Spaces:
Sleeping
Sleeping
File size: 24,055 Bytes
e9e7eab 385991f 2b4c2e2 560964b 88ed347 852e865 5651817 560964b ae82a4a b0d473b f96178f 7550ffc b0d473b c37b0a2 b0d473b c37b0a2 b0d473b c37b0a2 b0d473b f96178f b0d473b c37b0a2 b0d473b c37b0a2 f96178f b0d473b c37b0a2 b0d473b c37b0a2 b0d473b ae82a4a c37b0a2 ae82a4a f96178f ae82a4a 385991f 560964b ae82a4a 560964b 385991f 560964b 5651817 88ed347 2dc2a6b db1cf62 5651817 f60033e 5651817 c430141 f5f025e db1cf62 8ae819b 4df0ef3 8ae819b 15c0b54 c430141 5651817 db1cf62 f60033e db1cf62 8ae819b eda02ad b749d65 20bad3b 4f4750e af8c10d ae82a4a 20bad3b 4f4750e eda02ad b0d473b e9e7eab bff8238 3b2896b 560964b 385991f b0d473b ae82a4a b0d473b ae82a4a b0d473b 4f4750e ae82a4a 604f2d1 ae82a4a 604f2d1 c0385ca ae82a4a c37b0a2 ae82a4a c37b0a2 ae82a4a c37b0a2 ae82a4a e020291 d84cd5b e020291 4f4750e e020291 b0d473b e020291 4f4750e b0d473b e020291 b0d473b ae82a4a b0d473b e9e7eab b0d473b 4f4750e ae82a4a e020291 b0d473b e020291 ae82a4a b0d473b ae82a4a b0d473b e020291 33f784c e020291 ae82a4a e020291 ae82a4a e020291 ae82a4a e020291 ae82a4a e020291 b0d473b 4684792 eda02ad b0d473b c0385ca b0d473b eda02ad b0d473b eda02ad b0d473b eda02ad b0d473b 4f4750e 4df0ef3 b0d473b 4df0ef3 3b2896b 4f4750e 4df0ef3 b0d473b 4f4750e d84cd5b 4df0ef3 77fceba b0d473b e9e7eab 4f4750e b0d473b 4f4750e 4684792 eda02ad 4684792 b0d473b 4684792 ae82a4a eda02ad b0d473b 4f4750e 4684792 e020291 4684792 8695fdb 385991f b0d473b 385991f eda02ad b0d473b 4684792 cbedac6 385991f 852e865 385991f b0d473b eda02ad b0d473b 4684792 eda02ad b0d473b eda02ad b0d473b ae82a4a b0d473b ae82a4a 0fc5a3c ae82a4a d369d1d c0385ca d369d1d c0385ca 852e865 77fceba c0385ca 77fceba 852e865 0812df5 c0385ca 52ef8e5 c0385ca 52ef8e5 c0385ca c1bca1d c0385ca c1bca1d c0385ca c1bca1d eda02ad c0385ca a8882e4 c0385ca a8882e4 ae82a4a f8a1676 c0385ca c1bca1d c0385ca d464079 d369d1d 4d74553 d369d1d 4d74553 c37b0a2 4d74553 89060a3 c0385ca f8a1676 c0385ca 89060a3 52ef8e5 c0385ca 52ef8e5 e020291 52ef8e5 f96178f 52ef8e5 e020291 52ef8e5 e020291 52ef8e5 e020291 52ef8e5 e020291 52ef8e5 b0d473b c0385ca 52ef8e5 b0d473b c0385ca 52ef8e5 b0d473b 01ff776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
import gradio as gr
import pandas as pd
import os
import time
import json
from pathlib import Path
from huggingface_hub import CommitScheduler, snapshot_download
from uuid import uuid4
import shutil
# --------------------------- 中英對照的字典 ---------------------------
# 後端儲存(English),前端顯示(中文)
category_map = {
"正確性": "Accuracy",
"流暢度": "Fluency",
"專有名詞": "Terminology",
"風格": "Style",
"在地化": "Locale",
"純正性": "Purity",
}
subcategory_map = {
("正確性", "誤譯"): ("Accuracy", "Mistranslation"),
