File size: 19,835 Bytes
f3434ed
db6e637
d607da0
 
 
db6e637
d607da0
 
 
db6e637
d607da0
baacef2
 
 
 
 
edecf53
db6e637
f3434ed
 
d607da0
0d77b69
 
d607da0
baacef2
 
ceba453
246cf8f
ceba453
 
246cf8f
 
d607da0
0d77b69
246cf8f
 
db6e637
 
 
246cf8f
d51cb13
db6e637
 
729d876
db6e637
 
 
 
d51cb13
 
db6e637
 
d51cb13
db6e637
 
6a18322
db6e637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a047faf
db6e637
a047faf
 
db6e637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46905b1
db6e637
 
 
 
 
a047faf
db6e637
a047faf
729d876
db6e637
d607da0
db6e637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceba453
 
db6e637
d607da0
db6e637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa352fb
ceba453
db6e637
d607da0
db6e637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceba453
 
db6e637
d607da0
 
db6e637
ceba453
 
 
d607da0
 
0093774
ceba453
 
 
 
 
 
 
 
 
 
 
db6e637
2f417d6
 
 
729d876
2f417d6
 
 
 
 
 
 
 
 
 
 
 
 
 
729d876
2f417d6
729d876
 
 
 
ceba453
2f417d6
 
 
729d876
ceba453
2f417d6
 
 
 
 
 
 
 
 
 
 
ceba453
 
 
 
 
2f417d6
 
 
 
 
 
 
 
 
 
 
 
 
 
db6e637
2f417d6
ceba453
0093774
ceba453
 
aa352fb
d607da0
ceba453
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np
import pickle
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy.special
from sklearn.feature_extraction.text import TfidfVectorizer
from flask import Flask, request, jsonify
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Disable tokenizers parallelism to avoid fork-related deadlocks
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Paths for saving artifacts
MODEL_DIR = "./saved_models"
FALLBACK_MODEL_DIR = "/tmp/saved_models"

try:
    os.makedirs(MODEL_DIR, exist_ok=True)
    logger.info(f"Using model directory: {MODEL_DIR}")
    chosen_model_dir = MODEL_DIR
except Exception as e:
    logger.warning(f"Failed to create {MODEL_DIR}: {e}. Using fallback directory.")
    os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
    chosen_model_dir = FALLBACK_MODEL_DIR

# Update paths
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl")
COURSE_SIMILARITY_PATH = os.path.join(chosen_model_dir, "course_similarity.pkl")
JOB_SIMILARITY_PATH = os.path.join(chosen_model_dir, "job_similarity.pkl")

# Global variables for precomputed data
tfidf_vectorizer = None
skill_tfidf = None
question_to_answer = None
faiss_index = None
answer_embeddings = None
course_similarity = None
job_similarity = None

# Improved dataset loading with fallback
def load_dataset(file_path, required_columns=[], additional_columns=['popularity', 'completion_rate'], fallback_data=None):
    try:
        df = pd.read_csv(file_path)
        missing_required = [col for col in required_columns if col not in df.columns]
        missing_additional = [col for col in additional_columns if col not in df.columns]
        
        # Handle missing required columns
        if missing_required:
            logger.warning(f"Required columns {missing_required} missing in {file_path}. Adding empty values.")
            for col in missing_required:
                df[col] = ""
        
        # Handle missing additional columns (popularity, completion_rate, etc.)
        if missing_additional:
            logger.warning(f"Additional columns {missing_additional} missing in {file_path}. Adding default values.")
            for col in missing_additional:
                if col == 'popularity':
                    df[col] = 0.8  # Default value for popularity
                elif col == 'completion_rate':
                    df[col] = 0.7  # Default value for completion_rate
                else:
                    df[col] = 0.0  # Default for other additional columns
        
        # Ensure 'level' column has valid values (not empty)
        if 'level' in df.columns:
            df['level'] = df['level'].apply(lambda x: 'Intermediate' if pd.isna(x) or x.strip() == "" else x)
        else:
            logger.warning(f"'level' column missing in {file_path}. Adding default 'Intermediate'.")
            df['level'] = 'Intermediate'
        
        return df
    except ValueError as ve:
        logger.error(f"ValueError loading {file_path}: {ve}. Using fallback data.")
        if fallback_data is not None:
            logger.info(f"Using fallback data for {file_path}")
            return pd.DataFrame(fallback_data)
        return None
    except Exception as e:
        logger.error(f"Error loading {file_path}: {e}. Using fallback data.")
        if fallback_data is not None:
            logger.info(f"Using fallback data for {file_path}")
            return pd.DataFrame(fallback_data)
        return None

