Spaces:
Runtime error
Runtime error
File size: 14,360 Bytes
d729462 716a46f e907ad5 962e70a e907ad5 716a46f 80c8e97 716a46f 7bcad39 7b41aea 299393f 716a46f fa8e56a 716a46f 2ab1cce 716a46f fa8e56a 5d95f5a 716a46f 8dabaa3 5d95f5a 8dabaa3 5d95f5a 8dabaa3 5d95f5a 716a46f fa8e56a 299393f 716a46f fa8e56a 716a46f ee565de 299393f 289ac0c 2ab1cce 289ac0c 299393f 289ac0c 299393f 289ac0c 5a1f027 42a8df2 289ac0c 42a8df2 d729462 289ac0c 81255d9 fa8e56a 80c8e97 81255d9 77d3681 80c8e97 81255d9 ff20f9a 81255d9 80c8e97 81255d9 024f8c1 81255d9 42a8df2 80c8e97 81255d9 80c8e97 81255d9 80c8e97 fa8e56a 80c8e97 81255d9 5d95f5a 024f8c1 81255d9 42a8df2 80c8e97 5d95f5a 80c8e97 81255d9 80c8e97 81255d9 80c8e97 09b6397 fa8e56a 3b3f1d8 fa8e56a 3b3f1d8 80c8e97 81255d9 80c8e97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import gradio as gr
import os
from pathlib import Path
import re
from unidecode import unidecode
import chromadb
from langchain_community.vectorstores import FAISS, ScaNN, Milvus
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import torch
api_token = os.getenv("HF_TOKEN")
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits, collection_name, db_type):
embedding = HuggingFaceEmbeddings()
if db_type == "ChromaDB":
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
elif db_type == "FAISS":
vectordb = FAISS.from_documents(
documents=splits,
embedding=embedding
)
elif db_type == "ScaNN":
vectordb = ScaNN.from_documents(
documents=splits,
embedding=embedding
)
elif db_type == "Milvus":
vectordb = Milvus.from_documents(
documents=splits,
embedding=embedding,
collection_name=collection_name,
)
else:
raise ValueError(f"Unsupported vector database type: {db_type}")
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
progress(0.5, desc="Initializing HF Hub...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
qa_chain({"question": initial_prompt}) # Initialize with the initial prompt
progress(0.9, desc="Done!")
return qa_chain
def initialize_llm_no_doc(llm_model, temperature, max_tokens, top_k, initial_prompt, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
progress(0.5, desc="Initializing HF Hub...")
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
conversation_chain = ConversationChain(llm=llm, memory=memory, verbose=False)
conversation_chain({"question": initial_prompt})
progress(0.9, desc="Done!")
return conversation_chain
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if "Helpful Answer:" in response_answer:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def conversation_no_doc(llm, message, history):
formatted_chat_history = format_chat_history(message, history)
response = llm({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
new_history = history + [(message, response_answer)]
return llm, gr.update(value=""), new_history
def upload_file(file_obj):
list_file_path = []
for file in file_obj:
list_file_path.append(file.name)
return list_file_path
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
initial_prompt = gr.State("")
llm_no_doc = gr.State()
gr.Markdown(
"""<center><h2>lucIAna</center></h2>
<h3>Olá, sou a 2. versão</h3>""")
gr.Markdown(
"""<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos.
Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
""")
with gr.Tab("Step 1 - Upload PDF"):
with gr.Row():
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
with gr.Tab("Step 2 - Process document"):
with gr.Row():
db_type_radio = gr.Radio(["ChromaDB", "FAISS", "ScaNN", "Milvus"], label="Vector database type", value="ChromaDB", type="value", info="Choose your vector database")
with gr.Accordion("Advanced options - Document text splitter", open=False):
with gr.Row():
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
with gr.Row():
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
with gr.Row():
db_progress = gr.Textbox(label="Vector database initialization", value="None")
with gr.Row():
db_btn = gr.Button("Generate vector database")
with gr.Tab("Step 3 - Set Initial Prompt"):
with gr.Row():
prompt_input = gr.Textbox(label="Initial Prompt", lines=5, value="Você é um advogado sênior, onde seu papel é analisar e trazer as informações sem inventar, dando a sua melhor opinião sempre trazendo contexto e referência. Aprenda o que é jurisprudência.")
with gr.Row():
set_prompt_btn = gr.Button("Set Prompt")
with gr.Tab("Step 4 - Initialize QA chain"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple,
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
with gr.Row():
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
with gr.Row():
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering chain")
with gr.Tab("Step 5 - Chatbot with document"):
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced - Document references", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
with gr.Row():
submit_btn = gr.Button("Submit message")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
with gr.Tab("Step 6 - Chatbot without document"):
with gr.Row():
llm_no_doc_btn = gr.Radio(list_llm_simple,
label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model for chatbot without document")
with gr.Accordion("Advanced options - LLM model", open=False):
with gr.Row():
slider_temperature_no_doc = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
with gr.Row():
slider_maxtokens_no_doc = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
with gr.Row():
slider_topk_no_doc = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
with gr.Row():
llm_no_doc_progress = gr.Textbox(value="None", label="LLM initialization for chatbot without document")
with gr.Row():
llm_no_doc_init_btn = gr.Button("Initialize LLM for Chatbot without document")
chatbot_no_doc = gr.Chatbot(height=300)
with gr.Row():
msg_no_doc = gr.Textbox(placeholder="Type message to chat with lucIAna", container=True)
with gr.Row():
submit_btn_no_doc = gr.Button("Submit message")
clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
# Preprocessing events
db_btn.click(initialize_database,
inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
outputs=[vector_db, collection_name, db_progress])
set_prompt_btn.click(lambda prompt: gr.update(value=prompt),
inputs=prompt_input,
outputs=initial_prompt)
qachain_btn.click(initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
# Chatbot events with document
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False)
# Initialize LLM without document for conversation
llm_no_doc_init_btn.click(initialize_llm_no_doc,
inputs=[llm_no_doc_btn, slider_temperature_no_doc, slider_maxtokens_no_doc, slider_topk_no_doc, initial_prompt],
outputs=[llm_no_doc, llm_no_doc_progress])
submit_btn_no_doc.click(conversation_no_doc,
inputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
outputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
queue=False)
clear_btn_no_doc.click(lambda:[None,""],
inputs=None,
outputs=[chatbot_no_doc, msg_no_doc],
queue=False)
demo.queue().launch(debug=True, share=True)
if __name__ == "__main__":
demo()
|