url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
SubharmonicOn.hartogs
[1043, 1]
[1090, 30]
bound
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb✝ : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) z : ℂ zs : z ∈ interior s fc : ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d d : ℝ≥0∞ dc : d < ENNReal.ofReal (b - c) df : d ≠ ⊤ dc' : b - d.toReal > c n : ℕ fb : f n z ≤ b - d.toReal ⊢ ENNReal.ofReal (b - f n z) ≥ ENNReal.ofReal (b - (b - d.toReal))
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb✝ : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) z : ℂ zs : z ∈ interior s fc : ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d d : ℝ≥0∞ dc : d < ENNReal.ofReal (b - c) df : d ≠ ⊤ dc' : b - d.toReal > c n : ℕ fb : f n z ≤ b - d.toReal ⊢ ENNReal.ofReal (b - f n z) ≥ ENNReal.ofReal (b - (b - d.toReal)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
SubharmonicOn.hartogs
[1043, 1]
[1090, 30]
ring_nf
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb✝ : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) z : ℂ zs : z ∈ interior s fc : ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d d : ℝ≥0∞ dc : d < ENNReal.ofReal (b - c) df : d ≠ ⊤ dc' : b - d.toReal > c n : ℕ fb : f n z ≤ b - d.toReal ⊢ ENNReal.ofReal (b - (b - d.toReal)) = ENNReal.ofReal d.toReal
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb✝ : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) z : ℂ zs : z ∈ interior s fc : ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d d : ℝ≥0∞ dc : d < ENNReal.ofReal (b - c) df : d ≠ ⊤ dc' : b - d.toReal > c n : ℕ fb : f n z ≤ b - d.toReal ⊢ ENNReal.ofReal (b - (b - d.toReal)) = ENNReal.ofReal d.toReal TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
SubharmonicOn.hartogs
[1043, 1]
[1090, 30]
rw [ENNReal.ofReal_toReal df]
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb✝ : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) z : ℂ zs : z ∈ interior s fc : ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d d : ℝ≥0∞ dc : d < ENNReal.ofReal (b - c) df : d ≠ ⊤ dc' : b - d.toReal > c n : ℕ fb : f n z ≤ b - d.toReal ⊢ ENNReal.ofReal d.toReal = d
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb✝ : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) z : ℂ zs : z ∈ interior s fc : ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d d : ℝ≥0∞ dc : d < ENNReal.ofReal (b - c) df : d ≠ ⊤ dc' : b - d.toReal > c n : ℕ fb : f n z ≤ b - d.toReal ⊢ ENNReal.ofReal d.toReal = d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
SubharmonicOn.hartogs
[1043, 1]
[1090, 30]
rw [ENNReal.ofReal_lt_ofReal_iff (sub_pos.mpr bc)]
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b fc : ∀ z ∈ s, ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) gc : ∀ z ∈ interior s, liminf (fun n => g n z) atTop ≥ ENNReal.ofReal (b - c) ks' : k ⊆ interior (interior s) h : ∀ d < ENNReal.ofReal (b - c), ∀ᶠ (n : ℕ) in atTop, ∀ z ∈ k, g n z ≥ d d : ℝ dc : d > c ⊢ ENNReal.ofReal (b - d) < ENNReal.ofReal (b - c)
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b fc : ∀ z ∈ s, ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) gc : ∀ z ∈ interior s, liminf (fun n => g n z) atTop ≥ ENNReal.ofReal (b - c) ks' : k ⊆ interior (interior s) h : ∀ d < ENNReal.ofReal (b - c), ∀ᶠ (n : ℕ) in atTop, ∀ z ∈ k, g n z ≥ d d : ℝ dc : d > c ⊢ b - d < b - c
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b fc : ∀ z ∈ s, ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) gc : ∀ z ∈ interior s, liminf (fun n => g n z) atTop ≥ ENNReal.ofReal (b - c) ks' : k ⊆ interior (interior s) h : ∀ d < ENNReal.ofReal (b - c), ∀ᶠ (n : ℕ) in atTop, ∀ z ∈ k, g n z ≥ d d : ℝ dc : d > c ⊢ ENNReal.ofReal (b - d) < ENNReal.ofReal (b - c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
SubharmonicOn.hartogs
[1043, 1]
[1090, 30]
simpa only [sub_lt_sub_iff_left]
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b fc : ∀ z ∈ s, ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) gc : ∀ z ∈ interior s, liminf (fun n => g n z) atTop ≥ ENNReal.ofReal (b - c) ks' : k ⊆ interior (interior s) h : ∀ d < ENNReal.ofReal (b - c), ∀ᶠ (n : ℕ) in atTop, ∀ z ∈ k, g n z ≥ d d : ℝ dc : d > c ⊢ b - d < b - c
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℕ → ℂ → ℝ s k : Set ℂ c b : ℝ fs : ∀ (n : ℕ), SubharmonicOn (f n) s fb : ∀ (n : ℕ), ∀ z ∈ s, f n z ≤ b fc : ∀ z ∈ s, ∀ d > c, ∀ᶠ (n : ℕ) in atTop, f n z ≤ d ck : IsCompact k ks : k ⊆ interior s bc : c < b f' : ℕ → ℂ → ℝ hf' : (fun n z => f n z - b) = f' g : ℕ → ℂ → ℝ≥0∞ hg : (fun n z => ENNReal.ofReal (-f' n z)) = g fs' : ∀ (n : ℕ), SubharmonicOn (f' n) s fn' : ∀ (n : ℕ), ∀ z ∈ interior s, f' n z ≤ 0 gs : ∀ (n : ℕ), SuperharmonicOn (g n) (interior s) gc : ∀ z ∈ interior s, liminf (fun n => g n z) atTop ≥ ENNReal.ofReal (b - c) ks' : k ⊆ interior (interior s) h : ∀ d < ENNReal.ofReal (b - c), ∀ᶠ (n : ℕ) in atTop, ∀ z ∈ k, g n z ≥ d d : ℝ dc : d > c ⊢ b - d < b - c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
rw [square]
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ ⊢ (square lo hi n).dz.1 = (square lo hi n).dz.2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ ⊢ (let c := ((lo.1 + hi.1) / 2, (lo.2 + hi.2) / 2); let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := ((lo.1 + hi.1) / 2, (lo.2 + hi.2) / 2); let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ ⊢ (square lo hi n).dz.1 = (square lo hi n).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
generalize ((lo.1 + hi.1) / 2, (lo.2 + hi.2) / 2) = c
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ ⊢ (let c := ((lo.1 + hi.1) / 2, (lo.2 + hi.2) / 2); let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := ((lo.1 + hi.1) / 2, (lo.2 + hi.2) / 2); let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c : ℚ × ℚ ⊢ (let c := c; let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ ⊢ (let c := ((lo.1 + hi.1) / 2, (lo.2 + hi.2) / 2); let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := ((lo.1 + hi.1) / 2, (lo.2 + hi.2) / 2); let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
generalize hi - lo = d
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c : ℚ × ℚ ⊢ (let c := c; let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c : ℚ × ℚ ⊢ (let c := c; let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := hi - lo; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
generalize hdx : max d.1 d.2 / (n : ℚ) = dx
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
generalize hn1 : max 1 (d.1 / dx).ceil.toNat = n1
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
generalize hn2 : max 1 (d.2 / dx).ceil.toNat = n2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
have n1z : (n1 : ℚ) ≠ 0 := by rw [←hn1]; exact Nat.cast_ne_zero.mpr (ne_of_gt (lt_max_of_lt_left zero_lt_one))
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
have n2z : (n2 : ℚ) ≠ 0 := by rw [←hn2]; exact Nat.cast_ne_zero.mpr (ne_of_gt (lt_max_of_lt_left zero_lt_one))
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 n2z : ↑n2 ≠ 0 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
simp only [dz, hdx, hn1, hn2, Prod.smul_mk, smul_eq_mul, Prod.fst_add, Prod.fst_sub, add_sub_sub_cancel, add_div, mul_div_assoc, div_self n1z, mul_one, add_halves', Prod.snd_add, Prod.snd_sub, div_self n2z]
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 n2z : ↑n2 ≠ 0 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 n2z : ↑n2 ≠ 0 ⊢ (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.1 = (let c := c; let d := d; let dx := max d.1 d.2 / ↑n; let n := (max 1 (d.1 / dx).ceil.toNat, max 1 (d.2 / dx).ceil.toNat); let h := (dx / 2) • (↑n.1, ↑n.2); { lo := c - h, hi := c + h, n := n }).dz.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
rw [←hn1]
