url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
have h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 := by rw [← hn]; exact Int.ceil_lt_add_one _
case left t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ 2 * π * ↑n < π + t
case left t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ 2 * π * ↑n < π + t
Please generate a tactic in lean4 to solve the state. STATE: case left t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ 2 * π * ↑n < π + t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
calc 2 * π * ↑n _ < 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1) := by bound _ = π + 2 * π * (2 * π)⁻¹ * t := by ring _ = π + t := by field_simp [Real.two_pi_pos.ne']
case left t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ 2 * π * ↑n < π + t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case left t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ 2 * π * ↑n < π + t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
rw [← hn]
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑⌈t / (2 * π) - 1 / 2⌉ < t * (2 * π)⁻¹ - 1 / 2 + 1
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
exact Int.ceil_lt_add_one _
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑⌈t / (2 * π) - 1 / 2⌉ < t * (2 * π)⁻¹ - 1 / 2 + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑⌈t / (2 * π) - 1 / 2⌉ < t * (2 * π)⁻¹ - 1 / 2 + 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
bound
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ 2 * π * ↑n < 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ 2 * π * ↑n < 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
ring
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1) = π + 2 * π * (2 * π)⁻¹ * t
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1) = π + 2 * π * (2 * π)⁻¹ * t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
field_simp [Real.two_pi_pos.ne']
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ π + 2 * π * (2 * π)⁻¹ * t = π + t
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 ⊢ π + 2 * π * (2 * π)⁻¹ * t = π + t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
have h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 := by rw [← hn]; exact Int.le_ceil _
case right t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ t ≤ π + 2 * π * ↑n
case right t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ t ≤ π + 2 * π * ↑n
Please generate a tactic in lean4 to solve the state. STATE: case right t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ t ≤ π + 2 * π * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
calc π + 2 * π * ↑n _ ≥ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2) := by bound _ = 2 * π * (2 * π)⁻¹ * t := by ring _ = t := by field_simp [Real.two_pi_pos.ne']
case right t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ t ≤ π + 2 * π * ↑n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ t ≤ π + 2 * π * ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
rw [← hn]
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑⌈t / (2 * π) - 1 / 2⌉ ≥ t * (2 * π)⁻¹ - 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
exact Int.le_ceil _
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑⌈t / (2 * π) - 1 / 2⌉ ≥ t * (2 * π)⁻¹ - 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp ⊢ ↑⌈t / (2 * π) - 1 / 2⌉ ≥ t * (2 * π)⁻¹ - 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
bound
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ π + 2 * π * ↑n ≥ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ π + 2 * π * ↑n ≥ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
ring
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2) = 2 * π * (2 * π)⁻¹ * t
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2) = 2 * π * (2 * π)⁻¹ * t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
arg_exp_of_im
[186, 1]
[206, 98]
field_simp [Real.two_pi_pos.ne']
t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ 2 * π * (2 * π)⁻¹ * t = t
no goals
Please generate a tactic in lean4 to solve the state. STATE: t : ℝ n : ℤ hn : ⌈t / (2 * π) - 1 / 2⌉ = n en : (2 * ↑π * ↑n * I).exp = 1 e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 ⊢ 2 * π * (2 * π)⁻¹ * t = t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
intro x xs y ys e
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 ⊢ InjOn (realCircleMap c) (square r0 r1)
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ square r0 r1 y : ℝ × ℝ ys : y ∈ square r0 r1 e : realCircleMap c x = realCircleMap c y ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 ⊢ InjOn (realCircleMap c) (square r0 r1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp [square] at xs ys
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ square r0 r1 y : ℝ × ℝ ys : y ∈ square r0 r1 e : realCircleMap c x = realCircleMap c y ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ e : realCircleMap c x = realCircleMap c y xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ square r0 r1 y : ℝ × ℝ ys : y ∈ square r0 r1 e : realCircleMap c x = realCircleMap c y ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp_rw [realCircleMap_eq_circleMap, Equiv.apply_eq_iff_eq] at e
