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), 1 ⊒ (↑volume (closedBall c✝ r)).toReal = Ο€ * r ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Complex.volume_closedBall'
[308, 1]
[317, 26]
simp only [ENNReal.toReal_ofReal Real.two_pi_pos.le, ← intervalIntegral.integral_of_le rp, integral_const, Measure.restrict_apply, MeasurableSet.univ, univ_inter, Algebra.id.smul_eq_mul, mul_one, Real.volume_Ioc, tsub_zero, intervalIntegral.integral_mul_const, integral_id, zero_pow, Ne, bit0_eq_zero, Nat.one_ne_zero, not_false_iff] at f
c : β„‚ r : ℝ rp : r β‰₯ 0 f : ∫ (z : β„‚) in closedBall c r, 1 = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), 1 ⊒ (↑volume (closedBall c r)).toReal = Ο€ * r ^ 2
c : β„‚ r : ℝ rp : r β‰₯ 0 f : (↑volume (closedBall c r)).toReal = r ^ 2 / 2 * (2 * Ο€) ⊒ (↑volume (closedBall c r)).toReal = Ο€ * r ^ 2
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r β‰₯ 0 f : ∫ (z : β„‚) in closedBall c r, 1 = ∫ (s : ℝ) in Ioc 0 r, s β€’ ∫ (t : ℝ) in Ioc 0 (2 * Ο€), 1 ⊒ (↑volume (closedBall c r)).toReal = Ο€ * r ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Complex.volume_closedBall'
[308, 1]
[317, 26]
ring_nf at f ⊒
c : β„‚ r : ℝ rp : r β‰₯ 0 f : (↑volume (closedBall c r)).toReal = r ^ 2 / 2 * (2 * Ο€) ⊒ (↑volume (closedBall c r)).toReal = Ο€ * r ^ 2
c : β„‚ r : ℝ rp : r β‰₯ 0 f : (↑volume (closedBall c r)).toReal = r ^ 2 * Ο€ ⊒ (↑volume (closedBall c r)).toReal = r ^ 2 * Ο€
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r β‰₯ 0 f : (↑volume (closedBall c r)).toReal = r ^ 2 / 2 * (2 * Ο€) ⊒ (↑volume (closedBall c r)).toReal = Ο€ * r ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
Complex.volume_closedBall'
[308, 1]
[317, 26]
exact f
c : β„‚ r : ℝ rp : r β‰₯ 0 f : (↑volume (closedBall c r)).toReal = r ^ 2 * Ο€ ⊒ (↑volume (closedBall c r)).toReal = r ^ 2 * Ο€
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r β‰₯ 0 f : (↑volume (closedBall c r)).toReal = r ^ 2 * Ο€ ⊒ (↑volume (closedBall c r)).toReal = r ^ 2 * Ο€ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
NiceVolume.closedBall
[320, 1]
[332, 14]
simp only [Complex.volume_closedBall]
c : β„‚ r : ℝ rp : r > 0 ⊒ ↑volume (Metric.closedBall c r) < ⊀
c : β„‚ r : ℝ rp : r > 0 ⊒ ENNReal.ofReal r ^ 2 * ↑NNReal.pi < ⊀
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r > 0 ⊒ ↑volume (Metric.closedBall c r) < ⊀ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
NiceVolume.closedBall
[320, 1]
[332, 14]
apply ENNReal.mul_lt_top
c : β„‚ r : ℝ rp : r > 0 ⊒ ENNReal.ofReal r ^ 2 * ↑NNReal.pi < ⊀
case a c : β„‚ r : ℝ rp : r > 0 ⊒ ENNReal.ofReal r ^ 2 β‰  ⊀ case a c : β„‚ r : ℝ rp : r > 0 ⊒ ↑NNReal.pi β‰  ⊀
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r > 0 ⊒ ENNReal.ofReal r ^ 2 * ↑NNReal.pi < ⊀ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
NiceVolume.closedBall
[320, 1]
[332, 14]
simp only [ne_eq, ENNReal.pow_eq_top_iff, ENNReal.ofReal_ne_top, OfNat.ofNat_ne_zero, not_false_eq_true, and_true]
case a c : β„‚ r : ℝ rp : r > 0 ⊒ ENNReal.ofReal r ^ 2 β‰  ⊀
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a c : β„‚ r : ℝ rp : r > 0 ⊒ ENNReal.ofReal r ^ 2 β‰  ⊀ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
NiceVolume.closedBall
[320, 1]
[332, 14]
simp only [ne_eq, ENNReal.coe_ne_top, not_false_eq_true]
case a c : β„‚ r : ℝ rp : r > 0 ⊒ ↑NNReal.pi β‰  ⊀
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a c : β„‚ r : ℝ rp : r > 0 ⊒ ↑NNReal.pi β‰  ⊀ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
NiceVolume.closedBall
[320, 1]
[332, 14]
simp only [Complex.volume_closedBall, gt_iff_lt, CanonicallyOrderedCommSemiring.mul_pos, ENNReal.coe_pos, NNReal.pi_pos, and_true]
c : β„‚ r : ℝ rp : r > 0 ⊒ ↑volume (Metric.closedBall c r) > 0
c : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r ^ 2
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r > 0 ⊒ ↑volume (Metric.closedBall c r) > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
NiceVolume.closedBall
[320, 1]
[332, 14]
apply ENNReal.pow_pos
c : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r ^ 2
case a c : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
NiceVolume.closedBall
[320, 1]
[332, 14]
bound
case a c : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a c : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