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 ⊢ ↑n1 ≠ 0
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 ⊢ ↑(max 1 (d.1 / dx).ceil.toNat) ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 ⊢ ↑n1 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
exact Nat.cast_ne_zero.mpr (ne_of_gt (lt_max_of_lt_left zero_lt_one))
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 ⊢ ↑(max 1 (d.1 / dx).ceil.toNat) ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 ⊢ ↑(max 1 (d.1 / dx).ceil.toNat) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
rw [←hn2]
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 ⊢ ↑n2 ≠ 0
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 ⊢ ↑(max 1 (d.2 / dx).ceil.toNat) ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 ⊢ ↑n2 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Grid.lean
Grid.square_dz
[60, 1]
[75, 106]
exact Nat.cast_ne_zero.mpr (ne_of_gt (lt_max_of_lt_left zero_lt_one))
E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 ⊢ ↑(max 1 (d.2 / dx).ceil.toNat) ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E lo hi : ℚ × ℚ n : ℕ c d : ℚ × ℚ dx : ℚ hdx : max d.1 d.2 / ↑n = dx n1 : ℕ hn1 : max 1 (d.1 / dx).ceil.toNat = n1 n2 : ℕ hn2 : max 1 (d.2 / dx).ceil.toNat = n2 n1z : ↑n1 ≠ 0 ⊢ ↑(max 1 (d.2 / dx).ceil.toNat) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
mem_analyticGroupoid
[57, 1]
[67, 6]
rfl
𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E A : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : TopologicalSpace A I : ModelWithCorners 𝕜 E A f : PartialHomeomorph A A ⊢ f ∈ analyticGroupoid I ↔ f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (↑I ∘ ↑f ∘ ↑I.symm) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I ∘ ↑f ∘ ↑I.symm '' (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ⊆ interior (range ↑I)) ∧ AnalyticOn 𝕜 (↑I ∘ ↑f.symm ∘ ↑I.symm) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I ∘ ↑f.symm ∘ ↑I.symm '' (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ⊆ interior (range ↑I)
no goals
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E A : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : TopologicalSpace A I : ModelWithCorners 𝕜 E A f : PartialHomeomorph A A ⊢ f ∈ analyticGroupoid I ↔ f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (↑I ∘ ↑f ∘ ↑I.symm) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I ∘ ↑f ∘ ↑I.symm '' (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ⊆ interior (range ↑I)) ∧ AnalyticOn 𝕜 (↑I ∘ ↑f.symm ∘ ↑I.symm) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I ∘ ↑f.symm ∘ ↑I.symm '' (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ⊆ interior (range ↑I) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
have er : (range fun x : A × B ↦ (I x.1, J x.2)) = range I ×ˢ range J := range_prod_map
𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J ⊢ f.prod g ∈ analyticGroupoid (I.prod J)
𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ⊢ f.prod g ∈ analyticGroupoid (I.prod J)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J ⊢ f.prod g ∈ analyticGroupoid (I.prod J) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
have ei : interior (range fun x : A × B ↦ (I x.1, J x.2)) = interior (range I) ×ˢ interior (range J) := by rw [er, interior_prod_eq]
𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ⊢ f.prod g ∈ analyticGroupoid (I.prod J)
𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) ⊢ f.prod g ∈ analyticGroupoid (I.prod J)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ⊢ f.prod g ∈ analyticGroupoid (I.prod J) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [mem_analyticGroupoid, Function.comp, image_subset_iff] at fa ga ⊢
𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) ⊢ f.prod g ∈ analyticGroupoid (I.prod J)
𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ f.prod g ∈ contDiffGroupoid ⊤ (I.prod J) ∧ (AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J))) ∧ ↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J))) ∧ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J))) ∧ ↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J))
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) ⊢ f.prod g ∈ analyticGroupoid (I.prod J) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
refine ⟨contDiffGroupoid_prod fa.1 ga.1, ⟨?_, ?_⟩, ⟨?_, ?_⟩⟩
𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ f.prod g ∈ contDiffGroupoid ⊤ (I.prod J) ∧ (AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J))) ∧ ↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J))) ∧ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J))) ∧ ↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J))
case refine_1 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J))) case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ ↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J)) case refine_3 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J))) case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ ↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J))
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ f.prod g ∈ contDiffGroupoid ⊤ (I.prod J) ∧ (AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J))) ∧ ↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J))) ∧ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J))) ∧ ↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
rw [er, interior_prod_eq]
𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ⊢ interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J)
no goals
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B fa : f ∈ analyticGroupoid I ga : g ∈ analyticGroupoid J er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ⊢ interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
apply AnalyticOn.prod
case refine_1 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)))
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g) (↑(I.prod J).symm x)).1) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J))) case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g) (↑(I.prod J).symm x)).2) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)))
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.symm, modelWithCorners_prod_toPartialEquiv, PartialEquiv.prod_symm, PartialEquiv.prod_coe, ModelWithCorners.toPartialEquiv_coe_symm, PartialHomeomorph.prod_apply, PartialHomeomorph.prod_toPartialEquiv, PartialEquiv.prod_source]
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g) (↑(I.prod J).symm x)).1) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)))
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x.1))) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)))
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g) (↑(I.prod J).symm x)).1) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
refine fa.2.1.1.comp (analyticOn_fst _) ?_
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x.1))) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)))
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I))
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x.1))) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
intro x m
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I))
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.1) x ∈ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.prod, ModelWithCorners.source_eq, mem_univ, and_self, setOf_true, PartialEquiv.prod_target, ModelWithCorners.target_eq, ModelWithCorners.mk_coe, mem_inter_iff, mem_preimage, mem_prod] at m ⊢
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.1) x ∈ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I)