# Load datasets with fallbacks
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"], [], {
    'Skill': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
    'Question': ['Advanced Linux question', 'Advanced Git question', 'Basic Node.js question', 
                 'Intermediate Python question', 'Basic Kubernetes question'],
    'Answer': ['Linux answer', 'Git answer', 'Node.js answer', 'Python answer', 'Kubernetes answer']
})

courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"], ['popularity', 'completion_rate'], {
    'skills': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
    'course_title': ['Linux Admin', 'Git Mastery', 'Node.js Advanced', 'Python for Data', 'Kubernetes Basics'],
    'Organization': ['Coursera', 'Udemy', 'Pluralsight', 'edX', 'Linux Foundation'],
    'level': ['Intermediate', 'Intermediate', 'Advanced', 'Advanced', 'Intermediate'],
    'popularity': [0.85, 0.9, 0.8, 0.95, 0.9],
    'completion_rate': [0.65, 0.7, 0.6, 0.8, 0.75]
})

jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"], [], {
    'job_title': ['DevOps Engineer', 'Cloud Architect', 'Software Engineer', 'Data Scientist', 'Security Analyst'],
    'company_name': ['Tech Corp', 'Cloud Inc', 'Tech Solutions', 'Data Co', 'SecuriTech'],
    'location': ['Remote', 'Islamabad', 'Karachi', 'Remote', 'Islamabad'],
    'required_skills': ['Linux, Kubernetes', 'AWS, Kubernetes', 'Python, Node.js', 'Python, SQL', 'Cybersecurity, Linux'],
    'job_description': ['DevOps role description', 'Cloud architecture position', 'Software engineering role', 'Data science position', 'Security analyst role'],
    'level': ['Intermediate', 'Advanced', 'Intermediate', 'Intermediate', 'Intermediate']
})

# Validate questions_df
if questions_df is None or questions_df.empty:
    logger.error("questions_df is empty or could not be loaded. Exiting.")
    exit(1)
if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]):
    logger.error("questions_df is missing required columns. Exiting.")
    exit(1)
logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {list(questions_df['Skill'].unique())}")

# Load or Initialize Models with Fallback
def load_universal_model():
    default_model = "all-MiniLM-L6-v2"
    try:
        if os.path.exists(UNIVERSAL_MODEL_PATH):
            logger.info(f"Loading universal model from {UNIVERSAL_MODEL_PATH}")
            return SentenceTransformer(UNIVERSAL_MODEL_PATH)
        else:
            logger.info(f"Loading universal model: {default_model}")
            model = SentenceTransformer(default_model)
            model.save(UNIVERSAL_MODEL_PATH)
            return model
    except Exception as e:
        logger.error(f"Failed to load universal model {default_model}: {e}. Exiting.")
        exit(1)

universal_model = load_universal_model()

if os.path.exists(DETECTOR_MODEL_PATH):
    detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH)
    detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH)
else:
    detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
    detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")

# Load Precomputed Resources
def load_precomputed_resources():
    global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
    if all(os.path.exists(p) for p in [TFIDF_PATH, SKILL_TFIDF_PATH, QUESTION_ANSWER_PATH, FAISS_INDEX_PATH, ANSWER_EMBEDDINGS_PATH, COURSE_SIMILARITY_PATH, JOB_SIMILARITY_PATH]):
        try:
            with open(TFIDF_PATH, 'rb') as f: tfidf_vectorizer = pickle.load(f)
            with open(SKILL_TFIDF_PATH, 'rb') as f: skill_tfidf = pickle.load(f)
            with open(QUESTION_ANSWER_PATH, 'rb') as f: question_to_answer = pickle.load(f)
            faiss_index = faiss.read_index(FAISS_INDEX_PATH)
            with open(ANSWER_EMBEDDINGS_PATH, 'rb') as f: answer_embeddings = pickle.load(f)
            with open(COURSE_SIMILARITY_PATH, 'rb') as f: course_similarity = pickle.load(f)
            with open(JOB_SIMILARITY_PATH, 'rb') as f: job_similarity = pickle.load(f)
            logger.info("Loaded precomputed resources successfully")
        except Exception as e:
            logger.error(f"Error loading precomputed resources: {e}")
            precompute_resources()
    else:
        precompute_resources()