LocalVolume.closedBall
[335, 1]
[343, 73]
apply LocalVolume.closure_interior
c : β„‚ r : ℝ rp : r > 0 ⊒ LocalVolumeSet (Metric.closedBall c r)
case bp c : β„‚ r : ℝ rp : r > 0 ⊒ βˆ€ (x : β„‚), βˆ€ r > 0, ↑volume (ball x r) > 0 case ci c : β„‚ r : ℝ rp : r > 0 ⊒ Metric.closedBall c r βŠ† closure (interior (Metric.closedBall c r))
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ r : ℝ rp : r > 0 ⊒ LocalVolumeSet (Metric.closedBall c r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
LocalVolume.closedBall
[335, 1]
[343, 73]
intro x r rp
case bp c : β„‚ r : ℝ rp : r > 0 ⊒ βˆ€ (x : β„‚), βˆ€ r > 0, ↑volume (ball x r) > 0
case bp c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ ↑volume (ball x r) > 0
Please generate a tactic in lean4 to solve the state. STATE: case bp c : β„‚ r : ℝ rp : r > 0 ⊒ βˆ€ (x : β„‚), βˆ€ r > 0, ↑volume (ball x r) > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
LocalVolume.closedBall
[335, 1]
[343, 73]
simp only [Complex.volume_ball, gt_iff_lt, CanonicallyOrderedCommSemiring.mul_pos, ENNReal.coe_pos, NNReal.pi_pos, and_true]
case bp c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ ↑volume (ball x r) > 0
case bp c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r ^ 2
Please generate a tactic in lean4 to solve the state. STATE: case bp c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ ↑volume (ball x r) > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
LocalVolume.closedBall
[335, 1]
[343, 73]
apply ENNReal.pow_pos
case bp c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r ^ 2
case bp.a c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r
Please generate a tactic in lean4 to solve the state. STATE: case bp c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
LocalVolume.closedBall
[335, 1]
[343, 73]
bound
case bp.a c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case bp.a c : β„‚ r✝ : ℝ rp✝ : r✝ > 0 x : β„‚ r : ℝ rp : r > 0 ⊒ 0 < ENNReal.ofReal r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
LocalVolume.closedBall
[335, 1]
[343, 73]
have rz := rp.ne'
case ci c : β„‚ r : ℝ rp : r > 0 ⊒ Metric.closedBall c r βŠ† closure (interior (Metric.closedBall c r))
case ci c : β„‚ r : ℝ rp : r > 0 rz : r β‰  0 ⊒ Metric.closedBall c r βŠ† closure (interior (Metric.closedBall c r))
Please generate a tactic in lean4 to solve the state. STATE: case ci c : β„‚ r : ℝ rp : r > 0 ⊒ Metric.closedBall c r βŠ† closure (interior (Metric.closedBall c r)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
LocalVolume.closedBall
[335, 1]
[343, 73]
simp only [interior_closedBall c rz, closure_ball c rz, subset_refl]
case ci c : β„‚ r : ℝ rp : r > 0 rz : r β‰  0 ⊒ Metric.closedBall c r βŠ† closure (interior (Metric.closedBall c r))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case ci c : β„‚ r : ℝ rp : r > 0 rz : r β‰  0 ⊒ Metric.closedBall c r βŠ† closure (interior (Metric.closedBall c r)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
set fl := fun n z ↦ log (f n z)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have near1 : βˆ€ n z, z ∈ s β†’ abs (f n z - 1) ≀ 1 / 2 := by intro n z zs calc abs (f n z - 1) _ ≀ c * a ^ n := hf n z zs _ ≀ (1 / 2 : ℝ) * (1:ℝ) ^ n := by bound _ = 1 / 2 := by norm_num
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have near1' : βˆ€ n z, z ∈ s β†’ abs (f n z - 1) < 1 := fun n z zs ↦ lt_of_le_of_lt (near1 n z zs) (by linarith)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have expfl : βˆ€ n z, z ∈ s β†’ exp (fl n z) = f n z := by intro n z zs; refine Complex.exp_log ?_ exact near_one_avoids_zero (near1' n z zs)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have hl : βˆ€ n, AnalyticOn β„‚ (fl n) s := fun n ↦ (h n).log (fun z m ↦ mem_slitPlane_of_near_one (near1' n z m))
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
set c2 := 2 * c
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have hfl : βˆ€ n z, z ∈ s β†’ abs (fl n z) ≀ c2 * a ^ n := by intro n z zs calc abs (fl n z) _ = abs (log (f n z)) := rfl _ ≀ 2 * abs (f n z - 1) := (log_small (near1 n z zs)) _ ≀ 2 * (c * a ^ n) := by linarith [hf n z zs] _ = 2 * c * a ^ n := by ring _ = c2 * a ^ n := rfl
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rcases fast_series_converge o a0 a1 hl hfl with ⟨gl, gla, us⟩