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.source ∧ ↑J.symm x.2 ∈ g.source) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑I.symm x.1 ∈ f.source ∧ x.1 ∈ interior (range ↑I)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.1) x ∈ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
exact ⟨m.1.1, (subset_of_eq ei m.2).1⟩
case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.source ∧ ↑J.symm x.2 ∈ g.source) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑I.symm x.1 ∈ f.source ∧ x.1 ∈ interior (range ↑I)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.source ∧ ↑J.symm x.2 ∈ g.source) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑I.symm x.1 ∈ f.source ∧ x.1 ∈ interior (range ↑I) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.symm, modelWithCorners_prod_toPartialEquiv, PartialEquiv.prod_symm, PartialEquiv.prod_coe, ModelWithCorners.toPartialEquiv_coe_symm, PartialHomeomorph.prod_apply, PartialHomeomorph.prod_toPartialEquiv, PartialEquiv.prod_source]
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g) (↑(I.prod J).symm x)).2) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)))
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x.2))) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)))
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g) (↑(I.prod J).symm x)).2) (↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
refine ga.2.1.1.comp (analyticOn_snd _) ?_
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x.2))) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)))
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J))
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x.2))) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
intro x m
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J))
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.2) x ∈ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.prod, ModelWithCorners.source_eq, mem_univ, and_self, setOf_true, PartialEquiv.prod_target, ModelWithCorners.target_eq, ModelWithCorners.mk_coe, mem_inter_iff, mem_preimage, mem_prod] at m ⊢
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.2) x ∈ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J)
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.source ∧ ↑J.symm x.2 ∈ g.source) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑J.symm x.2 ∈ g.source ∧ x.2 ∈ interior (range ↑J)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' f.source ×ˢ g.source ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.2) x ∈ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
exact ⟨m.1.2, (subset_of_eq ei m.2).2⟩
case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.source ∧ ↑J.symm x.2 ∈ g.source) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑J.symm x.2 ∈ g.source ∧ x.2 ∈ interior (range ↑J)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.source ∧ ↑J.symm x.2 ∈ g.source) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑J.symm x.2 ∈ g.source ∧ x.2 ∈ interior (range ↑J) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.prod, ModelWithCorners.source_eq, mem_univ, and_self, setOf_true, PartialEquiv.prod_target, ModelWithCorners.target_eq, ModelWithCorners.mk_symm, PartialEquiv.coe_symm_mk, PartialHomeomorph.prod_apply, ModelWithCorners.mk_coe, PartialHomeomorph.prod_toPartialEquiv, PartialEquiv.prod_source, mk_preimage_prod, image_subset_iff]
case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ ↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J))
case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ (fun x => ↑I.symm x.1) ⁻¹' f.source ∩ (fun x => ↑J.symm x.2) ⁻¹' g.source ∩ interior (range fun x => (↑I x.1, ↑J x.2)) ⊆ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ ↑(I.prod J).symm ⁻¹' (f.prod g).source ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g) (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
intro x ⟨⟨m0,m1⟩,m2⟩
case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ (fun x => ↑I.symm x.1) ⁻¹' f.source ∩ (fun x => ↑J.symm x.2) ⁻¹' g.source ∩ interior (range fun x => (↑I x.1, ↑J x.2)) ⊆ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.source m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.source m2 : x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ x ∈ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ (fun x => ↑I.symm x.1) ⁻¹' f.source ∩ (fun x => ↑J.symm x.2) ⁻¹' g.source ∩ interior (range fun x => (↑I x.1, ↑J x.2)) ⊆ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
replace m2 := subset_of_eq ei m2
case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.source m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.source m2 : x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ x ∈ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.source m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.source m2 : x ∈ interior (range ↑I) ×ˢ interior (range ↑J) ⊢ x ∈ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.source m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.source m2 : x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ x ∈ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
exact subset_of_eq ei.symm ⟨fa.2.1.2 ⟨m0,m2.1⟩, ga.2.1.2 ⟨m1,m2.2⟩⟩
case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.source m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.source m2 : x ∈ interior (range ↑I) ×ˢ interior (range ↑J) ⊢ x ∈ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.source m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.source m2 : x ∈ interior (range ↑I) ×ˢ interior (range ↑J) ⊢ x ∈ (fun x => (↑I (↑f (↑I.symm x.1)), ↑J (↑g (↑J.symm x.2)))) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
apply AnalyticOn.prod
case refine_3 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)))
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g).symm (↑(I.prod J).symm x)).1) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J))) case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g).symm (↑(I.prod J).symm x)).2) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)))
Please generate a tactic in lean4 to solve the state. STATE: case refine_3 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.symm, modelWithCorners_prod_toPartialEquiv, PartialEquiv.prod_symm, PartialEquiv.prod_coe, ModelWithCorners.toPartialEquiv_coe_symm, PartialHomeomorph.prod_apply, PartialHomeomorph.prod_toPartialEquiv, PartialEquiv.prod_source]
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g).symm (↑(I.prod J).symm x)).1) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)))
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)))
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g).symm (↑(I.prod J).symm x)).1) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
refine fa.2.2.1.comp (analyticOn_fst _) ?_
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)))
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I))
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
intro x m
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I))
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.1) x ∈ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I)
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.1) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.prod, ModelWithCorners.source_eq, mem_univ, and_self, setOf_true, PartialEquiv.prod_target, ModelWithCorners.target_eq, ModelWithCorners.mk_coe, mem_inter_iff, mem_preimage, mem_prod] at m ⊢
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.1) x ∈ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I)
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.target ∧ ↑J.symm x.2 ∈ g.target) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑I.symm x.1 ∈ f.target ∧ x.1 ∈ interior (range ↑I)
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.1) x ∈ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