("正確性", "多譯"): ("Accuracy", "Addition"),
("正確性", "漏譯"): ("Accuracy", "Omission"),
("正確性", "其他"): ("Accuracy", "Other"),
("流暢度", "文法"): ("Fluency", "Grammar"),
("流暢度", "拼字"): ("Fluency", "Spelling"),
("流暢度", "標點符號"): ("Fluency", "Punctuation"),
("流暢度", "前後不一致"): ("Fluency", "Inconsistency"),
("流暢度", "語域"): ("Fluency", "Register"),
("流暢度", "其他"): ("Fluency", "Other"),
("專有名詞", "使用不當"): ("Terminology", "Inappropriate"),
("專有名詞", "不一致"): ("Terminology", "Inconsistent"),
("專有名詞", "其他"): ("Terminology", "Other"),
("風格", "用字尷尬"): ("Style", "Awkward"),
("風格", "其他"): ("Style", "Other"),
("在地化", "貨幣格式"): ("Locale", "Currency format"),
("在地化", "時間格式"): ("Locale", "Time format"),
("在地化", "姓名格式"): ("Locale", "Name format"),
("在地化", "日期格式"): ("Locale", "Date format"),
("在地化", "地址格式"): ("Locale", "Address format"),
("在地化", "其他"): ("Locale", "Other"),
}
categories_display = {
"正確性": ["誤譯", "多譯", "漏譯", "其他"],
"流暢度": ["文法", "拼字", "標點符號", "前後不一致", "語域", "其他"],
"專有名詞": ["使用不當", "不一致", "其他"],
"風格": ["用字尷尬", "其他"],
"在地化": ["貨幣格式", "時間格式", "姓名格式", "日期格式", "地址格式", "其他"],
"純正性": []
}
severity_choices_display = ["輕微", "嚴重"]
severity_map = {
"輕微": "Minor",
"嚴重": "Major"
}
# 這兩個字典用於前端顯示資料表時,把英文轉回中文顯示
severity_display_map = {
"Minor": "輕微",
"Major": "嚴重",
"No-error": "無錯誤",
"Non-translation": "過多錯誤"
}
category_display_map = {
"Accuracy": "正確性",
"Fluency": "流暢度",
"Terminology": "專有名詞",
"Style": "風格",
"Locale": "在地化",
"Other": "其他",
"No-error": "無錯誤",
"Non-translation": "過多錯誤",
"Purity": "純正性"
}
# ---------------------------下載CSV資料檔--------------------------------
DATASET_DIR = Path("json_dataset")
DATASET_DIR.mkdir(parents=True, exist_ok=True)
scheduler = CommitScheduler(
repo_id="350016z/TaiwanCOMET_dataset",
repo_type="dataset",
folder_path=DATASET_DIR,
path_in_repo="data"
)
def download_dataset_file(dataset_id, local_dir):
snapshot_path = snapshot_download(repo_id=dataset_id, repo_type="dataset")
contents = os.listdir(snapshot_path)
for file_name in contents:
if file_name.endswith(".csv"):
source_file_path = os.path.join(snapshot_path, file_name)
local_file_path = os.path.join(local_dir, file_name)
shutil.copy(source_file_path, local_file_path)
time.sleep(1)
return local_dir
DATASET_ID = "350016z/Taiwanese_dataset"
current_dir = os.getcwd()
download_dataset_file(DATASET_ID, current_dir)
csv_files = [f for f in os.listdir(current_dir) if f.endswith('.csv')]
if not csv_files:
print("Error: No CSV files found in the current directory.")
exit()
data_path = os.path.join(current_dir, 'test.csv') if 'test.csv' in csv_files else os.path.join(current_dir, csv_files[0])
if not os.path.exists(data_path):
print(f"Error: {data_path} does not exist. Please check the file path.")