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
generalize hg : (fun z ↦ exp (gl z)) = g
case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
use g
case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆƒ g, HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
refine ⟨?_, ?_, ?_⟩
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ g s case h.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆ€ z ∈ s, g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s ∧ AnalyticOn β„‚ g s ∧ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro n z zs
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (f n z - 1) ≀ 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
calc abs (f n z - 1) _ ≀ c * a ^ n := hf n z zs _ ≀ (1 / 2 : ℝ) * (1:ℝ) ^ n := by bound _ = 1 / 2 := by norm_num
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (f n z - 1) ≀ 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (f n z - 1) ≀ 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
bound
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ c * a ^ n ≀ 1 / 2 * 1 ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ c * a ^ n ≀ 1 / 2 * 1 ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
norm_num
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ 1 / 2 * 1 ^ n = 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log n : β„• z : β„‚ zs : z ∈ s ⊒ 1 / 2 * 1 ^ n = 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
linarith
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 n : β„• z : β„‚ zs : z ∈ s ⊒ 1 / 2 < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 n : β„• z : β„‚ zs : z ∈ s ⊒ 1 / 2 < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro n z zs
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ (fl n z).exp = f n z
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
refine Complex.exp_log ?_
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ (fl n z).exp = f n z
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ f n z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ (fl n z).exp = f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
exact near_one_avoids_zero (near1' n z zs)
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ f n z β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 n : β„• z : β„‚ zs : z ∈ s ⊒ f n z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro n z zs
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (fl n z) ≀ c2 * a ^ n
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c ⊒ βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
calc abs (fl n z) _ = abs (log (f n z)) := rfl _ ≀ 2 * abs (f n z - 1) := (log_small (near1 n z zs)) _ ≀ 2 * (c * a ^ n) := by linarith [hf n z zs] _ = 2 * c * a ^ n := by ring _ = c2 * a ^ n := rfl
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (fl n z) ≀ c2 * a ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ Complex.abs (fl n z) ≀ c2 * a ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
linarith [hf n z zs]
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ 2 * Complex.abs (f n z - 1) ≀ 2 * (c * a ^ n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ 2 * Complex.abs (f n z - 1) ≀ 2 * (c * a ^ n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
ring
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ 2 * (c * a ^ n) = 2 * c * a ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c n : β„• z : β„‚ zs : z ∈ s ⊒ 2 * (c * a ^ n) = 2 * c * a ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro z zs
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ HasProdOn f g s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
specialize us z zs
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => (fun n => fl n) n z) (gl z) ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
simp at us
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => (fun n => fl n) n z) (gl z) ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => (fun n => fl n) n z) (gl z) ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have comp : Filter.Tendsto (exp ∘ fun N : Finset β„• ↦ N.sum fun n ↦ fl n z) atTop (𝓝 (exp (gl z))) := Filter.Tendsto.comp (Continuous.tendsto Complex.continuous_exp _) us
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
