Spaces:
Running
Running
File size: 44,017 Bytes
45a439d b86285f 26751b8 94c1a57 b86285f 5a713b7 b86285f 5a713b7 b86285f 5a713b7 b86285f f15074c 2718b31 5a713b7 b86285f c4c5946 2718b31 b86285f 2718b31 0f3cb17 c4c5946 0f3cb17 3932661 2718b31 053d8b5 f15074c c4c5946 5ce7b63 053d8b5 5ce7b63 053d8b5 5ce7b63 b86285f 38ab091 3932661 b86285f 6781ccf 0f3cb17 ecffc8d 38ab091 0f3cb17 b86285f 5ce7b63 b86285f 2718b31 b86285f 14f075f aa7c8a8 b86285f 14f075f aa7c8a8 19fe2eb b86285f 5ce7b63 b86285f 2718b31 b86285f 19fe2eb b86285f 9db2e5e b86285f 5ce7b63 b86285f 2718b31 b86285f 19fe2eb b86285f 9db2e5e b86285f 0f3cb17 b86285f 5ce7b63 0f3cb17 6781ccf 0f3cb17 1ccb87a 0f3cb17 350c781 0f3cb17 5ce7b63 b86285f 2718b31 b86285f ecffc8d b86285f f175319 b86285f 0f3cb17 b86285f 0f3cb17 b86285f 5ce7b63 b86285f 2718b31 b86285f 5ce7b63 8f2b3c2 5ce7b63 8f2b3c2 5ce7b63 8d4579c b86285f 38ab091 5ce7b63 8f2b3c2 5ce7b63 8f2b3c2 94967e4 38ab091 a3f5095 63ba373 8f2b3c2 38ab091 8f2b3c2 38ab091 5e6744b 38ab091 e86a061 9db2e5e e86a061 9db2e5e e86a061 9db2e5e e86a061 9db2e5e e86a061 9db2e5e 38ab091 f175319 38ab091 8f2b3c2 38ab091 8f2b3c2 38ab091 0532163 38ab091 5e6744b 38ab091 5e6744b 38ab091 5ce7b63 8f2b3c2 5ce7b63 8f2b3c2 5ce7b63 9db2e5e 38ab091 9db2e5e b4c5593 63ba373 38ab091 8f2b3c2 38ab091 9db2e5e a3f5095 5aa269e 63ba373 38ab091 8f2b3c2 38ab091 9db2e5e b4c5593 63ba373 38ab091 8f2b3c2 38ab091 9db2e5e b4c5593 63ba373 38ab091 8f2b3c2 38ab091 9db2e5e b4c5593 63ba373 38ab091 8f2b3c2 38ab091 9db2e5e b4c5593 63ba373 38ab091 8f2b3c2 38ab091 9db2e5e b4c5593 63ba373 38ab091 8f2b3c2 38ab091 5e6744b 38ab091 8d4579c 38ab091 9db2e5e 38ab091 f175319 38ab091 f175319 38ab091 f175319 8d4579c f175319 8d4579c f175319 38ab091 f175319 38ab091 8f2b3c2 38ab091 8f2b3c2 38ab091 5e6744b 38ab091 0532163 5e6744b 0532163 38ab091 0532163 38ab091 5e6744b b86285f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
import streamlit as st
import numpy as np
import pandas as pd
import gspread
import plotly.express as px
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
return gc
gspreadcon = init_conn()
game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'}
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
master_hold = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=694077504'
@st.cache_resource(ttl=299)
def init_baselines():
sh = gspreadcon.open_by_url(master_hold)
worksheet = sh.worksheet('Game_Betting')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('#DIV/0!', np.nan, inplace=True)
game_model = raw_display.copy()
worksheet = sh.worksheet('Prop_Table')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
overall_stats = raw_display.dropna()
worksheet = sh.worksheet('prop_frame')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
prop_trends = raw_display.copy()
worksheet = sh.worksheet('DK_ROO')
timestamp = worksheet.acell('U2').value
worksheet = sh.worksheet('prop_frame')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
raw_display.replace('#DIV/0!', np.nan, inplace=True)
prop_frame = raw_display.copy()
worksheet = sh.worksheet('Pick6_ingest')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
pick_frame = raw_display.dropna(subset='Player')
return game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
prop_table_options = ['NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
with tab1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
team_frame = game_model
if line_var1 == 'Percentage':
team_frame = team_frame[['Team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
if line_var1 == 'American':
team_frame = team_frame[['Team', 'Opp', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Team Model",
data=convert_df_to_csv(team_frame),
file_name='NFL_team_betting_export.csv',
mime='text/csv',
key='team_export',
)
with tab2:
st.info(t_stamp)
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1')
elif split_var1 == 'All':
team_var1 = qb_stats.Team.values.tolist()
qb_stats = qb_stats[qb_stats['Team'].isin(team_var1)]
qb_stats_disp = qb_stats.set_index('Player')
qb_stats_disp = qb_stats_disp.sort_values(by='PPR', ascending=False)
st.dataframe(qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(qb_stats_disp),