exit()
data = pd.read_csv(data_path, dtype={"id": "Int64"})
# 先按照 id 由小到大排序,並重新整理索引
data = data.sort_values(by="id", ascending=True, ignore_index=True)
current_index = 0
current_errors = []
annotations_file = DATASET_DIR / f"test_annotations-{uuid4()}.json"
annotation_history = [] # 若需顯示歷史可擴充
def get_all_ids():
"""
顯示格式: [id-原文前10字] 以便快速鎖定哪一筆
"""
id_list = []
for i in range(len(data)):
idx_value = data.loc[i, "id"]
src_text = str(data.loc[i, "source"])[:10].replace("\n", " ")
display_str = f"{idx_value}-{src_text}"
id_list.append(display_str)
return id_list
def parse_id_from_display(display_str):
return int(display_str.split("-", 1)[0])
def get_current_text():
global current_index, data
source = data.loc[current_index, "source"]
target = data.loc[current_index, "target"]
return source, target
def save_to_json(entry: dict, json_file: Path):
with scheduler.lock:
with json_file.open("a") as f:
json.dump(entry, f, ensure_ascii=False)
f.write("\n")
def highlight_errors_in_text(text, errors):
"""
在文本中以 <span style="background-color:yellow;">...</span> 方式高亮。
"""
if not text:
return ""
highlighted = ""
last_end = 0
for err in sorted(errors, key=lambda e: e["start"]):
st = err["start"]
ed = err["end"]
if st < 0 or ed > len(text):
continue
highlighted += text[last_end:st]
highlighted += f"<span style='background-color:yellow;'>{text[st:ed]}</span>"
last_end = ed
highlighted += text[last_end:]
return highlighted
def get_error_dataframe():
"""
只顯示「錯誤文字」「嚴重度」「分類」(皆為中文顯示),後端仍存英文。
"""
df = pd.DataFrame(current_errors)
if df.empty:
return pd.DataFrame(columns=["錯誤文字", "嚴重度", "分類"])
display_df = pd.DataFrame()
# 顯示錯誤文字
display_df["錯誤文字"] = df["text"]
# 顯示嚴重度 (中文)
display_df["嚴重度"] = df["severity"].apply(lambda x: severity_display_map.get(x, x))
# 顯示分類 (中文)
def map_category(cat_str):
if cat_str in ["No-error", "Non-translation"]:
# 代表 "完全正確" 或 "過多錯誤"
return severity_display_map.get(cat_str, cat_str)
if "/" not in cat_str:
# Single part (e.g. "Accuracy" or "Other")
return category_display_map.get(cat_str, cat_str)
main_cat, sub_cat = cat_str.split("/", 1)
main_cat_zh = category_display_map.get(main_cat, main_cat)
# sub_cat -> e.g. "Mistranslation", "Addition", "Omission", ...
# 這裡可逐一對照,略示如下:
if sub_cat == "Mistranslation":
sub_cat_zh = "誤譯"
elif sub_cat == "Addition":
sub_cat_zh = "多譯"
elif sub_cat == "Omission":
sub_cat_zh = "漏譯"
elif sub_cat == "Grammar":
sub_cat_zh = "文法"
elif sub_cat == "Spelling":
sub_cat_zh = "拼字"
elif sub_cat == "Punctuation":
sub_cat_zh = "標點符號"
elif sub_cat == "Inconsistency":
sub_cat_zh = "前後不一致"
elif sub_cat == "Register":
sub_cat_zh = "語域"
elif sub_cat == "Inappropriate":
sub_cat_zh = "使用不當"
elif sub_cat == "Inconsistent":
sub_cat_zh = "不一致"
elif sub_cat == "Awkward":
sub_cat_zh = "用字尷尬"
elif sub_cat == "Currency format":
sub_cat_zh = "貨幣格式"
elif sub_cat == "Time format":
sub_cat_zh = "時間格式"
elif sub_cat == "Name format":
sub_cat_zh = "姓名格式"
elif sub_cat == "Date format":
sub_cat_zh = "日期格式"
elif sub_cat == "Address format":
sub_cat_zh = "地址格式"
else:
sub_cat_zh = sub_cat
return f"{main_cat_zh}/{sub_cat_zh}"
display_df["分類"] = df["category"].apply(map_category)
return display_df
# === 關鍵修正:把「保存並繼續標記」後,要同時更新表格與螢光區 ===
def save_current(source, target, rater_selector, error_span, category, subcategory, severity, other):
"""
原本的邏輯 + 一次回傳 error_span, status, error_table, highlighted_target,
使得按下按鈕後能同步更新介面。
"""
global current_index, data, current_errors