have expsum0 : (exp ∘ fun N : Finset β„• ↦ N.sum fun n ↦ fl n z) = fun N : Finset β„• ↦ N.prod fun n ↦ f n z := by apply funext; intro N; simp; rw [Complex.exp_sum]; simp_rw [expfl _ z zs]
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rw [expsum0] at comp
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rw [← hg]
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z)
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) ((fun z => (gl z).exp) z)
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
assumption
case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) ((fun z => (gl z).exp) z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (fun N => N.prod fun n => f n z) atTop (𝓝 (gl z).exp) expsum0 : (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z ⊒ HasProd (fun n => f n z) ((fun z => (gl z).exp) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
apply funext
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ βˆ€ (x : Finset β„•), (exp ∘ fun N => N.sum fun n => fl n z) x = x.prod fun n => f n z
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ (exp ∘ fun N => N.sum fun n => fl n z) = fun N => N.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
intro N
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ βˆ€ (x : Finset β„•), (exp ∘ fun N => N.sum fun n => fl n z) x = x.prod fun n => f n z
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (exp ∘ fun N => N.sum fun n => fl n z) N = N.prod fun n => f n z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) ⊒ βˆ€ (x : Finset β„•), (exp ∘ fun N => N.sum fun n => fl n z) x = x.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
simp
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (exp ∘ fun N => N.sum fun n => fl n z) N = N.prod fun n => f n z
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.sum fun n => fl n z).exp = N.prod fun n => f n z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (exp ∘ fun N => N.sum fun n => fl n z) N = N.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rw [Complex.exp_sum]
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.sum fun n => fl n z).exp = N.prod fun n => f n z
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.prod fun x => (fl x z).exp) = N.prod fun n => f n z
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.sum fun n => fl n z).exp = N.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
simp_rw [expfl _ z zs]
case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.prod fun x => (fl x z).exp) = N.prod fun n => f n z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g z : β„‚ zs : z ∈ s us : HasSum (fun n => fl n z) (gl z) comp : Filter.Tendsto (exp ∘ fun N => N.sum fun n => fl n z) atTop (𝓝 (gl z).exp) N : Finset β„• ⊒ (N.prod fun x => (fl x z).exp) = N.prod fun n => f n z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
rw [← hg]
case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ g s
case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ (fun z => (gl z).exp) s
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ g s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
exact fun z zs ↦ AnalyticAt.exp.comp (gla z zs)
case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ (fun z => (gl z).exp) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ AnalyticOn β„‚ (fun z => (gl z).exp) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge
[57, 1]
[98, 75]
simp only [Complex.exp_ne_zero, Ne, not_false_iff, imp_true_iff, ← hg]
case h.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆ€ z ∈ s, g z β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ a c : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : a β‰₯ 0 a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n fl : β„• β†’ β„‚ β†’ β„‚ := fun n z => (f n z).log near1 : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ 1 / 2 near1' : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) < 1 expfl : βˆ€ (n : β„•), βˆ€ z ∈ s, (fl n z).exp = f n z hl : βˆ€ (n : β„•), AnalyticOn β„‚ (fl n) s c2 : ℝ := 2 * c hfl : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (fl n z) ≀ c2 * a ^ n gl : β„‚ β†’ β„‚ gla : AnalyticOn β„‚ gl s us : HasSumOn (fun n => fl n) gl s g : β„‚ β†’ β„‚ hg : (fun z => (gl z).exp) = g ⊒ βˆ€ z ∈ s, g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
rcases fast_products_converge o c12 a0 a1 h hf with ⟨g, gp, ga, g0⟩
