File size: 10,598 Bytes
9ba8fab 3769468 9ba8fab 3769468 6960dc6 da12542 f23d956 9ba8fab fdebe26 ddc83ff 5f3b2ed e8b48ca 5f3b2ed 3769468 1c9f0b6 3769468 d415750 3769468 f81f1e2 3769468 d4aa692 f81f1e2 d415750 3769468 d415750 3769468 d415750 3769468 d415750 d4aa692 f81f1e2 3769468 ddc83ff 2e23fb2 f81f1e2 d4aa692 3769468 d415750 f81f1e2 3769468 e8b48ca d415750 d4aa692 d415750 d4aa692 f81f1e2 1c9f0b6 d4aa692 f81f1e2 d4aa692 9ba8fab 32130a5 1c9f0b6 5815dce 1c9f0b6 5815dce 32130a5 1c9f0b6 5815dce 1c9f0b6 32130a5 1c9f0b6 5815dce 5f3b2ed f23d956 9ba8fab f23d956 e8b48ca f23d956 5815dce f23d956 5815dce f23d956 5815dce 1c9f0b6 5815dce e8b48ca 1c9f0b6 2e23fb2 f23d956 9ba8fab d415750 3769468 d4aa692 d415750 29c8f24 d4aa692 d415750 9ba8fab d415750 d4aa692 ddc83ff 3769468 d415750 3769468 d4aa692 d415750 3769468 d4aa692 f81f1e2 d415750 f81f1e2 d415750 2e23fb2 d4aa692 d415750 d4aa692 9ba8fab 5f3b2ed 1c9f0b6 5f3b2ed 9ba8fab f23d956 9ba8fab 32130a5 5f3b2ed 1c9f0b6 5815dce 32130a5 3769468 9ba8fab d4aa692 c726970 d415750 9ba8fab 1c9f0b6 f81f1e2 33f8987 5f3b2ed 9ba8fab d415750 33f8987 f23d956 1c9f0b6 e8b48ca 1c9f0b6 33f8987 5f3b2ed 33f8987 1c9f0b6 33f8987 5f3b2ed 33f8987 1c9f0b6 33f8987 d4aa692 33f8987 f23d956 33f8987 1c9f0b6 33f8987 f23d956 33f8987 9ba8fab 3769468 1c9f0b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
from huggingface_hub import login
token = os.environ.get("HG_TOKEN")
login(token)
try:
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
references = {row["id"]: row["text"] for row in dataset}
except Exception as e:
references = {}
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
else:
leaderboard_df = pd.read_csv(leaderboard_file)
if "Combined_Score" not in leaderboard_df.columns:
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
leaderboard_df.to_csv(leaderboard_file, index=False)
def normalize_text(text):
"""Normalize text for WER/CER calculation"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions."""
results = []
total_ref_words = 0
total_ref_chars = 0
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
continue
reference_words = reference.split()
hypothesis_words = hypothesis.split()
reference_chars = list(reference)
try:
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
sample_wer = min(sample_wer, 2.0)
sample_cer = min(sample_cer, 2.0)
total_ref_words += len(reference_words)
total_ref_chars += len(reference_chars)
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"ref_word_count": len(reference_words),
"ref_char_count": len(reference_chars),
"wer": sample_wer,
"cer": sample_cer
})
except Exception:
pass
if not results:
raise ValueError("No valid samples for WER/CER calculation")
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
# Calculate weighted average metrics based on reference length
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
def format_as_percentage(value):
"""Convert decimal to percentage with 2 decimal places"""
return f"{value * 100:.2f}%"
def prepare_leaderboard_for_display(df, sort_by="Combined_Score"):
"""Format leaderboard for display with ranking and percentages"""
if len(df) == 0:
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
display_df = df.copy()
display_df = display_df.sort_values(sort_by)
display_df.insert(0, "Rank", range(1, len(display_df) + 1))
for col in ["WER", "CER", "Combined_Score"]:
if col in display_df.columns:
display_df[f"{col} (%)"] = display_df[col].apply(lambda x: f"{x * 100:.2f}")
display_df = display_df.drop(col, axis=1)
# Removed the clickable model name transformation
return display_df
def update_ranking(method):
"""Update leaderboard ranking based on selected method"""
try:
current_lb = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_lb.columns:
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
sort_column = "Combined_Score"
if method == "WER Only":
sort_column = "WER"
elif method == "CER Only":
sort_column = "CER"
return prepare_leaderboard_for_display(current_lb, sort_column)
except Exception:
return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
def process_submission(model_name, csv_file):
try:
df = pd.read_csv(csv_file)
if len(df) == 0:
return "Error: Uploaded CSV is empty.", None
if set(df.columns) != {"id", "text"}:
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
try:
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
# suspiciously low values
if avg_wer < 0.001:
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
except Exception as e:
return f"Error calculating metrics: {str(e)}", None
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Calculate combined score (70% WER, 30% CER)
combined_score = avg_wer * 0.7 + avg_cer * 0.3
new_entry = pd.DataFrame(
[[model_name, avg_wer, avg_cer, combined_score, timestamp]],
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
)
updated_leaderboard = pd.concat([leaderboard, new_entry]).sort_values("Combined_Score")
updated_leaderboard.to_csv(leaderboard_file, index=False)
display_leaderboard = prepare_leaderboard_for_display(updated_leaderboard)
return f"Submission processed successfully! WER: {format_as_percentage(avg_wer)}, CER: {format_as_percentage(avg_cer)}, Combined Score: {format_as_percentage(combined_score)}", display_leaderboard
except Exception as e:
return f"Error processing submission: {str(e)}", None
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# π²π± Bambara ASR Leaderboard
This leaderboard ranks and evaluates speech recognition models for the Bambara language.
Models are ranked based on a combined score of WER and CER metrics.
"""
)
with gr.Tabs() as tabs:
with gr.TabItem("π
Current Rankings"):
try:
current_leaderboard = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_leaderboard.columns:
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
display_leaderboard = prepare_leaderboard_for_display(current_leaderboard)
except Exception:
display_leaderboard = pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
gr.Markdown("### Current ASR Model Rankings")
ranking_method = gr.Radio(
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
label="Ranking Method",
value="Combined Score (WER 70%, CER 30%)"
)
leaderboard_view = gr.DataFrame(
value=display_leaderboard,
interactive=False,
label="Models are ranked by selected metric - lower is better"
)
ranking_method.change(
fn=update_ranking,
inputs=[ranking_method],
outputs=[leaderboard_view]
)
gr.Markdown(
"""
## Metrics Explanation
- **WER (%)**: Word Error Rate (lower is better) - measures word-level accuracy
- **CER (%)**: Character Error Rate (lower is better) - measures character-level accuracy
- **Combined Score (%)**: Weighted average of WER (70%) and CER (30%) - provides a balanced evaluation
"""
)
with gr.TabItem("π Submit New Results"):
gr.Markdown(
"""
### Submit a new model for evaluation
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the reference dataset.
"""
)
with gr.Row():
model_name_input = gr.Textbox(label="Model Name", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_btn = gr.Button("Submit")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Updated Leaderboard",
value=display_leaderboard,
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[model_name_input, csv_upload],
outputs=[output_msg, leaderboard_display]
)
if __name__ == "__main__":
demo.launch() |