File size: 6,968 Bytes
73c9569
c2250b6
73c9569
568a490
fe42c39
49f4c57
2a84894
7db9774
 
2a84894
 
 
 
f125e9c
 
 
 
 
370332e
3b72fd6
d2de7c8
370332e
4ccccb3
ec8bfb4
1cc545e
ec8bfb4
117bfa6
73aea80
 
e96bccd
73aea80
 
 
b8575c0
117bfa6
73aea80
117bfa6
49f4c57
63d701e
b0885a6
357e5f2
3b72fd6
73aea80
e59f788
78f9bd7
d2de7c8
f3899b5
 
531227f
2709754
 
d2de7c8
b937596
377be67
73aea80
78f9bd7
73c9569
377be67
 
 
2a84894
377be67
 
73c9569
 
254eaab
2a84894
73c9569
377be67
2a84894
 
377be67
2a84894
b1318a8
73c9569
377be67
 
c494c5e
377be67
 
 
 
 
2a84894
 
73c9569
3ae2ed2
377be67
73c9569
 
377be67
 
 
 
 
 
e9b987a
2a84894
e9b987a
377be67
15e17be
e9b987a
377be67
e9b987a
 
377be67
 
340946e
2a84894
 
 
 
 
377be67
 
 
 
 
2a84894
 
 
377be67
 
2a84894
377be67
 
 
 
 
2a84894
 
 
 
 
 
377be67
 
2a84894
 
 
 
 
377be67
 
 
2a84894
377be67
 
 
 
 
2a84894
 
377be67
2a84894
377be67
2a84894
 
3b36d55
deb477d
 
 
 
3b36d55
73c9569
377be67
 
 
 
 
73c9569
2a84894
377be67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a84894
 
b82ee92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from datasets import load_dataset
from datasets import Dataset
from langchain.docstore.document import Document as LangchainDocument
from sentence_transformers import SentenceTransformer
import faiss
import pandas as pd
import time
import torch

from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread

llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
tokenizer = AutoTokenizer.from_pretrained(llm_model)
# pulling tokeinzer for text generation model

dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
#dataset = load_dataset("epfl-llm/guidelines", split='train')
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(dataset)

embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
#all-MiniLM-L6-v2, BAAI/bge-base-en-v1.5,infgrad/stella-base-en-v2, BAAI/bge-large-en-v1.5 working with default dimensions

df = pd.DataFrame(dataset)
#print(df.iloc[[1]])
print(check1)
df['embeddings'] = df['text'].apply(lambda x: embedding_model.encode(x))
# add_embeddings as a new column

print(check1a)
print(df.iloc[[1]])
dataset = Dataset.from_pandas(df)
print(check1b)

#dataset['text'][:length]

print(dataset[2])

embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidngs
data = dataset

#print(data)
d = 384  # vectors dimension
m = 32  # hnsw parameter. Higher is more accurate but takes more time to index (default is 32, 128 should be ok)
#index = faiss.IndexHNSWFlat(d, m)
#index =  faiss.IndexFlatL2(embedding_dim)
#data.add_faiss_index(embeddings.shape[1], custom_index=index) 
data.add_faiss_index("embeddings")
# adds an index column for the embeddings

print("check1d")
#question = "How can I reverse Diabetes?"

SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
# Provides context of how to answer the question

print("check2")


model = AutoModelForCausalLM.from_pretrained(llm_model)
# Initializing the text generation model

terminators = [
    tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
    tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
]
# indicates the end of a sequence


def search(query: str, k: int = 3 ):
    """a function that embeds a new query and returns the most probable results"""
    embedded_query = embedding_model.encode(query) # create embedding of a new query
    scores, retrieved_examples = data.get_nearest_examples( # retrieve results
        "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
        k=k # get only top k results
    )
    return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt

#print(scores, retrieved_examples)
print("check2A")


def format_prompt(prompt,retrieved_documents,k):
    """using the retrieved documents we will prompt the model to generate our responses"""
    PROMPT = f"Question:{prompt}\nContext:"
    for idx in range(k) :
        PROMPT+= f"{retrieved_documents['text'][idx]}\n"
    return PROMPT

# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived

print("check3")
#print(PROMPT)

print("check3A")


def talk(prompt,history):
    k = 1 # number of retrieved documents
    scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
    formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
    formatted_prompt = formatted_prompt[:400] # to avoid memory issue
    messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] # binding the system context and new prompt for LLM
    # the chat template structure should be based on text generation model format
    print("check3B")    
    input_ids = tokenizer.apply_chat_template(
      messages,
      add_generation_prompt=True,
      return_tensors="pt"
    ).to(model.device)
    # tell the model to generate
    # add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
    print("check3C")
    outputs = model.generate(
      input_ids,
      max_new_tokens=300,
      eos_token_id=terminators,
      do_sample=True,
      temperature=0.6,
      top_p=0.9,
    )
    # calling the model to generate response based on message/ input
    # do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
    # temperature controls randomness. more renadomness with higher temperature
    # only the tokens comprising the top_p probability mass are considered for responses
    # This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
    print("check3D")
    streamer = TextIteratorStreamer(
            tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
            )
    # stores print-ready text in a queue, to be used by a downstream application as an iterator. removes specail tokens in generated text. 
    # timeout for text queue. tokenizer for decoding tokens
    # called by generate_kwargs
    print("check3E")
    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens= 512,
        do_sample=True,
        top_p=0.95,
        temperature=0.75,
        eos_token_id=terminators,
    )
    # send additional parameters to model for generation
    print("check3F")
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    # to process multiple instances
    t.start()
    # start a thread
    print("check3G")
    outputs = []
    for text in streamer:
        outputs.append(text)
        print(outputs)
        yield "".join(outputs)
        print("check3H")


TITLE = "AI Copilot for Diabetes Patients"

DESCRIPTION = ""

import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
    fn=talk,
    chatbot=gr.Chatbot(
        show_label=True,
        show_share_button=True,
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        bubble_full_width=False,
    ),
    theme="Soft",
    examples=[["what is Diabetes? "]],
    title=TITLE,
    description=DESCRIPTION,
    
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check3I")
demo.launch(share=True)