f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0
case intro.intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
refine ⟨?_, ?_, ?_⟩
case intro.intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0
case intro.intro.intro.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s case intro.intro.intro.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ AnalyticOn β„‚ (tprodOn f) s case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ βˆ€ z ∈ s, tprodOn f z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s ∧ AnalyticOn β„‚ (tprodOn f) s ∧ βˆ€ z ∈ s, tprodOn f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
exact fun z zs ↦ ⟨g z, gp z zs⟩
case intro.intro.intro.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_1 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ ProdExistsOn f s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
rwa [← analyticOn_congr o fun z zs ↦ (gp.tprodOn_eq z zs).symm]
case intro.intro.intro.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ AnalyticOn β„‚ (tprodOn f) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_2 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ AnalyticOn β„‚ (tprodOn f) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
intro z zs
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ βˆ€ z ∈ s, tprodOn f z β‰  0
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ tprodOn f z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 ⊒ βˆ€ z ∈ s, tprodOn f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
rw [gp.tprodOn_eq z zs]
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ tprodOn f z β‰  0
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ g z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ tprodOn f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
fast_products_converge'
[101, 1]
[109, 55]
exact g0 z zs
case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ g z β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 f : β„• β†’ β„‚ β†’ β„‚ s : Set β„‚ c a : ℝ o : IsOpen s c12 : c ≀ 1 / 2 a0 : 0 ≀ a a1 : a < 1 h : βˆ€ (n : β„•), AnalyticOn β„‚ (f n) s hf : βˆ€ (n : β„•), βˆ€ z ∈ s, Complex.abs (f n z - 1) ≀ c * a ^ n g : β„‚ β†’ β„‚ gp : HasProdOn (fun n => f n) g s ga : AnalyticOn β„‚ g s g0 : βˆ€ z ∈ s, g z β‰  0 z : β„‚ zs : z ∈ s ⊒ g z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow
[112, 1]
[115, 72]
rw [HasProd]
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ HasProd (fun n => f n ^ p) (g ^ p)
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => s.prod fun b => f b ^ p) atTop (𝓝 (g ^ p))
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ HasProd (fun n => f n ^ p) (g ^ p) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow
[112, 1]
[115, 72]
simp_rw [Finset.prod_pow]
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => s.prod fun b => f b ^ p) atTop (𝓝 (g ^ p))
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => (s.prod fun x => f x) ^ p) atTop (𝓝 (g ^ p))
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => s.prod fun b => f b ^ p) atTop (𝓝 (g ^ p)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow
[112, 1]
[115, 72]
exact Filter.Tendsto.comp (Continuous.tendsto (continuous_pow p) g) h
f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => (s.prod fun x => f x) ^ p) atTop (𝓝 (g ^ p))
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ p : β„• h : HasProd f g ⊒ Filter.Tendsto (fun s => (s.prod fun x => f x) ^ p) atTop (𝓝 (g ^ p)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow'
[118, 1]
[120, 96]
rcases h with ⟨g, h⟩
f : β„• β†’ β„‚ p : β„• h : ProdExists f ⊒ tprod f ^ p = ∏' (n : β„•), f n ^ p
case intro f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ tprod f ^ p = ∏' (n : β„•), f n ^ p
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ p : β„• h : ProdExists f ⊒ tprod f ^ p = ∏' (n : β„•), f n ^ p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow'
[118, 1]
[120, 96]
rw [HasProd.tprod_eq h]
case intro f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ tprod f ^ p = ∏' (n : β„•), f n ^ p
case intro f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ g ^ p = ∏' (n : β„•), f n ^ p
Please generate a tactic in lean4 to solve the state. STATE: case intro f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ tprod f ^ p = ∏' (n : β„•), f n ^ p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow'