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ e : realCircleMap c x = realCircleMap c y xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : circleMap c x.1 x.2 = circleMap c y.1 y.2 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ e : realCircleMap c x = realCircleMap c y xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp_rw [circleMap] at e
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : circleMap c x.1 x.2 = circleMap c y.1 y.2 ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : circleMap c x.1 x.2 = circleMap c y.1 y.2 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp at e
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have re : abs (↑x.1 * exp (x.2 * I)) = abs (↑y.1 * exp (y.2 * I)) := by rw [e]
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have x0 : 0 < x.1 := by linarith
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have y0 : 0 < y.1 := by linarith
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 y0 : 0 < y.1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp only [map_mul, Complex.abs_ofReal, abs_of_pos x0, Complex.abs_exp_ofReal_mul_I, mul_one, abs_of_pos y0] at re
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 y0 : 0 < y.1 ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 y0 : 0 < y.1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have ae : arg (↑x.1 * exp (x.2 * I)) = arg (↑y.1 * exp (y.2 * I)) := by rw [e]
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp [Complex.arg_real_mul _ x0, Complex.arg_real_mul _ y0] at ae
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg ⊢ x = y
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rcases arg_exp_of_im x.2 with ⟨nx, hx⟩
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg ⊢ x = y
case intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rcases arg_exp_of_im y.2 with ⟨ny, h⟩
case intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ny : ℤ h : (↑y.2 * I).exp.arg = y.2 - 2 * π * ↑ny ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [← ae, hx] at h
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ny : ℤ h : (↑y.2 * I).exp.arg = y.2 - 2 * π * ↑ny ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ny : ℤ h : (↑y.2 * I).exp.arg = y.2 - 2 * π * ↑ny ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
clear e ae hx
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg nx : ℤ hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have n0 : 2 * π * (nx - ny) < 2 * π * 1 := by linarith
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have n1 : 2 * π * -1 < 2 * π * (nx - ny) := by linarith
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have hn : (nx : ℝ) - ny = ↑(nx - ny) := by simp only [Int.cast_sub]
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have hn1 : (-1 : ℝ) = ↑(-1 : ℤ) := by norm_num
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have h1 : (1 : ℝ) = ↑(1 : ℤ) := by norm_num
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [mul_lt_mul_left Real.two_pi_pos, hn] at n0 n1
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < 1 n1 : -1 < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [hn1] at n1
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < 1 n1 : -1 < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < 1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < 1 n1 : -1 < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [h1] at n0
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < 1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < ↑1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < 1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [Int.cast_lt] at n0 n1
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < ↑1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : ↑(nx - ny) < ↑1 n1 : ↑(-1) < ↑(nx - ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have n : nx = ny := by linarith
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [n] at h
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have i : x.2 = y.2 := by linarith
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
have g : (x.1, x.2) = (y.1, y.2) := by rw [re, i]
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : (x.1, x.2) = (y.1, y.2) ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp only [Prod.mk.eta] at g
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : (x.1, x.2) = (y.1, y.2) ⊢ x = y
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : x = y ⊢ x = y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : (x.1, x.2) = (y.1, y.2) ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
exact g
case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : x = y ⊢ x = y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 g : x = y ⊢ x = y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [e]
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊢ Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp ⊢ Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊢ 0 < x.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) ⊢ 0 < x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊢ 0 < y.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp) x0 : 0 < x.1 ⊢ 0 < y.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [e]