# 若已標記超過 5 處錯誤
if len(current_errors) >= 5:
return (
"", # error_span 清空
"您已標記超過 5 處錯誤,可直接按『過多錯誤』或繼續。",
get_error_dataframe(),
highlight_errors_in_text(target, current_errors)
)
if error_span and error_span not in target:
return (
"",
"錯誤區間不存在於翻譯文本,請檢查!",
get_error_dataframe(),
highlight_errors_in_text(target, current_errors)
)
# 轉英文
cat_val, subcat_val = subcategory_map.get((category, subcategory), (category_map.get(category, "Other"), "Other"))
severity_val = severity_map.get(severity, "Minor")
if error_span:
start = target.find(error_span)
end = start + len(error_span)
# 檢查是否重複標記
for err in current_errors:
if err["start"] == start and err["end"] == end:
return (
"",
"此錯誤區間已標記過,請勿重複。",
get_error_dataframe(),
highlight_errors_in_text(target, current_errors)
)
if subcat_val == "Other" and other.strip():
subcat_val = other.strip()
current_errors.append({
"text": error_span,
"severity": severity_val,
"start": start,
"end": end,
"category": f"{cat_val}/{subcat_val}"
})
status_msg = f"已標記錯誤: {error_span} (範圍 {start}-{end})"
else:
# 未輸入錯誤區間
status_msg = "尚未輸入錯誤區間,如無錯誤請按『完全正確』"
return (
"",
status_msg,
get_error_dataframe(),
highlight_errors_in_text(target, current_errors)
)
def mark_as_correct(target):
"""
標記為完全正確 (No-error),同時更新表格 & 螢光區。
"""
global current_errors
current_errors.append({
"text": "",
"severity": "No-error",
"start": 0,
"end": 0,
"category": "No-error"
})
return (
"", # error_span
"標註為完全正確!",
get_error_dataframe(),
highlight_errors_in_text(target, current_errors)
)
def mark_as_too_many_errors(target):
"""
標記為過多錯誤 (Non-translation),同時更新表格 & 螢光區。
"""
global current_errors
current_errors.append({
"text": "",
"severity": "Major",
"start": 0,
"end": 0,
"category": "Non-translation"
})
return (
"",
"已標註為過多錯誤!",
get_error_dataframe(),
highlight_errors_in_text(target, current_errors)
)
def save_and_next(source, target, score, rater_selector, alternative_translation):
global current_index, data, annotations_file, current_errors, annotation_history
if not rater_selector:
return (
source, target, "", # return empty error_span
str(data.loc[current_index, "id"]),
"請先選擇標註人員!",
get_error_dataframe(),
highlight_errors_in_text(target, current_errors)
)
if score is None:
return (
source, target, "",
str(data.loc[current_index, "id"]),
"請先填寫評分!",
get_error_dataframe(),
highlight_errors_in_text(target, current_errors)
)
system = data.loc[current_index, "system"]
lp = data.loc[current_index, "lp"]
doc = data.loc[current_index, "doc"]
id_val = int(data.loc[current_index, "id"])
reference = data.loc[current_index, "reference"]
annotations_entry = {
"system": system,
"lp": lp,
"doc": doc,
"id": id_val,
"rater": rater_selector,
"src": source,
"mt": target,
"ref": reference,
"esa_score": score,
"esa_spans": current_errors,
"alternative_translation": alternative_translation if alternative_translation else ""
}
save_to_json(annotations_entry, annotations_file)
annotation_history.append(annotations_entry)
current_errors = []
current_index += 1
if current_index >= len(data):
return (
"已完成所有文本標記", # source
"已完成所有文本標記", # target
"", # error_span
"", # current_index_display
f"標記完成並儲存到 {annotations_file.name}!(共 {len(data)} 筆)",
pd.DataFrame(columns=["錯誤文字", "嚴重度", "分類"]),
""
)
next_source, next_target = get_current_text()
status_msg = f"已提交!目前進度:已完成第 {current_index} 筆 (id={current_index-1}) / 共 {len(data)} 筆。"
highlighted_next = highlight_errors_in_text(next_target, current_errors)
return (