[118, 1]
[120, 96]
rw [HasProd.tprod_eq _]
case intro f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ g ^ p = ∏' (n : β„•), f n ^ p
f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ HasProd (fun n => f n ^ p) (g ^ p)
Please generate a tactic in lean4 to solve the state. STATE: case intro f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ g ^ p = ∏' (n : β„•), f n ^ p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_pow'
[118, 1]
[120, 96]
exact product_pow p h
f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ HasProd (fun n => f n ^ p) (g ^ p)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ p : β„• g : β„‚ h : HasProd f g ⊒ HasProd (fun n => f n ^ p) (g ^ p) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
rw [HasProd] at h ⊒
a g : β„‚ f : β„• β†’ β„‚ h : HasProd f g ⊒ HasProd (Stream'.cons a f) (a * g)
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g))
Please generate a tactic in lean4 to solve the state. STATE: a g : β„‚ f : β„• β†’ β„‚ h : HasProd f g ⊒ HasProd (Stream'.cons a f) (a * g) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
have ha := Filter.Tendsto.comp (Continuous.tendsto (continuous_mul_left a) g) h
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g))
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g))
Please generate a tactic in lean4 to solve the state. STATE: a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
have s : ((fun z ↦ a * z) ∘ fun N : Finset β„• ↦ N.prod f) = (fun N : Finset β„• ↦ N.prod (Stream'.cons a f)) ∘ push := by apply funext; intro N; simp; exact push_prod
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g))
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) s : ((fun z => a * z) ∘ fun N => N.prod f) = (fun N => N.prod (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g))
Please generate a tactic in lean4 to solve the state. STATE: a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
rw [s] at ha
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) s : ((fun z => a * z) ∘ fun N => N.prod f) = (fun N => N.prod (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g))
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun N => N.prod (Stream'.cons a f)) ∘ push) atTop (𝓝 (a * g)) s : ((fun z => a * z) ∘ fun N => N.prod f) = (fun N => N.prod (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g))
Please generate a tactic in lean4 to solve the state. STATE: a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) s : ((fun z => a * z) ∘ fun N => N.prod f) = (fun N => N.prod (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
exact tendsto_comp_push.mp ha
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun N => N.prod (Stream'.cons a f)) ∘ push) atTop (𝓝 (a * g)) s : ((fun z => a * z) ∘ fun N => N.prod f) = (fun N => N.prod (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g))
no goals
Please generate a tactic in lean4 to solve the state. STATE: a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun N => N.prod (Stream'.cons a f)) ∘ push) atTop (𝓝 (a * g)) s : ((fun z => a * z) ∘ fun N => N.prod f) = (fun N => N.prod (Stream'.cons a f)) ∘ push ⊒ Filter.Tendsto (fun s => s.prod fun b => Stream'.cons a f b) atTop (𝓝 (a * g)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
apply funext
a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) ⊒ ((fun z => a * z) ∘ fun N => N.prod f) = (fun N => N.prod (Stream'.cons a f)) ∘ push
case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) ⊒ βˆ€ (x : Finset β„•), ((fun z => a * z) ∘ fun N => N.prod f) x = ((fun N => N.prod (Stream'.cons a f)) ∘ push) x
Please generate a tactic in lean4 to solve the state. STATE: a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) ⊒ ((fun z => a * z) ∘ fun N => N.prod f) = (fun N => N.prod (Stream'.cons a f)) ∘ push TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
intro N
case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) ⊒ βˆ€ (x : Finset β„•), ((fun z => a * z) ∘ fun N => N.prod f) x = ((fun N => N.prod (Stream'.cons a f)) ∘ push) x
case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) N : Finset β„• ⊒ ((fun z => a * z) ∘ fun N => N.prod f) N = ((fun N => N.prod (Stream'.cons a f)) ∘ push) N