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊢ (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 ⊢ (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny ⊢ 2 * π * (↑nx - ↑ny) < 2 * π * 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny ⊢ 2 * π * (↑nx - ↑ny) < 2 * π * 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 ⊢ 2 * π * -1 < 2 * π * (↑nx - ↑ny)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 ⊢ 2 * π * -1 < 2 * π * (↑nx - ↑ny) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
simp only [Int.cast_sub]
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) ⊢ ↑nx - ↑ny = ↑(nx - ny)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) ⊢ ↑nx - ↑ny = ↑(nx - ny) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
norm_num
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊢ -1 = ↑(-1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) ⊢ -1 = ↑(-1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
norm_num
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊢ 1 = ↑1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1 n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny) hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) ⊢ 1 = ↑1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ nx = ny
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 ⊢ nx = ny TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
linarith
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊢ x.2 = y.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny ⊢ x.2 = y.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
rcm_inj
[209, 1]
[234, 40]
rw [re, i]
c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊢ (x.1, x.2) = (y.1, y.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ r0 r1 : ℝ r0p : 0 ≤ r0 x y : ℝ × ℝ xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π x0 : 0 < x.1 y0 : 0 < y.1 re : x.1 = y.1 nx ny : ℤ h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny n0 : nx - ny < 1 n1 : -1 < nx - ny hn : ↑nx - ↑ny = ↑(nx - ny) hn1 : -1 = ↑(-1) h1 : 1 = ↑1 n : nx = ny i : x.2 = y.2 ⊢ (x.1, x.2) = (y.1, y.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
simp only [Complex.equivRealProd_apply]
z : ℂ ⊢ Complex.measurableEquivRealProd.symm (Complex.equivRealProd z) = z
z : ℂ ⊢ Complex.measurableEquivRealProd.symm (z.re, z.im) = z
Please generate a tactic in lean4 to solve the state. STATE: z : ℂ ⊢ Complex.measurableEquivRealProd.symm (Complex.equivRealProd z) = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
rw [Complex.measurableEquivRealProd, Homeomorph.toMeasurableEquiv_symm_coe]
z : ℂ ⊢ Complex.measurableEquivRealProd.symm (z.re, z.im) = z
z : ℂ ⊢ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z
Please generate a tactic in lean4 to solve the state. STATE: z : ℂ ⊢ Complex.measurableEquivRealProd.symm (z.re, z.im) = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
simp only [ContinuousLinearEquiv.symm_toHomeomorph, ContinuousLinearEquiv.coe_toHomeomorph]
z : ℂ ⊢ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z
z : ℂ ⊢ Complex.equivRealProdCLM.symm (z.re, z.im) = z
Please generate a tactic in lean4 to solve the state. STATE: z : ℂ ⊢ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
apply Complex.ext
z : ℂ ⊢ Complex.equivRealProdCLM.symm (z.re, z.im) = z
case a z : ℂ ⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).re = z.re case a z : ℂ ⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).im = z.im
Please generate a tactic in lean4 to solve the state. STATE: z : ℂ ⊢ Complex.equivRealProdCLM.symm (z.re, z.im) = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
simp only [Complex.equivRealProdCLM_symm_apply_re]
case a z : ℂ ⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).re = z.re
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a z : ℂ ⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).re = z.re TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
measurable_symm_equiv_inverse
[239, 1]
[245, 55]
simp only [Complex.equivRealProdCLM_symm_apply_im]
case a z : ℂ ⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).im = z.im
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a z : ℂ ⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).im = z.im TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
continuous_circleMap_full
[248, 1]
[249, 13]
continuity
c : ℂ ⊢ Continuous fun x => circleMap c x.1 x.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ ⊢ Continuous fun x => circleMap c x.1 x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
invert_toReal
[252, 1]
[255, 56]
intro h
x : ENNReal y : ℝ yp : y > 0 ⊢ x.toReal = y → x = ENNReal.ofReal y
x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x = ENNReal.ofReal y
Please generate a tactic in lean4 to solve the state. STATE: x : ENNReal y : ℝ yp : y > 0 ⊢ x.toReal = y → x = ENNReal.ofReal y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
invert_toReal
[252, 1]
[255, 56]
rw [← h]
x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x = ENNReal.ofReal y