exact ⟨m.1.1, (subset_of_eq ei m.2).1⟩
case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.target ∧ ↑J.symm x.2 ∈ g.target) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑I.symm x.1 ∈ f.target ∧ x.1 ∈ interior (range ↑I)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hf 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.target ∧ ↑J.symm x.2 ∈ g.target) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑I.symm x.1 ∈ f.target ∧ x.1 ∈ interior (range ↑I) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.symm, modelWithCorners_prod_toPartialEquiv, PartialEquiv.prod_symm, PartialEquiv.prod_coe, ModelWithCorners.toPartialEquiv_coe_symm, PartialHomeomorph.prod_apply, PartialHomeomorph.prod_toPartialEquiv, PartialEquiv.prod_source]
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g).symm (↑(I.prod J).symm x)).2) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)))
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)))
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g).symm (↑(I.prod J).symm x)).2) (↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
refine ga.2.2.1.comp (analyticOn_snd _) ?_
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)))
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J))
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ AnalyticOn 𝕜 (fun x => ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
intro x m
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J))
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.2) x ∈ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J)
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ MapsTo (fun x => x.2) ((fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.prod, ModelWithCorners.source_eq, mem_univ, and_self, setOf_true, PartialEquiv.prod_target, ModelWithCorners.target_eq, ModelWithCorners.mk_coe, mem_inter_iff, mem_preimage, mem_prod] at m ⊢
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.2) x ∈ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J)
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.target ∧ ↑J.symm x.2 ∈ g.target) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑J.symm x.2 ∈ g.target ∧ x.2 ∈ interior (range ↑J)
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : x ∈ (fun p => (↑I.symm p.1, ↑J.symm p.2)) ⁻¹' (f.prod g.toPartialEquiv).target ∩ interior (range ↑(I.prod J)) ⊢ (fun x => x.2) x ∈ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
exact ⟨m.1.2, (subset_of_eq ei m.2).2⟩
case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.target ∧ ↑J.symm x.2 ∈ g.target) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑J.symm x.2 ∈ g.target ∧ x.2 ∈ interior (range ↑J)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.hg 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m : (↑I.symm x.1 ∈ f.target ∧ ↑J.symm x.2 ∈ g.target) ∧ x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ ↑J.symm x.2 ∈ g.target ∧ x.2 ∈ interior (range ↑J) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
simp only [ModelWithCorners.prod, ModelWithCorners.source_eq, mem_univ, and_self, setOf_true, PartialEquiv.prod_target, ModelWithCorners.target_eq, ModelWithCorners.mk_symm, PartialEquiv.coe_symm_mk, PartialHomeomorph.prod_apply, ModelWithCorners.mk_coe, PartialHomeomorph.prod_toPartialEquiv, PartialEquiv.prod_source, mk_preimage_prod, image_subset_iff]
case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ ↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J))
case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ (fun x => ↑I.symm x.1) ⁻¹' f.target ∩ (fun x => ↑J.symm x.2) ⁻¹' g.target ∩ interior (range fun x => (↑I x.1, ↑J x.2)) ⊆ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
Please generate a tactic in lean4 to solve the state. STATE: case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ ↑(I.prod J).symm ⁻¹' (f.prod g).target ∩ interior (range ↑(I.prod J)) ⊆ (fun x => ↑(I.prod J) (↑(f.prod g).symm (↑(I.prod J).symm x))) ⁻¹' interior (range ↑(I.prod J)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
intro x ⟨⟨m0,m1⟩,m2⟩
case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ (fun x => ↑I.symm x.1) ⁻¹' f.target ∩ (fun x => ↑J.symm x.2) ⁻¹' g.target ∩ interior (range fun x => (↑I x.1, ↑J x.2)) ⊆ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.target m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.target m2 : x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ x ∈ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
Please generate a tactic in lean4 to solve the state. STATE: case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) ⊢ (fun x => ↑I.symm x.1) ⁻¹' f.target ∩ (fun x => ↑J.symm x.2) ⁻¹' g.target ∩ interior (range fun x => (↑I x.1, ↑J x.2)) ⊆ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
replace m2 := subset_of_eq ei m2
case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.target m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.target m2 : x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ x ∈ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.target m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.target m2 : x ∈ interior (range ↑I) ×ˢ interior (range ↑J) ⊢ x ∈ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
Please generate a tactic in lean4 to solve the state. STATE: case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.target m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.target m2 : x ∈ interior (range fun x => (↑I x.1, ↑J x.2)) ⊢ x ∈ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticGroupoid_prod
[79, 1]
[150, 72]
exact subset_of_eq ei.symm ⟨fa.2.2.2 ⟨m0,m2.1⟩, ga.2.2.2 ⟨m1,m2.2⟩⟩
case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.target m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.target m2 : x ∈ interior (range ↑I) ×ˢ interior (range ↑J) ⊢ x ∈ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_4 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace 𝕜 E inst✝³ : TopologicalSpace A F B : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace 𝕜 F inst✝ : TopologicalSpace B I : ModelWithCorners 𝕜 E A J : ModelWithCorners 𝕜 F B f : PartialHomeomorph A A g : PartialHomeomorph B B er : (range fun x => (↑I x.1, ↑J x.2)) = range ↑I ×ˢ range ↑J ei : interior (range fun x => (↑I x.1, ↑J x.2)) = interior (range ↑I) ×ˢ interior (range ↑J) fa : f ∈ contDiffGroupoid ⊤ I ∧ (AnalyticOn 𝕜 (fun x => ↑I (↑f (↑I.symm x))) (↑I.symm ⁻¹' f.source ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.source ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f (↑I.symm x))) ⁻¹' interior (range ↑I)) ∧ AnalyticOn 𝕜 (fun x => ↑I (↑f.symm (↑I.symm x))) (↑I.symm ⁻¹' f.target ∩ interior (range ↑I)) ∧ ↑I.symm ⁻¹' f.target ∩ interior (range ↑I) ⊆ (fun x => ↑I (↑f.symm (↑I.symm x))) ⁻¹' interior (range ↑I) ga : g ∈ contDiffGroupoid ⊤ J ∧ (AnalyticOn 𝕜 (fun x => ↑J (↑g (↑J.symm x))) (↑J.symm ⁻¹' g.source ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.source ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g (↑J.symm x))) ⁻¹' interior (range ↑J)) ∧ AnalyticOn 𝕜 (fun x => ↑J (↑g.symm (↑J.symm x))) (↑J.symm ⁻¹' g.target ∩ interior (range ↑J)) ∧ ↑J.symm ⁻¹' g.target ∩ interior (range ↑J) ⊆ (fun x => ↑J (↑g.symm (↑J.symm x))) ⁻¹' interior (range ↑J) x : E × F m0 : x ∈ (fun x => ↑I.symm x.1) ⁻¹' f.target m1 : x ∈ (fun x => ↑J.symm x.2) ⁻¹' g.target m2 : x ∈ interior (range ↑I) ×ˢ interior (range ↑J) ⊢ x ∈ (fun x => (↑I (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).1, ↑J (↑(f.prod g).symm (↑I.symm x.1, ↑J.symm x.2)).2)) ⁻¹' interior (range fun x => (↑I x.1, ↑J x.2)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
extChartAt_self_analytic
[208, 1]
[223, 25]