next_source,
next_target,
"",
str(data.loc[current_index, "id"]),
status_msg,
pd.DataFrame(columns=["錯誤文字", "嚴重度", "分類"]),
highlighted_next
)
def update_file_selection(selected_file):
global data_path, data, current_index, annotations_file, current_errors, annotation_history
data_path = os.path.join(current_dir, selected_file)
data = pd.read_csv(data_path, dtype={"id": "Int64"})
current_errors = []
annotation_history = []
min_id = data["id"].min()
current_index = data.index[data["id"] == min_id].tolist()[0]
file_base_name = os.path.splitext(selected_file)[0]
annotations_file = DATASET_DIR / f"{file_base_name}_annotations-{uuid4()}.json"
src, tgt = get_current_text()
default_index_display = f"{min_id}-{str(src)[:10]}"
return (
src, tgt, "",
gr.update(choices=get_all_ids(), value=default_index_display),
str(data.loc[current_index, "id"]),
f"已加載檔案:{selected_file}",
pd.DataFrame(columns=["錯誤文字", "嚴重度", "分類"]),
highlight_errors_in_text(tgt, [])
)
def update_index_selection(selected_display):
global current_index, data, current_errors
selected_id = parse_id_from_display(selected_display)
row_list = data.index[data["id"] == selected_id].tolist()
if not row_list:
return (
"", "", str(selected_id),
f"找不到 id: {selected_id}",
get_error_dataframe(),
""
)
current_index = row_list[0]
src, tgt = get_current_text()
return (
src, tgt,
str(selected_id),
f"已跳轉至 id={selected_id}",
get_error_dataframe(),
highlight_errors_in_text(tgt, current_errors)
)
DEMO_EXPLANATION = """
## 翻譯標記工具
### 💡[使用規則](https://huggingface.co/spaces/350016z/TranslationError_Gradio/blob/main/README.md) (第一次使用務必查看)
### 操作步驟
1. **先選擇標註人員與檔案**,並在「索引」下拉中挑選要標註的句子。
2. 在「步驟 1:錯誤標註」中,若翻譯文本有錯,請輸入「錯誤區間」、選擇「錯誤類別/子類別/嚴重度」並點「保存並繼續標記」。
- 多個錯誤可重複此步驟;若無錯誤則可直接點「完全正確」。
3. 錯誤標完後,在「步驟 2:評分與提交」中,拉動滑桿給分,若有更好譯文,可在「建議翻譯」填入。
4. 按「保存並顯示下一筆」送出本句標註並進入下一句。
"""
with gr.Blocks(css="""
/* 整體字體與行距 */
* {
font-size: 15px;
line-height: 1.4;
}
/* 按鈕分色 */
#correct_button {
background-color: #4CAF50; /* 綠 */
color: white;
font-size: 14px;
margin-bottom: 5px;
}
#too_many_errors_button {
background-color: #f44336; /* 紅 */
color: white;
font-size: 14px;
margin-bottom: 5px;
}
#save_current_button {
background-color: #1565C0; /* 藍 */
color: white;
font-size: 14px;
margin-bottom: 5px;
}
#save_next_button {
background-color: #1565C0; /* 藍 */
color: white;
font-size: 14px;
margin-bottom: 5px;
}
/* 模擬帶框風格 */
#highlight_box_group {
border: 1px solid #aaa;
padding: 10px;
margin-bottom: 10px;
min-height: 80px;
}
/* 讓「步驟區塊」顯示類似面板效果 */
#step1_box, #step2_box {
border: 1px solid #ccc;
padding: 10px;
margin-bottom: 10px;
}
""") as demo:
gr.Markdown(DEMO_EXPLANATION)
# ------------------- 頂部: 檔案 & 索引控制 -------------------
with gr.Row():
with gr.Column(scale=1):
rater_selector = gr.Dropdown(
label="標註人員",
choices=["rater_test", "rater1", "rater2", "rater3", "rater4", "rater5", "rater6", "rater7"],
value="rater_test"
)
file_selector = gr.Dropdown(
label="選擇檔案",
choices=csv_files,
value="test.csv"
)
index_selector = gr.Dropdown(
label="選擇索引 (id-原文前10字)",
choices=get_all_ids(),
value=f"{data.loc[current_index, 'id']}-{str(data.loc[current_index, 'source'])[:10]}"
)
current_index_display = gr.Textbox(
label="當前索引(id)",
value=str(data.loc[current_index, "id"]),
interactive=False
)
# 左: 原始文本 / 右: 翻譯文本
with gr.Column(scale=4):
source = gr.Textbox(label="原始文本", lines=14, interactive=False)
with gr.Column(scale=4):
target = gr.Textbox(label="翻譯文本", lines=14, interactive=False)
