File size: 8,232 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
11851f1
274d1f4
d30f6a2
eefcaa7
d30f6a2
6858546
dacc7c0
d30f6a2
334ba26
 
11851f1
494aa89
6858546
334ba26
494aa89
 
0e313c1
658d2e0
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
11851f1
9e5813b
 
11851f1
 
9e5813b
 
 
658d2e0
4e61093
 
658d2e0
936af04
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
274d1f4
11851f1
4184e5e
 
6858546
 
4e61093
6858546
 
 
4184e5e
 
6858546
11851f1
 
 
6858546
936af04
658d2e0
f0734be
274d1f4
 
 
6858546
 
 
274d1f4
658d2e0
274d1f4
 
 
6858546
658d2e0
274d1f4
658d2e0
864d91e
658d2e0
 
d30f6a2
 
 
658d2e0
 
 
d30f6a2
 
 
658d2e0
 
37c8a73
11851f1
6858546
d30f6a2
4e61093
 
 
 
 
658d2e0
 
4e61093
 
 
 
658d2e0
 
4e61093
d30f6a2
4e61093
 
 
d30f6a2
6858546
11851f1
 
 
 
 
d30f6a2
4568d77
bdb69d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e61093
11851f1
658d2e0
4568d77
658d2e0
d30f6a2
 
 
 
11851f1
d30f6a2
 
 
658d2e0
11851f1
658d2e0
 
6858546
658d2e0
4e61093
d30f6a2
11851f1
4e61093
6858546
 
658d2e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

# Download NLTK resources
nltk.download("punkt")

# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()

# Load chatbot intents and training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot's neural network model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Model for sentiment detection
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

# Model for emotion detection
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))

# Chatbot logic
def bag_of_words(s, words):
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def chatbot(message, history):
    """Generate chatbot response and append to history (as tuples)."""
    history = history or []
    try:
        results = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(results)]
        response = "I'm not sure how to respond to that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {str(e)} πŸ’₯"

    # Append the message and response as a tuple
    history.append((message, response))
    return history, response

# Sentiment analysis
def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return sentiment_map[sentiment_class]

# Emotion detection
def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"]
    return emotion

# Generate suggestions based on detected emotion
def generate_suggestions(emotion):
    suggestions = {
        "joy": [
            ["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
            ["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
        ],
        "anger": [
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
            ["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
            ["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
        ],
    }
    return suggestions.get(emotion, [["No suggestions available", ""]])

# Search professionals and generate map
def get_health_professionals_and_map(location, query):
    try:
        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]

            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            professionals = []
            for place in places_result:
                professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
                folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                              popup=place["name"]).add_to(map_)
            return professionals, map_._repr_html_()
        return ["No professionals found"], ""
    except Exception as e:
        return [f"Error: {e}"], ""

# Main app function
def app_function(message, location, query, history):
    chatbot_history, _ = chatbot(message, history)  # Generate chatbot response
    sentiment = analyze_sentiment(message)          # Detect sentiment
    emotion = detect_emotion(message.lower())       # Detect emotion
    suggestions = generate_suggestions(emotion)     # Generate suggestions
    professionals, map_html = get_health_professionals_and_map(location, query)  # Find professionals & map
    return chatbot_history, sentiment, emotion, suggestions, professionals, map_html

# Custom CSS for Visual Styling
custom_css = """
body {
    background: linear-gradient(135deg, #000000, #ff5722);
    color: white;
    font-family: 'Arial', sans-serif;
}
button {
    background-color: #ff5722 !important;
    border: none !important;
    color: white !important;
    padding: 12px 20px;
    font-size: 16px;
    border-radius: 8px;
    cursor: pointer;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
}
button:hover {
    background-color: #e64a19 !important;
}
textarea, input[type="text"] {
    background: rgba(255, 255, 255, 0.1) !important;
    color: white !important;
    border: 2px solid #ff5722 !important;
    padding: 12px !important;
    border-radius: 8px !important;
    font-size: 14px;
}
#components-container {
    margin-top: 20px;
}
.gradio-container {
    padding: 16px !important;
    box-shadow: 0px 12px 24px rgba(0, 0, 0, 0.6);
}
"""

# Gradio Interface
with gr.Blocks(css=custom_css) as app:
    gr.Markdown("# 🌟 Well-Being Companion")
    gr.Markdown("Empowering Your Mental Health Journey πŸ’š")

    with gr.Row():
        user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
        user_location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
        search_query = gr.Textbox(label="Query", placeholder="Search for professionals...")
        submit_btn = gr.Button("Submit")

    chatbot_box = gr.Chatbot(label="Chat History")  # Corrected history format (list of tuples)
    emotion_output = gr.Textbox(label="Detected Emotion")
    sentiment_output = gr.Textbox(label="Detected Sentiment")
    suggestions_output = gr.DataFrame(headers=["Title", "Links"], label="Suggestions")
    map_output = gr.HTML(label="Nearby Professionals Map")
    professional_display = gr.Textbox(label="Nearby Professionals", lines=5)

    submit_btn.click(
        app_function,
        inputs=[user_message, user_location, search_query, chatbot_box],
        outputs=[
            chatbot_box, sentiment_output, emotion_output,
            suggestions_output, professional_display, map_output,
        ],
    )

app.launch()