File size: 7,380 Bytes
be3a2ca
a928ae7
46020d8
dc53a20
 
a928ae7
dc53a20
a928ae7
 
bbe1084
c2710ab
be3a2ca
 
a244d5b
c2710ab
a928ae7
c2710ab
243eb87
dc53a20
bbe1084
 
a928ae7
dc53a20
c2710ab
 
 
a928ae7
dc53a20
a928ae7
 
bbe1084
dc53a20
b2cfabe
dc53a20
46020d8
dc53a20
 
 
 
 
 
 
b2cfabe
dc53a20
 
 
 
 
 
 
 
 
 
 
a928ae7
dc53a20
46020d8
dc53a20
 
 
 
 
 
a928ae7
dc53a20
a928ae7
dc53a20
 
 
 
b2cfabe
dc53a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2710ab
b2cfabe
dc53a20
b2cfabe
313edde
 
 
b2cfabe
dc53a20
313edde
dc53a20
c2710ab
313edde
 
dc53a20
c2710ab
 
b471940
 
 
560ed75
b471940
 
 
 
 
13de781
 
c2710ab
13de781
 
b471940
 
 
 
560ed75
 
 
 
 
 
c2710ab
dc53a20
313edde
dc53a20
313edde
dc53a20
 
bbe1084
a928ae7
b2cfabe
dc53a20
c5e2057
c2710ab
 
 
 
c5e2057
c2710ab
 
 
 
 
 
 
 
 
 
c5e2057
a928ae7
 
dc53a20
4314dbc
 
 
dc53a20
 
 
4314dbc
 
dc53a20
 
 
4314dbc
 
 
c2710ab
 
dc53a20
4314dbc
4e117fe
672c572
 
 
4314dbc
d7d0c24
 
dc53a20
 
 
03ef9e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc53a20
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from fastapi import FastAPI
import os
import pymupdf  # PyMuPDF
from pptx import Presentation
from sentence_transformers import SentenceTransformer
import torch
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
import chromadb
import numpy as np
from sklearn.decomposition import PCA

app = FastAPI()

# Initialize ChromaDB
client = chromadb.PersistentClient(path="/data/chroma_db")
collection = client.get_or_create_collection(name="knowledge_base")

# File Paths
pdf_file = "Sutures and Suturing techniques.pdf"
pptx_file = "impalnt 1.pptx"

# Initialize Embedding Models
text_model = SentenceTransformer('all-MiniLM-L6-v2')
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Image Storage Folder
IMAGE_FOLDER = "/data/extracted_images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)

# Extract Text from PDF
def extract_text_from_pdf(pdf_path):
    try:
        doc = pymupdf.open(pdf_path)
        text = " ".join(page.get_text() for page in doc)
        return text.strip() if text else None
    except Exception as e:
        print(f"Error extracting text from PDF: {e}")
        return None

# Extract Text from PPTX
def extract_text_from_pptx(pptx_path):
    try:
        prs = Presentation(pptx_path)
        text = " ".join(
            shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")
        )
        return text.strip() if text else None
    except Exception as e:
        print(f"Error extracting text from PPTX: {e}")
        return None

# Extract Images from PDF
def extract_images_from_pdf(pdf_path):
    try:
        doc = pymupdf.open(pdf_path)
        images = []
        for i, page in enumerate(doc):
            for img_index, img in enumerate(page.get_images(full=True)):
                xref = img[0]
                image = doc.extract_image(xref)
                img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
                with open(img_path, "wb") as f:
                    f.write(image["image"])
                images.append(img_path)
        return images
    except Exception as e:
        print(f"Error extracting images from PDF: {e}")
        return []

# Extract Images from PPTX
def extract_images_from_pptx(pptx_path):
    try:
        images = []
        prs = Presentation(pptx_path)
        for i, slide in enumerate(prs.slides):
            for shape in slide.shapes:
                if shape.shape_type == 13:
                    img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
                    with open(img_path, "wb") as f:
                        f.write(shape.image.blob)
                    images.append(img_path)
        return images
    except Exception as e:
        print(f"Error extracting images from PPTX: {e}")
        return []

# Convert Text to Embeddings
def get_text_embedding(text):
    return text_model.encode(text).tolist()

# Preload PCA instance globally (to maintain consistency across calls)
pca = PCA(n_components=384)

def get_image_embedding(image_path):
    try:
        # Load the image
        image = Image.open(image_path)
        inputs = processor(images=image, return_tensors="pt")
        
        # Extract image embeddings
        with torch.no_grad():
            image_embedding = model.get_image_features(**inputs).numpy().flatten()
        
         # Print the actual embedding dimension
        print(f"Image embedding shape: {image_embedding.shape}")

       """ # CASE 1: Embedding is already 384-dimensional ✅
        if len(image_embedding) == 384:
            return image_embedding.tolist()

        # CASE 2: Embedding is larger than 384 (e.g., 512) → Apply PCA ✅
        elif len(image_embedding) > 384:
            
            pca = PCA(n_components=384, svd_solver='auto')  # Auto solver for stability
            image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
            print(f"Reduced image embedding shape: {image_embedding.shape}")
           

        # CASE 3: Embedding is smaller than 384 → Apply Padding ❌
        else:
            padding = np.zeros(384 - len(image_embedding))  # Create padding vector
            image_embedding = np.concatenate((image_embedding, padding))  # Append padding"""
         # Truncate to 384 dimensions
        image_embedding = image_embedding[:384]

        # Print the final embedding shape
        print(f"Final Image embedding shape: {image_embedding.shape}")
        
        return image_embedding.tolist()
    
    except Exception as e:
        print(f"❌ Error generating image embedding: {e}")
        return None

# Store Data in ChromaDB
def store_data(texts, image_paths):
    for i, text in enumerate(texts):
        if text:
            text_embedding = get_text_embedding(text)
            if len(text_embedding) == 384:
                collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
    
    all_embeddings = [get_image_embedding(img_path) for img_path in image_paths if get_image_embedding(img_path) is not None]
    
    if all_embeddings:
        all_embeddings = np.array(all_embeddings)
        
        # Apply PCA only if necessary
        if all_embeddings.shape[1] != 384:
            pca = PCA(n_components=384)
            all_embeddings = pca.fit_transform(all_embeddings)
        
        for j, img_path in enumerate(image_paths):
            collection.add(ids=[f"image_{j}"], embeddings=[all_embeddings[j].tolist()], documents=[img_path])
    
    print("Data stored successfully!")

# Process and Store from Files
def process_and_store(pdf_path=None, pptx_path=None):
    texts, images = [], []
    if pdf_path:
        pdf_text = extract_text_from_pdf(pdf_path)
        if pdf_text:
            texts.append(pdf_text)
        images.extend(extract_images_from_pdf(pdf_path))
    if pptx_path:
        pptx_text = extract_text_from_pptx(pptx_path)
        if pptx_text:
            texts.append(pptx_text)
        images.extend(extract_images_from_pptx(pptx_path))
    store_data(texts, images)



# FastAPI Endpoints
@app.get("/")
def greet_json():
    # Run Data Processing
    process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
    return {"Document store": "created!"}

@app.get("/retrieval")
def retrieval(query: str):
    try:
        query_embedding = get_text_embedding(query)
        results = collection.query(query_embeddings=[query_embedding], n_results=5)
        #return {"results": results.get("documents", [])}
         # Set a similarity threshold (adjust as needed)
        SIMILARITY_THRESHOLD = 0.7
        
        # Extract documents and similarity scores
        documents = results.get("documents", [[]])[0]  # Ensure we get the first list
        distances = results.get("distances", [[]])[0]  # Ensure we get the first list

        # Filter results based on similarity threshold
        filtered_results = [
            doc for doc, score in zip(documents, distances) if score >= SIMILARITY_THRESHOLD
        ]

        # Return filtered results or indicate no match found
        if filtered_results:
            return {"results": filtered_results}
        else:
            return {"results": "No relevant match found in ChromaDB."}
    except Exception as e:
        return {"error": str(e)}