Spaces:
Running
Running
File size: 19,835 Bytes
f3434ed db6e637 d607da0 db6e637 d607da0 db6e637 d607da0 baacef2 edecf53 db6e637 f3434ed d607da0 0d77b69 d607da0 baacef2 ceba453 246cf8f ceba453 246cf8f d607da0 0d77b69 246cf8f db6e637 246cf8f d51cb13 db6e637 729d876 db6e637 d51cb13 db6e637 d51cb13 db6e637 6a18322 db6e637 a047faf db6e637 a047faf db6e637 46905b1 db6e637 a047faf db6e637 a047faf 729d876 db6e637 d607da0 db6e637 ceba453 db6e637 d607da0 db6e637 aa352fb ceba453 db6e637 d607da0 db6e637 ceba453 db6e637 d607da0 db6e637 ceba453 d607da0 0093774 ceba453 db6e637 2f417d6 729d876 2f417d6 729d876 2f417d6 729d876 ceba453 2f417d6 729d876 ceba453 2f417d6 ceba453 2f417d6 db6e637 2f417d6 ceba453 0093774 ceba453 aa352fb d607da0 ceba453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import os
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np
import pickle
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy.special
from sklearn.feature_extraction.text import TfidfVectorizer
from flask import Flask, request, jsonify
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Disable tokenizers parallelism to avoid fork-related deadlocks
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Paths for saving artifacts
MODEL_DIR = "./saved_models"
FALLBACK_MODEL_DIR = "/tmp/saved_models"
try:
os.makedirs(MODEL_DIR, exist_ok=True)
logger.info(f"Using model directory: {MODEL_DIR}")
chosen_model_dir = MODEL_DIR
except Exception as e:
logger.warning(f"Failed to create {MODEL_DIR}: {e}. Using fallback directory.")
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
chosen_model_dir = FALLBACK_MODEL_DIR
# Update paths
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl")
COURSE_SIMILARITY_PATH = os.path.join(chosen_model_dir, "course_similarity.pkl")
JOB_SIMILARITY_PATH = os.path.join(chosen_model_dir, "job_similarity.pkl")
# Global variables for precomputed data
tfidf_vectorizer = None
skill_tfidf = None
question_to_answer = None
faiss_index = None
answer_embeddings = None
course_similarity = None
job_similarity = None
# Improved dataset loading with fallback
def load_dataset(file_path, required_columns=[], additional_columns=['popularity', 'completion_rate'], fallback_data=None):
try:
df = pd.read_csv(file_path)
missing_required = [col for col in required_columns if col not in df.columns]
missing_additional = [col for col in additional_columns if col not in df.columns]
# Handle missing required columns
if missing_required:
logger.warning(f"Required columns {missing_required} missing in {file_path}. Adding empty values.")
for col in missing_required:
df[col] = ""
# Handle missing additional columns (popularity, completion_rate, etc.)
if missing_additional:
logger.warning(f"Additional columns {missing_additional} missing in {file_path}. Adding default values.")
for col in missing_additional:
if col == 'popularity':
df[col] = 0.8 # Default value for popularity
elif col == 'completion_rate':
df[col] = 0.7 # Default value for completion_rate
else:
df[col] = 0.0 # Default for other additional columns
# Ensure 'level' column has valid values (not empty)
if 'level' in df.columns:
df['level'] = df['level'].apply(lambda x: 'Intermediate' if pd.isna(x) or x.strip() == "" else x)
else:
logger.warning(f"'level' column missing in {file_path}. Adding default 'Intermediate'.")
df['level'] = 'Intermediate'
return df
except ValueError as ve:
logger.error(f"ValueError loading {file_path}: {ve}. Using fallback data.")
if fallback_data is not None:
logger.info(f"Using fallback data for {file_path}")
return pd.DataFrame(fallback_data)
return None
except Exception as e:
logger.error(f"Error loading {file_path}: {e}. Using fallback data.")
