Spaces:
Build error
Build error
File size: 5,406 Bytes
23be7ff aa156da 2148c23 3f58796 2148c23 3f58796 23be7ff 3f58796 e8f10e6 3f58796 79a271f 3f58796 79a271f 3f58796 22a93ba 3f58796 22a93ba 3f58796 79a271f 72de1df 79a271f 72de1df 2148c23 3f58796 faa126d 23be7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# import gradio as gr
# import numpy as np
# import torch
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# model_id = 'openai/whisper-large-v3'
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
# processor = AutoProcessor.from_pretrained(model_id)
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
# def transcribe_function(new_chunk, state):
# try:
# sr, y = new_chunk[0], new_chunk[1]
# except TypeError:
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
# return state, "", None
# y = y.astype(np.float32) / np.max(np.abs(y))
# if state is not None:
# state = np.concatenate([state, y])
# else:
# state = y
# result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False)
# full_text = result.get("text", "")
# return state, full_text
# with gr.Blocks() as demo:
# gr.Markdown("# Voice to Text Transcription")
# state = gr.State(None)
# with gr.Row():
# with gr.Column():
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input")
# with gr.Column():
# output_text = gr.Textbox(label="Transcription")
# audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time")
# demo.launch(show_error=True)
# import gradio as gr
# import numpy as np
# import torch
# from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
# model_id = 'openai/whisper-large-v3'
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
# processor = AutoProcessor.from_pretrained(model_id)
# pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=False)
# def transcribe_function(new_chunk, state):
# try:
# sr, y = new_chunk
# except TypeError:
# print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
# return state, "", None
# y = y.astype(np.float32) / np.max(np.abs(y))
# if state is not None:
# state = np.concatenate([state, y])
# else:
# state = y
# result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False)
# full_text = result.get("text", "")
# return state, full_text
# with gr.Blocks() as demo:
# gr.Markdown("# Voice to Text Transcription")
# state = gr.State(None)
# with gr.Row():
# with gr.Column():
# audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input")
# with gr.Column():
# output_text = gr.Textbox(label="Transcription")
# audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time")
# demo.launch(show_error=True)
import gradio as gr
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=False)
def transcribe_function(new_chunk, state):
try:
sr, y = new_chunk
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return state, "", None
y = y.astype(np.float32) / np.max(np.abs(y))
if state is not None:
state = np.concatenate([state, y])
else:
state = y
result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text", "")
return state, full_text
with gr.Blocks() as demo:
gr.Markdown("# Voice to Text Transcription")
state = gr.State(None)
with gr.Row():
with gr.Column():
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', label="Microphone Input")
with gr.Column():
output_text = gr.Textbox(label="Transcription")
audio_input.stream(transcribe_function, inputs=[audio_input, state], outputs=[state, output_text], api_name="SAMLOne_real_time")
demo.launch(show_error=True)
|