apply AnalyticOn.congr (f := fun z ↦ z)
𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ AnalyticOn 𝕜 (↑𝓘(𝕜, E) ∘ ↑(f.symm.trans f) ∘ ↑𝓘(𝕜, E).symm) (↑𝓘(𝕜, E) '' (f.symm.trans f).source)
case hs 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ IsOpen (↑𝓘(𝕜, E) '' (f.symm.trans f).source) case hf 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ AnalyticOn 𝕜 (fun z => z) (↑𝓘(𝕜, E) '' (f.symm.trans f).source) case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ EqOn (fun z => z) (↑𝓘(𝕜, E) ∘ ↑(f.symm.trans f) ∘ ↑𝓘(𝕜, E).symm) (↑𝓘(𝕜, E) '' (f.symm.trans f).source)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ AnalyticOn 𝕜 (↑𝓘(𝕜, E) ∘ ↑(f.symm.trans f) ∘ ↑𝓘(𝕜, E).symm) (↑𝓘(𝕜, E) '' (f.symm.trans f).source) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
extChartAt_self_analytic
[208, 1]
[223, 25]
simp only [modelWithCornersSelf_coe, id_eq, image_id', PartialHomeomorph.trans_toPartialEquiv, PartialHomeomorph.symm_toPartialEquiv, PartialEquiv.trans_source, PartialEquiv.symm_source, PartialHomeomorph.coe_coe_symm]
case hs 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ IsOpen (↑𝓘(𝕜, E) '' (f.symm.trans f).source)
case hs 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ IsOpen (f.target ∩ ↑f.symm ⁻¹' f.source)
Please generate a tactic in lean4 to solve the state. STATE: case hs 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ IsOpen (↑𝓘(𝕜, E) '' (f.symm.trans f).source) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
extChartAt_self_analytic
[208, 1]
[223, 25]
exact f.isOpen_inter_preimage_symm f.open_source
case hs 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ IsOpen (f.target ∩ ↑f.symm ⁻¹' f.source)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hs 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ IsOpen (f.target ∩ ↑f.symm ⁻¹' f.source) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
extChartAt_self_analytic
[208, 1]
[223, 25]
exact analyticOn_id _
case hf 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ AnalyticOn 𝕜 (fun z => z) (↑𝓘(𝕜, E) '' (f.symm.trans f).source)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ AnalyticOn 𝕜 (fun z => z) (↑𝓘(𝕜, E) '' (f.symm.trans f).source) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
extChartAt_self_analytic
[208, 1]
[223, 25]
intro x m
case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ EqOn (fun z => z) (↑𝓘(𝕜, E) ∘ ↑(f.symm.trans f) ∘ ↑𝓘(𝕜, E).symm) (↑𝓘(𝕜, E) '' (f.symm.trans f).source)
case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E x : E m : x ∈ ↑𝓘(𝕜, E) '' (f.symm.trans f).source ⊢ (fun z => z) x = (↑𝓘(𝕜, E) ∘ ↑(f.symm.trans f) ∘ ↑𝓘(𝕜, E).symm) x
Please generate a tactic in lean4 to solve the state. STATE: case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E ⊢ EqOn (fun z => z) (↑𝓘(𝕜, E) ∘ ↑(f.symm.trans f) ∘ ↑𝓘(𝕜, E).symm) (↑𝓘(𝕜, E) '' (f.symm.trans f).source) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
extChartAt_self_analytic
[208, 1]
[223, 25]
simp only [modelWithCornersSelf_coe, id, image_id', PartialHomeomorph.trans_toPartialEquiv, PartialHomeomorph.symm_toPartialEquiv, PartialEquiv.trans_source, PartialEquiv.symm_source, PartialHomeomorph.coe_coe_symm, mem_inter_iff, mem_preimage, Function.comp, modelWithCornersSelf_coe_symm, PartialHomeomorph.coe_trans] at m ⊢
case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E x : E m : x ∈ ↑𝓘(𝕜, E) '' (f.symm.trans f).source ⊢ (fun z => z) x = (↑𝓘(𝕜, E) ∘ ↑(f.symm.trans f) ∘ ↑𝓘(𝕜, E).symm) x
case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E x : E m : x ∈ f.target ∧ ↑f.symm x ∈ f.source ⊢ x = ↑f (↑f.symm x)
Please generate a tactic in lean4 to solve the state. STATE: case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E x : E m : x ∈ ↑𝓘(𝕜, E) '' (f.symm.trans f).source ⊢ (fun z => z) x = (↑𝓘(𝕜, E) ∘ ↑(f.symm.trans f) ∘ ↑𝓘(𝕜, E).symm) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
extChartAt_self_analytic
[208, 1]
[223, 25]
rw [f.right_inv m.1]
case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E x : E m : x ∈ f.target ∧ ↑f.symm x ∈ f.source ⊢ x = ↑f (↑f.symm x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hg 𝕜 : Type inst✝³ : NontriviallyNormedField 𝕜 E : Type inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E M : Type inst✝ : TopologicalSpace M f : PartialHomeomorph M E x : E m : x ∈ f.target ∧ ↑f.symm x ∈ f.source ⊢ x = ↑f (↑f.symm x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_iff
[263, 1]
[267, 54]
simp only [HolomorphicAt, ChartedSpace.liftPropAt_iff, extChartAt, PartialHomeomorph.extend_coe, PartialHomeomorph.extend_coe_symm, Function.comp]
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N x : M ⊢ HolomorphicAt I J f x ↔ ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N x : M ⊢ HolomorphicAt I J f x ↔ ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphic_iff
[270, 1]
[274, 92]
simp only [Holomorphic, holomorphicAt_iff, continuous_iff_continuousAt]
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N ⊢ Holomorphic I J f ↔ Continuous f ∧ ∀ (x : M), AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N ⊢ (∀ (x : M), ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) ↔ (∀ (x : M), ContinuousAt f x) ∧ ∀ (x : M), AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N ⊢ Holomorphic I J f ↔ Continuous f ∧ ∀ (x : M), AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphic_iff
[270, 1]
[274, 92]
exact forall_and
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N ⊢ (∀ (x : M), ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) ↔ (∀ (x : M), ContinuousAt f x) ∧ ∀ (x : M), AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N ⊢ (∀ (x : M), ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) ↔ (∀ (x : M), ContinuousAt f x) ∧ ∀ (x : M), AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticAt_iff_holomorphicAt
[295, 1]
[300, 32]
simp only [holomorphicAt_iff, extChartAt_eq_refl, PartialEquiv.refl_coe, PartialEquiv.refl_symm, Function.id_comp, Function.comp_id, id_eq, iff_and_self]
𝕜 : Type inst✝³² : NontriviallyNormedField 𝕜 E A : Type inst✝³¹ : NormedAddCommGroup E inst✝³⁰ : NormedSpace 𝕜 E inst✝²⁹ : CompleteSpace E inst✝²⁸ : TopologicalSpace A F B : Type inst✝²⁷ : NormedAddCommGroup F inst✝²⁶ : NormedSpace 𝕜 F inst✝²⁵ : CompleteSpace F inst✝²⁴ : TopologicalSpace B G C : Type inst✝²³ : NormedAddCommGroup G inst✝²² : NormedSpace 𝕜 G inst✝²¹ : TopologicalSpace C H D : Type inst✝²⁰ : NormedAddCommGroup H inst✝¹⁹ : NormedSpace 𝕜 H inst✝¹⁸ : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹⁷ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁶ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝¹⁵ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝¹⁴ : TopologicalSpace P inst✝¹³ : I.Boundaryless inst✝¹² : ChartedSpace A M cm : AnalyticManifold I M inst✝¹¹ : J.Boundaryless inst✝¹⁰ : ChartedSpace B N cn : AnalyticManifold J N inst✝⁹ : K.Boundaryless inst✝⁸ : ChartedSpace C O co : AnalyticManifold K O inst✝⁷ : L.Boundaryless inst✝⁶ : ChartedSpace D P cp : AnalyticManifold L P inst✝⁵ : ChartedSpace A E inst✝⁴ : AnalyticManifold I E inst✝³ : ChartedSpace B F inst✝² : AnalyticManifold J F inst✝¹ : ExtChartEqRefl I inst✝ : ExtChartEqRefl J f : E → F x : E ⊢ AnalyticAt 𝕜 f x ↔ HolomorphicAt I J f x
