File size: 18,123 Bytes
80585bc
 
7fa4ec7
80585bc
2ceb6a1
18cc344
fd94e5f
7fa4ec7
18cc344
 
 
 
 
f5b37b3
80585bc
aabfb0a
 
 
80585bc
18cc344
 
f5b37b3
 
 
 
18cc344
f5b37b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cc344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c80f87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cc344
 
c80f87c
18cc344
 
 
 
 
 
 
c80f87c
18cc344
 
 
 
 
 
 
 
 
 
 
f5b37b3
18cc344
 
 
 
 
 
 
 
 
 
 
7fa4ec7
728272c
 
7fa4ec7
728272c
f5b37b3
 
 
 
 
 
 
 
 
 
 
 
728272c
f5b37b3
 
728272c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b37b3
aabfb0a
728272c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ceb6a1
728272c
2ceb6a1
728272c
 
 
 
 
 
 
f5b37b3
aabfb0a
7fa4ec7
f5b37b3
2ceb6a1
f5b37b3
2ceb6a1
728272c
aabfb0a
7fa4ec7
2ceb6a1
7406e96
f5b37b3
 
 
2ceb6a1
f5b37b3
2ceb6a1
 
7fa4ec7
 
fd94e5f
 
f26cc53
7fa4ec7
2ceb6a1
 
 
 
 
 
 
 
 
 
 
 
 
aabfb0a
 
2ceb6a1
aabfb0a
ed38ea6
f5b37b3
728272c
3c13553
 
 
 
 
 
728272c
 
 
 
 
 
3c13553
 
 
 
 
728272c
 
18cc344
f5b37b3
18cc344
f5b37b3
 
 
18cc344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116c918
18cc344
 
 
 
fe4d9aa
 
18cc344
aabfb0a
18cc344
def7c02
18cc344
 
 
 
def7c02
7fa4ec7
f5b37b3
 
 
 
 
7fa4ec7
18cc344
 
 
 
f5b37b3
 
 
 
 
7fa4ec7
18cc344
 
f5b37b3
 
fd94e5f
f5b37b3
 
 
 
8461811
18cc344
f5b37b3
 
 
 
 
18cc344
f5b37b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cc344
f5b37b3
 
18cc344
f5b37b3
18cc344
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b37b3
 
 
 
 
 
 
 
 
 
 
 
 
 
18cc344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ceb6a1
 
 
f5b37b3
 
 
fd94e5f
80585bc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import streamlit as st
import torch
from PIL import Image
import numpy as np
from transformers import ViTFeatureExtractor, ViTForImageClassification
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import logging
import faiss
from typing import List, Dict
from datetime import datetime
from groq import Groq
import os
from functools import lru_cache

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class RAGSystem:
    def __init__(self):
        # Load models only when needed
        self._embedding_model = None
        self._vector_store = None
        self._knowledge_base = None

    @property
    def embedding_model(self):
        if self._embedding_model is None:
            self._embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
        return self._embedding_model

    @property
    def knowledge_base(self):
        if self._knowledge_base is None:
            self._knowledge_base = self.load_knowledge_base()
        return self._knowledge_base

    @property
    def vector_store(self):
        if self._vector_store is None:
            self._vector_store = self.create_vector_store()
        return self._vector_store

    @staticmethod
    @lru_cache(maxsize=1)  # Cache the knowledge base
    def load_knowledge_base() -> List[Dict]:
        """Load and preprocess knowledge base"""
        kb = {
            "spalling": [
                {
                    "severity": "Critical",
                    "description": "Severe concrete spalling with exposed reinforcement",
                    "repair_method": "Remove deteriorated concrete, clean reinforcement",
                    "immediate_action": "Evacuate area, install support",
                    "prevention": "Regular inspections, waterproofing"
                }
            ],
            "structural_cracks": [
                {
                    "severity": "High",
                    "description": "Active structural cracks >5mm width",
                    "repair_method": "Structural analysis, epoxy injection",
                    "immediate_action": "Install crack monitors",
                    "prevention": "Regular monitoring, load management"
                }
            ],
            "surface_deterioration": [
                {
                    "severity": "Medium",
                    "description": "Surface scaling and deterioration",
                    "repair_method": "Surface preparation, patch repair",
                    "immediate_action": "Document extent, plan repairs",
                    "prevention": "Surface sealers, proper drainage"
                }
            ],
            "corrosion": [
                {
                    "severity": "High",
                    "description": "Corrosion of reinforcement leading to cracks",
                    "repair_method": "Remove rust, apply inhibitors",
                    "immediate_action": "Isolate affected area",
                    "prevention": "Anti-corrosion coatings, proper drainage"
                }
            ],
            "efflorescence": [
                {
                    "severity": "Low",
                    "description": "White powder deposits on concrete surfaces",
                    "repair_method": "Surface cleaning, sealant application",
                    "immediate_action": "Identify moisture source",
                    "prevention": "Improve waterproofing, reduce moisture ingress"
                }
            ],
            "delamination": [
                {
                    "severity": "Medium",
                    "description": "Separation of layers in concrete",
                    "repair_method": "Resurface or replace delaminated sections",
                    "immediate_action": "Inspect bonding layers",
                    "prevention": "Proper curing and bonding agents"
                }
            ],
            "honeycombing": [
                {
                    "severity": "Medium",
                    "description": "Voids in concrete caused by improper compaction",
                    "repair_method": "Grout injection, patch repair",
                    "immediate_action": "Assess structural impact",
                    "prevention": "Proper vibration during pouring"
                }
            ],
            "water_leakage": [
                {
                    "severity": "High",
                    "description": "Water ingress through cracks or joints",
                    "repair_method": "Injection grouting, waterproofing membranes",
                    "immediate_action": "Stop water flow, apply sealants",
                    "prevention": "Drainage systems, joint sealing"
                }
            ],
            "settlement_cracks": [
                {
                    "severity": "High",
                    "description": "Cracks due to uneven foundation settlement",
                    "repair_method": "Foundation underpinning, grouting",
                    "immediate_action": "Monitor movement, stabilize foundation",
                    "prevention": "Soil compaction, proper foundation design"
                }
            ],
            "shrinkage_cracks": [
                {
                    "severity": "Low",
                    "description": "Minor cracks caused by shrinkage during curing",
                    "repair_method": "Sealant application, surface repairs",
                    "immediate_action": "Monitor cracks",
                    "prevention": "Proper curing and moisture control"
                }
            ]
        }

        documents = []
        for category, items in kb.items():
            for item in items:
                doc_text = f"Category: {category}\n"
                for key, value in item.items():
                    doc_text += f"{key}: {value}\n"
                documents.append({"text": doc_text, "metadata": {"category": category}})

        return documents

    def create_vector_store(self):
        """Create FAISS vector store"""
        texts = [doc["text"] for doc in self.knowledge_base]
        embeddings = self.embedding_model.encode(texts)
        dimension = embeddings.shape[1]
        index = faiss.IndexFlatL2(dimension)
        index.add(np.array(embeddings).astype('float32'))
        return index

    @lru_cache(maxsize=32)  # Cache recent query results
    def get_relevant_context(self, query: str, k: int = 2) -> str:
        """Retrieve relevant context based on query"""
        try:
            query_embedding = self.embedding_model.encode([query])
            D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
            context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
            return context
        except Exception as e:
            logger.error(f"Error retrieving context: {e}")
            return ""

class ImageAnalyzer:
    def __init__(self, model_name="microsoft/swin-base-patch4-window7-224-in22k"):
        self.device = "cpu"
        self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
        self.model_name = model_name
        self._model = None
        self._feature_extractor = None

    @property
    def model(self):
        if self._model is None:
            self._model = self._load_model()
        return self._model

    @property
    def feature_extractor(self):
        if self._feature_extractor is None:
            self._feature_extractor = self._load_feature_extractor()
        return self._feature_extractor

    def _load_feature_extractor(self):
        """Load the appropriate feature extractor based on model type"""
        try:
            if "swin" in self.model_name:
                from transformers import AutoFeatureExtractor
                return AutoFeatureExtractor.from_pretrained(self.model_name)
            elif "convnext" in self.model_name:
                from transformers import ConvNextFeatureExtractor
                return ConvNextFeatureExtractor.from_pretrained(self.model_name)
            else:
                from transformers import ViTFeatureExtractor
                return ViTFeatureExtractor.from_pretrained(self.model_name)
        except Exception as e:
            logger.error(f"Feature extractor initialization error: {e}")
            return None

    def _load_model(self):
        try:
            if "swin" in self.model_name:
                from transformers import SwinForImageClassification
                model = SwinForImageClassification.from_pretrained(
                    self.model_name,
                    num_labels=len(self.defect_classes),
                    ignore_mismatched_sizes=True
                )
            elif "convnext" in self.model_name:
                from transformers import ConvNextForImageClassification
                model = ConvNextForImageClassification.from_pretrained(
                    self.model_name,
                    num_labels=len(self.defect_classes),
                    ignore_mismatched_sizes=True
                )
            else:
                from transformers import ViTForImageClassification
                model = ViTForImageClassification.from_pretrained(
                    self.model_name,
                    num_labels=len(self.defect_classes),
                    ignore_mismatched_sizes=True
                )

            model = model.to(self.device)
            
            # Reinitialize the classifier layer
            with torch.no_grad():
                if hasattr(model, 'classifier'):
                    in_features = model.classifier.in_features
                    model.classifier = torch.nn.Linear(in_features, len(self.defect_classes))
                elif hasattr(model, 'head'):
                    in_features = model.head.in_features
                    model.head = torch.nn.Linear(in_features, len(self.defect_classes))
                
            return model
        except Exception as e:
            logger.error(f"Model initialization error: {e}")
            return None

    def preprocess_image(self, image_bytes):
        """Preprocess image for model input"""
        return _cached_preprocess_image(image_bytes, self.model_name)

    def analyze_image(self, image):
        """Analyze image for defects"""
        try:
            if self.model is None:
                raise ValueError("Model not properly initialized")

            inputs = self.feature_extractor(
                images=image,
                return_tensors="pt"
            )
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            with torch.no_grad():
                outputs = self.model(**inputs)
            
            probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
            
            confidence_threshold = 0.3
            results = {
                self.defect_classes[i]: float(probs[i]) 
                for i in range(len(self.defect_classes))
                if float(probs[i]) > confidence_threshold
            }
            
            if not results:
                max_idx = torch.argmax(probs)
                results = {self.defect_classes[int(max_idx)]: float(probs[max_idx])}
            
            return results
            
        except Exception as e:
            logger.error(f"Analysis error: {str(e)}")
            return None

@st.cache_data
def _cached_preprocess_image(image_bytes, model_name):
    """Cached version of image preprocessing"""
    try:
        image = Image.open(image_bytes)
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        # Adjust size based on model requirements
        if "convnext" in model_name:
            width, height = 384, 384
        else:
            width, height = 224, 224
            
        image = image.resize((width, height), Image.Resampling.LANCZOS)
        return image
    except Exception as e:
        logger.error(f"Image preprocessing error: {e}")
        return None

@st.cache_data      
def get_groq_response(query: str, context: str) -> str:
    """Get response from Groq LLM with caching"""
    try:
        if not os.getenv("GROQ_API_KEY"):
            return "Error: Groq API key not configured"

        client = Groq(api_key=os.getenv("GROQ_API_KEY"))
        
        prompt = f"""Based on the following context about construction defects, answer the question.
        Context: {context}
        Question: {query}
        Provide a detailed answer based on the given context."""

        response = client.chat.completions.create(
            messages=[
                {
                    "role": "system",
                    "content": "You are a construction defect analysis expert."
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            model="llama-3.3-70b-versatile",
            temperature=0.7,
        )
        return response.choices[0].message.content
    except Exception as e:
        logger.error(f"Groq API error: {e}", exc_info=True)
        return f"Error: Unable to get response from AI model. Exception: {str(e)}"

def main():
    st.set_page_config(
        page_title="Smart Construction Defect Analyzer",
        page_icon="🏗️",
        layout="wide"
    )
    
    st.title("🏗️ Smart Construction Defect Analyzer")
    
    # Initialize systems in session state if not present
    if 'analyzer' not in st.session_state:
        st.session_state.analyzer = ImageAnalyzer()
    if 'rag_system' not in st.session_state:
        st.session_state.rag_system = RAGSystem()
    
    col1, col2 = st.columns([1, 1])
    
    with col1:
        st.subheader("Image Analysis")
        uploaded_file = st.file_uploader(
            "Upload a construction image for analysis",
            type=["jpg", "jpeg", "png"],
            key="image_uploader"  # Add key for proper state management
        )

        if uploaded_file is not None:
            try:
                # Create a placeholder for the image
                image_placeholder = st.empty()
                
                # Process image with progress indicator
                with st.spinner('Processing image...'):
                    processed_image = st.session_state.analyzer.preprocess_image(uploaded_file)
                    if processed_image:
                        image_placeholder.image(processed_image, caption='Uploaded Image', use_container_width=True)
                        
                        # Analyze image with progress bar
                        progress_bar = st.progress(0)
                        with st.spinner('Analyzing defects...'):
                            results = st.session_state.analyzer.analyze_image(processed_image)
                            progress_bar.progress(100)
                        
                        if results:
                            st.success('Analysis complete!')
                            
                            # Display results
                            st.subheader("Detected Defects")
                            fig, ax = plt.subplots(figsize=(8, 4))
                            defects = list(results.keys())
                            probs = list(results.values())
                            ax.barh(defects, probs)
                            ax.set_xlim(0, 1)
                            plt.tight_layout()
                            st.pyplot(fig)
                            
                            most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
                            st.info(f"Most likely defect: {most_likely_defect}")
                        else:
                            st.warning("No defects detected or analysis failed. Please try another image.")
                    else:
                        st.error("Failed to process image. Please try another one.")
                        
            except Exception as e:
                st.error(f"Error processing image: {str(e)}")
                logger.error(f"Process error: {e}")
    
    with col2:
        st.subheader("Ask About Defects")
        user_query = st.text_input(
            "Ask a question about the defects or repairs:",
            help="Example: What are the repair methods for spalling?"
        )
        
        if user_query:
            with st.spinner('Getting answer...'):
                # Get context from RAG system
                context = st.session_state.rag_system.get_relevant_context(user_query)
                
                if context:
                    # Get response from Groq
                    response = get_groq_response(user_query, context)
                    
                    if not response.startswith("Error"):
                        st.write("Answer:")
                        st.markdown(response)
                    else:
                        st.error(response)
                    
                    with st.expander("View retrieved information"):
                        st.text(context)
                else:
                    st.error("Could not find relevant information. Please try rephrasing your question.")

    with st.sidebar:
        st.header("About")
        st.write("""
        This tool helps analyze construction defects in images and provides 
        information about repair methods and best practices.
        
        Features:
        - Image analysis for defect detection
        - Information lookup for repair methods
        - Expert AI responses to your questions
        """)
        
        # Display API status
        if os.getenv("GROQ_API_KEY"):
            st.success("Groq API: Connected")
        else:
            st.error("Groq API: Not configured")
        
        # Add settings section
        st.subheader("Settings")
        if st.button("Clear Cache"):
            st.cache_data.clear()
            st.success("Cache cleared!")

if __name__ == "__main__":
    main()