with gr.Tab("步驟1:錯誤標註"):
# ------------------- 螢光標記區(用 Group + elem_id)&錯誤紀錄表 -------------------
with gr.Row():
with gr.Column(scale=5):
with gr.Group(elem_id="highlight_box_group"):
highlighted_target = gr.HTML(value="", label="螢光標示區 (已標註的錯誤)")
with gr.Column(scale=5):
error_table = gr.Dataframe(
headers=["錯誤文字", "嚴重度", "分類"],
label="當前句子錯誤紀錄 (中文顯示)",
datatype=["str", "str", "str"],
interactive=False
)
# ------------------- 步驟1:錯誤標註 -------------------
# with gr.Group(elem_id="step1_box"):
with gr.Row(equal_height=True):
error_span = gr.Textbox(label="錯誤區間 (可複製『翻譯文本』貼上)", lines=2, placeholder="請輸入翻譯中文本的錯誤區間")
# with gr.Row(equal_height=True):
category = gr.Dropdown(
label="錯誤類別",
choices=list(categories_display.keys()),
value="正確性"
)
subcategory = gr.Dropdown(
label="子類別",
choices=categories_display["正確性"],
value="誤譯"
)
other = gr.Textbox(label="其他子類別", placeholder="如子類別選『其他』則填寫")
severity = gr.Dropdown(
label="嚴重程度",
choices=severity_choices_display,
value="輕微"
)
with gr.Row():
correct_button = gr.Button("✔ 完全正確", elem_id="correct_button")
too_many_errors_button = gr.Button("✖ 過多錯誤", elem_id="too_many_errors_button")
save_current_button = gr.Button("保存並繼續標記當前資料", elem_id="save_current_button")
with gr.Tab("步驟2:評分與提交"):
# ------------------- 步驟2:評分與提交 -------------------
# with gr.Group(elem_id="step2_box"):
with gr.Row():
alternative_translation = gr.Textbox(
label="建議翻譯(如有更好譯法可填)",
lines=2
)
score = gr.Slider(
label="翻譯評分 (0=最差, 100=最好)",
minimum=0,
maximum=100,
step=1,
value=66
)
save_next_button = gr.Button("保存並顯示下一筆", elem_id="save_next_button")
# ------------------- 當前狀態 -------------------
status = gr.Textbox(label="當前狀態", lines=1, interactive=False)
# ------------------- callback 綁定 -------------------
def update_subcats(selected_category):
subcats = categories_display[selected_category]
if len(subcats) == 0:
# 沒有任何子類別 -> 傳回空的 choices
return gr.update(choices=[], value=None)
else:
return gr.update(choices=subcats, value=subcats[0])
file_selector.change(
update_file_selection,
inputs=[file_selector],
outputs=[
source, target, error_span,
index_selector, current_index_display,
status, error_table, highlighted_target
]
)
index_selector.change(
update_index_selection,
inputs=[index_selector],
outputs=[
source, target, current_index_display,
status, error_table, highlighted_target
]
)
category.change(
update_subcats,
inputs=[category],
outputs=[subcategory]
)
# === 以下三個按鈕,皆一次更新表格與螢光區 ===
# 按「保存並繼續標記」 -> 在同一句上加錯誤並更新表格 & 高亮
correct_button.click(
mark_as_correct,
inputs=[target],
outputs=[error_span, status, error_table, highlighted_target]
)
too_many_errors_button.click(
mark_as_too_many_errors,
inputs=[target],
outputs=[error_span, status, error_table, highlighted_target]
)
save_current_button.click(
save_current,
inputs=[source, target, rater_selector, error_span, category, subcategory, severity, other],
outputs=[error_span, status, error_table, highlighted_target]
)
# 按「保存並顯示下一筆」 -> 送出當前整句標註 & 進下一句
save_next_button.click(
save_and_next,
inputs=[source, target, score, rater_selector, alternative_translation],
outputs=[
source, target, error_span,
current_index_display, status,
error_table, highlighted_target
]
)
# 初始化介面
init_src, init_tgt = get_current_text()
source.value = init_src
target.value = init_tgt
error_table.value = pd.DataFrame(columns=["錯誤文字","嚴重度","分類"])
highlighted_target.value = highlight_errors_in_text(init_tgt, [])
demo.launch() |