if fallback_data is not None:
logger.info(f"Using fallback data for {file_path}")
return pd.DataFrame(fallback_data)
return None
# Load datasets with fallbacks
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"], [], {
'Skill': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
'Question': ['Advanced Linux question', 'Advanced Git question', 'Basic Node.js question',
'Intermediate Python question', 'Basic Kubernetes question'],
'Answer': ['Linux answer', 'Git answer', 'Node.js answer', 'Python answer', 'Kubernetes answer']
})
courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"], ['popularity', 'completion_rate'], {
'skills': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
'course_title': ['Linux Admin', 'Git Mastery', 'Node.js Advanced', 'Python for Data', 'Kubernetes Basics'],
'Organization': ['Coursera', 'Udemy', 'Pluralsight', 'edX', 'Linux Foundation'],
'level': ['Intermediate', 'Intermediate', 'Advanced', 'Advanced', 'Intermediate'],
'popularity': [0.85, 0.9, 0.8, 0.95, 0.9],
'completion_rate': [0.65, 0.7, 0.6, 0.8, 0.75]
})
jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"], [], {
'job_title': ['DevOps Engineer', 'Cloud Architect', 'Software Engineer', 'Data Scientist', 'Security Analyst'],
'company_name': ['Tech Corp', 'Cloud Inc', 'Tech Solutions', 'Data Co', 'SecuriTech'],
'location': ['Remote', 'Islamabad', 'Karachi', 'Remote', 'Islamabad'],
'required_skills': ['Linux, Kubernetes', 'AWS, Kubernetes', 'Python, Node.js', 'Python, SQL', 'Cybersecurity, Linux'],
'job_description': ['DevOps role description', 'Cloud architecture position', 'Software engineering role', 'Data science position', 'Security analyst role'],
'level': ['Intermediate', 'Advanced', 'Intermediate', 'Intermediate', 'Intermediate']
})
# Validate questions_df
if questions_df is None or questions_df.empty:
logger.error("questions_df is empty or could not be loaded. Exiting.")
exit(1)
if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]):
logger.error("questions_df is missing required columns. Exiting.")
exit(1)
logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {list(questions_df['Skill'].unique())}")
# Load or Initialize Models with Fallback
def load_universal_model():
default_model = "all-MiniLM-L6-v2"
try:
if os.path.exists(UNIVERSAL_MODEL_PATH):
logger.info(f"Loading universal model from {UNIVERSAL_MODEL_PATH}")
return SentenceTransformer(UNIVERSAL_MODEL_PATH)
else:
logger.info(f"Loading universal model: {default_model}")
model = SentenceTransformer(default_model)
model.save(UNIVERSAL_MODEL_PATH)
return model
except Exception as e:
logger.error(f"Failed to load universal model {default_model}: {e}. Exiting.")