𝕜 : Type inst✝³² : NontriviallyNormedField 𝕜 E A : Type inst✝³¹ : NormedAddCommGroup E inst✝³⁰ : NormedSpace 𝕜 E inst✝²⁹ : CompleteSpace E inst✝²⁸ : TopologicalSpace A F B : Type inst✝²⁷ : NormedAddCommGroup F inst✝²⁶ : NormedSpace 𝕜 F inst✝²⁵ : CompleteSpace F inst✝²⁴ : TopologicalSpace B G C : Type inst✝²³ : NormedAddCommGroup G inst✝²² : NormedSpace 𝕜 G inst✝²¹ : TopologicalSpace C H D : Type inst✝²⁰ : NormedAddCommGroup H inst✝¹⁹ : NormedSpace 𝕜 H inst✝¹⁸ : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹⁷ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁶ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝¹⁵ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝¹⁴ : TopologicalSpace P inst✝¹³ : I.Boundaryless inst✝¹² : ChartedSpace A M cm : AnalyticManifold I M inst✝¹¹ : J.Boundaryless inst✝¹⁰ : ChartedSpace B N cn : AnalyticManifold J N inst✝⁹ : K.Boundaryless inst✝⁸ : ChartedSpace C O co : AnalyticManifold K O inst✝⁷ : L.Boundaryless inst✝⁶ : ChartedSpace D P cp : AnalyticManifold L P inst✝⁵ : ChartedSpace A E inst✝⁴ : AnalyticManifold I E inst✝³ : ChartedSpace B F inst✝² : AnalyticManifold J F inst✝¹ : ExtChartEqRefl I inst✝ : ExtChartEqRefl J f : E → F x : E ⊢ AnalyticAt 𝕜 f x → ContinuousAt f x
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝³² : NontriviallyNormedField 𝕜 E A : Type inst✝³¹ : NormedAddCommGroup E inst✝³⁰ : NormedSpace 𝕜 E inst✝²⁹ : CompleteSpace E inst✝²⁸ : TopologicalSpace A F B : Type inst✝²⁷ : NormedAddCommGroup F inst✝²⁶ : NormedSpace 𝕜 F inst✝²⁵ : CompleteSpace F inst✝²⁴ : TopologicalSpace B G C : Type inst✝²³ : NormedAddCommGroup G inst✝²² : NormedSpace 𝕜 G inst✝²¹ : TopologicalSpace C H D : Type inst✝²⁰ : NormedAddCommGroup H inst✝¹⁹ : NormedSpace 𝕜 H inst✝¹⁸ : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹⁷ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁶ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝¹⁵ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝¹⁴ : TopologicalSpace P inst✝¹³ : I.Boundaryless inst✝¹² : ChartedSpace A M cm : AnalyticManifold I M inst✝¹¹ : J.Boundaryless inst✝¹⁰ : ChartedSpace B N cn : AnalyticManifold J N inst✝⁹ : K.Boundaryless inst✝⁸ : ChartedSpace C O co : AnalyticManifold K O inst✝⁷ : L.Boundaryless inst✝⁶ : ChartedSpace D P cp : AnalyticManifold L P inst✝⁵ : ChartedSpace A E inst✝⁴ : AnalyticManifold I E inst✝³ : ChartedSpace B F inst✝² : AnalyticManifold J F inst✝¹ : ExtChartEqRefl I inst✝ : ExtChartEqRefl J f : E → F x : E ⊢ AnalyticAt 𝕜 f x ↔ HolomorphicAt I J f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
analyticAt_iff_holomorphicAt
[295, 1]
[300, 32]
exact AnalyticAt.continuousAt
𝕜 : Type inst✝³² : NontriviallyNormedField 𝕜 E A : Type inst✝³¹ : NormedAddCommGroup E inst✝³⁰ : NormedSpace 𝕜 E inst✝²⁹ : CompleteSpace E inst✝²⁸ : TopologicalSpace A F B : Type inst✝²⁷ : NormedAddCommGroup F inst✝²⁶ : NormedSpace 𝕜 F inst✝²⁵ : CompleteSpace F inst✝²⁴ : TopologicalSpace B G C : Type inst✝²³ : NormedAddCommGroup G inst✝²² : NormedSpace 𝕜 G inst✝²¹ : TopologicalSpace C H D : Type inst✝²⁰ : NormedAddCommGroup H inst✝¹⁹ : NormedSpace 𝕜 H inst✝¹⁸ : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹⁷ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁶ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝¹⁵ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝¹⁴ : TopologicalSpace P inst✝¹³ : I.Boundaryless inst✝¹² : ChartedSpace A M cm : AnalyticManifold I M inst✝¹¹ : J.Boundaryless inst✝¹⁰ : ChartedSpace B N cn : AnalyticManifold J N inst✝⁹ : K.Boundaryless inst✝⁸ : ChartedSpace C O co : AnalyticManifold K O inst✝⁷ : L.Boundaryless inst✝⁶ : ChartedSpace D P cp : AnalyticManifold L P inst✝⁵ : ChartedSpace A E inst✝⁴ : AnalyticManifold I E inst✝³ : ChartedSpace B F inst✝² : AnalyticManifold J F inst✝¹ : ExtChartEqRefl I inst✝ : ExtChartEqRefl J f : E → F x : E ⊢ AnalyticAt 𝕜 f x → ContinuousAt f x
no goals
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝³² : NontriviallyNormedField 𝕜 E A : Type inst✝³¹ : NormedAddCommGroup E inst✝³⁰ : NormedSpace 𝕜 E inst✝²⁹ : CompleteSpace E inst✝²⁸ : TopologicalSpace A F B : Type inst✝²⁷ : NormedAddCommGroup F inst✝²⁶ : NormedSpace 𝕜 F inst✝²⁵ : CompleteSpace F inst✝²⁴ : TopologicalSpace B G C : Type inst✝²³ : NormedAddCommGroup G inst✝²² : NormedSpace 𝕜 G inst✝²¹ : TopologicalSpace C H D : Type inst✝²⁰ : NormedAddCommGroup H inst✝¹⁹ : NormedSpace 𝕜 H inst✝¹⁸ : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹⁷ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁶ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝¹⁵ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝¹⁴ : TopologicalSpace P inst✝¹³ : I.Boundaryless inst✝¹² : ChartedSpace A M cm : AnalyticManifold I M inst✝¹¹ : J.Boundaryless inst✝¹⁰ : ChartedSpace B N cn : AnalyticManifold J N inst✝⁹ : K.Boundaryless inst✝⁸ : ChartedSpace C O co : AnalyticManifold K O inst✝⁷ : L.Boundaryless inst✝⁶ : ChartedSpace D P cp : AnalyticManifold L P inst✝⁵ : ChartedSpace A E inst✝⁴ : AnalyticManifold I E inst✝³ : ChartedSpace B F inst✝² : AnalyticManifold J F inst✝¹ : ExtChartEqRefl I inst✝ : ExtChartEqRefl J f : E → F x : E ⊢ AnalyticAt 𝕜 f x → ContinuousAt f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
rw [holomorphicAt_iff] at fh gh ⊢
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : HolomorphicAt J K f (g x) gh : HolomorphicAt I J g x ⊢ HolomorphicAt I K (fun x => f (g x)) x
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun x => f (g x)) x ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : HolomorphicAt J K f (g x) gh : HolomorphicAt I J g x ⊢ HolomorphicAt I K (fun x => f (g x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
use fh.1.comp gh.1
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun x => f (g x)) x ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun x => f (g x)) x ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
have e : extChartAt J (g x) (g x) = (extChartAt J (g x) ∘ g ∘ (extChartAt I x).symm) (extChartAt I x x) := by simp only [Function.comp_apply, PartialEquiv.left_inv _ (mem_extChartAt_source I x)]
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
rw [e] at fh
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ((↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
apply (fh.2.comp gh.2).congr
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ((↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ((↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq ((↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ∘ ↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm)
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ((↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
clear e fh
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ((↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq ((↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ∘ ↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq ((↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ∘ ↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm)
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ((↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) e : ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq ((↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ∘ ↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
simp only [Function.comp]
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq ((↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ∘ ↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq (fun x_1 => ↑(extChartAt K (f (g x))) (f (↑(extChartAt J (g x)).symm (↑(extChartAt J (g x)) (g (↑(extChartAt I x).symm x_1)))))) fun x_1 => ↑(extChartAt K (f (g x))) (f (g (↑(extChartAt I x).symm x_1)))
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq ((↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) ∘ ↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt K (f (g x))) ∘ (fun x => f (g x)) ∘ ↑(extChartAt I x).symm) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
refine m.mp (eventually_of_forall fun y m ↦ ?_)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) m : ∀ᶠ (y : E) in 𝓝 (↑(extChartAt I x) x), g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq (fun x_1 => ↑(extChartAt K (f (g x))) (f (↑(extChartAt J (g x)).symm (↑(extChartAt J (g x)) (g (↑(extChartAt I x).symm x_1)))))) fun x_1 => ↑(extChartAt K (f (g x))) (f (g (↑(extChartAt I x).symm x_1)))