file_name='NFL_qb_stats_export.csv',
mime='text/csv',
key='NFL_qb_stats_export',
)
with tab3:
st.info(t_stamp)
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
elif split_var2 == 'All':
team_var2 = non_qb_stats.Team.values.tolist()
non_qb_stats = non_qb_stats[non_qb_stats['Team'].isin(team_var2)]
non_qb_stats_disp = non_qb_stats.set_index('Player')
non_qb_stats_disp = non_qb_stats_disp.sort_values(by='PPR', ascending=False)
st.dataframe(non_qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(non_qb_stats_disp),
file_name='NFL_nonqb_stats_export.csv',
mime='text/csv',
key='NFL_nonqb_stats_export',
)
with tab4:
st.info(t_stamp)
if st.button("Reset Data", key='reset4'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
if split_var5 == 'Specific Teams':
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
elif split_var5 == 'All':
team_var5 = prop_trends.Team.values.tolist()
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
book_var2 = st.selectbox('Select type of book do you want to view?', options = ['FANDUEL', 'BET365', 'DRAFTKINGS', 'CONSENSUS'])
prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['book'] == book_var2]
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
prop_frame_disp = prop_frame_disp.set_index('Player')
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True)
st.download_button(
label="Export Prop Trends Model",
data=convert_df_to_csv(prop_frame_disp),
file_name='NFL_prop_trends_export.csv',
mime='text/csv',
)
with tab5:
st.info(t_stamp)
if st.button("Reset Data", key='reset5'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
with col1:
player_check = st.selectbox('Select player to simulate props', options = overall_stats['Player'].unique())
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Pass Yards', 'Pass TDs', 'Rush Yards', 'Rush TDs', 'Receptions', 'Rec Yards', 'Rec TDs', 'Fantasy', 'FD Fantasy', 'PrizePicks'])
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
if prop_type_var == 'Pass Yards':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 100.0, max_value = 400.5, value = 250.5, step = .5)
elif prop_type_var == 'Pass TDs':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'Rush Yards':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
elif prop_type_var == 'Rush TDs':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'Receptions':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 15.5, value = 5.5, step = .5)
elif prop_type_var == 'Rec Yards':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
elif prop_type_var == 'Rec TDs':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'Fantasy':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
elif prop_type_var == 'FD Fantasy':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
elif prop_type_var == 'PrizePicks':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
line_var = line_var + 1
if st.button('Simulate Prop'):
with col2:
with df_hold_container.container():
df = overall_stats
total_sims = 5000
df.replace("", 0, inplace=True)
player_var = df.loc[df['Player'] == player_check]
player_var = player_var.reset_index()
if prop_type_var == 'Pass Yards':
df['Median'] = df['pass_yards']
elif prop_type_var == 'Pass TDs':
df['Median'] = df['pass_tds']
elif prop_type_var == 'Rush Yards':
df['Median'] = df['rush_yards']
elif prop_type_var == 'Rush TDs':
df['Median'] = df['rush_tds']
elif prop_type_var == 'Receptions':
df['Median'] = df['rec']
elif prop_type_var == 'Rec Yards':
df['Median'] = df['rec_yards']
elif prop_type_var == 'Rec TDs':
df['Median'] = df['rec_tds']
elif prop_type_var == 'Fantasy':
df['Median'] = df['PPR']
elif prop_type_var == 'FD Fantasy':
df['Median'] = df['Half_PPF']
elif prop_type_var == 'PrizePicks':
df['Median'] = df['Half_PPF']
flex_file = df
flex_file['Floor'] = flex_file['Median'] * .25
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
flex_file['STD'] = flex_file['Median'] / 4
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
if ou_var == 'Over':
players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
elif ou_var == 'Under':
players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