# Precompute Resources Offline (to be run separately)
def precompute_resources():
    global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
    logger.info("Precomputing resources offline")
    try:
        tfidf_vectorizer = TfidfVectorizer(stop_words='english')
        all_texts = questions_df['Answer'].tolist() + questions_df['Question'].tolist()
        tfidf_vectorizer.fit(all_texts)
        
        skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill]).toarray()[0] for skill in questions_df['Skill'].unique()}
        question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
        answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
        
        faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
        faiss_index.add(answer_embeddings)
        
        # Precompute course similarities
        course_skills = courses_df['skills'].fillna("").tolist()
        course_embeddings = universal_model.encode(course_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
        skill_embeddings = universal_model.encode(questions_df['Skill'].unique().tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
        course_similarity = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy()
        
        # Precompute job similarities
        job_skills = jobs_df['required_skills'].fillna("").tolist()
        job_embeddings = universal_model.encode(job_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
        job_similarity = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy()
        
        # Save precomputed resources
        with open(TFIDF_PATH, 'wb') as f: pickle.dump(tfidf_vectorizer, f)
        with open(SKILL_TFIDF_PATH, 'wb') as f: pickle.dump(skill_tfidf, f)
        with open(QUESTION_ANSWER_PATH, 'wb') as f: pickle.dump(question_to_answer, f)
        faiss.write_index(faiss_index, FAISS_INDEX_PATH)
        with open(ANSWER_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(answer_embeddings, f)
        with open(COURSE_SIMILARITY_PATH, 'wb') as f: pickle.dump(course_similarity, f)
        with open(JOB_SIMILARITY_PATH, 'wb') as f: pickle.dump(job_similarity, f)
        universal_model.save(UNIVERSAL_MODEL_PATH)
        logger.info(f"Precomputed resources saved to {chosen_model_dir}")
    except Exception as e:
        logger.error(f"Error during precomputation: {e}")
        raise

# Evaluation with precomputed data
def evaluate_response(args):
    try:
        skill, user_answer, question_idx = args
        if not user_answer:
            return skill, 0.0, False

        inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
        with torch.no_grad():
            logits = detector_model(**inputs).logits
        probs = scipy.special.softmax(logits, axis=1).tolist()[0]
        is_ai = probs[1] > 0.5

        user_embedding = universal_model.encode([user_answer], batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0]
        expected_embedding = torch.tensor(answer_embeddings[question_idx])
        score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100

        user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
        skill_vec = skill_tfidf.get(skill.lower(), np.zeros_like(user_tfidf))
        relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
        score *= max(0.5, min(1.0, relevance))

        return skill, round(max(0, score), 2), is_ai
    except Exception as e:
        logger.error(f"Evaluation error for {skill}: {e}")
        return skill, 0.0, False

# Course recommendation with precomputed similarity
def recommend_courses(skills_to_improve, user_level, upgrade=False):
    try:
        if not skills_to_improve or courses_df.empty:
            logger.info("No skills to improve or courses_df is empty.")
            return []

        skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in skills_to_improve if skill in questions_df['Skill'].unique()]
        if not skill_indices:
            logger.info("No matching skill indices found.")
            return []

        similarities = course_similarity[skill_indices]
        # Use default arrays to avoid KeyError
        popularity = courses_df['popularity'].values if 'popularity' in courses_df else np.full(len(courses_df), 0.8)
        completion_rate = courses_df['completion_rate'].values if 'completion_rate' in courses_df else np.full(len(courses_df), 0.7)
        total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * popularity + 0.2 * completion_rate

        target_level = 'Advanced' if upgrade else user_level
        idx = np.argsort(-total_scores)[:5]
        candidates = courses_df.iloc[idx]
        
        # Filter by level, but fallback to all courses if none match
        filtered_candidates = candidates[candidates['level'].str.contains(target_level, case=False, na=False)]
        if filtered_candidates.empty:
            logger.warning(f"No courses found for level {target_level}. Returning top courses regardless of level.")
            filtered_candidates = candidates
        
        return filtered_candidates[['course_title', 'Organization']].values.tolist()[:3]
    except Exception as e:
        logger.error(f"Course recommendation error: {e}")
        return []