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) m✝ : ∀ᶠ (y : E) in 𝓝 (↑(extChartAt I x) x), g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source y : E m : g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source ⊢ (fun x_1 => ↑(extChartAt K (f (g x))) (f (↑(extChartAt J (g x)).symm (↑(extChartAt J (g x)) (g (↑(extChartAt I x).symm x_1)))))) y = (fun x_1 => ↑(extChartAt K (f (g x))) (f (g (↑(extChartAt I x).symm x_1)))) y
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) m : ∀ᶠ (y : E) in 𝓝 (↑(extChartAt I x) x), g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq (fun x_1 => ↑(extChartAt K (f (g x))) (f (↑(extChartAt J (g x)).symm (↑(extChartAt J (g x)) (g (↑(extChartAt I x).symm x_1)))))) fun x_1 => ↑(extChartAt K (f (g x))) (f (g (↑(extChartAt I x).symm x_1))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
simp_rw [PartialEquiv.left_inv _ m]
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) m✝ : ∀ᶠ (y : E) in 𝓝 (↑(extChartAt I x) x), g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source y : E m : g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source ⊢ (fun x_1 => ↑(extChartAt K (f (g x))) (f (↑(extChartAt J (g x)).symm (↑(extChartAt J (g x)) (g (↑(extChartAt I x).symm x_1)))))) y = (fun x_1 => ↑(extChartAt K (f (g x))) (f (g (↑(extChartAt I x).symm x_1)))) y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) m✝ : ∀ᶠ (y : E) in 𝓝 (↑(extChartAt I x) x), g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source y : E m : g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source ⊢ (fun x_1 => ↑(extChartAt K (f (g x))) (f (↑(extChartAt J (g x)).symm (↑(extChartAt J (g x)) (g (↑(extChartAt I x).symm x_1)))))) y = (fun x_1 => ↑(extChartAt K (f (g x))) (f (g (↑(extChartAt I x).symm x_1)))) y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
simp only [Function.comp_apply, PartialEquiv.left_inv _ (mem_extChartAt_source I x)]
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M fh : ContinuousAt f (g x) ∧ AnalyticAt 𝕜 (↑(extChartAt K (f (g x))) ∘ f ∘ ↑(extChartAt J (g x)).symm) (↑(extChartAt J (g x)) (g x)) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ↑(extChartAt J (g x)) (g x) = (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
apply ContinuousAt.eventually_mem
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ∀ᶠ (y : E) in 𝓝 (↑(extChartAt I x) x), g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source
case hf 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun y => g (↑(extChartAt I x).symm y)) (↑(extChartAt I x) x) case hs 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (extChartAt J (g x)).source ∈ 𝓝 (g (↑(extChartAt I x).symm (↑(extChartAt I x) x)))
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ∀ᶠ (y : E) in 𝓝 (↑(extChartAt I x) x), g (↑(extChartAt I x).symm y) ∈ (extChartAt J (g x)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
apply ContinuousAt.comp
case hf 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun y => g (↑(extChartAt I x).symm y)) (↑(extChartAt I x) x)
case hf.hg 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt g (↑(extChartAt I x).symm (↑(extChartAt I x) x)) case hf.hf 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun y => ↑(extChartAt I x).symm y) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: case hf 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun y => g (↑(extChartAt I x).symm y)) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
rw [PartialEquiv.left_inv _ (mem_extChartAt_source _ _)]
case hf.hg 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt g (↑(extChartAt I x).symm (↑(extChartAt I x) x))
case hf.hg 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt g x
Please generate a tactic in lean4 to solve the state. STATE: case hf.hg 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt g (↑(extChartAt I x).symm (↑(extChartAt I x) x)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
exact gh.1
case hf.hg 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt g x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf.hg 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
exact continuousAt_extChartAt_symm I x
case hf.hf 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun y => ↑(extChartAt I x).symm y) (↑(extChartAt I x) x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf.hf 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun y => ↑(extChartAt I x).symm y) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
rw [PartialEquiv.left_inv _ (mem_extChartAt_source _ _)]
case hs 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (extChartAt J (g x)).source ∈ 𝓝 (g (↑(extChartAt I x).symm (↑(extChartAt I x) x)))
case hs 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (extChartAt J (g x)).source ∈ 𝓝 (g x)
Please generate a tactic in lean4 to solve the state. STATE: case hs 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (extChartAt J (g x)).source ∈ 𝓝 (g (↑(extChartAt I x).symm (↑(extChartAt I x) x))) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp
[321, 1]
[338, 38]
exact extChartAt_source_mem_nhds _ _
case hs 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (extChartAt J (g x)).source ∈ 𝓝 (g x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hs 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt J (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ (extChartAt J (g x)).source ∈ 𝓝 (g x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp_of_eq
[345, 1]
[348, 35]
rw [← e] at fh
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M y : N fh : HolomorphicAt J K f y gh : HolomorphicAt I J g x e : g x = y ⊢ HolomorphicAt I K (fun x => f (g x)) x
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M y : N fh : HolomorphicAt J K f (g x) gh : HolomorphicAt I J g x e : g x = y ⊢ HolomorphicAt I K (fun x => f (g x)) x
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M y : N fh : HolomorphicAt J K f y gh : HolomorphicAt I J g x e : g x = y ⊢ HolomorphicAt I K (fun x => f (g x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp_of_eq
[345, 1]
[348, 35]
exact fh.comp gh
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M y : N fh : HolomorphicAt J K f (g x) gh : HolomorphicAt I J g x e : g x = y ⊢ HolomorphicAt I K (fun x => f (g x)) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : N → O g : M → N x : M y : N fh : HolomorphicAt J K f (g x) gh : HolomorphicAt I J g x e : g x = y ⊢ HolomorphicAt I K (fun x => f (g x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.prod
[351, 1]
[355, 76]
rw [holomorphicAt_iff] at fh gh ⊢
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : HolomorphicAt I J f x gh : HolomorphicAt I K g x ⊢ HolomorphicAt I (J.prod K) (fun x => (f x, g x)) x
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun x => (f x, g x)) x ∧ AnalyticAt 𝕜 (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : HolomorphicAt I J f x gh : HolomorphicAt I K g x ⊢ HolomorphicAt I (J.prod K) (fun x => (f x, g x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.prod
[351, 1]
[355, 76]
use fh.1.prod gh.1
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun x => (f x, g x)) x ∧ AnalyticAt 𝕜 (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ ContinuousAt (fun x => (f x, g x)) x ∧ AnalyticAt 𝕜 (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.prod
[351, 1]
[355, 76]
refine (fh.2.prod gh.2).congr (eventually_of_forall fun y ↦ ?_)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) y : E ⊢ (fun x_1 => ((↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) x_1, (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) x_1)) y = (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) y