player_outcomes = player_outcomes.reset_index()
player_outcomes.columns = ['Instance', 'Outcome']
x1 = player_outcomes.Outcome.to_numpy()
print(x1)
hist_data = [x1]
group_labels = ['player outcomes']
fig = px.histogram(
player_outcomes, x='Outcome')
fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
with df_hold_container:
df_hold_container = st.empty()
format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
with info_hold_container:
st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
with plot_hold_container:
st.dataframe(player_outcomes, use_container_width = True)
plot_hold_container = st.empty()
st.plotly_chart(fig, use_container_width=True)
with tab6:
st.info(t_stamp)
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset6'):
st.cache_data.clear()
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
export_container = st.empty()
with col1:
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
if game_select_var == 'Aggregate':
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
st.download_button(
label="Download Prop Source",
data=convert_df_to_csv(prop_df),
file_name='Nba_prop_source.csv',
mime='text/csv',
key='prop_source',
)
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'pass_yards', 'rush_yards', 'rec_yards', 'receptions', 'rush_attempts'])
if st.button('Simulate Prop Category'):
with col2:
with df_hold_container.container():
if prop_type_var == 'All Props':
for prop in all_sim_vars:
if game_select_var == 'Aggregate':
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
prop_dict = dict(zip(df.Player, df.Prop))
book_dict = dict(zip(df.Player, df.book))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 5000
df.replace("", 0, inplace=True)
if prop == "pass_yards":
df['Median'] = df['NFL_GAME_PLAYER_PASSING_YARDS']
elif prop == "rush_yards":
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_YARDS']
elif prop == "rec_yards":
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_YARDS']
elif prop == "receptions":
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
elif prop == "rush_attempts":
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
flex_file = df
flex_file['Floor'] = flex_file['Median'] * .25
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
flex_file['STD'] = flex_file['Median'] / 4
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop type'] = prop
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
elif prop_type_var != 'All Props':
if game_select_var == 'Aggregate':
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
if prop_type_var == "pass_yards":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "rush_yards":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "rec_yards":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "receptions":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "rush_attempts":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "pass_attempts":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
elif prop_type_var == "pass_completions":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_COMPLETIONS']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.loc[prop_df['Prop'] != 0]
st.table(prop_df)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
prop_dict = dict(zip(df.Player, df.Prop))
book_dict = dict(zip(df.Player, df.book))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 5000
df.replace("", 0, inplace=True)
if prop_type_var == "pass_yards":
df['Median'] = df['pass_yards']
elif prop_type_var == "rush_yards":
df['Median'] = df['rush_yards']
elif prop_type_var == "rec_yards":
df['Median'] = df['rec_yards']
elif prop_type_var == "receptions":
df['Median'] = df['rec']
elif prop_type_var == "rush_attempts":
df['Median'] = df['rush_att']
flex_file = df
flex_file['Floor'] = flex_file['Median'] * .25
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
flex_file['STD'] = flex_file['Median'] / 4
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
prop_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
final_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='NFL_prop_proj.csv',
mime='text/csv',
key='prop_proj',
)
|