Please generate a tactic in lean4 to solve the state. STATE: case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) ⊒ βˆ€ (x : Finset β„•), ((fun z => a * z) ∘ fun N => N.prod f) x = ((fun N => N.prod (Stream'.cons a f)) ∘ push) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
simp
case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) N : Finset β„• ⊒ ((fun z => a * z) ∘ fun N => N.prod f) N = ((fun N => N.prod (Stream'.cons a f)) ∘ push) N
case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) N : Finset β„• ⊒ a * N.prod f = (push N).prod (Stream'.cons a f)
Please generate a tactic in lean4 to solve the state. STATE: case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) N : Finset β„• ⊒ ((fun z => a * z) ∘ fun N => N.prod f) N = ((fun N => N.prod (Stream'.cons a f)) ∘ push) N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons
[123, 1]
[131, 32]
exact push_prod
case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) N : Finset β„• ⊒ a * N.prod f = (push N).prod (Stream'.cons a f)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h a g : β„‚ f : β„• β†’ β„‚ h : Filter.Tendsto (fun s => s.prod fun b => f b) atTop (𝓝 g) ha : Filter.Tendsto ((fun b => a * b) ∘ fun s => s.prod fun b => f b) atTop (𝓝 (a * g)) N : Finset β„• ⊒ a * N.prod f = (push N).prod (Stream'.cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons'
[134, 1]
[136, 95]
rcases h with ⟨g, h⟩
a : β„‚ f : β„• β†’ β„‚ h : ProdExists f ⊒ tprod (Stream'.cons a f) = a * tprod f
case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ tprod (Stream'.cons a f) = a * tprod f
Please generate a tactic in lean4 to solve the state. STATE: a : β„‚ f : β„• β†’ β„‚ h : ProdExists f ⊒ tprod (Stream'.cons a f) = a * tprod f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons'
[134, 1]
[136, 95]
rw [HasProd.tprod_eq h]
case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ tprod (Stream'.cons a f) = a * tprod f
case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ tprod (Stream'.cons a f) = a * g
Please generate a tactic in lean4 to solve the state. STATE: case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ tprod (Stream'.cons a f) = a * tprod f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons'
[134, 1]
[136, 95]
rw [HasProd.tprod_eq _]
case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ tprod (Stream'.cons a f) = a * g
a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ HasProd (fun b => Stream'.cons a f b) (a * g)
Please generate a tactic in lean4 to solve the state. STATE: case intro a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ tprod (Stream'.cons a f) = a * g TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_cons'
[134, 1]
[136, 95]
exact product_cons h
a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ HasProd (fun b => Stream'.cons a f b) (a * g)
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : β„‚ f : β„• β†’ β„‚ g : β„‚ h : HasProd f g ⊒ HasProd (fun b => Stream'.cons a f b) (a * g) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
have c := @product_cons (f 0)⁻¹ _ _ h
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g ⊒ HasProd (fun n => f (n + 1)) (g / f 0)
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : HasProd (Stream'.cons (f 0)⁻¹ f) ((f 0)⁻¹ * g) ⊒ HasProd (fun n => f (n + 1)) (g / f 0)
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g ⊒ HasProd (fun n => f (n + 1)) (g / f 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
rw [HasProd]
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : HasProd (Stream'.cons (f 0)⁻¹ f) ((f 0)⁻¹ * g) ⊒ HasProd (fun n => f (n + 1)) (g / f 0)
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : HasProd (Stream'.cons (f 0)⁻¹ f) ((f 0)⁻¹ * g) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0))
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : HasProd (Stream'.cons (f 0)⁻¹ f) ((f 0)⁻¹ * g) ⊒ HasProd (fun n => f (n + 1)) (g / f 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
rw [inv_mul_eq_div, HasProd, ← tendsto_comp_push, ← tendsto_comp_push] at c
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : HasProd (Stream'.cons (f 0)⁻¹ f) ((f 0)⁻¹ * g) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0))