exit(1)
universal_model = load_universal_model()
if os.path.exists(DETECTOR_MODEL_PATH):
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH)
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH)
else:
detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
# Load Precomputed Resources
def load_precomputed_resources():
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
if all(os.path.exists(p) for p in [TFIDF_PATH, SKILL_TFIDF_PATH, QUESTION_ANSWER_PATH, FAISS_INDEX_PATH, ANSWER_EMBEDDINGS_PATH, COURSE_SIMILARITY_PATH, JOB_SIMILARITY_PATH]):
try:
with open(TFIDF_PATH, 'rb') as f: tfidf_vectorizer = pickle.load(f)
with open(SKILL_TFIDF_PATH, 'rb') as f: skill_tfidf = pickle.load(f)
with open(QUESTION_ANSWER_PATH, 'rb') as f: question_to_answer = pickle.load(f)
faiss_index = faiss.read_index(FAISS_INDEX_PATH)
with open(ANSWER_EMBEDDINGS_PATH, 'rb') as f: answer_embeddings = pickle.load(f)
with open(COURSE_SIMILARITY_PATH, 'rb') as f: course_similarity = pickle.load(f)
with open(JOB_SIMILARITY_PATH, 'rb') as f: job_similarity = pickle.load(f)
logger.info("Loaded precomputed resources successfully")
except Exception as e:
logger.error(f"Error loading precomputed resources: {e}")
precompute_resources()
else:
precompute_resources()
# Precompute Resources Offline (to be run separately)
def precompute_resources():
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
logger.info("Precomputing resources offline")
try:
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
all_texts = questions_df['Answer'].tolist() + questions_df['Question'].tolist()
tfidf_vectorizer.fit(all_texts)
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill]).toarray()[0] for skill in questions_df['Skill'].unique()}
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
faiss_index.add(answer_embeddings)
# Precompute course similarities
course_skills = courses_df['skills'].fillna("").tolist()
course_embeddings = universal_model.encode(course_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
skill_embeddings = universal_model.encode(questions_df['Skill'].unique().tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
course_similarity = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy()
# Precompute job similarities
job_skills = jobs_df['required_skills'].fillna("").tolist()
job_embeddings = universal_model.encode(job_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
job_similarity = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy()
# Save precomputed resources
with open(TFIDF_PATH, 'wb') as f: pickle.dump(tfidf_vectorizer, f)
with open(SKILL_TFIDF_PATH, 'wb') as f: pickle.dump(skill_tfidf, f)
with open(QUESTION_ANSWER_PATH, 'wb') as f: pickle.dump(question_to_answer, f)
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
with open(ANSWER_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(answer_embeddings, f)
with open(COURSE_SIMILARITY_PATH, 'wb') as f: pickle.dump(course_similarity, f)
with open(JOB_SIMILARITY_PATH, 'wb') as f: pickle.dump(job_similarity, f)
universal_model.save(UNIVERSAL_MODEL_PATH)
logger.info(f"Precomputed resources saved to {chosen_model_dir}")
except Exception as e:
logger.error(f"Error during precomputation: {e}")
raise
# Evaluation with precomputed data
def evaluate_response(args):
try:
skill, user_answer, question_idx = args
if not user_answer:
return skill, 0.0, False
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
logits = detector_model(**inputs).logits
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
is_ai = probs[1] > 0.5
user_embedding = universal_model.encode([user_answer], batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0]
expected_embedding = torch.tensor(answer_embeddings[question_idx])
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
skill_vec = skill_tfidf.get(skill.lower(), np.zeros_like(user_tfidf))
relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
score *= max(0.5, min(1.0, relevance))
return skill, round(max(0, score), 2), is_ai
except Exception as e:
logger.error(f"Evaluation error for {skill}: {e}")
return skill, 0.0, False
# Course recommendation with precomputed similarity
def recommend_courses(skills_to_improve, user_level, upgrade=False):
try:
if not skills_to_improve or courses_df.empty:
logger.info("No skills to improve or courses_df is empty.")
return []
skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in skills_to_improve if skill in questions_df['Skill'].unique()]
if not skill_indices:
logger.info("No matching skill indices found.")
return []
similarities = course_similarity[skill_indices]
# Use default arrays to avoid KeyError
popularity = courses_df['popularity'].values if 'popularity' in courses_df else np.full(len(courses_df), 0.8)
completion_rate = courses_df['completion_rate'].values if 'completion_rate' in courses_df else np.full(len(courses_df), 0.7)
total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * popularity + 0.2 * completion_rate
target_level = 'Advanced' if upgrade else user_level
idx = np.argsort(-total_scores)[:5]
candidates = courses_df.iloc[idx]
# Filter by level, but fallback to all courses if none match
filtered_candidates = candidates[candidates['level'].str.contains(target_level, case=False, na=False)]
if filtered_candidates.empty:
logger.warning(f"No courses found for level {target_level}. Returning top courses regardless of level.")