# Job recommendation with precomputed similarity
def recommend_jobs(user_skills, user_level):
    try:
        if jobs_df.empty:
            return []

        skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in user_skills if skill in questions_df['Skill'].unique()]
        if not skill_indices:
            return []

        similarities = job_similarity[skill_indices]
        total_scores = 0.5 * np.max(similarities, axis=0)

        if 'level' not in jobs_df.columns:
            jobs_df['level'] = 'Intermediate'
        level_col = jobs_df['level'].astype(str)
        level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
        user_level_num = level_map.get(user_level, 1)
        level_scores = level_col.apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num)/2)

        location_pref = jobs_df.get('location', pd.Series(['Remote'] * len(jobs_df))).apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7)
        total_job_scores = total_scores + 0.2 * level_scores + 0.1 * location_pref
        top_job_indices = np.argsort(-total_job_scores)[:5]

        return [(jobs_df.iloc[i]['job_title'], jobs_df.iloc[i]['company_name'], 
                jobs_df.iloc[i].get('location', 'Remote')) for i in top_job_indices]
    except Exception as e:
        logger.error(f"Job recommendation error: {e}")
        return []

# Flask application setup
app = Flask(__name__)

@app.route('/')
def health_check():
    return jsonify({"status": "active", "model_dir": chosen_model_dir})

@app.route('/assess', methods=['POST'])
def assess_skills():
    try:
        data = request.get_json()
        if not data or 'skills' not in data or 'answers' not in data:
            return jsonify({"error": "Missing required fields"}), 400

        user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)]
        answers = [a.strip() for a in data['answers'] if isinstance(a, str)]
        user_level = data.get('user_level', 'Intermediate').strip()

        if len(answers) != len(user_skills):
            return jsonify({"error": "Answers count must match skills count"}), 400

        load_precomputed_resources()  # Load precomputed resources before processing

        user_questions = []
        for skill in user_skills:
            skill_questions = questions_df[questions_df['Skill'] == skill]
            if not skill_questions.empty:
                user_questions.append(skill_questions.sample(1).iloc[0])
            else:
                user_questions.append({
                    'Skill': skill,
                    'Question': f"What are the best practices for using {skill} in a production environment?",
                    'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
                })
        user_questions = pd.DataFrame(user_questions).reset_index(drop=True)

        user_responses = []
        for idx, row in user_questions.iterrows():
            answer = answers[idx]
            if not answer or answer.lower() == 'skip':
                user_responses.append((row['Skill'], None, None))
            else:
                question_idx = questions_df.index[questions_df['Question'] == row['Question']][0]
                user_responses.append((row['Skill'], answer, question_idx))

        results = [evaluate_response(response) for response in user_responses]

        user_scores = {}
        ai_flags = {}
        scores_list = []
        skipped_questions = [f"{skill} ({question})" for skill, user_code, _ in user_responses if not user_code]
        for skill, score, is_ai in results:
            if skill in user_scores:
                user_scores[skill] = max(user_scores[skill], score)
                ai_flags[skill] = ai_flags[skill] or is_ai
            else:
                user_scores[skill] = score
                ai_flags[skill] = is_ai
            scores_list.append(score)

        mean_score = np.mean(scores_list) if scores_list else 50
        dynamic_threshold = max(40, mean_score)
        weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]

        courses = recommend_courses(weak_skills or user_skills, user_level, upgrade=not weak_skills)
        jobs = recommend_jobs(user_skills, user_level)

        return jsonify({
            "assessment_results": {
                "skills": [
                    {
                        "skill": skill,
                        "progress": f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}",
                        "score": f"{score:.2f} %",
                        "origin": "AI-Generated" if is_ai else "Human-Written"
                    } for skill, score, is_ai in results
                ],
                "mean_score": mean_score,
                "dynamic_threshold": dynamic_threshold,
                "weak_skills": weak_skills,
                "skipped_questions": skipped_questions
            },
            "recommended_courses": courses[:3],
            "recommended_jobs": jobs[:5]
        })
    except Exception as e:
        logger.error(f"Assessment error: {e}")
        return jsonify({"error": "Internal server error"}), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, threaded=True)