x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x = ENNReal.ofReal x.toReal
Please generate a tactic in lean4 to solve the state. STATE: x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x = ENNReal.ofReal y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
invert_toReal
[252, 1]
[255, 56]
refine (ENNReal.ofReal_toReal ?_).symm
x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x = ENNReal.ofReal x.toReal
x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x ≠ ⊤
Please generate a tactic in lean4 to solve the state. STATE: x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x = ENNReal.ofReal x.toReal TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
invert_toReal
[252, 1]
[255, 56]
contrapose yp
x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x ≠ ⊤
x : ENNReal y : ℝ h : x.toReal = y yp : ¬x ≠ ⊤ ⊢ ¬y > 0
Please generate a tactic in lean4 to solve the state. STATE: x : ENNReal y : ℝ yp : y > 0 h : x.toReal = y ⊢ x ≠ ⊤ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
invert_toReal
[252, 1]
[255, 56]
simp only [ne_eq, not_not] at yp
x : ENNReal y : ℝ h : x.toReal = y yp : ¬x ≠ ⊤ ⊢ ¬y > 0
x : ENNReal y : ℝ h : x.toReal = y yp : x = ⊤ ⊢ ¬y > 0
Please generate a tactic in lean4 to solve the state. STATE: x : ENNReal y : ℝ h : x.toReal = y yp : ¬x ≠ ⊤ ⊢ ¬y > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
invert_toReal
[252, 1]
[255, 56]
simp only [yp, ENNReal.top_toReal] at h
x : ENNReal y : ℝ h : x.toReal = y yp : x = ⊤ ⊢ ¬y > 0
x : ENNReal y : ℝ yp : x = ⊤ h : 0 = y ⊢ ¬y > 0
Please generate a tactic in lean4 to solve the state. STATE: x : ENNReal y : ℝ h : x.toReal = y yp : x = ⊤ ⊢ ¬y > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
invert_toReal
[252, 1]
[255, 56]
simp only [← h, lt_self_iff_false, not_false_eq_true]
x : ENNReal y : ℝ yp : x = ⊤ h : 0 = y ⊢ ¬y > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ENNReal y : ℝ yp : x = ⊤ h : 0 = y ⊢ ¬y > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
have im := MeasurePreserving.symm _ Complex.volume_preserving_equiv_real_prod
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume ⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
rw [←MeasurePreserving.setIntegral_preimage_emb im Complex.measurableEquivRealProd.symm.measurableEmbedding f _]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume ⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume ⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume ⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
clear im
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume ⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume ⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
rw [square_eq r0p]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
have dc : ∀ x, x ∈ square r0 r1 → HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x := fun _ _ ↦ realCircleMap.fderiv.hasFDerivWithinAt
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x ⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
rw [integral_image_eq_integral_abs_det_fderiv_smul volume Measurable.square dc (rcm_inj r0p)]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x ⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x ⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
clear dc
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
simp_rw [rcmDeriv.det]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
simp_rw [realCircleMap_eq_circleMap]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (Complex.equivRealProd (circleMap c x.1 x.2))) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
simp_rw [measurable_symm_equiv_inverse]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (Complex.equivRealProd (circleMap c x.1 x.2))) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (Complex.equivRealProd (circleMap c x.1 x.2))) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
have e : ∀ x : ℝ × ℝ, x ∈ square r0 r1 → |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) := by intro x xs; rw [abs_of_pos (square.rp r0p xs)]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
rw [MeasureTheory.setIntegral_congr Measurable.square e]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
clear e
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
rw [square, Measure.volume_eq_prod, MeasureTheory.setIntegral_prod]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ) in Ioc r0 r1, ∫ (y : ℝ) in Ioc 0 (2 * π), (x, y).1 • f (circleMap c (x, y).1 (x, y).2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
simp [integral_smul]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ) in Ioc r0 r1, ∫ (y : ℝ) in Ioc 0 (2 * π), (x, y).1 • f (circleMap c (x, y).1 (x, y).2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∫ (x : ℝ) in Ioc r0 r1, ∫ (y : ℝ) in Ioc 0 (2 * π), (x, y).1 • f (circleMap c (x, y).1 (x, y).2) = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
exact fi.mono_set (prod_mono Ioc_subset_Icc_self Ioc_subset_Icc_self)