filtered_candidates = candidates
return filtered_candidates[['course_title', 'Organization']].values.tolist()[:3]
except Exception as e:
logger.error(f"Course recommendation error: {e}")
return []
# Job recommendation with precomputed similarity
def recommend_jobs(user_skills, user_level):
try:
if jobs_df.empty:
return []
skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in user_skills if skill in questions_df['Skill'].unique()]
if not skill_indices:
return []
similarities = job_similarity[skill_indices]
total_scores = 0.5 * np.max(similarities, axis=0)
if 'level' not in jobs_df.columns:
jobs_df['level'] = 'Intermediate'
level_col = jobs_df['level'].astype(str)
level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
user_level_num = level_map.get(user_level, 1)
level_scores = level_col.apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num)/2)
location_pref = jobs_df.get('location', pd.Series(['Remote'] * len(jobs_df))).apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7)
total_job_scores = total_scores + 0.2 * level_scores + 0.1 * location_pref
top_job_indices = np.argsort(-total_job_scores)[:5]
return [(jobs_df.iloc[i]['job_title'], jobs_df.iloc[i]['company_name'],
jobs_df.iloc[i].get('location', 'Remote')) for i in top_job_indices]
except Exception as e:
logger.error(f"Job recommendation error: {e}")
return []
# Flask application setup
app = Flask(__name__)
@app.route('/')
def health_check():
return jsonify({"status": "active", "model_dir": chosen_model_dir})
@app.route('/assess', methods=['POST'])
def assess_skills():
try:
data = request.get_json()
if not data or 'skills' not in data or 'answers' not in data:
return jsonify({"error": "Missing required fields"}), 400
user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)]
answers = [a.strip() for a in data['answers'] if isinstance(a, str)]
user_level = data.get('user_level', 'Intermediate').strip()
if len(answers) != len(user_skills):
return jsonify({"error": "Answers count must match skills count"}), 400
load_precomputed_resources() # Load precomputed resources before processing
user_questions = []
for skill in user_skills:
skill_questions = questions_df[questions_df['Skill'] == skill]
if not skill_questions.empty:
user_questions.append(skill_questions.sample(1).iloc[0])
else:
user_questions.append({
'Skill': skill,
'Question': f"What are the best practices for using {skill} in a production environment?",
'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
})
user_questions = pd.DataFrame(user_questions).reset_index(drop=True)
user_responses = []
for idx, row in user_questions.iterrows():
answer = answers[idx]
if not answer or answer.lower() == 'skip':
user_responses.append((row['Skill'], None, None))
else:
question_idx = questions_df.index[questions_df['Question'] == row['Question']][0]
user_responses.append((row['Skill'], answer, question_idx))
results = [evaluate_response(response) for response in user_responses]
user_scores = {}
ai_flags = {}
scores_list = []
skipped_questions = [f"{skill} ({question})" for skill, user_code, _ in user_responses if not user_code]
for skill, score, is_ai in results:
if skill in user_scores:
user_scores[skill] = max(user_scores[skill], score)
ai_flags[skill] = ai_flags[skill] or is_ai
else:
user_scores[skill] = score
ai_flags[skill] = is_ai
scores_list.append(score)
mean_score = np.mean(scores_list) if scores_list else 50
dynamic_threshold = max(40, mean_score)
weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]
courses = recommend_courses(weak_skills or user_skills, user_level, upgrade=not weak_skills)
jobs = recommend_jobs(user_skills, user_level)
return jsonify({
"assessment_results": {
"skills": [
{
"skill": skill,
"progress": f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}",
"score": f"{score:.2f} %",
"origin": "AI-Generated" if is_ai else "Human-Written"
} for skill, score, is_ai in results
],
"mean_score": mean_score,
"dynamic_threshold": dynamic_threshold,
"weak_skills": weak_skills,
"skipped_questions": skipped_questions
},
"recommended_courses": courses[:3],
"recommended_jobs": jobs[:5]
})
except Exception as e:
logger.error(f"Assessment error: {e}")
return jsonify({"error": "Internal server error"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, threaded=True) |