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) ⊢ AnalyticAt 𝕜 (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.prod
[351, 1]
[355, 76]
simp only [extChartAt_prod, Function.comp, PartialEquiv.prod_coe]
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) y : E ⊢ (fun x_1 => ((↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) x_1, (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) x_1)) y = (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P f : M → N g : M → O x : M fh : ContinuousAt f x ∧ AnalyticAt 𝕜 (↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) gh : ContinuousAt g x ∧ AnalyticAt 𝕜 (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) y : E ⊢ (fun x_1 => ((↑(extChartAt J (f x)) ∘ f ∘ ↑(extChartAt I x).symm) x_1, (↑(extChartAt K (g x)) ∘ g ∘ ↑(extChartAt I x).symm) x_1)) y = (↑(extChartAt (J.prod K) (f x, g x)) ∘ (fun x => (f x, g x)) ∘ ↑(extChartAt I x).symm) y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp₂_of_eq
[368, 1]
[371, 91]
rw [← e] at ha
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P h : N → O → P f : M → N g : M → O x : M y : N × O ha : HolomorphicAt (J.prod K) L (uncurry h) y fa : HolomorphicAt I J f x ga : HolomorphicAt I K g x e : (f x, g x) = y ⊢ HolomorphicAt I L (fun x => h (f x) (g x)) x
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P h : N → O → P f : M → N g : M → O x : M y : N × O ha : HolomorphicAt (J.prod K) L (uncurry h) (f x, g x) fa : HolomorphicAt I J f x ga : HolomorphicAt I K g x e : (f x, g x) = y ⊢ HolomorphicAt I L (fun x => h (f x) (g x)) x
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P h : N → O → P f : M → N g : M → O x : M y : N × O ha : HolomorphicAt (J.prod K) L (uncurry h) y fa : HolomorphicAt I J f x ga : HolomorphicAt I K g x e : (f x, g x) = y ⊢ HolomorphicAt I L (fun x => h (f x) (g x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
HolomorphicAt.comp₂_of_eq
[368, 1]
[371, 91]
exact ha.comp₂ fa ga
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P h : N → O → P f : M → N g : M → O x : M y : N × O ha : HolomorphicAt (J.prod K) L (uncurry h) (f x, g x) fa : HolomorphicAt I J f x ga : HolomorphicAt I K g x e : (f x, g x) = y ⊢ HolomorphicAt I L (fun x => h (f x) (g x)) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P h : N → O → P f : M → N g : M → O x : M y : N × O ha : HolomorphicAt (J.prod K) L (uncurry h) (f x, g x) fa : HolomorphicAt I J f x ga : HolomorphicAt I K g x e : (f x, g x) = y ⊢ HolomorphicAt I L (fun x => h (f x) (g x)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_id
[374, 1]
[378, 60]
rw [holomorphicAt_iff]
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ HolomorphicAt I I (fun x => x) x
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ ContinuousAt (fun x => x) x ∧ AnalyticAt 𝕜 (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ HolomorphicAt I I (fun x => x) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_id
[374, 1]
[378, 60]
use continuousAt_id
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ ContinuousAt (fun x => x) x ∧ AnalyticAt 𝕜 (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ AnalyticAt 𝕜 (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ ContinuousAt (fun x => x) x ∧ AnalyticAt 𝕜 (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_id
[374, 1]
[378, 60]
apply (analyticAt_id _ _).congr
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ AnalyticAt 𝕜 (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq id (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm)
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ AnalyticAt 𝕜 (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_id
[374, 1]
[378, 60]
filter_upwards [((isOpen_extChartAt_target I x).eventually_mem (mem_extChartAt_target I x))]
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq id (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm)
case h 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ ∀ a ∈ (extChartAt I x).target, id a = (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) a
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ (𝓝 (↑(extChartAt I x) x)).EventuallyEq id (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_id
[374, 1]
[378, 60]
intro y m
case h 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ ∀ a ∈ (extChartAt I x).target, id a = (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) a
case h 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M y : E m : y ∈ (extChartAt I x).target ⊢ id y = (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) y
Please generate a tactic in lean4 to solve the state. STATE: case h 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M ⊢ ∀ a ∈ (extChartAt I x).target, id a = (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_id
[374, 1]
[378, 60]
simp only [Function.comp, PartialEquiv.right_inv _ m, id]
case h 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M y : E m : y ∈ (extChartAt I x).target ⊢ id y = (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M y : E m : y ∈ (extChartAt I x).target ⊢ id y = (↑(extChartAt I x) ∘ (fun x => x) ∘ ↑(extChartAt I x).symm) y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_const
[384, 1]
[386, 70]
rw [holomorphicAt_iff]
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ HolomorphicAt I J (fun x => c) x
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ ContinuousAt (fun x => c) x ∧ AnalyticAt 𝕜 (↑(extChartAt J c) ∘ (fun x => c) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ HolomorphicAt I J (fun x => c) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_const
[384, 1]
[386, 70]
use continuousAt_const
𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ ContinuousAt (fun x => c) x ∧ AnalyticAt 𝕜 (↑(extChartAt J c) ∘ (fun x => c) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ AnalyticAt 𝕜 (↑(extChartAt J c) ∘ (fun x => c) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ ContinuousAt (fun x => c) x ∧ AnalyticAt 𝕜 (↑(extChartAt J c) ∘ (fun x => c) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/AnalyticManifold.lean
holomorphicAt_const
[384, 1]
[386, 70]
simp only [Prod.fst_comp_mk, Function.comp]
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ AnalyticAt 𝕜 (↑(extChartAt J c) ∘ (fun x => c) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x)
case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ AnalyticAt 𝕜 (fun x => ↑(extChartAt J c) c) (↑(extChartAt I x) x)
Please generate a tactic in lean4 to solve the state. STATE: case right 𝕜 : Type inst✝²⁶ : NontriviallyNormedField 𝕜 E A : Type inst✝²⁵ : NormedAddCommGroup E inst✝²⁴ : NormedSpace 𝕜 E inst✝²³ : CompleteSpace E inst✝²² : TopologicalSpace A F B : Type inst✝²¹ : NormedAddCommGroup F inst✝²⁰ : NormedSpace 𝕜 F inst✝¹⁹ : CompleteSpace F inst✝¹⁸ : TopologicalSpace B G C : Type inst✝¹⁷ : NormedAddCommGroup G inst✝¹⁶ : NormedSpace 𝕜 G inst✝¹⁵ : TopologicalSpace C H D : Type inst✝¹⁴ : NormedAddCommGroup H inst✝¹³ : NormedSpace 𝕜 H inst✝¹² : TopologicalSpace D M : Type I : ModelWithCorners 𝕜 E A inst✝¹¹ : TopologicalSpace M N : Type J : ModelWithCorners 𝕜 F B inst✝¹⁰ : TopologicalSpace N O : Type K : ModelWithCorners 𝕜 G C inst✝⁹ : TopologicalSpace O P : Type L : ModelWithCorners 𝕜 H D inst✝⁸ : TopologicalSpace P inst✝⁷ : I.Boundaryless inst✝⁶ : ChartedSpace A M cm : AnalyticManifold I M inst✝⁵ : J.Boundaryless inst✝⁴ : ChartedSpace B N cn : AnalyticManifold J N inst✝³ : K.Boundaryless inst✝² : ChartedSpace C O co : AnalyticManifold K O inst✝¹ : L.Boundaryless inst✝ : ChartedSpace D P cp : AnalyticManifold L P x : M c : N ⊢ AnalyticAt 𝕜 (↑(extChartAt J c) ∘ (fun x => c) ∘ ↑(extChartAt I x).symm) (↑(extChartAt I x) x) TACTIC: