Spaces:
Running
Running
File size: 27,717 Bytes
038f313 1cee504 c5a20a4 ea82e64 75bf974 e45083a 038f313 db00df1 75d7afe e45083a 70d58c7 75d7afe 75bf974 6a6b98f 75d7afe e45083a 70d58c7 e45083a 70d58c7 e45083a 70d58c7 e45083a 70d58c7 57cb471 70d58c7 75d7afe 70d58c7 75d7afe b47b1e3 57cb471 e45083a 038f313 e45083a 27c8b8d 038f313 3a64d68 98674ca 9e12544 75bf974 9e12544 e45083a 038f313 e45083a 9e12544 e45083a 75d7afe e45083a 75d7afe e45083a 8f939dc e45083a 1cee504 e45083a 75d7afe e45083a 75d7afe 901bafe e45083a 75d7afe e45083a 75d7afe e45083a 75d7afe e45083a 75d7afe e45083a 75d7afe e45083a d2ae72a e45083a 8f939dc e45083a 8f939dc e45083a 75bf974 e45083a 75bf974 e45083a 70d58c7 e45083a 70d58c7 8f939dc e45083a 75bf974 e45083a 75d7afe e45083a 8f939dc 57fd5c0 e45083a 8f939dc e45083a 75d7afe e45083a 75d7afe e45083a 57cb471 e45083a d92e5cd e45083a 57cb471 e45083a b0cbd1c e45083a 75bf974 e45083a 75d7afe e45083a 8f939dc e45083a 11de92c e45083a a9862a1 e45083a 769901b 75d7afe e45083a 77298b9 e45083a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
import requests
from mcp.client.sse import SSEServerParameters
from mcp.jsonrpc.client import JsonRpcClient
from mcp.client.base import ServerCapabilities
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
# If it's already a PIL Image
if isinstance(image_path, Image.Image):
image = image_path
else:
# Try to open the image file
image = Image.open(image_path)
# Convert to RGB if image has an alpha channel (RGBA)
if image.mode == 'RGBA':
image = image.convert('RGB')
# Encode to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
# MCP Client class for handling MCP server connections
class MCPClient:
def __init__(self, url):
self.url = url
self.client = None
self.capabilities = None
self.tools = None
def connect(self):
try:
# Connect to the MCP server using SSE
server_params = SSEServerParameters(url=self.url)
self.client = JsonRpcClient(server_params)
self.client.connect()
# Get server capabilities
self.capabilities = ServerCapabilities(self.client)
# List available tools
self.tools = self.capabilities.list_tools()
print(f"Connected to MCP Server. Available tools: {[tool.name for tool in self.tools]}")
return True
except Exception as e:
print(f"Error connecting to MCP server: {e}")
return False
def call_tool(self, tool_name, **kwargs):
if not self.client or not self.tools:
print("MCP client not initialized or no tools available")
return None
# Find the tool with the given name
tool = next((t for t in self.tools if t.name == tool_name), None)
if not tool:
print(f"Tool '{tool_name}' not found")
return None
try:
# Call the tool with the given arguments
result = self.client.call_method("tools/call", {"name": tool_name, "arguments": kwargs})
return result
except Exception as e:
print(f"Error calling tool '{tool_name}': {e}")
return None
def close(self):
if self.client:
try:
self.client.close()
print("MCP client connection closed")
except Exception as e:
print(f"Error closing MCP client connection: {e}")
# Function to convert text to audio using Kokoro MCP server
def text_to_audio(text, speed=1.0, mcp_url=None):
"""Convert text to audio using Kokoro MCP server if available.
Args:
text (str): Text to convert to speech
speed (float): Speed multiplier for speech
mcp_url (str): URL of the Kokoro MCP server
Returns:
tuple: (sample_rate, audio_array) or None if conversion fails
"""
if not text or not mcp_url:
return None
try:
# Connect to MCP server
mcp_client = MCPClient(mcp_url)
if not mcp_client.connect():
return None
# Call the text_to_audio tool
result = mcp_client.call_tool("text_to_audio", text=text, speed=speed)
mcp_client.close()
if not result:
return None
# Process the result - convert base64 audio to numpy array
import numpy as np
import base64
# Assuming the result contains base64-encoded WAV data
audio_b64 = result
audio_data = base64.b64decode(audio_b64)
# Convert to numpy array - this is simplified and may need adjustment
# based on the actual output format from the Kokoro MCP server
import io
import soundfile as sf
audio_io = io.BytesIO(audio_data)
audio_array, sample_rate = sf.read(audio_io)
return (sample_rate, audio_array)
except Exception as e:
print(f"Error converting text to audio: {e}")
return None
def respond(
message,
image_files,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model,
mcp_server_url=None,
tts_enabled=False,
tts_speed=1.0
):
print(f"Received message: {message}")
print(f"Received {len(image_files) if image_files else 0} images")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
print(f"MCP Server URL: {mcp_server_url}")
print(f"TTS Enabled: {tts_enabled}")
# Determine which token to use
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
# Initialize the Inference Client with the provider and appropriate token
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Create multimodal content if images are present
if image_files and len(image_files) > 0:
# Process the user message to include images
user_content = []
# Add text part if there is any
if message and message.strip():
user_content.append({
"type": "text",
"text": message
})
# Add image parts
for img in image_files:
if img is not None:
# Get raw image data from path
try:
encoded_image = encode_image(img)
if encoded_image:
user_content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}"
}
})
except Exception as e:
print(f"Error encoding image: {e}")
else:
# Text-only message
user_content = message
# Prepare messages in the format expected by the API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
# Handle both text-only and multimodal messages in history
if isinstance(user_part, tuple) and len(user_part) == 2:
# This is a multimodal message with text and images
history_content = []
if user_part[0]: # Text
history_content.append({
"type": "text",
"text": user_part[0]
})
for img in user_part[1]: # Images
if img:
try:
encoded_img = encode_image(img)
if encoded_img:
history_content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_img}"
}
})
except Exception as e:
print(f"Error encoding history image: {e}")
messages.append({"role": "user", "content": history_content})
else:
# Regular text message
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context (type: {type(user_part)})")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": user_content})
print(f"Latest user message appended (content type: {type(user_content)})")
# Determine which model to use, prioritizing custom_model if provided
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print(f"Sending request to {provider} provider.")
# Prepare parameters for the chat completion request
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
# Use the InferenceClient for making the request
try:
# Create a generator for the streaming response
stream = client.chat_completion(
model=model_to_use,
messages=messages,
stream=True,
**parameters
)
print("Received tokens: ", end="", flush=True)
# Process the streaming response
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
# Extract the content from the response
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
print(token_text, end="", flush=True)
response += token_text
yield response
print()
except Exception as e:
print(f"Error during inference: {e}")
response += f"\nError: {str(e)}"
yield response
print("Completed response generation.")
# If TTS is enabled and we have a valid MCP server URL, convert response to audio
if tts_enabled and mcp_server_url and response:
try:
print(f"Converting response to audio using MCP server: {mcp_server_url}")
audio_data = text_to_audio(response, tts_speed, mcp_server_url)
if audio_data:
# Here we would need to handle returning both text and audio
# This would require modifying the Gradio interface to support this
print("Successfully converted text to audio")
# For now, we'll just return the text response
except Exception as e:
print(f"Error converting text to audio: {e}")
# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# Function to test MCP server connection
def test_mcp_connection(mcp_url):
if not mcp_url or not mcp_url.strip():
return "Please enter an MCP server URL"
try:
mcp_client = MCPClient(mcp_url)
if mcp_client.connect():
tools = [tool.name for tool in mcp_client.tools]
mcp_client.close()
return f"Successfully connected to MCP server. Available tools: {', '.join(tools)}"
else:
return "Failed to connect to MCP server"
except Exception as e:
return f"Error connecting to MCP server: {str(e)}"
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# Create the chatbot component
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
layout="panel"
)
print("Chatbot interface created.")
# Multimodal textbox for messages (combines text and file uploads)
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=False,
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"]
)
# Create accordion for settings
with gr.Accordion("Settings", open=False):
# System message
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
# Generation parameters
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
with gr.Column():
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Provider selection
providers_list = [
"hf-inference", # Default Hugging Face Inference
"cerebras", # Cerebras provider
"together", # Together AI
"sambanova", # SambaNova
"novita", # Novita AI
"cohere", # Cohere
"fireworks-ai", # Fireworks AI
"hyperbolic", # Hyperbolic
"nebius", # Nebius
]
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider",
)
# New BYOK textbox
byok_textbox = gr.Textbox(
value="",
label="BYOK (Bring Your Own Key)",
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
placeholder="Enter your Hugging Face API token",
type="password" # Hide the API key for security
)
# Custom model box
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# Model search
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
# Featured models list
# Updated to include multimodal models
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct",
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2",
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct",
"microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
interactive=True
)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
# New Accordion for MCP Settings
with gr.Accordion("MCP Server Settings", open=False):
mcp_server_url = gr.Textbox(
value="",
label="MCP Server URL",
info="Enter the URL of an MCP server to connect to (e.g., https://example-kokoro-mcp.hf.space/gradio_api/mcp/sse)",
placeholder="https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"
)
test_connection_btn = gr.Button("Test Connection")
connection_status = gr.Textbox(
label="Connection Status",
interactive=False
)
tts_enabled = gr.Checkbox(
label="Enable Text-to-Speech",
value=False,
info="Convert AI responses to speech using the Kokoro TTS service"
)
tts_speed = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speech Speed"
)
gr.Markdown("""
### About MCP Support
This app can connect to Model Context Protocol (MCP) servers to extend its capabilities.
For example, connecting to a Kokoro MCP server allows for text-to-speech conversion.
To use this feature:
1. Enter the MCP server URL
2. Test the connection
3. Enable the desired features (e.g., TTS)
4. Chat normally with the AI
Note: TTS functionality requires an active connection to a Kokoro MCP server.
""")
# Chat history state
chat_history = gr.State([])
# Connect the test connection button
test_connection_btn.click(
fn=test_mcp_connection,
inputs=[mcp_server_url],
outputs=[connection_status]
)
# Function to filter models
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
# Function to set custom model from radio
def set_custom_model_from_radio(selected):
print(f"Featured model selected: {selected}")
return selected
# Function for the chat interface
def user(user_message, history):
# Debug logging for troubleshooting
print(f"User message received: {user_message}")
# Skip if message is empty (no text and no files)
if not user_message or (not user_message.get("text") and not user_message.get("files")):
print("Empty message, skipping")
return history
# Prepare multimodal message format
text_content = user_message.get("text", "").strip()
files = user_message.get("files", [])
print(f"Text content: {text_content}")
print(f"Files: {files}")
# If both text and files are empty, skip
if not text_content and not files:
print("No content to display")
return history
# Add message with images to history
if files and len(files) > 0:
# Add text message first if it exists
if text_content:
# Add a separate text message
print(f"Adding text message: {text_content}")
history.append([text_content, None])
# Then add each image file separately
for file_path in files:
if file_path and isinstance(file_path, str):
print(f"Adding image: {file_path}")
# Add image as a separate message with no text
history.append([f"", None])
return history
else:
# For text-only messages
print(f"Adding text-only message: {text_content}")
history.append([text_content, None])
return history
# Define bot response function
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model, mcp_url, tts_on, tts_spd):
# Check if history is valid
if not history or len(history) == 0:
print("No history to process")
return history
# Get the most recent message and detect if it's an image
user_message = history[-1][0]
print(f"Processing user message: {user_message}")
is_image = False
image_path = None
text_content = user_message
# Check if this is an image message (marked with ![Image])
if isinstance(user_message, str) and user_message.startswith(":
is_image = True
# Extract image path from markdown format 
image_path = user_message.replace(".replace(")", "")
print(f"Image detected: {image_path}")
text_content = "" # No text for image-only messages
# Look back for text context if this is an image
text_context = ""
if is_image and len(history) > 1:
# Use the previous message as context if it's text
prev_message = history[-2][0]
if isinstance(prev_message, str) and not prev_message.startswith(":
text_context = prev_message
print(f"Using text context from previous message: {text_context}")
# Process message through respond function
history[-1][1] = ""
# Use either the image or text for the API
if is_image:
# For image messages
for response in respond(
text_context, # Text context from previous message if any
[image_path], # Current image
history[:-1], # Previous history
system_msg,
max_tokens,
temperature,
top_p,
freq_penalty,
seed,
provider,
api_key,
custom_model,
search_term,
selected_model,
mcp_url,
tts_on,
tts_spd
):
history[-1][1] = response
yield history
else:
# For text-only messages
for response in respond(
text_content, # Text message
None, # No image
history[:-1], # Previous history
system_msg,
max_tokens,
temperature,
top_p,
freq_penalty,
seed,
provider,
api_key,
custom_model,
search_term,
selected_model,
mcp_url,
tts_on,
tts_spd
):
history[-1][1] = response
yield history
# Event handlers - only using the MultimodalTextbox's built-in submit functionality
msg.submit(
user,
[msg, chatbot],
[chatbot],
queue=False
).then(
bot,
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
model_search_box, featured_model_radio, mcp_server_url, tts_enabled, tts_speed],
[chatbot]
).then(
lambda: {"text": "", "files": []}, # Clear inputs after submission
None,
[msg]
)
# Connect the model filter to update the radio choices
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
print("Model search box change event linked.")
# Connect the featured model radio to update the custom model box
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
print("Featured model radio button change event linked.")
# Connect the BYOK textbox to validate provider selection
byok_textbox.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
print("BYOK textbox change event linked.")
# Also validate provider when the radio changes to ensure consistency
provider_radio.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
print("Provider radio button change event linked.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=True) |