File size: 8,229 Bytes
73c9569
c2250b6
e715c6b
 
568a490
fe42c39
2a84894
e715c6b
 
7db9774
133a9b5
2a84894
 
133a9b5
f125e9c
e715c6b
 
 
f125e9c
4ccccb3
e715c6b
 
 
 
 
 
 
ec8bfb4
133a9b5
419ae6f
 
e715c6b
 
117bfa6
e715c6b
133a9b5
e715c6b
63d701e
e715c6b
 
 
357e5f2
e715c6b
3b72fd6
26c448b
78f9bd7
e715c6b
7f50a5f
0bc5b18
b937596
377be67
73aea80
78f9bd7
73c9569
377be67
e715c6b
377be67
2a84894
377be67
e715c6b
377be67
73c9569
e715c6b
73c9569
 
133a9b5
 
 
 
2a84894
b1318a8
73c9569
e715c6b
377be67
c494c5e
377be67
 
 
 
 
2a84894
 
73c9569
3ae2ed2
377be67
73c9569
 
377be67
e715c6b
377be67
 
e715c6b
377be67
e9b987a
2a84894
e9b987a
377be67
e9b987a
e715c6b
 
340946e
e715c6b
2a84894
e715c6b
 
 
 
 
 
 
 
2a84894
 
377be67
 
 
 
 
2a84894
 
 
377be67
 
2a84894
377be67
 
e715c6b
 
377be67
2a84894
 
 
 
 
 
377be67
 
2a84894
 
 
 
 
377be67
 
 
e715c6b
377be67
 
e715c6b
377be67
 
2a84894
 
377be67
2a84894
377be67
2a84894
 
3b36d55
deb477d
 
 
 
3b36d55
73c9569
e715c6b
377be67
e715c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377be67
 
e715c6b
377be67
73c9569
2a84894
377be67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a84894
 
e715c6b
 
 
 
8a37cce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from datasets import load_dataset
from datasets import Dataset
#from langchain.docstore.document import Document as LangchainDocument
# from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer
import faiss
import time
#import torch
import pandas as pd

from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread
#from ctransformers import AutoModelForCausalLM, AutoConfig, Config, AutoTokenizer

#from huggingface_hub import InferenceClient
from huggingface_hub import Repository, upload_file
import os


HF_TOKEN = os.getenv('HF_Token')
#Log_Path="./Logfolder"
logfile = 'DiabetesChatLog.txt'
historylog = [{
        "Prompt": '',
        "Output": ''
}]

llm_model = "TinyLlama/TinyLlama-1.1B-Chat-v0.6"


# TheBloke/Llama-2-7B-Chat-GGML , TinyLlama/TinyLlama-1.1B-Chat-v1.0 , microsoft/Phi-3-mini-4k-instruct, health360/Healix-1.1B-V1-Chat-dDPO
# TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF and tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf not working

model = AutoModelForCausalLM.from_pretrained(llm_model)
tokenizer = AutoTokenizer.from_pretrained(llm_model)
#initiate model and tokenizer

data = load_dataset("Namitg02/Test", split='train', streaming=False)
#Returns a list of dictionaries, each representing a row in the dataset.
length = len(data)

embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
embedding_dim = embedding_model.get_sentence_embedding_dimension()
# Returns dimensions of embedidng


index =  faiss.IndexFlatL2(embedding_dim)
data.add_faiss_index("embeddings", custom_index=index) 
# adds an index column for the embeddings

print("check1d")
#question = "How can I reverse Diabetes?"

SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of documents and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
# Provides context of how to answer the question


print("check2")

# memory = ConversationBufferMemory(return_messages=True)


terminators = [
    tokenizer.eos_token_id, # End-of-Sequence Token that indicates where the model should consider the text sequence to be complete
    tokenizer.convert_tokens_to_ids("<|eot_id|>") # Converts a token strings in a single/ sequence of integer id using the vocabulary
]
# indicates the end of a sequence


def search(query: str, k: int = 2 ):
    """a function that embeds a new query and returns the most probable results"""
    embedded_query = embedding_model.encode(query) # create embedding of a new query
    scores, retrieved_examples = data.get_nearest_examples( # retrieve results
        "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
        k=k # get only top k results
    )
    return scores, retrieved_examples
# returns scores (List[float]): the retrieval scores from either FAISS (IndexFlatL2 by default) and examples (dict) format
# called by talk function that passes prompt

#print(scores, retrieved_examples)
print("check2A")


def format_prompt(prompt,retrieved_documents,k):
    """using the retrieved documents we will prompt the model to generate our responses"""   
    PROMPT = f"Question:{prompt}\nContext:"
    for idx in range(k) :
        PROMPT+= f"{retrieved_documents['0'][idx]}\n"
    return PROMPT

# Called by talk function to add retrieved documents to the prompt. Keeps adding text of retrieved documents to string taht are retreived

print("check3")

def talk(prompt, history):
    k = 2 # number of retrieved documents
    scores , retrieved_documents = search(prompt, k) # get retrival scores and examples in dictionary format based on the prompt passed
    print(retrieved_documents.keys())
    formatted_prompt = format_prompt(prompt,retrieved_documents,k) # create a new prompt using the retrieved documents
    print(retrieved_documents['0'])
    print(formatted_prompt)
    formatted_prompt = formatted_prompt[:600] # to avoid memory issue
 #   print(retrieved_documents['0'][1]
 #   print(retrieved_documents['0'][2] 
    print(formatted_prompt)
    messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]  
    # binding the system context and new prompt for LLM
    # the chat template structure should be based on text generation model format
    print("check3B")    
    input_ids = tokenizer.apply_chat_template(
      messages,
      add_generation_prompt=True,
      return_tensors="pt"
    ).to(model.device)
    # tell the model to generate
    # add_generation_prompt argument tells the template to add tokens that indicate the start of a bot response
    print("check3C")
    outputs = model.generate(
      input_ids,
      max_new_tokens=300,
      eos_token_id=terminators,
      do_sample=True,
      temperature=0.4,
      top_p=0.95,
    )
    # calling the model to generate response based on message/ input
    # do_sample if set to True uses strategies to select the next token from the probability distribution over the entire vocabulary
    # temperature controls randomness. more renadomness with higher temperature
    # only the tokens comprising the top_p probability mass are considered for responses
    # This output is a data structure containing all the information returned by generate(), but that can also be used as tuple or dictionary.
    print("check3D")
    streamer = TextIteratorStreamer(
            tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
            )
    # stores print-ready text in a queue, to be used by a downstream application as an iterator. removes specail tokens in generated text. 
    # timeout for text queue. tokenizer for decoding tokens
    # called by generate_kwargs
    print("check3E")
    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens= 200,
        do_sample=True,
        top_p=0.95,
        temperature=0.4,
        eos_token_id=terminators,
    )
    # send additional parameters to model for generation
    print("check3F")
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    # to process multiple instances
    t.start()
    # start a thread
    print("check3G")
    outputs = []
    for text in streamer:
        outputs.append(text)
        print(outputs)
        yield "".join(outputs)
        print("check3H")

    pd.options.display.max_colwidth = 800

    outputstring = ''.join(outputs)

    global historylog
    historynew = {
       "Prompt": prompt,
       "Output": outputstring
    }
    historylog.append(historynew)
    return historylog
    print(historylog)
    
#    history.update({prompt: outputstring})
#    print(history)
    #print(memory_string2)
    #with open(logfile, 'a', encoding='utf-8') as f:
      #  f.write(memory_string2)
     #   f.write('\n')
    #f.close()
    #print(logfile)
    #logfile.push_to_hub("Namitg02/",token = HF_TOKEN)
    #memory_panda = pd.DataFrame()
    #if len(memory_panda) == 0:
    #    memory_panda = pd.DataFrame(memory_string)
    #else:
    #    memory_panda = memory_panda.append(memory_string, ignore_index=True)
    #print(memory_panda.iloc[[0]])
    
    #memory_panda.loc[len(memory_panda.index)] = ['prompt', outputstring] 
    #print(memory_panda.iloc[[1]])
    #Logfile = Dataset.from_pandas(memory_panda)
    #Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)

    
TITLE = "AI Copilot for Diabetes Patients"

DESCRIPTION = "I provide answers to concerns related to Diabetes"

import gradio as gr
# Design chatbot
demo = gr.ChatInterface(
    fn=talk,
    chatbot=gr.Chatbot(
        show_label=True,
        show_share_button=True,
        show_copy_button=True,
        likeable=True,
        layout="bubble",
        bubble_full_width=False,
    ),
    theme="Soft",
    examples=[["what is Diabetes? "]],
    title=TITLE,
    description=DESCRIPTION,
    
)
# launch chatbot and calls the talk function which in turn calls other functions
print("check3I")
print(historylog)
memory_panda = pd.DataFrame(historylog)
Logfile = Dataset.from_pandas(memory_panda)
Logfile.push_to_hub("Namitg02/Logfile",token = HF_TOKEN)
demo.launch()