File size: 11,515 Bytes
15526fe
3db0aec
 
9814e5f
3db0aec
 
5ec4050
8b2b9dd
5ec4050
 
 
 
8b2b9dd
 
 
 
 
 
 
5ec4050
 
 
 
d9a6878
3db0aec
8b2b9dd
 
5ec4050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3db0aec
 
 
 
 
 
 
d774ee6
 
 
 
 
 
8b2b9dd
 
d774ee6
5ec4050
3db0aec
8b2b9dd
3db0aec
d774ee6
 
 
3db0aec
d774ee6
3db0aec
 
7030681
d774ee6
5ec4050
3db0aec
 
5ec4050
3db0aec
 
5ec4050
 
 
 
 
 
 
 
 
 
 
8b2b9dd
5ec4050
 
 
 
 
 
 
 
 
 
d774ee6
5ec4050
 
 
 
 
 
 
 
 
 
d774ee6
5ec4050
 
 
3db0aec
7030681
5ec4050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d604335
 
 
d774ee6
d604335
d774ee6
3db0aec
15526fe
8b2b9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ec4050
 
 
 
 
8b2b9dd
5ec4050
8b2b9dd
5ec4050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2b9dd
 
 
 
 
5ec4050
 
 
8b2b9dd
 
 
 
 
 
 
 
 
 
5ec4050
9814e5f
5ec4050
d774ee6
 
 
 
 
 
5ec4050
d774ee6
5ec4050
 
d774ee6
 
 
 
5ec4050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2b9dd
 
 
 
 
d774ee6
 
 
 
 
 
5ec4050
 
d774ee6
 
 
 
 
5ec4050
 
 
 
d774ee6
5ec4050
 
 
 
d604335
5ec4050
 
 
8b2b9dd
5ec4050
d774ee6
5ec4050
d774ee6
5ec4050
 
d774ee6
 
5ec4050
d774ee6
 
 
 
5ec4050
9814e5f
 
d604335
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import streamlit as st
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch
import time
import gc
import logging
from knowledge_base import KNOWLEDGE_BASE, DAMAGE_TYPES, validate_knowledge_base
from rag_utils import RAGSystem
import structlog
from typing import Optional, Dict, Any
from functools import lru_cache
from dynaconf import Dynaconf

# Configure settings
settings = Dynaconf(
    settings_files=['settings.yaml', '.secrets.yaml'],
    environments=True
)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = structlog.get_logger()

# Constants
MAX_FILE_SIZE = settings.get('max_file_size', 5 * 1024 * 1024)  # 5MB default
MAX_IMAGE_SIZE = settings.get('max_image_size', 1024)  # Maximum dimension default
MODEL = None
PROCESSOR = None
RAG_SYSTEM = None

def handle_exceptions(func):
    """Decorator for exception handling"""
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            cleanup_memory()
            st.error(f"Error in {func.__name__}: {str(e)}")
            logger.error(f"Error in {func.__name__}: {str(e)}", exc_info=True)
            return None
    return wrapper

def cleanup_memory():
    """Clean up memory and GPU cache"""
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

def init_session_state():
    """Initialize session state variables"""
    if 'history' not in st.session_state:
        st.session_state.history = []
    if 'dark_mode' not in st.session_state:
        st.session_state.dark_mode = False
    if 'analysis_count' not in st.session_state:
        st.session_state.analysis_count = 0

@st.cache_resource(show_spinner="Loading AI model...", ttl=3600*24)
def load_model():
    """Load and cache the model with daily refresh"""
    try:
        model_name = "google/vit-base-patch16-224"
        processor = ViTImageProcessor.from_pretrained(model_name)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = ViTForImageClassification.from_pretrained(
            model_name,
            num_labels=len(DAMAGE_TYPES),
            ignore_mismatched_sizes=True,
        ).to(device)
        model.eval()
        logger.info("Model loaded successfully", device=device)
        return model, processor
    except Exception as e:
        logger.error("Error loading model", error=str(e))
        return None, None

def validate_upload(file) -> bool:
    """Validate uploaded file for security"""
    if not file:
        return False
    
    allowed_extensions = {'jpg', 'jpeg', 'png'}
    if not file.name.lower().endswith(tuple(allowed_extensions)):
        st.error("Invalid file type. Please upload a JPG or PNG image.")
        return False
    
    if file.size > MAX_FILE_SIZE:
        st.error(f"File too large. Maximum size is {MAX_FILE_SIZE/1024/1024:.1f}MB.")
        return False
    
    if file.type not in ['image/jpeg', 'image/png']:
        st.error("Invalid file content type.")
        return False
    
    return True

@handle_exceptions
def preprocess_image(uploaded_file) -> Optional[Image.Image]:
    """Preprocess and validate uploaded image"""
    image = Image.open(uploaded_file)
    if max(image.size) > MAX_IMAGE_SIZE:
        ratio = MAX_IMAGE_SIZE / max(image.size)
        new_size = tuple([int(dim * ratio) for dim in image.size])
        image = image.resize(new_size, Image.Resampling.LANCZOS)
    return image

@handle_exceptions
def analyze_damage(image: Image.Image, model: ViTForImageClassification, 
                  processor: ViTImageProcessor) -> Optional[torch.Tensor]:
    """Analyze structural damage in the image"""
    progress_bar = st.progress(0)
    stages = ['Preprocessing', 'Analysis', 'Results Generation']
    
    try:
        device = next(model.parameters()).device
        
        for i, stage in enumerate(stages):
            progress_bar.progress((i + 1) / len(stages))
            st.write(f"Stage {i+1}/{len(stages)}: {stage}")
            
            if i == 0:  # Preprocessing
                image = image.convert('RGB')
                inputs = processor(images=image, return_tensors="pt")
                inputs = {k: v.to(device) for k, v in inputs.items()}
            
            elif i == 1:  # Analysis
                with torch.no_grad():
                    outputs = model(**inputs)
                    probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
            
            elif i == 2:  # Results Generation
                result = probs.cpu()
                
        return result
        
    except RuntimeError as e:
        if "out of memory" in str(e):
            cleanup_memory()
            st.error("Out of memory. Please try with a smaller image.")
        else:
            st.error(f"Error analyzing image: {str(e)}")
        return None

def generate_downloadable_report(analysis_results: Dict):
    """Generate a downloadable PDF report"""
    try:
        import io
        from reportlab.lib import colors
        from reportlab.lib.pagesizes import letter
        from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
        from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle

        buffer = io.BytesIO()
        doc = SimpleDocTemplate(buffer, pagesize=letter)
        styles = getSampleStyleSheet()
        story = []

        # Add title
        story.append(Paragraph("Structural Damage Analysis Report", styles['Title']))
        story.append(Spacer(1, 12))

        # Add analysis results
        for damage_type, details in analysis_results.items():
            story.append(Paragraph(f"Damage Type: {damage_type}", styles['Heading1']))
            story.append(Paragraph(f"Confidence: {details['confidence']}%", styles['Normal']))
            story.append(Paragraph("Recommendations:", styles['Heading2']))
            for rec in details['recommendations']:
                story.append(Paragraph(f"β€’ {rec}", styles['Normal']))
            story.append(Spacer(1, 12))

        doc.build(story)
        pdf = buffer.getvalue()
        buffer.close()
        return pdf
    except Exception as e:
        logger.error(f"Error generating report: {str(e)}")
        return None

def display_analysis_results(predictions: torch.Tensor, analysis_time: float):
    """Display analysis results with damage details"""
    st.markdown("### πŸ“Š Analysis Results")
    st.markdown(f"*Analysis completed in {analysis_time:.2f} seconds*")
    
    analysis_results = {}
    detected = False
    
    for idx, prob in enumerate(predictions):
        confidence = float(prob) * 100
        if confidence > 15:
            detected = True
            damage_type = DAMAGE_TYPES[idx]['name']
            
            with st.expander(f"{damage_type.replace('_', ' ').title()} - {confidence:.1f}%", expanded=True):
                st.progress(confidence / 100)
                
                # Get enhanced analysis from RAG system
                analysis = RAG_SYSTEM.get_enhanced_analysis(damage_type, confidence)
                
                tabs = st.tabs(["πŸ“‹ Details", "πŸ”§ Repairs", "⚠️ Safety"])
                
                with tabs[0]:
                    for detail in analysis['technical_details']:
                        st.markdown(detail)
                
                with tabs[1]:
                    for rec in analysis['expert_recommendations']:
                        st.markdown(rec)
                
                with tabs[2]:
                    for safety in analysis['safety_considerations']:
                        st.warning(safety)
                
                analysis_results[damage_type] = {
                    'confidence': confidence,
                    'recommendations': analysis['expert_recommendations']
                }
    
    if not detected:
        st.info("No significant structural damage detected. Regular maintenance recommended.")
    else:
        # Generate download button for report
        pdf_report = generate_downloadable_report(analysis_results)
        if pdf_report:
            st.download_button(
                label="Download Analysis Report",
                data=pdf_report,
                file_name="damage_analysis_report.pdf",
                mime="application/pdf"
            )

def main():
    """Main application function"""
    st.set_page_config(
        page_title="Structural Damage Analyzer Pro",
        page_icon="πŸ—οΈ",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    
    init_session_state()
    
    st.markdown("""
        <div style='text-align: center; padding: 1rem;'>
            <h1>πŸ—οΈ Structural Damage Analyzer Pro</h1>
            <p style='font-size: 1.2rem;'>Advanced AI-powered structural damage assessment tool</p>
        </div>
    """, unsafe_allow_html=True)
    
    # Sidebar
    with st.sidebar:
        st.markdown("### βš™οΈ Settings")
        st.session_state.dark_mode = st.toggle("Dark Mode", st.session_state.dark_mode)
        st.markdown("### πŸ“– Analysis History")
        if st.session_state.history:
            for item in st.session_state.history[-5:]:
                st.markdown(f"- {item}")
    
    # Load model and initialize RAG system
    global MODEL, PROCESSOR, RAG_SYSTEM
    if MODEL is None or PROCESSOR is None:
        MODEL, PROCESSOR = load_model()
        if MODEL is None:
            st.error("Failed to load model. Please refresh the page.")
            return
    
    if RAG_SYSTEM is None:
        RAG_SYSTEM = RAGSystem()
        RAG_SYSTEM.initialize_knowledge_base(KNOWLEDGE_BASE)
    
    # Validate knowledge base
    if not validate_knowledge_base():
        st.error("Knowledge base validation failed. Please check the logs.")
        return
    
    # File upload
    uploaded_file = st.file_uploader(
        "Upload an image for analysis",
        type=['jpg', 'jpeg', 'png'],
        help="Supported formats: JPG, JPEG, PNG"
    )
    
    if uploaded_file and validate_upload(uploaded_file):
        try:
            image = preprocess_image(uploaded_file)
            if image is None:
                return
            
            col1, col2 = st.columns([1, 1])
            
            with col1:
                st.image(image, caption="Uploaded Structure", use_column_width=True)
            
            with col2:
                start_time = time.time()
                predictions = analyze_damage(image, MODEL, PROCESSOR)
                
                if predictions is not None:
                    analysis_time = time.time() - start_time
                    display_analysis_results(predictions, analysis_time)
                    st.session_state.history.append(f"Analyzed {uploaded_file.name}")
                    st.session_state.analysis_count += 1
        
        except Exception as e:
            logger.error("Error in main processing loop", error=str(e))
            cleanup_memory()
            st.error("An error occurred during processing. Please try again.")
    
    # Footer
    st.markdown("---")
    st.markdown("""
        <div style='text-align: center'>
            <p>πŸ—οΈ Structural Damage Analyzer Pro | Built with Streamlit & Transformers</p>
            <p style='font-size: 0.8rem;'>For professional use only. Always consult with a structural engineer.</p>
        </div>
    """, unsafe_allow_html=True)

if __name__ == "__main__":
    main()