File size: 6,968 Bytes
73c9569 c2250b6 73c9569 568a490 fe42c39 49f4c57 2a84894 7db9774 2a84894 f125e9c 370332e 3b72fd6 d2de7c8 370332e 4ccccb3 ec8bfb4 1cc545e ec8bfb4 117bfa6 73aea80 e96bccd 73aea80 b8575c0 117bfa6 73aea80 117bfa6 49f4c57 63d701e b0885a6 357e5f2 3b72fd6 73aea80 e59f788 78f9bd7 d2de7c8 f3899b5 531227f 2709754 d2de7c8 b937596 377be67 73aea80 78f9bd7 73c9569 377be67 2a84894 377be67 73c9569 254eaab 2a84894 73c9569 377be67 2a84894 377be67 2a84894 b1318a8 73c9569 377be67 c494c5e 377be67 2a84894 73c9569 3ae2ed2 377be67 73c9569 377be67 e9b987a 2a84894 e9b987a 377be67 15e17be e9b987a 377be67 e9b987a 377be67 340946e 2a84894 377be67 2a84894 377be67 2a84894 377be67 2a84894 377be67 2a84894 377be67 2a84894 377be67 2a84894 377be67 2a84894 377be67 2a84894 3b36d55 deb477d 3b36d55 73c9569 377be67 73c9569 2a84894 377be67 2a84894 b82ee92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
from datasets import load_dataset
from datasets import Dataset
from langchain.docstore.document import Document as LangchainDocument
from sentence_transformers import SentenceTransformer
import faiss
import pandas as pd
import time
import torch
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread
llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
tokenizer = AutoTokenizer.from_pretrained(llm_model)
# pulling tokeinzer for text generation model
dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
#dataset = load_dataset("epfl-llm/guidelines", split='train')
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(dataset)
embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
#all-MiniLM-L6-v2, BAAI/bge-base-en-v1.5,infgrad/stella-base-en-v2, BAAI/bge-large-en-v1.5 working with default dimensions
df = pd.DataFrame(dataset)
#print(df.iloc[[1]])
print(check1)
df['embeddings'] = df['text'].apply(lambda x: embedding_model.encode(x))
# add_embeddings as a new column
print(check1a)
print(df.iloc[[1]])
dataset = Dataset.from_pandas(df)
print(check1b)
#dataset['text'][:length]
print(dataset[2])
embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidngs
data = dataset
#print(data)
d = 384 # vectors dimension
m = 32 # hnsw parameter. Higher is more accurate but takes more time to index (default is 32, 128 should be ok)
#index = faiss.IndexHNSWFlat(d, m)
#index = faiss.IndexFlatL2(embedding_dim)
#data.add_faiss_index(embeddings.shape[1], custom_index=index)
data.add_faiss_index("embeddings")
# adds an index column for the embeddings
print("check1d")
#question = "How can I reverse Diabetes?"
SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
# Provides context of how to answer the question
print("check2")
model = AutoModelForCausalLM.from_pretrained(llm_model)
# Initializing the text generation model
terminators = [
tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
]
# indicates the end of a sequence
def search(query: str, k: int = 3 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = embedding_model.encode(query) # create embedding of a new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt
#print(scores, retrieved_examples)
print("check2A")
def format_prompt(prompt,retrieved_documents,k):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
return PROMPT
# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived
print("check3")
#print(PROMPT)
print("check3A")
def talk(prompt,history):
k = 1 # number of retrieved documents
scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
formatted_prompt = formatted_prompt[:400] # to avoid memory issue
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] # binding the system context and new prompt for LLM
# the chat template structure should be based on text generation model format
print("check3B")
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# tell the model to generate
# add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
print("check3C")
outputs = model.generate(
input_ids,
max_new_tokens=300,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
# calling the model to generate response based on message/ input
# do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
# temperature controls randomness. more renadomness with higher temperature
# only the tokens comprising the top_p probability mass are considered for responses
# This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
print("check3D")
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
# stores print-ready text in a queue, to be used by a downstream application as an iterator. removes specail tokens in generated text.
# timeout for text queue. tokenizer for decoding tokens
# called by generate_kwargs
print("check3E")
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens= 512,
do_sample=True,
top_p=0.95,
temperature=0.75,
eos_token_id=terminators,
)
# send additional parameters to model for generation
print("check3F")
t = Thread(target=model.generate, kwargs=generate_kwargs)
# to process multiple instances
t.start()
# start a thread
print("check3G")
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
print("check3H")
TITLE = "AI Copilot for Diabetes Patients"
DESCRIPTION = ""
import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
fn=talk,
chatbot=gr.Chatbot(
show_label=True,
show_share_button=True,
show_copy_button=True,
likeable=True,
layout="bubble",
bubble_full_width=False,
),
theme="Soft",
examples=[["what is Diabetes? "]],
title=TITLE,
description=DESCRIPTION,
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check3I")
demo.launch(share=True) |