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 fi : IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) volume ⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 fi : IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) volume ⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
intro x xs
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ square r0 r1 ⊢ |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
rw [abs_of_pos (square.rp r0p xs)]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ square r0 r1 ⊢ |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ square r0 r1 ⊢ |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
apply ContinuousOn.integrableOn_compact
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) volume
case hK E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IsCompact (Icc r0 r1 ×ˢ Icc 0 (2 * π)) case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ContinuousOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) volume TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
exact IsCompact.prod isCompact_Icc isCompact_Icc
case hK E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IsCompact (Icc r0 r1 ×ˢ Icc 0 (2 * π))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hK E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ IsCompact (Icc r0 r1 ×ˢ Icc 0 (2 * π)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
apply ContinuousOn.smul continuous_fst.continuousOn
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ContinuousOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ContinuousOn (fun x => f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
Please generate a tactic in lean4 to solve the state. STATE: case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ContinuousOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
apply fc.comp continuous_circleMap_full.continuousOn
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ContinuousOn (fun x => f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ MapsTo (fun x => circleMap c x.1 x.2) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) (annulus_cc c r0 r1)
Please generate a tactic in lean4 to solve the state. STATE: case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ ContinuousOn (fun x => f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
intro x xs
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ MapsTo (fun x => circleMap c x.1 x.2) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) (annulus_cc c r0 r1)
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ Icc r0 r1 ×ˢ Icc 0 (2 * π) ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 ⊢ MapsTo (fun x => circleMap c x.1 x.2) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) (annulus_cc c r0 r1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
simp only [Icc_prod_Icc, mem_Icc, Prod.le_def] at xs
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ Icc r0 r1 ×ˢ Icc 0 (2 * π) ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : x ∈ Icc r0 r1 ×ˢ Icc 0 (2 * π) ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
have x0 : 0 ≤ x.1 := by linarith
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π x0 : 0 ≤ x.1 ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
Please generate a tactic in lean4 to solve the state. STATE: case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
simp only [circleMap, annulus_cc, mem_diff, Metric.mem_closedBall, dist_self_add_left, norm_mul, Complex.norm_eq_abs, Complex.abs_ofReal, abs_of_nonneg x0, Complex.abs_exp_ofReal_mul_I, mul_one, xs.2.1, Metric.mem_ball, not_lt, xs.1.1, and_self]
case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π x0 : 0 ≤ x.1 ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π x0 : 0 ≤ x.1 ⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_annulus
[258, 1]
[293, 72]
linarith
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π ⊢ 0 ≤ x.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r0 r1 : ℝ fc : ContinuousOn f (annulus_cc c r0 r1) r0p : 0 ≤ r0 x : ℝ × ℝ xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π ⊢ 0 ≤ x.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_ball
[296, 1]
[305, 8]
have center : closedBall c r =ᵐ[volume] (closedBall c r \ {c} : Set ℂ) := ae_minus_point
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) ⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c}) ⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) ⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_ball
[296, 1]
[305, 8]
rw [MeasureTheory.setIntegral_congr_set_ae center]
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c}) ⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c}) ⊢ ∫ (x : ℂ) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c}) ⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/FubiniBall.lean
fubini_ball
[296, 1]
[305, 8]
clear center
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c}) ⊢ ∫ (x : ℂ) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) ⊢ ∫ (x : ℂ) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ r : ℝ fc : ContinuousOn f (closedBall c r) center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c}) ⊢ ∫ (x : ℂ) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t) TACTIC: