File size: 11,515 Bytes
15526fe 3db0aec 9814e5f 3db0aec 5ec4050 8b2b9dd 5ec4050 8b2b9dd 5ec4050 d9a6878 3db0aec 8b2b9dd 5ec4050 3db0aec d774ee6 8b2b9dd d774ee6 5ec4050 3db0aec 8b2b9dd 3db0aec d774ee6 3db0aec d774ee6 3db0aec 7030681 d774ee6 5ec4050 3db0aec 5ec4050 3db0aec 5ec4050 8b2b9dd 5ec4050 d774ee6 5ec4050 d774ee6 5ec4050 3db0aec 7030681 5ec4050 d604335 d774ee6 d604335 d774ee6 3db0aec 15526fe 8b2b9dd 5ec4050 8b2b9dd 5ec4050 8b2b9dd 5ec4050 8b2b9dd 5ec4050 8b2b9dd 5ec4050 9814e5f 5ec4050 d774ee6 5ec4050 d774ee6 5ec4050 d774ee6 5ec4050 8b2b9dd d774ee6 5ec4050 d774ee6 5ec4050 d774ee6 5ec4050 d604335 5ec4050 8b2b9dd 5ec4050 d774ee6 5ec4050 d774ee6 5ec4050 d774ee6 5ec4050 d774ee6 5ec4050 9814e5f d604335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import streamlit as st
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch
import time
import gc
import logging
from knowledge_base import KNOWLEDGE_BASE, DAMAGE_TYPES, validate_knowledge_base
from rag_utils import RAGSystem
import structlog
from typing import Optional, Dict, Any
from functools import lru_cache
from dynaconf import Dynaconf
# Configure settings
settings = Dynaconf(
settings_files=['settings.yaml', '.secrets.yaml'],
environments=True
)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = structlog.get_logger()
# Constants
MAX_FILE_SIZE = settings.get('max_file_size', 5 * 1024 * 1024) # 5MB default
MAX_IMAGE_SIZE = settings.get('max_image_size', 1024) # Maximum dimension default
MODEL = None
PROCESSOR = None
RAG_SYSTEM = None
def handle_exceptions(func):
"""Decorator for exception handling"""
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
cleanup_memory()
st.error(f"Error in {func.__name__}: {str(e)}")
logger.error(f"Error in {func.__name__}: {str(e)}", exc_info=True)
return None
return wrapper
def cleanup_memory():
"""Clean up memory and GPU cache"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def init_session_state():
"""Initialize session state variables"""
if 'history' not in st.session_state:
st.session_state.history = []
if 'dark_mode' not in st.session_state:
st.session_state.dark_mode = False
if 'analysis_count' not in st.session_state:
st.session_state.analysis_count = 0
@st.cache_resource(show_spinner="Loading AI model...", ttl=3600*24)
def load_model():
"""Load and cache the model with daily refresh"""
try:
model_name = "google/vit-base-patch16-224"
processor = ViTImageProcessor.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = ViTForImageClassification.from_pretrained(
model_name,
num_labels=len(DAMAGE_TYPES),
ignore_mismatched_sizes=True,
).to(device)
model.eval()
logger.info("Model loaded successfully", device=device)
return model, processor
except Exception as e:
logger.error("Error loading model", error=str(e))
return None, None
def validate_upload(file) -> bool:
"""Validate uploaded file for security"""
if not file:
return False
allowed_extensions = {'jpg', 'jpeg', 'png'}
if not file.name.lower().endswith(tuple(allowed_extensions)):
st.error("Invalid file type. Please upload a JPG or PNG image.")
return False
if file.size > MAX_FILE_SIZE:
st.error(f"File too large. Maximum size is {MAX_FILE_SIZE/1024/1024:.1f}MB.")
return False
if file.type not in ['image/jpeg', 'image/png']:
st.error("Invalid file content type.")
return False
return True
@handle_exceptions
def preprocess_image(uploaded_file) -> Optional[Image.Image]:
"""Preprocess and validate uploaded image"""
image = Image.open(uploaded_file)
if max(image.size) > MAX_IMAGE_SIZE:
ratio = MAX_IMAGE_SIZE / max(image.size)
new_size = tuple([int(dim * ratio) for dim in image.size])
image = image.resize(new_size, Image.Resampling.LANCZOS)
return image
@handle_exceptions
def analyze_damage(image: Image.Image, model: ViTForImageClassification,
processor: ViTImageProcessor) -> Optional[torch.Tensor]:
"""Analyze structural damage in the image"""
progress_bar = st.progress(0)
stages = ['Preprocessing', 'Analysis', 'Results Generation']
try:
device = next(model.parameters()).device
for i, stage in enumerate(stages):
progress_bar.progress((i + 1) / len(stages))
st.write(f"Stage {i+1}/{len(stages)}: {stage}")
if i == 0: # Preprocessing
image = image.convert('RGB')
inputs = processor(images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
elif i == 1: # Analysis
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
elif i == 2: # Results Generation
result = probs.cpu()
return result
except RuntimeError as e:
if "out of memory" in str(e):
cleanup_memory()
st.error("Out of memory. Please try with a smaller image.")
else:
st.error(f"Error analyzing image: {str(e)}")
return None
def generate_downloadable_report(analysis_results: Dict):
"""Generate a downloadable PDF report"""
try:
import io
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
story = []
# Add title
story.append(Paragraph("Structural Damage Analysis Report", styles['Title']))
story.append(Spacer(1, 12))
# Add analysis results
for damage_type, details in analysis_results.items():
story.append(Paragraph(f"Damage Type: {damage_type}", styles['Heading1']))
story.append(Paragraph(f"Confidence: {details['confidence']}%", styles['Normal']))
story.append(Paragraph("Recommendations:", styles['Heading2']))
for rec in details['recommendations']:
story.append(Paragraph(f"β’ {rec}", styles['Normal']))
story.append(Spacer(1, 12))
doc.build(story)
pdf = buffer.getvalue()
buffer.close()
return pdf
except Exception as e:
logger.error(f"Error generating report: {str(e)}")
return None
def display_analysis_results(predictions: torch.Tensor, analysis_time: float):
"""Display analysis results with damage details"""
st.markdown("### π Analysis Results")
st.markdown(f"*Analysis completed in {analysis_time:.2f} seconds*")
analysis_results = {}
detected = False
for idx, prob in enumerate(predictions):
confidence = float(prob) * 100
if confidence > 15:
detected = True
damage_type = DAMAGE_TYPES[idx]['name']
with st.expander(f"{damage_type.replace('_', ' ').title()} - {confidence:.1f}%", expanded=True):
st.progress(confidence / 100)
# Get enhanced analysis from RAG system
analysis = RAG_SYSTEM.get_enhanced_analysis(damage_type, confidence)
tabs = st.tabs(["π Details", "π§ Repairs", "β οΈ Safety"])
with tabs[0]:
for detail in analysis['technical_details']:
st.markdown(detail)
with tabs[1]:
for rec in analysis['expert_recommendations']:
st.markdown(rec)
with tabs[2]:
for safety in analysis['safety_considerations']:
st.warning(safety)
analysis_results[damage_type] = {
'confidence': confidence,
'recommendations': analysis['expert_recommendations']
}
if not detected:
st.info("No significant structural damage detected. Regular maintenance recommended.")
else:
# Generate download button for report
pdf_report = generate_downloadable_report(analysis_results)
if pdf_report:
st.download_button(
label="Download Analysis Report",
data=pdf_report,
file_name="damage_analysis_report.pdf",
mime="application/pdf"
)
def main():
"""Main application function"""
st.set_page_config(
page_title="Structural Damage Analyzer Pro",
page_icon="ποΈ",
layout="wide",
initial_sidebar_state="expanded"
)
init_session_state()
st.markdown("""
<div style='text-align: center; padding: 1rem;'>
<h1>ποΈ Structural Damage Analyzer Pro</h1>
<p style='font-size: 1.2rem;'>Advanced AI-powered structural damage assessment tool</p>
</div>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.markdown("### βοΈ Settings")
st.session_state.dark_mode = st.toggle("Dark Mode", st.session_state.dark_mode)
st.markdown("### π Analysis History")
if st.session_state.history:
for item in st.session_state.history[-5:]:
st.markdown(f"- {item}")
# Load model and initialize RAG system
global MODEL, PROCESSOR, RAG_SYSTEM
if MODEL is None or PROCESSOR is None:
MODEL, PROCESSOR = load_model()
if MODEL is None:
st.error("Failed to load model. Please refresh the page.")
return
if RAG_SYSTEM is None:
RAG_SYSTEM = RAGSystem()
RAG_SYSTEM.initialize_knowledge_base(KNOWLEDGE_BASE)
# Validate knowledge base
if not validate_knowledge_base():
st.error("Knowledge base validation failed. Please check the logs.")
return
# File upload
uploaded_file = st.file_uploader(
"Upload an image for analysis",
type=['jpg', 'jpeg', 'png'],
help="Supported formats: JPG, JPEG, PNG"
)
if uploaded_file and validate_upload(uploaded_file):
try:
image = preprocess_image(uploaded_file)
if image is None:
return
col1, col2 = st.columns([1, 1])
with col1:
st.image(image, caption="Uploaded Structure", use_column_width=True)
with col2:
start_time = time.time()
predictions = analyze_damage(image, MODEL, PROCESSOR)
if predictions is not None:
analysis_time = time.time() - start_time
display_analysis_results(predictions, analysis_time)
st.session_state.history.append(f"Analyzed {uploaded_file.name}")
st.session_state.analysis_count += 1
except Exception as e:
logger.error("Error in main processing loop", error=str(e))
cleanup_memory()
st.error("An error occurred during processing. Please try again.")
# Footer
st.markdown("---")
st.markdown("""
<div style='text-align: center'>
<p>ποΈ Structural Damage Analyzer Pro | Built with Streamlit & Transformers</p>
<p style='font-size: 0.8rem;'>For professional use only. Always consult with a structural engineer.</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |