File size: 18,123 Bytes
80585bc 7fa4ec7 80585bc 2ceb6a1 18cc344 fd94e5f 7fa4ec7 18cc344 f5b37b3 80585bc aabfb0a 80585bc 18cc344 f5b37b3 18cc344 f5b37b3 18cc344 c80f87c 18cc344 c80f87c 18cc344 c80f87c 18cc344 f5b37b3 18cc344 7fa4ec7 728272c 7fa4ec7 728272c f5b37b3 728272c f5b37b3 728272c f5b37b3 aabfb0a 728272c 2ceb6a1 728272c 2ceb6a1 728272c f5b37b3 aabfb0a 7fa4ec7 f5b37b3 2ceb6a1 f5b37b3 2ceb6a1 728272c aabfb0a 7fa4ec7 2ceb6a1 7406e96 f5b37b3 2ceb6a1 f5b37b3 2ceb6a1 7fa4ec7 fd94e5f f26cc53 7fa4ec7 2ceb6a1 aabfb0a 2ceb6a1 aabfb0a ed38ea6 f5b37b3 728272c 3c13553 728272c 3c13553 728272c 18cc344 f5b37b3 18cc344 f5b37b3 18cc344 116c918 18cc344 fe4d9aa 18cc344 aabfb0a 18cc344 def7c02 18cc344 def7c02 7fa4ec7 f5b37b3 7fa4ec7 18cc344 f5b37b3 7fa4ec7 18cc344 f5b37b3 fd94e5f f5b37b3 8461811 18cc344 f5b37b3 18cc344 f5b37b3 18cc344 f5b37b3 18cc344 f5b37b3 18cc344 f5b37b3 18cc344 2ceb6a1 f5b37b3 fd94e5f 80585bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
import streamlit as st
import torch
from PIL import Image
import numpy as np
from transformers import ViTFeatureExtractor, ViTForImageClassification
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import logging
import faiss
from typing import List, Dict
from datetime import datetime
from groq import Groq
import os
from functools import lru_cache
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class RAGSystem:
def __init__(self):
# Load models only when needed
self._embedding_model = None
self._vector_store = None
self._knowledge_base = None
@property
def embedding_model(self):
if self._embedding_model is None:
self._embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
return self._embedding_model
@property
def knowledge_base(self):
if self._knowledge_base is None:
self._knowledge_base = self.load_knowledge_base()
return self._knowledge_base
@property
def vector_store(self):
if self._vector_store is None:
self._vector_store = self.create_vector_store()
return self._vector_store
@staticmethod
@lru_cache(maxsize=1) # Cache the knowledge base
def load_knowledge_base() -> List[Dict]:
"""Load and preprocess knowledge base"""
kb = {
"spalling": [
{
"severity": "Critical",
"description": "Severe concrete spalling with exposed reinforcement",
"repair_method": "Remove deteriorated concrete, clean reinforcement",
"immediate_action": "Evacuate area, install support",
"prevention": "Regular inspections, waterproofing"
}
],
"structural_cracks": [
{
"severity": "High",
"description": "Active structural cracks >5mm width",
"repair_method": "Structural analysis, epoxy injection",
"immediate_action": "Install crack monitors",
"prevention": "Regular monitoring, load management"
}
],
"surface_deterioration": [
{
"severity": "Medium",
"description": "Surface scaling and deterioration",
"repair_method": "Surface preparation, patch repair",
"immediate_action": "Document extent, plan repairs",
"prevention": "Surface sealers, proper drainage"
}
],
"corrosion": [
{
"severity": "High",
"description": "Corrosion of reinforcement leading to cracks",
"repair_method": "Remove rust, apply inhibitors",
"immediate_action": "Isolate affected area",
"prevention": "Anti-corrosion coatings, proper drainage"
}
],
"efflorescence": [
{
"severity": "Low",
"description": "White powder deposits on concrete surfaces",
"repair_method": "Surface cleaning, sealant application",
"immediate_action": "Identify moisture source",
"prevention": "Improve waterproofing, reduce moisture ingress"
}
],
"delamination": [
{
"severity": "Medium",
"description": "Separation of layers in concrete",
"repair_method": "Resurface or replace delaminated sections",
"immediate_action": "Inspect bonding layers",
"prevention": "Proper curing and bonding agents"
}
],
"honeycombing": [
{
"severity": "Medium",
"description": "Voids in concrete caused by improper compaction",
"repair_method": "Grout injection, patch repair",
"immediate_action": "Assess structural impact",
"prevention": "Proper vibration during pouring"
}
],
"water_leakage": [
{
"severity": "High",
"description": "Water ingress through cracks or joints",
"repair_method": "Injection grouting, waterproofing membranes",
"immediate_action": "Stop water flow, apply sealants",
"prevention": "Drainage systems, joint sealing"
}
],
"settlement_cracks": [
{
"severity": "High",
"description": "Cracks due to uneven foundation settlement",
"repair_method": "Foundation underpinning, grouting",
"immediate_action": "Monitor movement, stabilize foundation",
"prevention": "Soil compaction, proper foundation design"
}
],
"shrinkage_cracks": [
{
"severity": "Low",
"description": "Minor cracks caused by shrinkage during curing",
"repair_method": "Sealant application, surface repairs",
"immediate_action": "Monitor cracks",
"prevention": "Proper curing and moisture control"
}
]
}
documents = []
for category, items in kb.items():
for item in items:
doc_text = f"Category: {category}\n"
for key, value in item.items():
doc_text += f"{key}: {value}\n"
documents.append({"text": doc_text, "metadata": {"category": category}})
return documents
def create_vector_store(self):
"""Create FAISS vector store"""
texts = [doc["text"] for doc in self.knowledge_base]
embeddings = self.embedding_model.encode(texts)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings).astype('float32'))
return index
@lru_cache(maxsize=32) # Cache recent query results
def get_relevant_context(self, query: str, k: int = 2) -> str:
"""Retrieve relevant context based on query"""
try:
query_embedding = self.embedding_model.encode([query])
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
return context
except Exception as e:
logger.error(f"Error retrieving context: {e}")
return ""
class ImageAnalyzer:
def __init__(self, model_name="microsoft/swin-base-patch4-window7-224-in22k"):
self.device = "cpu"
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
self.model_name = model_name
self._model = None
self._feature_extractor = None
@property
def model(self):
if self._model is None:
self._model = self._load_model()
return self._model
@property
def feature_extractor(self):
if self._feature_extractor is None:
self._feature_extractor = self._load_feature_extractor()
return self._feature_extractor
def _load_feature_extractor(self):
"""Load the appropriate feature extractor based on model type"""
try:
if "swin" in self.model_name:
from transformers import AutoFeatureExtractor
return AutoFeatureExtractor.from_pretrained(self.model_name)
elif "convnext" in self.model_name:
from transformers import ConvNextFeatureExtractor
return ConvNextFeatureExtractor.from_pretrained(self.model_name)
else:
from transformers import ViTFeatureExtractor
return ViTFeatureExtractor.from_pretrained(self.model_name)
except Exception as e:
logger.error(f"Feature extractor initialization error: {e}")
return None
def _load_model(self):
try:
if "swin" in self.model_name:
from transformers import SwinForImageClassification
model = SwinForImageClassification.from_pretrained(
self.model_name,
num_labels=len(self.defect_classes),
ignore_mismatched_sizes=True
)
elif "convnext" in self.model_name:
from transformers import ConvNextForImageClassification
model = ConvNextForImageClassification.from_pretrained(
self.model_name,
num_labels=len(self.defect_classes),
ignore_mismatched_sizes=True
)
else:
from transformers import ViTForImageClassification
model = ViTForImageClassification.from_pretrained(
self.model_name,
num_labels=len(self.defect_classes),
ignore_mismatched_sizes=True
)
model = model.to(self.device)
# Reinitialize the classifier layer
with torch.no_grad():
if hasattr(model, 'classifier'):
in_features = model.classifier.in_features
model.classifier = torch.nn.Linear(in_features, len(self.defect_classes))
elif hasattr(model, 'head'):
in_features = model.head.in_features
model.head = torch.nn.Linear(in_features, len(self.defect_classes))
return model
except Exception as e:
logger.error(f"Model initialization error: {e}")
return None
def preprocess_image(self, image_bytes):
"""Preprocess image for model input"""
return _cached_preprocess_image(image_bytes, self.model_name)
def analyze_image(self, image):
"""Analyze image for defects"""
try:
if self.model is None:
raise ValueError("Model not properly initialized")
inputs = self.feature_extractor(
images=image,
return_tensors="pt"
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
confidence_threshold = 0.3
results = {
self.defect_classes[i]: float(probs[i])
for i in range(len(self.defect_classes))
if float(probs[i]) > confidence_threshold
}
if not results:
max_idx = torch.argmax(probs)
results = {self.defect_classes[int(max_idx)]: float(probs[max_idx])}
return results
except Exception as e:
logger.error(f"Analysis error: {str(e)}")
return None
@st.cache_data
def _cached_preprocess_image(image_bytes, model_name):
"""Cached version of image preprocessing"""
try:
image = Image.open(image_bytes)
if image.mode != 'RGB':
image = image.convert('RGB')
# Adjust size based on model requirements
if "convnext" in model_name:
width, height = 384, 384
else:
width, height = 224, 224
image = image.resize((width, height), Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Image preprocessing error: {e}")
return None
@st.cache_data
def get_groq_response(query: str, context: str) -> str:
"""Get response from Groq LLM with caching"""
try:
if not os.getenv("GROQ_API_KEY"):
return "Error: Groq API key not configured"
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
prompt = f"""Based on the following context about construction defects, answer the question.
Context: {context}
Question: {query}
Provide a detailed answer based on the given context."""
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a construction defect analysis expert."
},
{
"role": "user",
"content": prompt
}
],
model="llama-3.3-70b-versatile",
temperature=0.7,
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Groq API error: {e}", exc_info=True)
return f"Error: Unable to get response from AI model. Exception: {str(e)}"
def main():
st.set_page_config(
page_title="Smart Construction Defect Analyzer",
page_icon="🏗️",
layout="wide"
)
st.title("🏗️ Smart Construction Defect Analyzer")
# Initialize systems in session state if not present
if 'analyzer' not in st.session_state:
st.session_state.analyzer = ImageAnalyzer()
if 'rag_system' not in st.session_state:
st.session_state.rag_system = RAGSystem()
col1, col2 = st.columns([1, 1])
with col1:
st.subheader("Image Analysis")
uploaded_file = st.file_uploader(
"Upload a construction image for analysis",
type=["jpg", "jpeg", "png"],
key="image_uploader" # Add key for proper state management
)
if uploaded_file is not None:
try:
# Create a placeholder for the image
image_placeholder = st.empty()
# Process image with progress indicator
with st.spinner('Processing image...'):
processed_image = st.session_state.analyzer.preprocess_image(uploaded_file)
if processed_image:
image_placeholder.image(processed_image, caption='Uploaded Image', use_container_width=True)
# Analyze image with progress bar
progress_bar = st.progress(0)
with st.spinner('Analyzing defects...'):
results = st.session_state.analyzer.analyze_image(processed_image)
progress_bar.progress(100)
if results:
st.success('Analysis complete!')
# Display results
st.subheader("Detected Defects")
fig, ax = plt.subplots(figsize=(8, 4))
defects = list(results.keys())
probs = list(results.values())
ax.barh(defects, probs)
ax.set_xlim(0, 1)
plt.tight_layout()
st.pyplot(fig)
most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
st.info(f"Most likely defect: {most_likely_defect}")
else:
st.warning("No defects detected or analysis failed. Please try another image.")
else:
st.error("Failed to process image. Please try another one.")
except Exception as e:
st.error(f"Error processing image: {str(e)}")
logger.error(f"Process error: {e}")
with col2:
st.subheader("Ask About Defects")
user_query = st.text_input(
"Ask a question about the defects or repairs:",
help="Example: What are the repair methods for spalling?"
)
if user_query:
with st.spinner('Getting answer...'):
# Get context from RAG system
context = st.session_state.rag_system.get_relevant_context(user_query)
if context:
# Get response from Groq
response = get_groq_response(user_query, context)
if not response.startswith("Error"):
st.write("Answer:")
st.markdown(response)
else:
st.error(response)
with st.expander("View retrieved information"):
st.text(context)
else:
st.error("Could not find relevant information. Please try rephrasing your question.")
with st.sidebar:
st.header("About")
st.write("""
This tool helps analyze construction defects in images and provides
information about repair methods and best practices.
Features:
- Image analysis for defect detection
- Information lookup for repair methods
- Expert AI responses to your questions
""")
# Display API status
if os.getenv("GROQ_API_KEY"):
st.success("Groq API: Connected")
else:
st.error("Groq API: Not configured")
# Add settings section
st.subheader("Settings")
if st.button("Clear Cache"):
st.cache_data.clear()
st.success("Cache cleared!")
if __name__ == "__main__":
main() |