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (((fun s => s.prod fun b => Stream'.cons (f 0)⁻¹ f b) ∘ push) ∘ push) atTop (𝓝 (g / f 0)) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0))
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : HasProd (Stream'.cons (f 0)⁻¹ f) ((f 0)⁻¹ * g) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
have s : ((fun N : Finset β„• ↦ N.prod fun n ↦ (Stream'.cons (f 0)⁻¹ f) n) ∘ push) ∘ push = fun N : Finset β„• ↦ N.prod fun n ↦ f (n + 1) := by clear c h g; apply funext; intro N; simp nth_rw 2 [← Stream'.eta f] simp only [←push_prod, Stream'.head, Stream'.tail, Stream'.get, ←mul_assoc, inv_mul_cancel f0, one_mul]
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (((fun s => s.prod fun b => Stream'.cons (f 0)⁻¹ f b) ∘ push) ∘ push) atTop (𝓝 (g / f 0)) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0))
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (((fun s => s.prod fun b => Stream'.cons (f 0)⁻¹ f b) ∘ push) ∘ push) atTop (𝓝 (g / f 0)) s : ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0))
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (((fun s => s.prod fun b => Stream'.cons (f 0)⁻¹ f b) ∘ push) ∘ push) atTop (𝓝 (g / f 0)) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
rw [s] at c
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (((fun s => s.prod fun b => Stream'.cons (f 0)⁻¹ f b) ∘ push) ∘ push) atTop (𝓝 (g / f 0)) s : ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0))
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (fun N => N.prod fun n => f (n + 1)) atTop (𝓝 (g / f 0)) s : ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0))
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (((fun s => s.prod fun b => Stream'.cons (f 0)⁻¹ f b) ∘ push) ∘ push) atTop (𝓝 (g / f 0)) s : ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
assumption
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (fun N => N.prod fun n => f (n + 1)) atTop (𝓝 (g / f 0)) s : ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0))
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (fun N => N.prod fun n => f (n + 1)) atTop (𝓝 (g / f 0)) s : ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1) ⊒ Filter.Tendsto (fun s => s.prod fun b => f (b + 1)) atTop (𝓝 (g / f 0)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
clear c h g
f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (((fun s => s.prod fun b => Stream'.cons (f 0)⁻¹ f b) ∘ push) ∘ push) atTop (𝓝 (g / f 0)) ⊒ ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1)
f : β„• β†’ β„‚ f0 : f 0 β‰  0 ⊒ ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ g : β„‚ f0 : f 0 β‰  0 h : HasProd f g c : Filter.Tendsto (((fun s => s.prod fun b => Stream'.cons (f 0)⁻¹ f b) ∘ push) ∘ push) atTop (𝓝 (g / f 0)) ⊒ ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
apply funext
f : β„• β†’ β„‚ f0 : f 0 β‰  0 ⊒ ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1)
case h f : β„• β†’ β„‚ f0 : f 0 β‰  0 ⊒ βˆ€ (x : Finset β„•), (((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push) x = x.prod fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ f0 : f 0 β‰  0 ⊒ ((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push = fun N => N.prod fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
intro N
case h f : β„• β†’ β„‚ f0 : f 0 β‰  0 ⊒ βˆ€ (x : Finset β„•), (((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push) x = x.prod fun n => f (n + 1)
case h f : β„• β†’ β„‚ f0 : f 0 β‰  0 N : Finset β„• ⊒ (((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push) N = N.prod fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ f0 : f 0 β‰  0 ⊒ βˆ€ (x : Finset β„•), (((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push) x = x.prod fun n => f (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/Products.lean
product_drop
[139, 1]
[150, 26]
simp
case h f : β„• β†’ β„‚ f0 : f 0 β‰  0 N : Finset β„• ⊒ (((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push) N = N.prod fun n => f (n + 1)
case h f : β„• β†’ β„‚ f0 : f 0 β‰  0 N : Finset β„• ⊒ ((push (push N)).prod fun n => Stream'.cons (f 0)⁻¹ f n) = N.prod fun n => f (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: case h f : β„• β†’ β„‚ f0 : f 0 β‰  0 N : Finset β„• ⊒ (((fun N => N.prod fun n => Stream'.cons (f 0)⁻¹ f n) ∘ push) ∘ push) N = N.prod fun n => f (n + 1) TACTIC: