File size: 8,194 Bytes
864d91e
d0842d1
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
 
 
d0842d1
 
0d12be2
fabcaa4
fa97be4
37d6095
 
 
4184e5e
334ba26
dacc7c0
e623c13
334ba26
 
864d91e
494aa89
 
334ba26
864d91e
494aa89
 
0e313c1
864d91e
c69efb6
 
 
 
 
 
 
 
494aa89
c69efb6
4184e5e
936af04
 
4184e5e
936af04
 
 
 
 
 
4525308
864d91e
4184e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d12be2
4184e5e
83182e1
 
 
4184e5e
 
 
871428f
4184e5e
e623c13
4184e5e
871428f
494aa89
 
d0842d1
 
 
936af04
4184e5e
 
 
936af04
4184e5e
494aa89
 
 
 
2f693ca
fabcaa4
864d91e
37c8a73
fabcaa4
 
 
 
 
 
37c8a73
fabcaa4
 
 
 
 
 
 
0d12be2
fabcaa4
 
 
 
 
 
 
 
 
 
 
 
 
 
2f693ca
0d12be2
 
 
fabcaa4
0d12be2
 
fabcaa4
 
0d12be2
 
fabcaa4
 
 
 
0d12be2
2a2aa69
fabcaa4
0d12be2
 
fabcaa4
0d12be2
2a2aa69
fabcaa4
2a2aa69
 
 
 
 
fabcaa4
 
 
 
 
 
 
 
0d12be2
c3e46aa
 
2a2aa69
 
 
 
 
 
 
 
 
 
 
 
fabcaa4
 
 
 
 
 
 
 
 
 
 
 
2a2aa69
 
0d12be2
2a2aa69
0d12be2
2a2aa69
 
 
 
0d12be2
 
2f693ca
2a2aa69
 
 
 
 
0d12be2
 
2a2aa69
 
 
494aa89
 
2a2aa69
fabcaa4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
import pandas as pd
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import os
import base64
import torch  # Added missing import for torch
from PIL import Image

# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json for Well-Being Chatbot
with open("intents.json") as file:
    data = json.load(file)

# Load preprocessed data for Well-Being Chatbot
with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the model structure for Well-Being Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")

# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function for Well-Being Chatbot
def chatbot(message, history):
    history = history or []
    message = message.lower()
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]
        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"
    except Exception as e:
        print(f"Error in chatbot: {e}")  # For debugging
        response = f"An error occurred: {str(e)}"
    # Convert the new message and response to the 'messages' format
    history.append({"role": "user", "content": message})
    history.append({"role": "assistant", "content": response})
    return history, history

# Sentiment Analysis using Hugging Face model
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
        predicted_class = torch.argmax(outputs.logits, dim=1).item()
        sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
        return f"Predicted Sentiment: {sentiment}"

# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]['label']
    return f"Emotion Detected: {emotion}"

# Function to generate suggestions based on detected emotion
def generate_suggestions(emotion):
    suggestions = {
        'joy': ["Stay positive! Keep up the good mood.", "Try some relaxing activities like meditation."],
        'anger': ["It's okay to be angry, try to breathe and relax.", "Exercise can help release tension."],
        'fear': ["Take deep breaths, you are in control.", "Try mindfulness exercises to calm your mind."],
        'sadness': ["Take a break, it's okay to feel down sometimes.", "Consider reaching out to a friend or loved one."],
        'surprise': ["Take a moment to reflect, things might seem overwhelming.", "Practice mindfulness to regain balance."],
        'disgust': ["It's okay to feel disgust, try to identify the cause.", "Taking a short walk might help clear your mind."]
    }
    return pd.DataFrame(suggestions.get(emotion, ["Stay positive!"]))

# Function to get nearby health professionals and create a map
def get_health_professionals_and_map(location, health_professional_query):
    # Use Google Maps API to get health professionals (example setup)
    gmaps = googlemaps.Client(key="YOUR_GOOGLE_API_KEY")
    places = gmaps.places(query=health_professional_query, location=location)
    
    if places['status'] == 'OK':
        results = places['results']
        route_info = "\n".join([place['name'] for place in results])
        map_html = create_map(results)
        return route_info, map_html
    return "No professionals found.", None

def create_map(places):
    m = folium.Map(location=[places[0]['geometry']['location']['lat'], places[0]['geometry']['location']['lng']], zoom_start=13)
    for place in places:
        folium.Marker([place['geometry']['location']['lat'], place['geometry']['location']['lng']], 
                      popup=place['name']).add_to(m)
    map_html = m._repr_html_()
    return map_html

# Custom CSS styling for Gradio interface
css = """
    body {
        font-family: 'Roboto', sans-serif;
    }
    .gradio-container {
        background-color: #f0f0f0;
        font-size: 16px;
    }
    .gradio-input, .gradio-output {
        padding: 15px;
        border-radius: 10px;
        background-color: #ffffff;
        border: 2px solid #ccc;
    }
    .gradio-container .gradio-button {
        background-color: #007BFF;
        color: white;
        border-radius: 5px;
        padding: 10px 15px;
    }
    .gradio-container .gradio-button:hover {
        background-color: #0056b3;
    }
    .gradio-container h3 {
        color: #333;
    }
    .gradio-output .output {
        border-top: 3px solid #ddd;
        padding-top: 10px;
    }
    .gradio-input input {
        color: #333;
    }
    .gradio-input textarea {
        color: #333;
    }
"""

# Gradio interface components
def gradio_app(message, current_location, health_professional_query, history):
    # Detect sentiment and emotion
    sentiment = analyze_sentiment(message)
    emotion = detect_emotion(message)
    
    # Generate suggestions based on emotion
    suggestions_df = generate_suggestions(emotion)
    
    # Get health professionals details and map
    route_info, map_html = get_health_professionals_and_map(current_location, health_professional_query)
    
    # Add emoticon for emotion
    emotion_emoticons = {
        'joy': '😊',
        'anger': '😑',
        'fear': '😨',
        'sadness': '😒',
        'surprise': '😲',
        'disgust': '🀒'
    }
    emotion_icon = emotion_emoticons.get(emotion, 'πŸ™‚')
    
    return sentiment, f"{emotion_icon} {emotion}", suggestions_df, route_info, map_html, history

# Gradio interface setup
iface = gr.Interface(
    fn=gradio_app,
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter your message..."),
        gr.Textbox(lines=2, placeholder="Enter your current location..."),
        gr.Textbox(lines=2, placeholder="Enter health professional query..."),
        gr.State(value=[])
    ],
    outputs=[
        gr.Textbox(label="Sentiment Analysis"),
        gr.Textbox(label="Detected Emotion"),
        gr.Dataframe(label="Suggestions"),
        gr.Textbox(label="Nearby Health Professionals"),
        gr.HTML(label="Map of Health Professionals"),
        gr.State(value=[])
    ],
    live=True,
    allow_flagging="never",
    theme="huggingface",
    css=css  # Apply custom CSS styling
)

# Launch Gradio interface
iface.launch(share=True)